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Abstract. This is the guest editors’ general introduction to a Special Issue of

the Journal of Statistical Planning and Inference, dedicated to confidence dis-

tributions and related themes. Confidence distributions (CDs) are distributions

for parameters of interest, constructed via a statistical model after analysing the

data. As such they serve the same purpose for the frequentist statisticians as

the posterior distributions for the Bayesians. There have been several attempts

in the literature to put up a clear theory for such confidence distributions, from

Fisher’s fiducial inference and onwards. There are certain obstacles and difficul-

ties involved in these attempts, both conceptually and operationally, which have

contributed to the CDs being slow in entering statistical mainstream. Recently

there is a renewed surge of interest in CDs and various related themes, however,

reflected in both series of new methodological research, advanced applications to

substantive sciences, and dissemination and communication via workshops and

conferences. The present special issue of the JSPI is a collection of papers ema-

nating from the Inference With Confidence workshop in Oslo, May 2015. Several

of the papers appearing here were first presented at that workshop. The present

collection includes however also new research papers from other scholars in the

field.

Key words: confidence curves, confidence distributions, focus parameters, likelihood,

meta-analysis, probability

The Journal of Statistical Planning and Inference decided in the autumn of

2015 to arrange for a Special Issue on confidence distribution and related themes.

After various efforts, by patient authors, referees, and colleagues, along with the

customary revision processes, this has resulted in the current collection of eleven

journal articles:

1 Cunen et al. (2017a), on CDs and confidence curves for change points, with

applications to mediaeval literature and to fisheries sciences;

2 De Blasi & Schweder (2017), on median bias corrections for fine-tuning CDs;

3 Grünwald (2017), on safe probability, leading also to tools for predictions;

4 Hannig et al. (2017), on fusion learning and inter-laboratory analyses;

5 Lewis (2017), on combining inferences, with application to climate statistics;
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6 Lindqvist & Taraldsen (2017), on proper uses of improper distributions;

7 Martin (2017), on generalised inference models;

8 Schweder (2017), with an essay on epistemic probability;

9 Shen et al. (2017), on CDs for predictions, in different setups;

10 Taraldsen & Lindqvist (2017), on conditional fiducial models; and

11 Veronese & Melilli (2017), on CDs and their connections to objective Bayes.

These papers deal with theory and applications for distributional statistical infer-

ence, with CDs and fiducial distributions being the central concepts. Quite a few

contributions also touch Bayesian angles and connections, however (Cunen et al.

(2017a), Grünwald (2017), Lewis (2017), Lindqvist & Taraldsen (2017), Taraldsen

& Lindqvist (2017), Veronese & Melilli (2017)). In the present general introduc-

tion to the Special Issue, by the guest editors, efforts are made both to explain to

the broader statistical audience what confidence distributions (CDs) and confidence

curves are; why and how they are steadily becoming more popular, in statistical

theory and practice; and to briefly place the eleven papers in a broader context. In

our article, which is by itself a gentle introduction to the general CD themes, we

also attempt to point to aspects and issues and types of application not already

contained in the review paper Xie & Singh (2013) and ensuing discussion.

1. The Holy Grail: frequentist posterior distributions

Suppose data are analysed via some model, and that ψ is a parameter of par-

ticular interest. Statisticians have many methods in their toolboxes for conducting

inference for ψ, such as reaching a point estimate, assessing its precision, setting up

tests, along with p-values when of relevance, finding confidence intervals, comparing

the ψ with other parameters from other studies, etc. For the frequentist, constructing

a distribution for ψ, given the available information, is more problematic, however,

also conceptually.

Somehow it appears to be a strict Bayesian privilege to arrive at an appropriate

posterior distribution, say p(ψ | data) – along with the associated difficulties of car-

rying out Bayesian work in the first place, involving elicitation of prior distributions

and combining these with probability distributions of a different kind. Working out

a p(ψ | data) in the frequentist framework appears to clash with the basic premise

that the parameter vector of the model is a fixed but unknown point in the param-

eter space. This has not stopped scholars from attempting precisely such a feat,

called the Holy Grail of parametric statistics by Brad Efron (Efron, 2010). The

earliest attempts were by none other than Sir Ronald Fisher, in a series of papers in

the 1930ies (Fisher, 1930, 1932, 1933, 1935). Certain obstacles and difficulties were

found and pointed to by a number of critical scholars, however, and Fisher did not
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quite manage to defend his notion of a fiducial distribution for parameters. Indeed

the fiducial ideas have been referred to as ‘Fisher’s biggest blunder’; see Schweder &

Hjort (2016, Ch. 6) for an account of the historical development, and also Grünwald

(2017, this issue).

There are however other and partly related notions of how to reach proper

frequentist posterior distributions, without priors, and the collective labels for a fair

portion of these refined and modernised constructions are confidence distributions

(CDs) and confidence curves. There is a clear surge of interest in these methods and

in various related themes, regarding both theory and applications. This is witnessed

in books and journal articles and by applied advanced work, and is also reflected in

high-level workshops and conferences. The BFF: Bayes, Frequentist, Fiducial series

of conferences (also referred to as ‘Best Friends Forever’) is reaching a steadily wider

audience, with the current list being Shanghai (2014, 2015), Rutgers, New Jersey

(2016), Harvard, Massachusetts (2017), Ann Arbor, Michigan (2018), and Duke and

SAMSI, North Carolina (2019). There are also special invited sessions at major

conferences, etc., dedicated to CDs and BFF themes. Efron (1998) speculates that

Fisher’s (alleged) biggest blunder might turn into a big hit for the 21st century; see

also Efron & Hastie (2016, Ch. 11).

The present special issue of the JSPI is dedicated to such CDs and the growing

list of related topics. The collection of papers and the ensuing organisation of the

special issue have grown out of one of these conferences, the Inference With Confi-

dence workshop in Oslo in May 2015, organised by the the research group FocuStat:

Focus Driven Statistical Inference With Complex Data. Some of the papers appear-

ing in this issue were first presented as invited lectures at this workshop. We have

also recruited contributions from other scholars in the field, however, in an attempt

to exhibit and see discussed a decent range of the more crucial dimensions of CDs

and their increasing scope and usefulness, in methodological and applied statistical

work.

“The three revolutions in parametric statistical inference are due to Laplace

(1774), Gauss and Laplace (1809–1811) and Fisher (1922)”, is the clear opening

statement in the two books Hald (1998, 2006). Somewhat boldly, Schweder & Hjort

(2016, Preface) claim there is an ongoing fourth revolution in statistics, at the start of

the current millennium. This fourth revolution has perhaps a less clear focus than the

three drastic methodological changes Hald describes, and is arguably more about the

who and what than about the how, but we argue there that CDs and confidence curves

have a natural place in the world of statistical computation and communication, also

with Big Data. “I wish I’d seen a confidence curve earlier”, as tweeted J.M. White,

who manages a branch of Facebook’s Core Data Science team, in April 2017. We



4 CDS AND RELATED THEMES

should also make clear that there by necessity are several approaches (partly related

and partly competing) to the alleged Holy Grail of reaching posteriors without priors.

In addition to the CD theory expounded in Schweder & Hjort (2002, 2003, 2016);

Xie & Singh (2013), with roots all the way back to Fisher in the 1930ies, there

is generalised fiducial inference, see Hannig et al. (2016) and Hannig et al. (2017,

this issue), along with Lindqvist & Taraldsen (2017, this issue) and Taraldsen &

Lindqvist (2017, this issue); as well as the theory of inferential models, cf. Martin

& Liu (2015) and Martin (2017, this issue). There is bound to be yet other hybrids

and connections, and some of these are touched upon in the present collection of

journal articles.

2. What are confidence distributions and confidence curves?

There are several ways in which to motivate, define and construct such CDs,

along with associated concepts and functions. Suppose the model for the data y is

governed by a parameter vector θ, and that the interest parameter ψ is a function

ψ(θ) of the model parameter. A modern definition of a confidence curve for ψ, say

cc(ψ, y), see Schweder & Hjort (2002, 2016); Xie & Singh (2013), is as follows. We

write Y for the random outcome of the data generating mechanism and yobs for

the actually observed data. At the true parameter point ψ0 = ψ(θ0), the random

variable cc(ψ0, Y ) should have a uniform distribution on the unit interval. Then

Pθ0{cc(ψ0, Y ) ≤ α} = α for allα. (2.1)

Thus confidence intervals, and more generally confidence regions, can be read off,

at each desired level; the 90% confidence region is {ψ : cc(ψ, yobs) ≤ 0.90}, etc.

When α tends to zero the confidence region typically tends to a single point, say ψ̂,

an estimator of ψ. In regular cases the cc(ψ, y) is decreasing to the left of ψ̂ and

increasing to the right, in which case the confidence curve cc(ψ, y) can be uniquely

linked to a full confidence distribution C(ψ, y), via

cc(ψ, y) = |1− 2C(ψ, y)| =

1− 2C(ψ, y) if ψ ≤ ψ̂,

2C(ψ, y)− 1 if ψ ≥ ψ̂.
(2.2)

The confidence name given to these post-data summaries for focus parame-

ters stems from the intimate connection to the familiar confidence intervals. With

C(ψ, y) a CD, [C−1(0.05, yobs), C
−1(0.95, yobs)] becomes an equi-tailed 90% confi-

dence interval, etc. Also, solving cc(ψ, yobs) = 0.90 yields two cut-off points for ψ,

precisely those of the 90% confidence interval. Correspondingly one may start with

a given set of nested confidence intervals, for all levels α, and convert these into,

precisely, a CD.
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3. General recipes

Suppose a model with parameter vector θ is used for data y and again that

ψ = ψ(θ) is a focus parameter. If piv(ψ, y) is a function monotone increasing in ψ,

with a distribution not depending on the underlying parameter, we term it a pivot.

Thus K(x) = Pθ{piv(ψ, Y ) ≤ x} does not depend on θ, or on ψ, which implies that

C(ψ, y) = K(piv(ψ, y))

is a CD. The classical construction of this type is that of Student (1908), namely

t =
µ− ȳ
s/
√
n

for a normal sample, with ȳ and s denoting the sample mean and empirical standard

deviation. The ensuing CD for µ becomes

C(µ, data) = Fν(
√
n(µ− ȳ)/s),

with Fν the cumulative distribution function of a t distribution with the relevant

degrees of freedom.

In various classical setups for parametric models, there are well-working large-

sample approximations for the the behaviour of estimators, deviance functions, etc.,

and these lead to constructions of CDs and confidence curves. First, if ψ̂ is such

that
√
n(ψ̂ − ψ) →d N(0, τ 2), and τ̂ is a consistent estimator for the τ in question,

then
√
n(ψ̂ − ψ)/τ̂ →d N(0, 1). Writing

Cn(ψ,Dn) = Φ(
√
n(ψ − ψ̂)/τ̂), (3.1)

therefore, with Dn the data available after n observations, we have Cn(ψ,Dn) →d

unif; in particular, the Cn(ψ,Dn) is asymptotically a pivot in the above sense. Hence

such a Cn(ψ,Dn,obs) is a large-sample valid CD, allowing us to write

ψ | data ≈d N(ψ̂, τ̂ 2/n), (3.2)

in the CD sense. This is akin to a Bayesian posterior distribution for ψ (but without

any notion of a prior distribution involved). Also, the associated confidence curve,

asymptotically valid, is

cc(ψ,Dn,obs) = |1− 2 Φ(
√
n(ψ − ψ̂obs)/τ̂obs)|.

These first-order large-sample approximations (3.1)–(3.2) are simple and useful

but sometimes too coarse. A recipe that typically works better is the following.

With `n(θ) the log-likelihood function, let `n,prof(ψ) = max{`n(θ) : ψ(θ) = ψ} be the

profile, which we then turn into the deviance function

devn(ψ) = 2{`n,prof(ψ̂)− `n,prof(ψ)}. (3.3)
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By the Wilks theorem (see e.g. Schweder & Hjort (2016, Chs. 2-3)), under mild regu-

larity conditions devn(ψ0)→d χ
2
1, at the true value ψ0 = ψ(θ0). Hence ccn(ψ0,Dn) =

Γ1(devn(ψ0))→d unif, with Γ1(·) denoting the χ2
1 distribution function, and

ccn(ψ,Dn,obs) = Γ1(devn(ψ)) (3.4)

is our confidence curve. It can reflect asymmetry and also likelihood multimodality in

the underlying distributions, unlike the simpler method of (3.1). Since a confidence

curve can be derived from a proper CD, via (2.2), but not always the other way

around, the confidence curve is arguably a more fundamental notion or concept

than a CD.

There is an extensive literature in probability theory and statistics regarding the

many ways of fine-tuning the distributional approximations associated with the first-

order normality result (3.1) and the Wilks theorem for (3.3). Key words for such

methods include Bartletting, expansions, modified profiles, saddlepointing, boot-

strap refinements, prepivoting, etc.; see e.g. Brazzale et al. (2007); Brazzale & Davi-

son (2008); Barndorff-Nielsen & Cox (1994). Many of these methods may then be

worked with further to yield fine-tuning instruments for CDs and confidence curves.

Some of these translations, from the more traditional setup of assessing accuracy

of a certain approximation, or how to correct for a type of bias, are fairly straight-

forward, leading to good CD recipes. Other such translations, involving perhaps

higher-level bootstrapping or modified log-likelihood operations, are non-trivial. In-

terestingly, some of the more intricate procedures, like Barndorff-Nielsen’s ‘magic

formula’, have relatively speaking easier cousins in the CD universe of things, and

potentially with easier explanations; see Schweder & Hjort (2016, Ch. 7) for discus-

sion and illustrations.

A confidence curve analysis is often much more informative than providing the

prototypical 95% interval or a p-value for an associated hypothesis test. Figure 3.1

displays the confidence curve cc(p) for the probability p that the world would see a

100 m sprint race in a time of 9.72 seconds or faster, inside the calendar year 2008,

with this question asked on January 1 that year. In other words, this is an attempt

to quantify how surprised we ought to have been, when we learned that Usain Bolt

had set his first world record, in May that year. We have used the general apparatus

of extreme value theory to make such a question precise, taking as data the n = 195

races (which we were able to track down from various sources) with a result time

of 10.00 or better, in the course of the eight calendar years 2000–2007. Theory

for extreme values leads to a certain parametric form for the best races, involving

parameters (a, σ) (and the model has been shown to fit very well to the sprint

data). The cc(p) given in the figure has come about by (i) expressing p as a function
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Figure 3.1. Confidence curve for the probability p that there would be a 100 m

race of 9.72 or better, in the course of 2008, as seen from January 1

that year. The point estimate is 0.034, and the 90% confidence

interval is [0, 0.189]. The dotted curve is a fine-tuned version of

(3.4), via Bartletting.

of (a, σ), (ii) using the log-likelihood function `n(a, σ) to arrive at the profile and

deviance function for p; and (iii) applying (3.4). The point estimate is p̂ = 0.034,

and a 90% confidence interval, read off from the figure, is [0, 0.189]. The natural

skewness of the distributions involved makes this a more appealing method than

applying the traditional p̂± 1.645 κ̂/
√
n, say. The dotted line in Figure 3.1 is what

here comes out of using a fine-tuning version of (3.4), namely Γ1(devn(p)/(1 + ε̂)),

with 1 + ε̂ indicating a Bartlett correction for the distribution of devn(p). In this

particular case, 1 + ε̂ = 1.070, and the curves are nearly identical. For a fuller

discussion and the required detail, see Schweder & Hjort (2016, Section 7.4); see

also De Blasi & Schweder (2017, this issue), where a novel correction method for

fine-tuning of CDs is applied for this Bolt 2008 problem.
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4. Risk, performance, optimality, and testing

Different ways of setting confidence intervals for the same parameter, and indeed

more generally CDs, entail different performances. What is reasonably to be under-

stood by ‘good performance’, for a confidence interval or a CD, is less clear than for

point estimates or tests, where we are used to assessing root mean squared errors

and power curves. Natural classes of loss functions may be put forward, with the

risk functions as usual defined as the expected values of these losses, as a function

of the the position in the parameter space. Such themes are developed in Schweder

& Hjort (2016, Chs. 5, 7, 8). This development may be seen as a natural extension

of classical optimality theory, for testing and for point estimation, as with the body

of literature on Neyman–Pearson testing, etc.; see e.g. Lehmann (1959); Lehmann

& Romano (2005).

Here we are content to quote and then illustrate a certain optimality theorem,

which in particular can be put to use in models of the classical exponential structure.

Suppose ψ is a focus parameter, and that the log-likelihood function for data can

be expressed in the form

`(ψ, λ1, . . . , λk) = Bψ +
k∑
j=1

Ajλj − c(ψ, λ1, . . . , λk) + h(D),

with nuisance parameters λ1, . . . , λk, with B and A1, . . . , Ak functions of the data

D, and appropriate functions c(·) and h(·). In that case, the CD

C∗(ψ,D) = Pψ{B ≥ Bobs |A1 = A1,obs, . . . , Ak = Ak,obs} (4.1)

enjoys optimality properties with respect to a large class of loss functions for CDs;

see Schweder & Hjort (2016, Ch. 5). That this C∗(ψ) depends only on ψ, and not

on the nuisance parameters, is part of the associated theorems.

Table 4.1. Lidocaine data: Death rates for two groups of acute myocardial in-

farction patients, in six independent studies, with control group as-

sociated with (m0, y0) and lidocaine treatment group with (m1, y1);

from Normand (1999). See Figure 4.1.

m1 m0 y1 y0 z

39 43 2 1 3

44 44 4 4 8

107 110 6 4 10

103 100 7 5 12

110 106 7 3 10

154 146 11 4 15

To illustrate this, consider Table 4.1, summarising the number of deaths y0 and

y1, with underlying sample sizes m0 and m1, in k = 6 independent studies, involving
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acute myocardial infarction patients. Patients in the treatment group, associated

with (m1, y1), received the drug lidocaine; the control group, listed under (m0, y0),

did not; see Normand (1999). These are binomial studies, and modelling and analysis

may proceed as in Schweder & Hjort (2016, Ch. 14.6). Since the probabilities are

small, we choose a Poisson model for the present illustration. Our model takes

yj,0 ∼ Pois(ej,0λj,0) and yj,1 ∼ Pois(ej,1λj,1), with λj,1 = γλj,0, (4.2)

with exposure numbers ej,0 and ej,1 proportional to sample sizes mj,0 and mj,1, for

j = 1, . . . , k. Interest focuses on γ, which signals whether the drug use for these

patients led to an increased death risk. The log-likelihood for study j takes the form

`j = −ej,0λj,0 + yj,0 log λj,0 − ej,1λj,0γ + yj,1(log λj,0 + log γ)

= yj,1 log γ + zj log λj,0 − ej,0λj,0 − ej,1λj,0γ,

with zj = yj,0 + yj,1. The optimality theorem applies, involving the distribution of

yj,1 | zj, which is seen to be a binomial (zj, ej,1γ/(ej,0 + ej,1γ)). The optimal CD for

γ, based on study j alone, is hence

C∗
j (γ,Dj) = 1−B(yj,1; zj, ej,1γ/(ej,0 + ej,1γ)) + 1

2
b(yj,1; zj, ej,1γ/(ej,0 + ej,1γ)),

with Dj signifying the data from source j, and with B(·;n, p) and b(·;n, p) denoting

the cumulative and point distribution of a binomial (n, p). Here we are using the

beneficial half-correction for discreteness, cf. Schweder & Hjort (2016, Ch. 3.7).

The k = 6 confidence curves cc∗j(γ,Dj) = |1− 2C∗
j (γ,Dj)| for the risk inflation

parameter γ coming out of this are seen in Figure 4.1 (the dashed curves). Also dis-

played is the overall optimal confidence curve for γ (the fatter, full curve), emerging

from studying the combined log-likelihood,

` =
k∑
j=1

`j = B log γ +
k∑
j=1

zj log λj,0 −
k∑
j=1

(ej,0 + ej,1γ)λj,0,

with B =
∑k

j=1 yj,1, and where our optimality theorem leads to

C∗(γ,D) = Pγ{B > Bobs | z1 = z1,obs, . . . , zk = zk,obs}
+1

2
Pγ{B = Bobs | z1 = z1,obs, . . . , zk = zk,obs},

(4.3)

with D denoting the full dataset. This is evaluated numerically by simulating a large

enough number of B, for each γ on a grid of such values, from the distribution of a

sum of k binomials with different sets of parameters.

The main interest for the analysis of the lidocaine dataset is the assessment of

the risk inflation, if present, i.e. the degree to which the treatment for these patients

leads to increased risk of death. In our Poisson model (4.2), this is measured via the

parameter γ. The perhaps most traditional statistical approach is to test the null
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Figure 4.1. The dashed lines are the confidence curves for the risk inflation pa-

rameter γ from each of the six studies, from the model (4.2) with

the lidocaine data of Table 4.1. The thick black curve is the opti-

mal combined confidence curve, while the virtually identical dashed

curve is the combined confidence curve based on the II-CC-FF meth-

ods of Section 5, without using the Poisson model properties per se.

hypothesis H0 : γ ≤ 1 versus the alternative that γ > 1. As Figure 4.1 reveals, there

is often more information in conducting a full confidence curve analysis than in ex-

ecuting a test with its traditional yes-or-no answer at a certain level of significance,

like the ubiquitous 0.05. The cc∗(γ,D) reveals not merely the overall point estimate

1.732, but the 0.95 interval [1.023, 3.027], along with all other intervals; also, the

configram clearly reveals the relative influence of each of the k = 6 separate infor-

mation sources. The p-value can also be read off, from p = C∗(1,D), the epistemic

confidence that γ ≤ 1; the value is 0.021.

As another illustration of this general point, about how CD analyses and plots

often convey more statistical information than simple accept-or-reject answers from

carrying out a test, consider Figure 4.2, with the left panel showing the increase in

expected lifelength for women born in Norway (full curve), Sweden (dashed curve),

Denmark (dotted curve), for the years 1960, 1970, 1980, 1990, 2000, 2010, 2015,

from the website worldlifeexpectancy.com/history-of-life-expectancy. The

growth in expected lifelength is amazingly linear, for this span of calendar time,

and we view the data as three linear regressions, say yi,j = αi + βixj + εi,j for
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countries i = 1, 2, 3 and calendar years xj represented by j = 1, . . . , 7, and with

error terms modelled as independent and εi,j ∼ N(0, σ2
i ). We may query whether

the regression slope coefficient β is the same for the three Scandinavian countries.

Rather than merely testing the hypothesis H0 that β1 = β2 = β3, which would be

standard (the point estimates are 0.140, 0.162, 0.144, with considerable overlap in

their 0.95 confidence intervals), we address the question by modelling these three

β coefficients as coming from a background N(β0, τ
2) model; hence H0 is the same

as τ = 0. Using methods of Schweder & Hjort (2016, Ch. 13), we can derive and

compute full CDs C(τ,D) for the spread parameter, displayed in the right panel.

For the three male regressions (not shown here), the CD has a big point-mass 0.603

at τ = 0; there is hence no reason to reject H0, and confidence intervals at all

reasonable levels start at zero (a 90% interval is [0, C−1(0.90,D)] = [0, 0.060]). For

the female regressions, however, there are noticeable differences in the three slopes

underlying what is seen in the left panel; the p-value is C(0,D) = 0.021, and a 90%

interval is [C−1(0.05,D), C−1(0.95,D)] = [0.003, 0.053].

5. Data fusion via CDs

Meta-analysis is a well-developed area of theoretical and applied statistics, hav-

ing to do with the comparison, assessment and perhaps ranking of different parame-

ters across similar studies. Typical applications include analyses of different schools,

or hospitals, or sport teams, or departments of statistics. Over the past few years

these topics and methods have been expanded further, to account for the need to

fuse together information from potentially very different types of sources, also in

connection with the Data Science exploitation of Big Data. It is also important

in various application areas to combine Bayesian with frequentist information, as

discussed in Liu et al. (2015) and Lewis (2017, this issue); also, Grünwald (2017,

this issue) touches on ways in which to handle multiple priors.

Suppose in general that data source yj carries information about parameter ψj,

for sources j = 1, . . . , k. We wish to assess overall aspects of these ψj, perhaps

aiming for inference concerning one of more functions φ(ψ1, . . . , ψk). Let us first

assume that the ψj parameter is the same, across studies, and that the separate

studies have led to CDs Cj(ψ, yj). A class of methods for combining these is as

follows; see Singh et al. (2005); Xie & Singh (2013); Liu et al. (2014) and further

references therein. Under the true value, Cj(ψ, Yj) ∼ unif, from which follows

Φ−1(Cj(ψ, Yj)) ∼ N(0, 1). With weights wj nonrandom and satisfying
∑k

j=1w
2
j = 1,

therefore,

C̄(ψ,D) = Φ
( k∑
j=1

wjΦ
−1(Cj(ψ, Yj))

)
,
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Figure 4.2. Left panel: The expected mean lifelength for women born in Norway

(full curve), Sweden (dashed curve), Denmark (dotted curve), in

calendar years 1960, 1970, 1980, 1990, 200, 2010, 2015. Right panel:

The CD C(τ,D) for the spread parameter in the model β1, β2, β3 ∼
N(β0, τ

2) for the three regression slope parameters; for men (dashed

curve, starting at 0.603 at zero) and for women (full curve, starting

at 0.021 at zero). 95% intervals for τ are [0, 0.060] for men and

[0.003, 0.053] for women.

with D the full dataset, is a CD for the common interest parameter ψ. Other

start ingredients than the normal could also be put to use, but with less amenable

convolutions and inversions. This is a versatile and broadly applicable method, but

with some drawbacks. There are difficulties when estimated weights ŵj are used,

and there is lack of full efficiency. In various cases, there are better CD combination

methods, with higher confidence power; see the discussion in Cunen & Hjort (2016).

In clearly structured cases, as with several of the simpler meta-analysis setups,

one can work with the full likelihood of the observed data, and deduce good CDs

for interest parameters, see Schweder & Hjort (2016, Ch. 13). This does sometimes

require the full set of raw data, however, which is often a too tall order. General



CDS AND RELATED THEMES 13

ways of dealing with data fusion with CDs are discussed and applied in Liu et al.

(2015) and Hannig et al. (2017, this issue). Here we describe a more general setup

for carrying out data fusion, via CDs, which we call the II-CC-FF paradigm; see

Cunen & Hjort (2016). It is a more broadly applicable formulation of likelihood

synthesis ideas first proposed, developed and applied in Schweder & Hjort (1996,

1997), in the specific context of population dynamics models for whale abundance.

II Independent Inspection: From data source yj to estimate and confidence

analysis, yielding a CD Cj(ψj, yj); yj =⇒ Cj(ψj, yj).

CC Confidence Conversion: From the CD to a confidence log-likelihood, `c,j(ψj);

Cj(ψj, yj) =⇒ `c,j(ψj).

FF Focused Fusion: Using the combined confidence log-likelihood `c =
∑k

j=1 `c,j(ψj)

to construct a CD for the given focus φ = φ(ψ1, . . . , ψk), perhaps via profiling,

median-Bartletting, etc.; `c(ψ1, . . . , ψk) =⇒ C̄fusion(φ,D), with D denoting

the combined dataset.

The FF step, which may also be described as the Summary of Summaries opera-

tion, will typically involve log-likelihood profiling and operations like (3.4), perhaps

along with fine-tuning operations for increased accuracy. Sometimes the CC step is

the more difficult one, since a clear translation from confidence to likelihood often

would involve details of sampling design and protocol, etc. Under mild conditions,

however, the normal conversion works well, which is

`c,j(ψj) = −1
2

Γ−1
1 (ccj(ψj, yj)) = −1

2
{Φ−1(Cj(ψj, yj))}2,

cf. (3.4).

For an illustration, let us go back to the lidocaine story of Table 4.1 and Figure

4.1, for which we have already displayed the optimal meta-analysis confidence curve

(4.3) for the risk inflation parameter γ. We may however attempt the II-CC-FF

recipe, which leads to a C̄fusion(γ,D) just from converting the k = 6 individual

cc∗j(γ,Dj) curves, using normal conversion, but without using the raw data per se,

or any further knowledge of the underlying Poisson nature details of the modelling

of the data. Amazingly, this FF fusion curve is almost indistinguishable from the

C∗(γ,D).

6. CDs in semi- and nonparametric situations

The CDs and confidence curves may also be constructed in non- and semi-

parametric situations. By arguments above, as long as there is an estimator ψ̂ for

the required interest parameter ψ, with an associated limit distribution (typically

normal), we may construct a CD for ψ based on that estimator. The empirical
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likelihood may also be worked with to produce nonparametric CDs, in broad classes

of situations, as developed and illustrated in Schweder & Hjort (2016, Ch. 11).

In some cases a more exact analysis is possible. A case in point is the follow-

ing, where inference is required for the quantiles µp = F−1(p) of a continuous and

increasing distribution function, based on i.i.d. data y1, . . . , yn. From the fact that

the vector of ordered observations y(i) has the same distribution as that of F−1(u(i)),

where the u(i) are the ordered sample from a uniform distribution, we can compute

sn(a, b) = P{Y(a) ≤ µp ≤ Y(b)} = P{U(a) ≤ p ≤ U(b)}

for each pair (a, b); see Schweder & Hjort (2016, Ch. 11). This can then be used to

compute and display confidence curves cc(µp, y) for each p of interest, as a nested

sequence of confidence intervals. An illustration is given in Figure 6.1, where we give

the full confidence curves for the 0.1, 0.3, 0.5, 0.7, 0.9 deciles for the birthweight

distributions of boys and girls, born in Oslo, 2001–2008. The cc(µp, y) curves tend

to be slimmer where there is more data, i.e. around the median on this occasion.

In nonparametric situations there are often parameters which cannot be esti-

mated at the usual
√
n rate. Kim & Pollard (1990) give an overview of classes of

cases for which the estimator ψ̂ for the focus parameter ψ in question exhibits cube-

root convergence in distribution, i.e. n1/3(ψ̂ − ψ) →d L for the appropriate (and

non-normal) limit L. With appropriate extra efforts, involving the limit distribution

and a consistent estimator for its variance, say τ̂ , one may construct CDs of the type

K(n1/3(ψ − ψ̂)/τ̂), perhaps along with further fine-tuning.

7. Robust CDs for parametric models

The standard theory for parametric models evolves around the use of likelihood

methods. This is also at least partly the case for the theory and applications of

CDs and confidence curves (Xie & Singh, 2013; Schweder & Hjort, 2016). The basic

concepts and recipes are however not limited to likelihoods per se, and various robust

alternatives may be worked with. To illustrate such general ideas and tools, suppose

independent observations y1, . . . , yn stem from an unknown density g, and that one

wishes to fit the data to a parametric model, say fθ = f(·, θ), with θ a p-dimensional

parameter. Consider

da(g, fθ) =

∫
{f 1+a

θ − (1 + 1/a)gfaθ + (1/a)g1+a} dy,

for a positive tuning parameter a. This is a divergence (nonnegative, and zero only

if g = fθ), and for a→ 0 one finds the Kullback–Leibler divergence
∫
g log(g/fθ) dy

associated with the maximum likelihood method. The BHHJ method, from Basu

et al. (1998); Jones et al. (2001), estimates θ by minimising an empirical version of
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Figure 6.1. Confidence curves cc(q) for deciles 0.1, 0.3, 0.5, 0.7, 0.9 of birth-

weight distributions, for boys (n = 548) and girls (n = 480) born in

Oslo 2001–2008.

da, namely Hn(θ) =
∫
f 1+a
θ dy− (1 +a/n)n−1

∑n
i=1 f(yi, θ)

a. Setting the derivatives

equal to zero, the BHHJ estimator is also the solution to the equations

n−1

n∑
i=1

f(yi, θ)
au(yi, θ) =

∫
f 1+a
θ uθ dy,

where uθ(y) = u(y, θ) = ∂ log f(y, θ)/∂θ is the score function for the model. Con-

tributions from data points with low probability under the model thus get weighted

down. The method is a successful robustification of the maximum likelihood strategy

(also in regression setups and other models more elaborate than the i.i.d. situation

considered here), earning bounded influence functions at the expense of a very mild

loss of efficiency under perfect model conditions, if a is small.

The present point we wish to make is that the criterion function Hn, used to

find the BHHJ estimator and its approximate multinormal distribution, can also be
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Figure 7.1. Left panel: with average x0 bodyweight (in kg) and average brain-

weight y0 (in g), for 28 species of land animals, the plot gives

(x, y) = (log x0, log y0). Right panel: two confidence curves for the

correlation coefficient ρ, based on maximum likelihood (estimate

0.779) and one using the robust BHHJ method (estimate 0.819).

profiled, leading to confidence curves for focus parameters. With ψ = ψ(θ) such

a focus parameter, the BHHJ estimator is ψ̂ = ψ(θ̂), and we form Hn,prof(ψ) =

min{Hn(θ) : ψ(θ) = ψ} and then the associated deviance function,

Dn(ψ) = 2n{Hn,prof(ψ)−Hn,prof(ψ̂)} = 2n{Hn,prof(ψ)−Hn,min}.

With arguments along the lines of Schweder & Hjort (2016, Ch. 2.4, Appendix A.6),

one may establish that Dn(ψ0) →d kχ
2
1, at the appropriate least false parameter

value ψ0 = ψ(θ0), with θ0 minimising the distance da(g, fθ) from the true g to

the parametric model. Here k is a certain extra factor which may be estimated

consistently from the data. This leads to the robust confidence curve cc(ψ,Dn) =

Γ1(Dn(ψ)/k̂) (again with Dn denoting the dataset), in generalisation of (3.4).

This machinery works also for multidimensional data. Figure 7.1 relates to an

illustration of this, where we have studied the dataset Animals in R, with (x0, y0)
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equal to average bodyweight (in kg) and average brainweight (in g) for n = 28 species

of land animals. On the log-and-log scale of (x, y) = (log x0, log y0), intriguingly, the

points nearly form a linear regression structure; the deviants, from this perspec-

tive, are the big-brained humans, and the big-bodied small-brained Brachiosaurus,

Triceratops, and Diplodocus (left panel). Our chosen focus, for this illustration, is

the correlation coefficient ρ. The estimate is 0.779, based on all 28 species, but

a much higher 0.960 if we remove the three small-brained just mentioned. We fit

the five-parametric binormal model to the data, first using maximum likelihood

analysis, then the BHHJ method with a = 0.105; this value makes data pairs an

average distance away from the centre, as measured by the Mahalanobis distance,

be downweighted 10% (and pairs further away from the centre will be downweighted

more). This value also ensures good robustness. The two confidence curves are

displayed in the right panel; the maximum likelihood version points to ρ̂ = 0.779

whereas the BHHJ method has ρ̂a = 0.819. The robust 90% confidence interval

is [0.441, 0.955]. Importantly, these two confidence curves do not assume that the

binormal model holds. In this particular application the robust BHHJ method leads

to a somewhat broad confidence curve, since the method attempts to fit a somewhat

non-homogeneous dataset to a single binormal density. For larger values of a, the

BHHJ estimation method will indirectly downweight the three outliers more fully,

and the correlation estimate will come closer to 0.960.

8. Bayes versus CDs

The Holy Grail of statistics Brad Efron alludes to is to enjoy the Bayesian omelet

without breaking the Bayesian eggs (Efron, 2010). It was the non-existence of a non-

informative prior which led Fisher to fiducial distributions. That a CD is ‘posterior’

without any prior is its main selling points.

Bayes’ formula is of course true, and the Bayesian posterior is the correct updat-

ing of a trustworthy prior. But problems arise when there is no trust in the chosen

prior, or when there are more than one legitimate priors.

With much data the CD will tend to be close to the Bayesian posterior, by various

Bernshtĕın-von Mises type theorems (see e.g. Hjort et al. (2010, Introduction)). This

might also happen in some cases with moderate and small data, particularly when a

Jeffreys prior is used. A case of the latter is seen in Lewis (2017, this issue), where

he develops both a Byesian posterior and a CD for the climate sensitivity. They are

seen to be indistinguishable.

A marginal posterior distribution might be misleading, as illustrated by the

so called length problem: With independent Yi ∼ N(µi, 1) for i = 1, . . . ,m, the

marginal posterior for ψ = ‖µ‖ = (
∑m

j=1 µ
2
j)

1/2 based on a flat (Jeffreys) prior for
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the m mean parameters is biased in the frequentist sense that its credibility intervals

will not have correct coverage probabilities (Schweder & Hjort, 2016, Section 9.4).

The distribution is actually shifted to the right relative to ψ and more so the larger

m is. This is also a problem for the marginal of Fisher’s joint fiducial distribution,

which is not a CD. A similar bias inherent in Bayes setups is noted for change-point

assessments in higher dimensions, in Cunen et al. (2017a, this issue).

Potential bias seems not to be a concern for most Bayesians. When your prior

is to be updated from new data, you get the posterior you get, and performance

in repeated applications is seen as irrelevant. Frequently the model is complex and

the model parameter of substantial dimensions, however, as in the length problem.

As a more realistic example consider the parameter θ1 of interest to Sims (2012)

in his Nobel Memorial Prize in Economic Sciences acceptance lecture, where it is

also argued that θ1 ≥ 0 on a priori grounds. The model is a linear simultaneous

equations model for macroeconomic data. The chosen prior for coefficients, including

θ1, is flat. Since the unrestricted maximum likelihood θ̂1 is negative the posterior is

shifted to the right of the CD for θ1. The latter has actually a point mass of 0.90 at

zero (when the restriction is θ1 ≥ 0), while Sims’s posterior has all its mass on the

positive values; see Schweder & Hjort (2016, Section 14.4).

Bayesian methods are very often used. It is thus a bit odd that performance

in repeated applications is mostly neglected. Bias and other frequentist properties

are however of concern to some Bayesians. The invariance of the posterior based

on Jeffreys priors, to transformations of the model parameter, will, as noted above,

make the posterior nearly or exactly a CD. In cases with a parameter ψ of interest, of

lower dimension than the model parameter, the objective Bayesian uses a reference

prior (Berger & Bernardo, 1992; Berger & Sun, 2008) tailored to ψ. This is parallel

to confidence inference where new calculations are needed for each ψ. The posterior

based on a reference prior aims at having correct coverage probabilities for its credi-

bility regions in repeated applications. The CD has the same aim – it is actually its

defining property. The realised posterior and also the CD are understood as epis-

temic probability distributions for ψ (Schweder, 2017, this issue). To be a CD might

actually be the gold standard for an epistemic probability distribution for a param-

eter of interest, at least for the objective Bayesian; cf. Veronese & Melilli (2017, this

issue) and also Grünwald (2017, this issue). Fraser (2011) actually suggests that

Bayes posterior distributions are just quick and dirty confidence distributions.

We note that CDs may be constructed not only for parameters of models, but

also for not-yet-seen random variables, as in prediction contexts. There are again

similarities with Bayesian approaches; see Schweder & Hjort (2016, Ch. 12) and

Shen et al. (2017, this issue).
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An important virtue of the Bayesian approach is its coherence. Ordinary prob-

ability calculus applies to posterior distributions. For CDs some probability cal-

culations yield new CDs, while others do not. When the prior has been set up,

the challenge is to calculate the well-defined posterior, say by Markov Chain Monte

Carlo. The technical virtuosity of current days Bayesians is really impressive, and

has led to sensible analyses of complex data in many areas. The machinery for

confidence inference is by far less developed. Significant applications in science are

still rather few (but see Cunen et al. (2017b), where the main findings were commu-

nicated to the Scientific Committee of the International Whaling Commission via

confidence curves). Software for CDs needs further development in good packages

in order for the dissemination to gain momentum.

Robert (2013) points out that a CD is in essence just a representation of a nested

family of confidence regions, and as such not particularly novel, per se. The emphasis

on CDs as distributions on par with Bayesian posteriors might however be a rather

novel insight, distributions that“provide simple and interpretable summaries of what

can reasonably be learned from data (and an assumed model)” (Cox, 2013). There

is also scope for novel and streadily more impressive uses of CDs for data fusion,

when information sources are more diverse than in the typical meta-analysis setups;

see Xie & Singh (2013); Liu et al. (2015); Cunen & Hjort (2016).

9. The present collection of papers

Articles appearing in the present Special Issue have been mentioned above, in

the relevant contexts. Here we offer just a few more comments to help readers

navigate through these contributions and to see connections between them.

Each of the contributions Hannig et al. (2017), Lindqvist & Taraldsen (2017),

Taraldsen & Lindqvist (2017) deal with fiducial and generalised fiducial inference

questions, also with relevance for the eternal comparison with Bayesian construc-

tions. Articles De Blasi & Schweder (2017), Veronese & Melilli (2017) are partly

concerned with fine-tuning mechanisms for the constructions of CDs, with further

connections to so-called objective Bayes. Several contributions are involved with the

important topic of combining information across diverse sources, sometimes called

data fusion: Hannig et al. (2017), Grünwald (2017), Cunen et al. (2017a), Lewis

(2017). The latter paper is also a well-argued contribution to the always hot topic

of climate research, where there typically are very different sources of information.

One of the challenges, worked with by Lewis, is that of combining summaries reached

by Bayesian and frequentist perspectives; see also Liu et al. (2015) and Cunen &

Hjort (2016).
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When constructing CDs, and more generally machineries aspiring to deliver

posteriors without priors, one is often close to the more fundamental issues and

ideas of how probability can or should be defined and interpreted, cf. again the half-

eternal half-disagreements between Bayesians and frequentists. This is also touched

on in the essay Schweder (2017), somewhat indirectly in Hannig et al. (2017), Martin

(2017), and by Grünwald (2017). In certain application areas it might be natural to

interpret confidence in the language of epistemic probabilities, as argued by Schweder

(2017); see in this connection also Helland (2018).

The Shen et al. (2017) and Cunen et al. (2017a) articles are occupied with re-

spectively prediction issues, e.g. for time series models, and with estimating and

assessing change-points and regime-shifts, in settings with discrete data. Applica-

tions in the latter paper involve finding when Author B took over for Author A,

in the world’s first ever novel (from 1460), and searching for a regime-shift in a

complex fisheries model. That paper also contains novel goodness-of-fit tests for

checking whether a probability distribution has remained constant over a stretch of

time.

10. Concluding remarks

We started out discussing the Holy Grail of parametric inference (Efron, 2010),

that of reaching well-defined posteriors for interest parameters without putting up

priors. We argue that the CDs are the answer, or part of the answer. In particular,

in classes of clear-cut situations, in exponential class type models where the broad

optimality theory of Schweder & Hjort (2016, Chs. 5, 7, 8) applies, the optimal CD

provides what a rational statistician ought to believe about the unknown parameter,

given the model and the data.

There are of course many remaining issues and obstacles for our profession to

work with and perhaps slowly sort out, through the statistical symbiotic machineries

of good theory and solid practice. Let us mention some of these.

The serious study of CDs and indeed related themes often enough touches the

fundamental issues of what probability is, or ought to be. This has of course been

discussed inside and outside academics since around 1665 (see the engaging account

by Hacking (1975)), and perhaps also the modern statisticians and data scientists

need to accept that there are several valid notions, living if not always comfort-

ably side-by-side: The clear aleatory probability; the subjective used by strands of

Bayesians; the epistemic; and yet further cousins and hybrids, like Dempster–Shafer

belief functions (Dempster, 2008; Martin, 2017). There is still a need for a better

axiomatic theory for epistemic probability, and its connections to likelihood theory

and related issues.
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On the technical side there is scope for important work along the lines of further

fine-tuning of approximate CDs to deliver more accurate coverage, which in the

language of CDs, and of this article, may be described as calibrating the CD such

that C(ψ(θ0), Y ) has a distribution close to the unifom, where ψ = ψ(θ) is the focus

parameter and ψ0 = ψ(θ0) is the implied true focus value. The basics of a list of

relevant techniques is in Schweder & Hjort (2016, Chs. 7-8), but there is more to

do, also in situations with multimodal log-likelihoods, with growing dimension p

compared to sample size n, etc. A class of alternatives to the profiling involved in

(3.4) is via the operation of integrating out other parameters, which may work well

also from the frequentist viewpoint (Berger et al., 1999).

Several of the issues that bothered Fisher’s contemporaries, when they hesitated

to embrace his fiducial inference ideas in the 1930ies and 1940ies, have to do with

the usual probability machinery not being applicable in general. The distribution

H(|µ|) = C(|µ|)−C(−|µ|), for example, is usually not a CD for |µ| when C is a CD

for µ; see Schweder & Hjort (2013) for this and similar examples. Schweder & Hjort

(2016, Ch. 6) refer to various attempts to figure out when a distribution obtained

by ordinary probability calculus from a CD is itself a CD. These theories are far

from complete. It is perhaps more fruitful to study when good approximate CDs

can be obtained by ordinary calculus than to try to develop a calculus for fiducial

distributions and CDs.

An interesting research direction is that of matching good CDs, in particular

those known to be optimal, with corresponding priors, i.e. for so-called objective

Bayes. This is also touched on in Veronese & Melilli (2017, this issue). There are

situations, e.g. those with bounded parameter spaces, where optimal CDs apparently

have no matching prior. An instance of this is our disagreement with what Sims

(2012) claimed in his Bayesian-flavoured Nobel Memorial Prize acceptance speech;

see Schweder & Hjort (2016, Ch. 14.4).

An important objection from the Bayesian camp is that CDs are usually not well-

defined when the model has been arrived at via a preliminary model selection step.

Further decisions are usually needed to guide the calculations. Robert (2013) calls

this ‘ad hockery’. But is it more ad hockery than choosing the prior in the absence

of solid prior information? Also, progress can be expected regarding working out

good refinements for CDs after model selection, using the machinery developed in

Hjort & Claeskens (2003) and Hjort (2014) for frequentist model averaging.

We have seen how p-values often can be seen as special components of a bigger

CD picture, and these connections can be worked out more fully, both for enhanced

interpretation and for better assessments of well-understood hypotheses; cf. the still
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ongoing debate on the uses and many misuses of p-values (Wasserstein & Lazar,

2016).

The CDs and confidence curves should find more use in the contemporary world

of Big Data, Data Science and Machine Learning, also for conveying summary in-

formation about the most pertinent issues, based on often complex and massive

background data. Instrumental here is also the task of combining and fusing to-

gether information across very diverse sources, where what we describe above as the

II-CC-FF paradigm ought to be harnessed further.

There is already a body of literature and results on the performance and opti-

mality of classes of CDs, cf. again Schweder & Hjort (2016, Ch. 5). Aspects of this

theory ought to be extended from CDs to confidence curves, as there are natural

cases where the cc(ψ, y) is the more fundamental notion of confidence; cf. the Fieller

problem, situations with multimodal log-likelihoods, etc. There is similarly a need

for more work and better insights for confidence curves in higher dimensions. Finally

we point to the correlated worlds of CDs, inferential models and generalised fiducial

inference, where there is a need to sort out better when the approaches agree, and

where they might not.
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