Beyond ΛCDM Survey: Theoretical problems with ΛCDM

Ruth Durrer Université de Genève Départment de Physique Théorique and Center for Astroparticle Physics

Oslo, January 14, 2015

1 - What are the biggest deficits and challenges of the ΛCDM paradigm?

 Nothing is wrong with ΛCDM 	5.3%
Cold dark matter	21.1%
 General relativity cannot be relied upon on large length scales 	11.8%
 There is no dark matter 	6.6%
 Inflation isn't predictive enough 	18.4%
The cosmological constant problem	50.0%
The coincidence problem	15.8 %
 It can't explain small-scale structure (e.g. dwarf galaxies) 	28.9%
 Baryonic effects are too difficult to model 	18.4%
The model is fine-tuned	21.1%
 Confirmation bias 	21.1%
 Big Bang singularity and high energy description of gravity 	13.8 %
 ACDM will remain the best-fit model to the data while it will not be underst 	ood
theoretically	39.5%
 Inflation is a general idea with no clear implementation in particle physics 	19.1 %
 Cosmic variance on ultra-large scales 	7.9%
 Effects of inhomogeneities and anisotropies 	15.1%
There are no compelling alternatives	30.9%
Other (scaling relations in galaxies, MOND)	_ 3.9%

2 - What will the future bring? Where do you think future efforts should be focused: Observational progress...

•	will slow due to difficult systematics	38.5%
•	will slow due to reduced funding	29.6%
•	will slow due to lack of theoretical progress	30.3%
•	will slow due to computational challenges	9.9%
•	will speed up!	17.8%
•	Other	8.6%

3- What will the future bring? Where do you think future efforts should be focused: The most important results will come from . . .

33.6%

o oman oxpormionto	00.070
 large experiments 	58.6%
simulations	30.9%
• theories	36.8%
particle physics	17.8%
• Other (non-cosm. experiments like	
Casimir-effect, LHC	5.3%

small experiments

4 - What will the future bring? Next-generation experiments will...

_	Committee to might product	01.070
•	discover new things that can just be added to ACDM	38.2%
•	discover new things that fundamentally change ACDM	31.6%
•	discover something that completely overturns ACDM	12.5%
9	Other	4.6%

34 9%

confirm ACDM to higher precision

5 - What will the future bring? Dark energy will turn out to be...

•	related to dark matter	10.5%
•	a cosmological constant	13.8%
•	indistinguishable from a cosmological constant	48.7%
•	a new scalar field	9.2%
•	a modification to GR	18.4%
•	something completely different	24.3%
•	Other	4.6%
•	$\Sigma =$	129.5%

6 - What will the future bring? Our understanding of inflation will...

•	improve due to a primordial B-mode detection	38.8%
•	improve due to a non-Gaussianity detection	13.8%
•	improve due to a detection of non-zero spatial curvature	5.9%
•	improve due to new/existing CMB/large-scale anomalies	9.9%
•	improve due to philosophical developments	5.4%
•	improve due to string theory	3.3%
•	remain foggy	45.4%
•	improve due to a detection of features in primordial power	
	spectrum	7.9%
•	get worse!	2.6%
•	improve because it will be ruled out	9.2%
•	Other (improved understanding of reheating)	5.3%

7 - What will the future bring? The cosmological constant problem will be solved by...

21 7%

_	a dark onorgy thoory	L 1.7 /0
•	a modified gravity theory	30.9%
•	better understanding of particle physics	37.5%
•	realising it's not a problem	28.3%
•	Other (has already been solved, eternal i	nflation,
	quantum gravity)	10.5%

a dark energy theory

8 - What will the future bring? The Higgs will turn out to be important in understanding...

dark matter	12.5%
dark energy	9.9%
none of the above	59.2%
Other	5.9%

19.1%

inflation

9 - What will the future bring? Current anomalies will...

• remain, but can safely be ignored	18.4%
remain and must be addressed	53.9%
• go away	20.4%
overturn ΛCDM	15.8%
Other	5.3%

10 - What will the future bring? New anomalies will be found...

but can salely be ignored	13.2/0
and must be addressed	67.8%
 and will overturn ΛCDM 	17.1%
Other	7.9%

but can acfaly be ignored

12 20/

11 - What will the future bring? Baryonic physics...

•	will be completely understood through simulations	1.3%
•	will be understood well enough through simulations to interpret observations correctly	30.9%
•	will remain difficult to simulate, and is an important systematic effect	56.6%
•	will remain difficult to simulate, but is a minor systematic effect	9.9%
•	will remain difficult to simulate, and is disastrous for observations	7.2%
•	Other (indirect cosmo/astro observations)	2 0%

12 - What will the future bring? Particle physics...

Cosmologists will discover something fundamental about neutrinos	44.7%
Particle physicists will discover something fundamental about neutrinos	33.6%
Neutrinos will remain mysterious	9.2%
Particle dark matter will be discovered experimentally	35.5%
 Particle dark matter will be found not to work 	17.8%
 Particle physicists will explain the nature of inflaton 	5.3%
• Completely new particles will be discovered with important implications for	r
cosmology	22.4%
Other	5.3%

13 - For cosmology, the most valuable/exciting observables over the next decade will probably be \cdots

CMB temperature	3.9%
CMB polarization	53.9%
CMB lensing	25.7%
 CMB scattering (Thermal SZ/Rayleigh/spectral distortions) 	20.4%
Supernovae	11.2%
Galaxy redshifts (spectroscopic)	32.9%
 Galaxy redshifts (photometric) 	16.4 %
High-redshift galaxies	25.0%
 Other large-scale structure/matter distribution observables 	27.0%
Peculiar velocities (Kinetic SZ)	18.4%
 Weak lensing (shear/convergence) 	41.4%
Strong lensing	12.5%
Local Hubble rate measurements	11.2%
 21cm intensity mapping (EoR) 	36.8%
 21cm intensity mapping (late times) 	22.4%
Matter distribution on ultra-large scales	21.7%
Laboratory tests of gravity	18.4%
Dark matter direct detection	38.8%

13 - For cosmology, the most valuable/exciting observables over the next decade will probably be \cdots

. . . . Neutrinos 24.3% 4.6% Cosmic rays Transients 5.3% Gravitational waves 44 7% Particle collisions (LHC) 20.4% Proper motions of stars 9 2% Variation of fundamental constants 4 6% Various cross-correlations 14.5% 14.5% Local tests of gravity

Other (galaxy clusters)

2.6%

13 - For cosmology, the most valuable/exciting observables over the next decade will probably be \cdots

CMB polarization	53.9%
CMB lensing	25.7%
 CMB scattering (Thermal SZ/Rayleigh/spectral distortions) 	20.4%
 Galaxy redshifts (spectroscopic) 	32.9%
High-redshift galaxies	25.0%
 Other large-scale structure/matter distribution observables 	27.0%
Weak lensing (shear/convergence)	41.4%
21cm intensity mapping (EoR)	36.8%
21cm intensity mapping (late times)	22.4%
 Matter distribution on ultra-large scales 	21.7%
Dark matter direct detection	38.8%
Neutrinos	24.3%
Gravitational waves	44.7%
Particle collisions (LHC)	20.4%

summary

#	question	©	©
1	challenges of ACDM	Cosmological Constant	Nothing is wrong
2	Observational progress	slow: systematics	slow: lack of theory
3	most important	large experiments	particle physics
4	Experiments	+ ACDM	overturn ΛCDM
5	Dark energy	indistinguishable from Λ	new scalar field
6	Understanding inflation	remain foggy	string theory
7	Λ – Solution	particle physics	dark energy theory
8	The Higgs	none	dark energy
9	Anomalies	must be addressed	overturn ΛCDM
10	New anomalies	must be addressed	can safely be ignored
11	Baryonic physics	will remain difficult	completely understood
12	Particle physics	cosmology: neutrinos	nature of inflaton
13	observables	CMB ploarization	CMB temperature

The Laws of Nature are not Democratic

and \cdots

