English version of this page

Disputas: Robert Bleckert Nils Håkan Wissing

Ph.d.-kandidat Robert Bleckert Nils Håkan Wissing ved Institutt for teoretisk astrofysikk, Det matematisk-naturvitenskapelige fakultet, vil forsvare avhandlingen "Simulating Galactic Dynamo Processes with Smoothed Particle Magnetohydrodynamics" for graden Philosophiae Doctor.

portrettbildet av en ung mann
Ph.d.-kandidat Robert Bleckert Nils Håkan Wissing. Bilde: privat.

Delta på disputasen

PhD disputasen og prøveforelesningen vil foregå 100% fysisk. Rommet for deltakelse like før disputasen starter, og stenger for nye deltakere omtrent 15 minutter etter at disputasen har startet.

Delta på prøveforelesning - 1. september kl. 10:15 (Peisestua, rom 304, 3 etg. ved Svein Rosselands Hus)

"The role of magnetic fields during giant impacts in the solar system"

Kreeringssammendrag

Magnetiske felt er overalt i universet og spiller en viktig rolle i ulike astrofysiske systemer. For å forstå mer om universet er det viktig å undersøke disse systemene med numeriske simuleringer. I løpet av sin tid her har Robert utviklet en ny numerisk metode for å simulere galakser med magnetiske felt.

Hovedfunn

When we look out at the universe, we find that magnetic fields are everywhere. From solar flares to the launching of jets, magnetic fields play an important role for a wide range of systems. This includes galaxies, which have been found to host surprisingly strong magnetic fields compared to their predicted strength in the early universe. This means that there must have been significant amplification of the magnetic field during the evolution of these galaxies. But what kind of process could amplify the magnetic field this quickly? Enter magnetic dynamo processes, which describes the exponential growth of magnetic fields due to being stretched, twisted, and folded by the underlying fluid motions.

Due to astronomy being an observational science, an important approach to testing astrophysical theories is through the use of numerical simulations. This gives us a ’virtual’ lab to understand how a system will evolve in time. This thesis goes through the development of a new numerical method and its application to the magnetized core-collapse, magneto-rotational instability and galaxy formation. In our simulations of galaxy formation, we find that our new method can capture many of the dynamo processes, recreating the amplification needed to explain our observations.

 

Kontaktinformasjon til institutt

Emneord: disputas, Kosmologi
Publisert 18. aug. 2022 09:59 - Sist endret 18. aug. 2022 10:49