
NVIDIA IndeX for ParaView Plugin
User’s Guide

7 February 2020

Version 2.4

NVIDIA IndeX for ParaView Plugin – User’s Guide

Cover page rendering: BigBrain Project, dataset courtesy by Prof. Dr. med. Katrin Amunts and
the Structural and Functional Organization of the Brain Lab at the Institute of Neuroscience
and Medicine, Research Centre Juelich.

Copyright Information

© 2020 NVIDIA Corporation. All rights reserved.

Document build number 328607

ii NVIDIA IndeX for ParaView Plugin – User’s Guide © 2020 NVIDIA Corporation

Contents
1 Introduction . 1

1.1 Licensing . 1

2 Installation . 2

2.1 Building the plugin . 2

2.2 Location of the plugin . 3

2.3 Loading the plugin . 3

3 Getting started . 6

3.1 Client-only mode . 6

3.2 Client-server mode on a single GPU . 6

3.2.1 Client-server mode on multiple GPUs . 8

3.2.2 Networking parameters for NVIDIA IndeX . 9

3.2.2.1 Licensing . 10

3.2.2.2 Networking options . 10

4 Features . 12

4.1 Structured and unstructred grids . 12

4.2 Datatypes . 13

4.3 Transfer function and colormap changes . 14

4.4 Region of interest changes . 17

4.5 High-quality rendering . 19

4.6 Slice rendering . 22

4.7 NVIDIA IndeX visual elements . 23

4.7.1 Isosurface preset . 23

4.7.2 Depth enhancement preset . 24

4.7.3 Edge enhancement preset . 25

4.7.4 Gradient preset . 25

4.7.5 Custom preset . 27

4.8 Time series animation . 29

4.9 Catalyst and in-situ visualization . 30

4.10 Mixing ParaView primitives . 32

5 Frequently asked questions . 33

6 Useful links . 35

Appendix A Volume rendering tutorial . 36

A.1 XAC purpose and program structure . 36

A.2 XAC volume sample programs . 36

A.2.1 Example program outline . 37

A.3 Sampling a volume and map to a color . 37

A.4 Using XAC library functions . 38

A.5 Add basic volume shading . 39

A.6 Using CUDA parameter buffers . 40

A.6.1 Modifying the scene file . 40

A.6.2 Modifying the CUDA kernel file . 40

© 2020 NVIDIA Corporation NVIDIA IndeX for ParaView Plugin – User’s Guide iii

iv NVIDIA IndeX for ParaView Plugin – User’s Guide © 2020 NVIDIA Corporation

1 Introduction

The NVIDIA® IndeX™ for ParaView® Plugin enables large-scale and high-quality volume data
visualization capabilities of the NVIDIA IndeX library inside Kitware’s ParaView.

This document is intended for a Paraview user who is new to the IndeX plugin and wants
to explore the features of the IndeX library supported by the plugin. The following sections
will explain the installation procedure and various features the plugin supports, followed by
a section of frequently asked questions and useful links for further reference.

If you haven’t downloaded the plugin yet, you can do so from this URL:

http://www.nvidia.com/object/index-paraview-plugin.html

1.1 Licensing

The NVIDIA IndeX for ParaView plugin comes with a free license that enables exploiting the
capabilities of a single GPU. If you aim to use plugin on a cluster of multiple hosts and/or
with multiple NVIDIA GPUs, then please contact us for appropriate licensing via email to
paraview-plugin-support@nvidia.com. Users will be notified via email whenever a new ver-
sion of the plugin is released.

© 2020 NVIDIA Corporation NVIDIA IndeX for ParaView Plugin – User’s Guide 1

http://www.nvidia.com/object/index-paraview-plugin.html
http://www.nvidia.com/object/index-paraview-plugin.html

2 Installation

NVIDIA IndeX for ParaView plugin is delivered with ParaView v5.8.0 and supports both
Linux and Windows x86-64 platforms. Follow the installation instructions specific to your plat-
form and install ParaView.

If you have installed ParaView v5.8.0 or later from binaries, the plugin is already included and
you can continue to section 3.2, “Loading the plugin” (page 3).

2.1 Building the plugin

Please follow these steps to build the plugin matching your build environment.

1. You can download the ParaView source code from ParaView website1

2. Run cmake on your ParaView source tree and the plugin sources will be added to the
ParaView plugins list to be compiled. Make sure you have the cmake option set, enabled
by default in the plugin source code.

mkdir paraview_build

mkdir paraview_install

cd paraview_build

ccmake ../paraview-source-root

PARAVIEW_PLUGIN_ENABLE_pvNVIDIAIndeX=ON

3. Run make or make install from your ParaView source tree. The plugin will be compiled
together with ParaView.

make paraview-binary-root

4. The plugin requires the NVIDIA IndeX libraries package. The package is not distributed
with ParaView sources but can be downloaded from the ParaView dependency reposi-
tory: https://www.paraview.org/files/dependencies/

Linux

Download nvidia-index-libs-2.4.<YYYYMMDD>-linux.tar.bz2 and
uncompress it to a folder of your choice. Update your LD_LIBRARY_PATH

environment with the library path of your newly created folder: new-folder/lib

Windows

Download nvidia-index-libs-2.4.<YYYYMMDD>-windows-x64.tar.bz2 and
uncompress it to a folder of your choice. Update your PATH environment with the
library path of your newly created folder: new-folder\lib

1. https://www.paraview.org/download/

2 NVIDIA IndeX for ParaView Plugin – User’s Guide © 2020 NVIDIA Corporation

https://www.paraview.org/download/
https://www.paraview.org/files/dependencies/
https://www.paraview.org/files/dependencies/

2.2 Location of the plugin 2 Installation

CUDA 10.1 backward compability

The default NVIDIA IndeX libraries distributed with ParaView 5.8.x binaries and
also availables in the ParaView dependency repository require CUDA 10.2 driver
(or newer) installed on your system. For systems where only CUDA 10.1 driver is
available, we provide custom NVIDIA IndeX libraries packages that can be used
instead of the default ones. In case ParaView 5.8.x was installed from binaries,
please download, uncompress and replace the libraries contained in the
<ParaView-install>\lib folder (Linux) or <ParaView-install>/bin folder
(Windows). In case ParaView 5.8.x was built from sources, please follow the same
procedure as for the previous ’Linux’, ’Windows’ sections. The NVIDIA IndeX
libraries package for CUDA 10.1 drivers can be downloaded from the ParaView
dependency repository:
nvidia-index-libs-2.4.<YYYYMMDD>-<platform>_CUDA_101.tar.bz2

For additional information about compiling ParaView please refer to the instructions on the
ParaView website.2

2.2 Location of the plugin

In a ParaView installation, the plugin binary is located in the following directories:

Linux: your-paraview-installation-directory/lib/paraview-version/plugins/pvNVIDIAIndeX/

Windows: your-paraview-installation-directory\bin\plugins\pvNVIDIAIndeX\

The plugin binary will automatically show up in the [Tools ◮ Manage Plugins] menu.

2.3 Loading the plugin

To load the plugin in ParaView, start the ParaView client and navigate to [Tools ◮ Manage Plu-

gins] option from the menu bar.

Fig. 2.1 – [Tools ◮ Manage Plugins] from ParaView menu

2. https://www.paraview.org/Wiki/ParaView:Build_And_Install

© 2020 NVIDIA Corporation NVIDIA IndeX for ParaView Plugin – User’s Guide 3

https://www.paraview.org/Wiki/ParaView:Build_And_Install

2 Installation 2.3 Loading the plugin

Fig. 2.2 – Click Load New option and locate the plugin

Fig. 2.3 – Load NVIDIA IndeX for ParaView plugin

4 NVIDIA IndeX for ParaView Plugin – User’s Guide © 2020 NVIDIA Corporation

2.3 Loading the plugin 2 Installation

Fig. 2.4 – Read the EULA and click Accept

Once the plugin is loaded, the name of the plugin shows up in the [Tools ◮ Manage Plugins]

dialog box with status changed as loaded. Make sure there no errors in the terminal or on Par-
aView’s console. Also, when using the plugin in client-server mode, be sure to load the plugin
in both client and server side of the [Tools ◮ Manage Plugins] window.

Fig. 2.5 – Status is shown as Loaded when no errors

© 2020 NVIDIA Corporation NVIDIA IndeX for ParaView Plugin – User’s Guide 5

3 Getting started

This section will describe instructions on how to use the NVIDIA IndeX for ParaView plugin
in both client-only and client-server mode.

3.1 Client-only mode

To run the plugin in client-only mode simply launch the ParaView client and load the plugin
as described in section 2.

3.2 Client-server mode on a single GPU

To run the plugin in client-server mode, start pvserver with mpirun as shown below.

mpirun -bynode -np 1 pvserver -display :0.0 --force-offscreen-rendering

Once pvserver process is launched, run the ParaView client and connect to the server where
pvservers are running by using [File ◮ Connect ◮ Add Servers] option in ParaView’s menubar.
Typically the server address is printed out in the console where mpirun was executed, once
the client-server is connected, console will update the status with “Client connected” message.
Make sure to load the plugin on both client and server side as described in section 2.

To verify that the plugin is installed correctly and loaded successfully in ParaView, please
create a Wavelet source by clicking the menu option [Sources ◮ Wavelet] in ParaView client.

Fig. 3.1 – Create a Wavelet source

6 NVIDIA IndeX for ParaView Plugin – User’s Guide © 2020 NVIDIA Corporation

3.2 Client-server mode on a single GPU 3 Getting started

Once you click apply an Outline representation will be shown in the viewport. Select RTData
as the scalar array from the dropdown box instead of Solid Color and NVIDIA IndeX instead of
Outline as the representation as shown below.

Fig. 3.2 – Outline is default representation

Fig. 3.3 – Wavelet source rendered by NVIDIA IndeX

© 2020 NVIDIA Corporation NVIDIA IndeX for ParaView Plugin – User’s Guide 7

3 Getting started 3.2 Client-server mode on a single GPU

3.2.1 Client-server mode onmultiple GPUs

If you have acquired a valid license for the cluster version of the plugin, you can run the plugin
in client-server mode on multiple GPUs. When using multiple GPUs on the same machine it is
required to start one MPI process per GPU. For example, on a machine with 4 GPU’s:

mpirun -bynode -np 1 pvserver -display :0.0 --force-offscreen-rendering \

: -np 1 pvserver -display :0.1 --force-offscreen-rendering \

: -np 1 pvserver -display :0.2 --force-offscreen-rendering \

: -np 1 pvserver -display :0.3 --force-offscreen-rendering \

When using multiple GPUs on multiple machines in a cluster environment MPI’s host-file
functionality can be used. For example, to utilize two machines with two GPUs each:

mpirun --hostfile myhosts --bynode -np 2 pvserver -display :0.0 --force- 7→

offscreen-rendering \

: -np 2 pvserver -display :0.1 --force-offscreen-rendering

Where myhosts is a text file with list of host names where MPI will spawn pvserver instances.

Before connecting pvservers with ParaView client, please disable IceT compositing. This can
be done from ParaView client’s settings menu [Edit ◮ Settings ◮ Render view] and restart Par-
aView client.

8 NVIDIA IndeX for ParaView Plugin – User’s Guide © 2020 NVIDIA Corporation

3.2 Client-server mode on a single GPU 3 Getting started

Fig. 3.4 – Disable IceT from Settings menu

Refer to this page3 for more details about pvserver and running ParaView in client-server
mode.

3.2.2 Networking parameters for NVIDIA IndeX

NVIDIA IndeX is a distributed renderer capable of utilizing multiple GPU’s on a cluster,
to configure networking features of NVIDIA IndeX an optional configuration file nvindex_

config.xml is provided with the plugin. Copy this file under the default configuration direc-
tory of ParaView:

cp plugin-directory/nvindex_config.xml ~/.config/ParaView/

If the directory ˜/.config/ParaView/ is not accessible, you can set the following environment
variable pointing to the nvindex_config.xml file:

export NVINDEX_PVPLUGIN_HOME=path-to-directory-with-config-file

3. http://www.paraview.org/Wiki/Setting_up_a_ParaView_Server

© 2020 NVIDIA Corporation NVIDIA IndeX for ParaView Plugin – User’s Guide 9

http://www.paraview.org/Wiki/Setting_up_a_ParaView_Server

3 Getting started 3.2 Client-server mode on a single GPU

Each networking option is enclosed within a pair of XML tags and the file is enclosed within
<index_config> ... </index_config> tags.

3.2.2.1 Licensing

When you obtain a license for the cluster version of the plugin, you will receive a file named
license.lic. It contains the keys NVINDEX_VENDOR_KEY and NVINDEX_SECRET_KEY that can be
set as environment variables on all the hosts where NVIDIA IndeX is run.

export NVINDEX_VENDOR_KEY=vendor-key-here
export NVINDEX_SECRET_KEY=secret-key-here

Alternatively, copy paste those keys in the <license> section of the config file as show below.

<license>

<vendor_key>vendor-key-here</vendor_key>

<secret_key>secret-key-here</secret_key>

</license>

3.2.2.2 Networking options

All the networking configuration options for the plugin are specified under the <network>

section of the config file.

Tag <cluster_mode> defines the networking mode of NVIDIA IndeX with modes UDP and TCP

supported, with UDP being the preferred mode.

<cluster_mode>

your-networking-mode
</cluster_mode>

Tag <cluster_interface_address> defines the Network Interface Card(NIC) that is used for
communication between the nodes. On Linux, the ifconfig command gives the NIC address
as inet addr. If not set, any address is valid. The string may end with a colon character (:
) and a port number to select which port to listen to for UDP and TCP. If no port is set and
unicast only mode is set, port 10000 will be used.

<cluster_interface_address>

172.161.123.0/24:10001

</cluster_interface_address>

Tag multicast_address defines the multicast address for the nodes to communicate. This is
valid only when cluster_mode is set to UDP.

<multicast_address>

224.1.3.2

</multicast_address>

Tag discovery_address defines the discovery address used for TCP cluster_mode.

10 NVIDIA IndeX for ParaView Plugin – User’s Guide © 2020 NVIDIA Corporation

3.2 Client-server mode on a single GPU 3 Getting started

<discovery_address>

224.1.3.3:5555

</discovery_address>

Tag <use_rdma> can be used to switch yes or no to use RDMA mode for networking.

<use_rdma>

no

</use_rdma>

© 2020 NVIDIA Corporation NVIDIA IndeX for ParaView Plugin – User’s Guide 11

4 Features

This section will provide a walk-through on individual plugin features.

4.1 Structured and unstructred grids

NVIDIA IndeX for ParaView plugin enables volume rendering of both structured and unstruc-
tured grid types.

Fig. 4.1 – Grid rendered as a surface

Fig. 4.2 – Grid rendered as a volume using NVIDIA IndeX

12 NVIDIA IndeX for ParaView Plugin – User’s Guide © 2020 NVIDIA Corporation

4.2 Datatypes 4 Features

4.2 Datatypes

NVIDIA IndeX supports different datatype formats such as unsigned char, unsigned short and
floating point. Make sure appropriate byte endianness is chosen when loading unsigned short
and floating point datatypes otherwise your visualization might look like artifacts or even look
completely random.

Fig. 4.3 – Choose endianness of the dataset

© 2020 NVIDIA Corporation NVIDIA IndeX for ParaView Plugin – User’s Guide 13

4 Features 4.3 Transfer function and colormap changes

4.3 Transfer function and colormap changes

Transfer function changes can be done using ParaView’s colormap editor. If the colormap edi-
tor is not open you can do so by using the menu option.

Fig. 4.4 – Click on the icon to open up Colormap Editor in ParaView

Using the colormap editor user interface you can visualize parts of the dataset that is interest-
ing for you. This can be achieved by changing the colortable, by adjusting the transparency, or
by setting custom domain range values to isolate parts of the dataset that is uninteresting.

Fig. 4.5 – Choose a suitable colortable and click Apply

14 NVIDIA IndeX for ParaView Plugin – User’s Guide © 2020 NVIDIA Corporation

4.3 Transfer function and colormap changes 4 Features

Fig. 4.6 – Colortable matching your dataset domain

Fig. 4.7 – Changing the opacity values

© 2020 NVIDIA Corporation NVIDIA IndeX for ParaView Plugin – User’s Guide 15

4 Features 4.3 Transfer function and colormap changes

Fig. 4.8 – Custom data domain range

16 NVIDIA IndeX for ParaView Plugin – User’s Guide © 2020 NVIDIA Corporation

4.4 Region of interest changes 4 Features

4.4 Region of interest changes

Users can select a custom region of interest to visualize specific sections of the dataset using
the sliders in the properties panel. This is tagged as an experimental feature since changing
region of interest is restricted to axis aligned directions.

Fig. 4.9 – Wavelet volume

Fig. 4.10 – Changing region of interest

© 2020 NVIDIA Corporation NVIDIA IndeX for ParaView Plugin – User’s Guide 17

4 Features 4.4 Region of interest changes

Fig. 4.11 – Wavelet volume with a custom region of interest

18 NVIDIA IndeX for ParaView Plugin – User’s Guide © 2020 NVIDIA Corporation

4.5 High-quality rendering 4 Features

4.5 High-quality rendering

High-quality rendering can be achieved by using pre-integration and filtering techniques of
NVIDIA IndeX exposed in the plugin, there is a known performance-quality trade off when
using some of these filtering techniques.

These filtering options can be found in ParaView’s Properties panel typically on the left hand
side of the ParaView client user interface when the plugin is loaded.

Fig. 4.12 – Properties panel in ParaView

Fig. 4.13 – Filtering options in NVIDIA IndeX

properties panel

There is no one filtering option optimal for all the datasets, each filtering option achieves dif-
ferent levels of quality with different datasets and transfer function combinations with nearest
neighbor interpolation being the most basic one. Some example images comparing different
filtering options are shown below.

© 2020 NVIDIA Corporation NVIDIA IndeX for ParaView Plugin – User’s Guide 19

4 Features 4.5 High-quality rendering

Fig. 4.14 – Base of an EF5 tornado cloud

Fig. 4.15 – Nearest neighbor interpolation

20 NVIDIA IndeX for ParaView Plugin – User’s Guide © 2020 NVIDIA Corporation

4.5 High-quality rendering 4 Features

Fig. 4.16 – Trilinear interpolation

Fig. 4.17 – Tricubic Bspline interpolation

© 2020 NVIDIA Corporation NVIDIA IndeX for ParaView Plugin – User’s Guide 21

4 Features 4.6 Slice rendering

4.6 Slice rendering

Volume slices can be enabled from the GUI. Currently it is limited to three axis aligned slices
with ability to move individual slice positions, native support with ParaView slices is work in
progress. This is tagged as an experimental feature since the slice rendering is not part of the
ParaView slice rendering mechanism in the user interface.

Fig. 4.18 – Slice rendering options through properties panel. Dataset is made available by Dr. Jackqueline Chen

at Sandia Laboratories through US Department of Energy’s SciDAC Institute for Ultrascale Visuaization.

Fig. 4.19 – Slice rendering with volume disabled

22 NVIDIA IndeX for ParaView Plugin – User’s Guide © 2020 NVIDIA Corporation

4.7 NVIDIA IndeX visual elements 4 Features

4.7 NVIDIA IndeX visual elements

Visual elements feature of NVIDIA IndeX library enables you to enhance the visual cues in the
dataset. In this version of the plugin there are five visual presets available, each preset has one
or more parameters for finer control over that visual element.

Fig. 4.20 – Supernova SASI visualized as a volume. Dataset courtesy by Dr. John Blondin at the North

Carolina State University through US Department of Energy’s SciDAC Institute for Ultrascale

Visuaization.

Fig. 4.21 – Visual element presets in the properties panel

4.7.1 Isosurface preset

The Isosurface preset allows you to extract the isosurface and volume contained inside the
range [iso-min, iso-max] and shade both with different ways to map color sample values.

Iso min/Iso max

Define the iso-surface range, expressed in percentage of the volume scalar range.

Fill mode

Defines the shading mode for the inside volume. "No Fill" : Volume samples are set to
transparent; "Single Color": Volume samples are set to iso-min value; "Colormap":
Volume samples are taken from colormap.

Use shading

Enables/Disables the phong-blinn lighing model for the iso-min/iso-max surfaces.

© 2020 NVIDIA Corporation NVIDIA IndeX for ParaView Plugin – User’s Guide 23

4 Features 4.7 NVIDIA IndeX visual elements

Fig. 4.22 – Supernova SASI visualized as an iso-surface

4.7.2 Depth enhancement preset

The depth enhancement preset allows you to enhance the depth perception of a dataset by
isolating features with high opacity values in the transfer function mapping. At the current
volume position it accumulates colormap alpha values along a predefined line segment and
darken samples in regions with low alpha distribution.

Samples

Number of samples taken along the line segment.

Gamma

Used to increase contrast.

Fig. 4.23 – Supernova SASI visualized using depth enhancement preset

24 NVIDIA IndeX for ParaView Plugin – User’s Guide © 2020 NVIDIA Corporation

4.7 NVIDIA IndeX visual elements 4 Features

4.7.3 Edge enhancement preset

The edge enhancement preset allows you to enhance the edges or "silhouettes" of a dataset
based on variations of the transfer function. At the current volume position it calculates the
gradient of the colormap alpha-channel along a predefined line segment and darken samples
that contain higher gradient magnitude.

Edge Range

The length of the line segment along the gradient is calculated.

Samples

The number of samples used to calculate the gradient along the line segment.

Fig. 4.24 – Supernova SASI visualized using edge enhancement preset

4.7.4 Gradient preset

The gradient preset highlights features of greater variation in the dataset by calculating the
gradient of the volume scalar field and use its magnitude to scale colormap samples.

Gradient Level

The gradient level or intensity in percentage.

Gradient Scale

The maximum gradient level.

© 2020 NVIDIA Corporation NVIDIA IndeX for ParaView Plugin – User’s Guide 25

4 Features 4.7 NVIDIA IndeX visual elements

Fig. 4.25 – CHOLLA galactic outflow simulation visualized as a volume. Dataset courtesy by Evan E. Schneider

(Princeton University) and Brant Robertson (University of California, Santa Cruz).

Fig. 4.26 – CHOLLA galactic outflow simulation visualized using gradient preset.

26 NVIDIA IndeX for ParaView Plugin – User’s Guide © 2020 NVIDIA Corporation

4.7 NVIDIA IndeX visual elements 4 Features

4.7.5 Custom preset

The Custom preset allow users to write their own volume kernel programs using XAC (NVIDIA
IndeX Accelerated Computing Technology). The XAC kernels are small CUDA programs (ed-
itable with your preferred text editor) that can be used to replace the default volume shading
kernel executed by IndeX. The XAC kernels are compiled by IndeX at runtime, which means
that you can load a kernel and edit it on the fly and changes are applied immediately. The
custom preset provides the means to load a XAC kernel from file, apply updates on the fly
and provides a list of predefined user parameters that can be binded to your volume kernel
program.

A tutorial with the basics on XAC programming can be found on Appendix A (page 36)
of this User’s Guide. Also a few volume kernel examples are included with ParaView bi-
naries (paraview-installation-directory\kernels_nvidia_index) and Paraview sources
(paraview-source-root\Plugins\pvNVIDIAIndeX\kernel_programs).

Kernel

The XAC volume kernel program to be loaded from file. It triggers IndeX kernel
compilation.

Update Kernel

It re-triggers the IndeX kernel compilation to apply live changes done to the XAC
volume kernel program, for example with an external text editor.

pfloat 1-4

Four general purpose floating point parameters that can be binded to the XAC volume
kernel program.

pint 1-4

Four general purpose integer parameters that can be binded to the XAC volume kernel
program.

© 2020 NVIDIA Corporation NVIDIA IndeX for ParaView Plugin – User’s Guide 27

4 Features 4.7 NVIDIA IndeX visual elements

Fig. 4.27 – Custom preset: Floating point and integer parameters binding with XAC kernel program.

28 NVIDIA IndeX for ParaView Plugin – User’s Guide © 2020 NVIDIA Corporation

4.8 Time series animation 4 Features

Fig. 4.28 – BigBrain Project brain visualized with a custom preset. Dataset courtesy by Prof. Dr. med. Katrin

Amunts and the Structural and Functional Organization of the Brain lab at the Institute of Neuroscience and

Medicine, Research Centre Juelich.

4.8 Time series animation

Time series animation feature allows you to render timesteps of a dataset in real-time. You
can navigate, change colormaps and perform data operations as you would do with a static
dataset. In order to have a smooth playback, please set the following setting from ParaView
menu allowing you to cache geometry. Animation will be slower in the first cycle but once all
the timesteps are loaded the playback should be smooth.

© 2020 NVIDIA Corporation NVIDIA IndeX for ParaView Plugin – User’s Guide 29

4 Features 4.9 Catalyst and in-situ visualization

Fig. 4.29 – Enable Cache Geometry for Animation and set a high value for cache limit

4.9 Catalyst and in-situ visualization

NVIDIA IndeX supports in-situ visualization, a user can run a simulation and visualize it in
real-time without writing any data to disk. Catalyst4 is the co-processing library that enables
orchestration of simulation, analysis and visualization tasks together with VTK and ParaView.
Catalyst can also be used to setup NVIDIA IndeX and ParaView to do live visualization of
your simulation. Please visit the Catalyst website to learn how to write scripts to integrate
your simulation and enable in-situ visualization.

4. https://www.paraview.org/in-situ/

30 NVIDIA IndeX for ParaView Plugin – User’s Guide © 2020 NVIDIA Corporation

https://www.paraview.org/in-situ/

4.9 Catalyst and in-situ visualization 4 Features

As an example, a simple wavelet source can be used to illustrate the Catalyst integration with
NVIDIA IndeX rendering. Make sure you have compiled ParaView with Catalyst support be-
fore trying to do the live visualization.

You can start 50 iterations of a wavelet data source on a single process by running the following
command. Both CatalystWaveletDriver.py CatalystWaveletCoprocessing.py scripts are under
the directory ../Applications/ParaView/Testing/XML/ in ParaView source.

mpirun -np 1 ./pvbatch -sym CatalystWaveletDriver.py 7→

CatalystWaveletCoprocessing.py 50

Next, start ParaView client and connect to the port where Catalyst is running from the menu
[Catalyst ◮ Connect].

./paraview

Once ParaView connects to Catalyst, enable "input" and click "Extract input" from the pipeline
browser. Once the input is extracted you can switch to NVIDIA IndeX representation from the
menu.

Fig. 4.30 – Enable input and extract input to visualize

© 2020 NVIDIA Corporation NVIDIA IndeX for ParaView Plugin – User’s Guide 31

4 Features 4.10 Mixing ParaView primitives

Fig. 4.31 – Wavelet example shown at different iterations

4.10 Mixing ParaView primitives

One of the unique features of the plugin is to mix volume rendering from NVIDIA IndeX along
with other primitives such as Glyphs, Streamlines and Surfaces rendered by ParaView.

Fig. 4.32 – Wavelet data rendered as a Surface by ParaView and as a volume by NVIDIA IndeX

32 NVIDIA IndeX for ParaView Plugin – User’s Guide © 2020 NVIDIA Corporation

5 Frequently asked questions

Q: Do I need to install CUDA or any other libraries for using the plugin?

A: There is no need to install CUDA separately as the plugin package is bundled with all the
required libraries. However, you need to have an appropriate NVIDIA display driver for your
graphics card.

Q: When I load the plugin from ParaView’s [Tools ◮ Manage Plugins] window, libpvNVIDI-
AIndeX or pvNVIDIAIndeX does not show up as loaded.

A: Make sure you have no errors in ParaView’s console or on your terminal where you started
ParaView from. These error messages will give you additional information about what the is-
sue might be.

Q: Plugin is loaded successfully without any errors but NVIDIA IndeX as a representation
does not show up in ParaView’s representation dropdown box.

A: Make sure you have loaded a structured or unstructured volume grid dataset and it is
selected in ParaView’s pipeline browser, ParaView shows automatically representations based
on the input data format.

Q: There is an error saying “Failed loading NVIDIA IndeX library” and viewport is empty.

A: This error message is usually printed when NVIDIA IndeX library (in libnvindex.) is not
found. Make sure you have libnvindex. and libdice. in your LD_LIBRARY_PATH (or PATH on
Windows). You can also copy all the libraries from the plugin directly into ParaView’s library
directories. Refer section-2 for more information.

Q: Viewport is blank when I choose NVIDIA IndeX as a representation.

A: Select appropriate Scalar Array for the dataset instead of Solid Color.

Q: Viewport is blank when I choose NVIDIA IndeX as a representation with a Scalar Array and
not with Solid Color

A: This is most likely because of an old NVIDIA display driver, update your display drivers
to the recommended versions.

Q: Why does my rendering look down-sampled when I interact?

A: NVIDIA IndeX does not down-sample the data and renders at full resolution. By default
ParaView optimizes for high latency networks and enables compression and level of detail,
you can disable this from [Edit ◮ Settings] option and turn off LOD Resolution, Image Reduc-
tion Factor and Image Compression.

Q: Can I render multiple volumes at once in the same scene graph in ParaView?

A: While the NVIDIA IndeX library itself supports multi-volume rendering, the ParaView

© 2020 NVIDIA Corporation NVIDIA IndeX for ParaView Plugin – User’s Guide 33

5 Frequently asked questions

plugin does not yet have this feature integrated so you can only render one volume at a given
time.

Q: Can I use NVIDIA IndeX library in my own application without ParaView?

A: Sure you can, contact us for more details.

Q: What if I want to have a feature that is part of NVIDIA IndeX but not integrated in the
ParaView plugin?

A: Full set of NVIDIA IndeX features are described on this webpage.5 If there is a feature that
is important for you please contact us, we are happy to take workflow and feature requests.

5. https://developer.nvidia.com/index

34 NVIDIA IndeX for ParaView Plugin – User’s Guide © 2020 NVIDIA Corporation

https://developer.nvidia.com/index

6 Useful links

• NVIDIA IndeX for ParaView plugin website6

• NVIDIA IndeX for ParaView plugin forum7

• NVIDIA IndeX website8

• ParaView binaries and source code download9

• ParaView documentation10

• ParaView user guide11

• Contact email: paraview-plugin-support@nvidia.com

6. http://www.nvidia.com/object/index-paraview-plugin.html

7. https://forum.nvidia-arc.com/forumdisplay.php?210-NVIDIA-IndeX-for-ParaView-Plug-in

8. https://developer.nvidia.com/index

9. http://www.paraview.org/download/

10. http://www.paraview.org/documentation/

11. http://www.paraview.org/paraview-guide/

© 2020 NVIDIA Corporation NVIDIA IndeX for ParaView Plugin – User’s Guide 35

http://www.nvidia.com/object/index-paraview-plugin.html
https://forum.nvidia-arc.com/forumdisplay.php?210-NVIDIA-IndeX-for-ParaView-Plug-in
https://developer.nvidia.com/index
http://www.paraview.org/download/
http://www.paraview.org/documentation/
http://www.paraview.org/paraview-guide/

Appendix A Volume rendering tutorial

This tutorial covers aspects of volume rendering using the NVIDIA IndeX Accelerated Compute
(XAC) technology. It dives into the structure of a basic CUDA-based XAC volume sample
program, how to access volumes, and how to use colormaps (or transfer functions). In addition
it shows how to customize programs and make use of CUDA buffer parameters to interactively
change properties of those programs.

A.1 XAC purpose and program structure

The NVIDIA IndeX Accelerated Compute (XAC) defines an infrastructure to work with in-
teractive rendering and compute CUDA-based sampling programs (kernels or shaders) that are
compiled at runtime into the IndeX rendering environment.

There are two fundamental types of XAC programs: volume sample programs and surface sample
programs. Both programs have a predefined structure, receive specific input data, can set spe-
cific output, and can be specialized towards different types of scene elements. They have to be
added to the scene and can be added using the [CUDA Code Editor].

A.2 XAC volume sample programs

To understand the purpose of those programs, lets dive into a few internal aspects of NVIDIA
IndeX first:

During rendering, rays are generated for each pixel and intersected with elements in the scene.
When such a view ray hits a volume scene element, volume sample programs are executed at
each sample position along the ray and produce a four component vector (x: red, y: green, z:
blue, w: alpha as RGBA color), and which is then accumulated and blended into the final color
of the pixel (compositing).

A standard XAC volume sample program consists of three parts:

Header and declaration

Defines global variables and declarations (for example, the software version, libraries)

Initialization function

Initialize parameters of the program run (for example, buffer bindings)

Execution function

Computes the output color passed to the renderer

36 NVIDIA IndeX for ParaView Plugin – User’s Guide © 2020 NVIDIA Corporation

Volume rendering tutorial Appendix A

A.2.1 Example program outline

To successfully compile an XAC program your program should have the following compo-
nents:

Listing 7.1

NV_IDX_XAC_VERSION_1_0 Current XAC version string (optional)

using namespace nv::index;

using namespace nv::index::xac;
Include the default namespace (contains object and
helper classes)

class Volume_sample_program Declare the base class

{

NV_IDX_VOLUME_SAMPLE_PROGRAM Predefined type declaration (required)

public:

NV_IDX_DEVICE_INLINE_MEMBER

void initialize()
Initialization function

{

// initial setup...

}

NV_IDX_DEVICE_INLINE_MEMBER

int execute(
Main rendering function (required)

const Sample_info_self& input, Sample_output& out)

{

float4 color = make_float4(1.0f); Do some color computations here...

out.set_color(color); Store the output color

return NV_IDX_PROG_OK;

}

};

Add this code to the [CUDA Code Editor] panel and press the Compile button to update the
volume sampling program in the scene. Note that the XAC program has to be before the target
volume scene element to be executed.

A.3 Sampling a volume andmap to a color

By default, the XAC program contains information about the scene and the scene element for
which the program is executed. The global variable state.self contains a reference to the
scene element which calls the program (in this case the target volume). Note that this variable
can have different types and contents for each target element.

The parameter Sample_info_self& input contains references to additional generic sampling
information, such as:

sample_position (float3)

Stores a reference to the current sample position (volume grid)

© 2020 NVIDIA Corporation NVIDIA IndeX for ParaView Plugin – User’s Guide 37

Appendix A Volume rendering tutorial

scene_position (float3)

Stores a reference to the scene position

ray_origin (float3) ray_direction (float3) ray_t (float)

Stores a reference the current view ray properties

The full XAC API is documented in the NVIDIA IndeX Programmer’s Manual.

To sample a given volume and map a color using the transfer function (or colormap), the
following lines have to be added to the execute() function:

Listing 7.2

NV_IDX_DEVICE_INLINE_MEMBER

int execute(const Sample_info_self& input, Sample_output& output)

{

const float3& sample_position =

input.sample_position_object_space;
Get current sample position

const Sparse_volume& volume = state.self;

const Colormap colormap = volume.get_colormap();
Get reference to the sparse
volume and its colormap

const auto& sample_context = input.sample_context;

const auto sampler =

volume.generate_sampler<float>(sample_context);

Get a sample context and
generate a volume
sampler

float sample_value =

sampler.fetch_sample(sample_position);
Sample the volume at the current
position

float4 sample_color = colormap.lookup(sample_value); Sample the color value

output.set_color(sample_color); Store the output color (RGBA) and return result

return NV_IDX_PROG_OK;

}

A.4 Using XAC library functions

Within each XAC sampling program you have access to several helper functions. This includes
the following core libraries:

• The CUDA math library12

• Basic linear algebra functions (for example, point, vector, and matrix operations)

• XAC library convenience functionality – nv::index::xaclib)

• IndeX reference types – nv::index::xac

The XAC library holds a set of additional functions, which provide convenient access to typical
operations, such as color transformations and volume gradient computation. You can access
those functions by calling them from the nv::index::xaclib namespace.

12. https://docs.nvidia.com/cuda/cuda-math-api/index.html

38 NVIDIA IndeX for ParaView Plugin – User’s Guide © 2020 NVIDIA Corporation

https://docs.nvidia.com/cuda/cuda-math-api/index.html

Volume rendering tutorial Appendix A

For example, to use a simple color gamma operations you can add the following lines to your
program:

Listing 7.3

float4 sample_color =

colormap.lookup(sample_value);
Initialize the sample color using the volumemapping
from before

float screen_gamma = 0.7f;

sample_color =

xaclib::gamma_correct(sample_color, screen_gamma);

Apply gamma function to
a color

output.set_color(sample_color); Store the output color and return result

A.5 Add basic volume shading

Now, the basic volume sample program can be extended to integrate advanced visualization:
In this case, we are adding a simple local lighting model (simple Phong lighting model based
on a headlight) that helps to emphasize isosurface directions. To do this, we need to compute
a isosurface normal, which can be derive from the volume gradient, for which we use a XAC
library function.

To integrate volume shading into the XAC program, the following lines have to be added:

Listing 7.4

float4 sample_color =

colormap.lookup(sample_value);
Initialize a RGBA color (as four floats) reusing the color
mapping

const float3 gradient =

xaclib::volume_gradient(

volume, sample_position);

Approximate the the volume gradient based on
finite-di�erences

const float3 normal = -normalize(gradient);

const float3 view_dir = input.ray_direction;
Get the iso-surface normal (in outward
direction) and view direction

const float4 specular_color =

make_float4(1.0f, 1.0f, 1.0f, 1.0f);
Define specular (reflective highlight) color

sample_color =

xaclib::headlight_shading(

state.scene, normal, view_dir,

sample_color, specular_color);

Apply built-in headlight shading and set the
sample color

output.set_color(sample_color); Store the output color and return result

© 2020 NVIDIA Corporation NVIDIA IndeX for ParaView Plugin – User’s Guide 39

Appendix A Volume rendering tutorial

A.6 Using CUDA parameter bu�ers

Changing fixed parameters in the XAC sample programs code requires to recompile the pro-
gram. To change parameters interactively without recompilation, the XAC interface allows to
pass and bind custom CUDA parameter buffers to the sample program.

To use those buffers, the following modifications to the scene file and to the CUDA kernel file
are required.

A.6.1 Modifying the scene file

Add a parameter buffer element to a scene group:

Listing 7.5

#2 XAC parameter buffer element

app::scene::xac_parameters::type =

rendering_kernel_program_parameters

#4 Setup parameter types per slot (optional)

app::scene::xac_parameters::nb_parameters = 3

app::scene::xac_parameters::0::type = float32

app::scene::xac_parameters::1::type = uint

app::scene::xac_parameters::2::type = int

#1 Add the parameter element to a scene group

app::scene::main_group::children = xac_parameters ...

A.6.2 Modifying the CUDA kernel file

The buffer has to be bound and can then be used in the program:

Listing 7.6

float input_value = 0.0f; Define the user parameter variable

NV_IDX_DEVICE_INLINE_MEMBER

void initialize()

{

const float* buffer =

state.bind_parameter_buffer<float>(1);
Bind input parameter bu�er from
parameter slot 1 to the variable

input_value = buffer[0];

}

NV_IDX_DEVICE_INLINE_MEMBER

int execute(

const Sample_info_self& sample_info,

Sample_output& sample_output)

{

40 NVIDIA IndeX for ParaView Plugin – User’s Guide © 2020 NVIDIA Corporation

Volume rendering tutorial Appendix A

const float red = input_value * 0.6f;

const float green = 0.5f - input_value * 0.4f;

const float blue = input_value * 0.2f;

const float alpha = input_value + 0.1f;

Use input parameter to
compute some values

float4 modified_color =

make_float4(red, green, blue, alpha);

modified_color =

xaclib::clamp(modified_color, 0.0f, 1.0f);

Initialize a color and set color
channels

sample_output.set_color(modified_color);

return NV_IDX_PROG_OK;
Compute the output color

}

Note that the buffer type and structure has to be aligned in the scene file and the CUDA kernel
file. In the HTML5 viewer you can use the [CUDA Parameter Panel] to setup the values of the
parameters interactively.

© 2020 NVIDIA Corporation NVIDIA IndeX for ParaView Plugin – User’s Guide 41

	Introduction
	Licensing

	Installation
	Building the plugin
	Location of the plugin
	Loading the plugin

	Getting started
	Client-only mode
	Client-server mode on a single GPU
	Client-server mode on multiple GPUs
	Networking parameters for NVIDIA IndeX
	Licensing
	Networking options

	Features
	Structured and unstructred grids
	Datatypes
	Transfer function and colormap changes
	Region of interest changes
	High-quality rendering
	Slice rendering
	NVIDIA IndeX visual elements
	Isosurface preset
	Depth enhancement preset
	Edge enhancement preset
	Gradient preset
	Custom preset

	Time series animation
	Catalyst and in-situ visualization
	Mixing ParaView primitives

	Frequently asked questions
	Useful links
	Volume rendering tutorial
	XAC purpose and program structure
	XAC volume sample programs
	Example program outline

	Sampling a volume and map to a color
	Using XAC library functions
	Add basic volume shading
	Using CUDA parameter buffers
	Modifying the scene file
	Modifying the CUDA kernel file

