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Abstract: I give methods for the treatment of data from living and
extinct taxa with respect to taxonomic survivorship curves, and comment on
some of the aspects of deviations from loglinearity by such curves.

* * %

In 1973 1 gave evidence that for all, or almost all, ecologically
homogeneous taxa for which data were available, the probability of extinction
of subtaxa of any rank has been stochastically constant within observed
error. The characteristic probability varies among taxa and categories.

Raup (1975) called this result Van Valen's Law. (The name is unfortunate
because in 1976 1 proposed a more basic law, that natural selection at any
single level or time scale always maximizes regulatory energy. Expansive
energy and control of trophic energy approximate regulatory energy.)

Critiques of certain aspects of the Law of Constant Extinction have
appeared (Raup, 1975, 1978; Sepkoski, 1975; Salthe, 1975; Foin, Valentine,
and Ayala, 1975). 1 have answered some of these (Van Valen, 1975, 1976a),
but more detailed analyses of these and other points remain unpublished. The
only point I find both valid and relevant is Sepkoski's implicit demonstration
that my threshold for rejecting poor data was a little too lenient.

The present paper bears implicitly on some of the above matters and on
other recent work by several people. An adequate explicit treatment must
involve several other aspects; for now I give information only.

The theory of taxonomic survivorship curves is more complicated than it
may seem at first glance. There are several cryptic biases which are
sometimes important. I give here a general treatment of certain analytical
and statistical aspects of the theory. The analysis is somewhat intricate,
and wrong turnsg are easy to make. I therefore give the analysis in an extended
form rather than assuming knowledge of what is known. The analysis is
applicable also to other linear survivorship curves with similiar problems
of estimation, as can happen in ecology.

LIVING AND EXTINCT TAXA

Nature of the population. It is necessary to pay strict attention to the nature
of the statistical population whose survival is being estimated. This
population has been in existence for a finite period of time. If there is
a nonzero probability that a taxon can survive longer than this interval, or
if a stable age distribution of the taxa has not yet been reached, a bias
is introduced into the usual analysis of survivorship curves. This bias
decreases as the interval increases, but is important when the half-life of
a random taxon is a moderate fraction of the total interval.

* * *
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Consider pelecypod families. The population is all pelecypod families
that have ever existed. (It is also possible to regard the population as
infinite, defined by those common properties or variables of pelecypod
families that happen to be of immediate interest. The distinction is unimportant
here, and I have used the second alternative because its analysis is easier.
My terms will usually reflect the discrete case, however; e.g., 1 use
"probability" instead of "probability density' because it is more familiar.)
It is crucial that the population comprises all those families which originated
in some finite interval of time. What we want to know is the pattern of
survivorship of this population. Survival will extend far beyond the present,
given conditions like those of the past, but families originating in the
future, during this period of survival, are not part of the population under
consideration. Our incomplete sample from this population contains some
families which are still alive and others which have already become extinct.

Conceptually, we place the origin of all families at one point in time
(which we may call survivorship time) and follow their survival. We know,
or rather can estimate more or less adequately, the duration of those families
that have become extinct. However, for families that are still alive there
is a difficulty. Their observed durations are less than their total durations,
because they will survive some unknown intervals into the future.

We want to estimate their total duration. A first guess might be to
give each living family the same probability of extinction per unit time
as those families which have already become extinct. But this is improper,
because the data are biased. The surviving taxa of a group have a longer
expected observed duration in any finite interval than do the extinct
ones (Van Valen, 1973a, note 5). This bias occurs because the longer the
total survival of a taxon, the greater the probability of its beiag
intersected by a random (random in real geological time) time-slice like
the present.

One might think (Raup, 1975) that because the cumulative distribution
of durations of extinct taxa and the observed (noncumulative) distribution
of ages of living taxa each estimate a lx distribution, one can simply
combine these distributions to estimate optimally the life-table parameters.
Unfortunately such a method is biased. The distribution of the total includes
the total durations of all the taxa, including the parts remaining in the
future. This method simply deletes from the total distribution the parts
not yet reached. The latter are not a random sample of the total, and this
bias can be important. For a taxon of any total duration, the average
position for a random time-slice to cut it is gt the middle. Because
longer-lived taxa are the most likely to be cut at all, the distribution
of the parts deleted is biased in the direction of long-lived taxa. And
as noted earlier, one can't simply double the observed ages of taxa now
alive, because there is a different bias.

Another guess might be to double the observed age of each living taxon,
because a random time-slice will cut the total duration of a taxon in half,
on the average. However, there is a bias in ascertainment here. We know
the ages to the present, not the total durations. Because taxa of long
total duration are rarer than those of short total duration, a high observed
age is more likely to extend into the second half of a moderately long
taxon than to be confined to the first half of a very long taxon. Doubling
this age will overestimate the expected total duration unless there are

bradytelic taxa present.
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A fourth possible method (S.M. Stanley, personal communication) is to
multiply the number of living taxa in each age-group by the ratio of the
longest observed age to the age of the given age group. However, this also is
biased. Even at equilibrium some taxa which will eventually have long survivals
will be cut by the time-plane early and so will appear short-lived, while
the reverse case can't happen. The method would work if we used the total
survivals, not the survivals to the present, but if we had that information we
could use the data directly.

My analysis will assume that the rates of origination and extinction,
in the sense of the probability of such events per existing taxon, have been
constant throughout the interval and equal to each other. The known falsity
of this assumption( Van Valen, 1973a) is more important for the case of
living taxa than for the total sample or for extinct taxa. The special
circumstances in an interval of real time, which is all we have for living
taxa, are more nearly averaged out in the survivorship time of the other
two cases, where the common properties of the ecological group under
consideration have a greater effect. Extinction rates vary over time but
can nevertheless approximate a distribution which is stationary over time.
Such a distribution reflects the ecological interactions of the higher taxon
considered.

The Total Population. By the Law of Constant Extinction, the probability
of a taxon becoming extinct is constant in survivorship time. For the purposes
of this analysis I will ignore all second-order irregularities in this
constancy. The analysis deals with survivorship time (age) unless I state
otherwise.

Initially, at time y = O, there is a cohort consisting of N  taxa. At
some later time y = x, there are only Ny taxa. The proportionate survival
to time x is called -

q = (1)
¥ N,
In the case of constant probability of extinction,
-ax (2)
A, = =

where a is a constant expressing the instantaneous force of mortality or
extinction (the decay constant for radioactive decay), m is the probability
of extinction per unit time,

—~£n 8
~

oz - (I-m)= ) (3)

e is the base of natural logarithms, and ln designates the operation of
taking natural logarithms. For convenience, the probability of survival per
unit time

-

A—E!—M:/Q-’ (4)
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The proportion of Ny that die at time x is called d,. In general,

oo
= A . (5)
Xw JDLU
N
For constant extinction,
-~ *F
0(_7': aL. R (6)
~x

OL:/)’)’\A/. (8)

If we plot 1y against t (survivorship against time), using a logarithmic
ordinate, the curve will be a straight line with slope -a if the logs are
to the base e, and -a/(In 10) = -0.4343a if the logs are to the base 10.

The proportionQ of the survivors at any time, that are lost in some interval
of time w, is

| - A
= |- ,
K (9)
Conversely,
A (1-Q)
Wz o
> (10)
And specifically, for the half-life h, Q = 1/2 and
o (¥)  0.693
}1/: a_ - A : (ll)

The half-life is a median and the life expectancy is a mean. In general,
the life expectancy Ey at time X is

ﬁjd/j (12)
/1‘ N
£

2
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For constant extinction, E; is constant for all x:

)
E,,_ - ot (13)

Note that

E = 1443k .
* (14)

Extinct Taxa. To quantify the bias in ascertainment between living and
extinct taxa, we must examine the two cases separately. That for extinct
taxa is simpler.

Consider an interval in real time from t million years ago to the
present. A taxon arises at some random time in the interval, and has some
duration x before its extinction. Given this random origination, the
probability that it will become extinct before the present is

(“*%>)¢£t
0, Rerwue |

In survivorship time, this is the probability that the random time-slice
of the present fails to hit the taxon. For the taxon to be extiact,
x must be less than t. In the total population of taxa, living and
extinct, the proportion with total length x is dy of Equation 6.

In the population of extinct taxa, the expected proportion de(x)
of taxa of the arbitrary length x is the normalized product of their
frequency in the total sample and their probability of escaping the
time~slice of the present. Therefore

A, &

(15)

Bl

A, ()= . . (16)
fo% P (DA
0
a~27a¢<]— %é
o, ()= z ) (17)
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whence

oCt(l-E)s T

A (x) = .
2 &—%_’_ ot — ] (18)

From equation (5), and noting that there are no extinct taxa longer
than t,

A, (9) = = _)f("“ﬂ—m ' (19)

It follows that

- okt - ary — 1)+ = .

2
L, (4)= TR o | (20)

As they should, le(o) = 1 and le(t) =

This curve is not linear on a semllog plot but convex, although the
convexity will in practice be small.

The "life expectancy" in this biased population is the expected value

of do(x) and so can be obtained from Equation (18):
- t

E}L@ = fﬁLO&@‘)M' (21)

o

It can also be obtalned by applying Equation (12):

E, (o) = f}Z (y) oy - (22)

Fortunately both methods agree, and

JlfanCajt +.2> +ot -2
E (0 ala®® at-1) (23)

A=

Similarly, for the life expectancy at any age X,
- _akt
M(M*M*l)‘f—& (o-ax+2)

e v
ae” (b~ ot=1) + okl (24)

E (%)=
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As must be the case, the life expectancy estimated directly from the
distribution of extinct taxa is less than that of the unbiased total
sample.

Because t is known and Eg(0) is simply the mean length of all

extinct taxa, Equation (23) gives an unbiased estimate of a. Unfortunately
an analytic solution seems impossible and a must be obtained by iteration.
We then can get unbiased estimates of all other parameters of the total
population by using Equations (2) through (14). In practice, t is often
not known (or lacks a unique value) because most subtaxa of a group may
originate much later than the group itself did. 1In such cases the origin
of the group and the start of its major diversification provide limits on
t, and (ceteris paribus) the true value of a will lie between those given

E& these two estimates.

Living Taxa. The situation here is complicated by the fact that the

total duration of some living taxa may be greater tham t. In fact all
such taxa will be living, because the time-slice of the present is sure to
cut them. It is necessary to make separate evaluations of d,(x), the
proportion of all living taxa that have total duration x, fof two cases:
x€tand x>t

For x ¢ t, the probability that a taxon will be alive, Eg(xlx < t),

is
a
<E) = /-
By (l2<E) = % 25)
For x > £, Pfx) = 1. The rest of the derivation of the equation for
%éz) parallels that for dg(x), so we have

A p (|2 <t)
0L£<’?"}’)L<t>1 i : (26)

+ (o
fatw(oa}mst)o*ocwhfotm(&;t)w
s i

Substituting as in Equation (17) and evaluating,

Zd&i-a¢
a
— ok

Ay (n)wst) = s : 27)

Similarly, substituting P

g (xlx > ©) for P
of Equation (26),

X(gjgys t)in the numerator
it "
[A& (Hlrpt) = 5 =o%

(28)

The proportion g(x <
than t is

t) of living taxa whose total length is less
+

5-(# <t) = ofotz (v]est)de,

(29)
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| - ,g”t(a)cw)
%(’ﬁ&%)l ok ' (30)
Similarly,
-
a/ta/
4 (r2t)= Lk 1)

Fortunately q(x ¢ t) + q(x 3 t) =

It is also necessary to know d (x|]x ¢ t), the proportion of all
living taxa with total length less thah t, which have total length x,
Its derivation is that of Equation (26) but the second integral in the

denominator is absent.
—ax

L
| =27 (oacH)-' (32)

aL/é(’X]/)CSt):

When x < t, the random time-slice of the present (or of late-Permian
extinctions, etc.) can cut anywhere with equal effect. Therefore the
proportion r(x < t) of dqﬁjﬁ.ﬁ t) that have a duration before the present
of at least y, is X

& =Y
INCEIDE — (33)

where y is unlformly distributed in the interval (0, x).
I define (x| X € t) as the proportion of living taxa with total duration

less than t, wh1c§ have a duration of at least y before the present,

t

2 (el - j”(“s“’)”tffa(“’”“é)"w o0
J

Substituting and evaluating,

J£~“ﬁ__;£‘91:(?at~4xj -+ l)

X/j (f%/ot@f): W ' (35)
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For living taxa with total durations greater than t, 1% does
not depend on the total duration. It depends only on the time of
origination, which can be anywhere between O and t with equal probability.
Therefore

/@3 (x|rst) = — (36)

It is now possible to evaluate lﬂ(g), the longevity to the present of
taxa now alive.

/QXC’)L) = /Q; (ﬂﬂﬁ:)% (y<t) + /Q//F (4]y =€) %C‘J >t),

Substituting, this simplifies to
__a.,c .

ROE _f,t > (38)
) _—

which is a mildly convex curve on a semilog plot.
The "life expectancy' of the observed durations of living taxa
can be evaluated like that for extinct taxa, whence

- ~Wtodc+f)
& (0) = S W (39)

a greater value than that for the total sample. Again, a can be estimated
from the mean duration, to the present, of living taxa. The average time
back from the present to any age x of taxa now alive is

-—a4¢ _aj:
_ (ot - art l)
E,K (/f’) - &Z —W)¢ —0JE> (40)

2= o

The "life expectancy' for taxa now alive, given circumstances like
those in the past, is the same as for a taxon at its origin (Equation 13)
if the probability of extinction is unrelated to age.

Living and Extinct Taxa. As t increases without limit, the various parameters
estimated from the living and extinct subpopulations approach those of the
total population.

The proportion of taxa (with a fossil record) that are still living,
or that were living at any time in the past, can be calculated for the
theoretical case. The closeness to this value of the observed
proportion is one measure of (among other things) how average a time the
present is with respect to the group considered. (The closeness of the
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estimates of a from Equations (23) and (39) gives another such measure, and
there are many others possible.)

P(M): P(r2t)+ p(xst) (Ei(%ﬂ) )

€
Pliving)= Kt J'?I&M) 42)

or
,Q”“’t@ot— )+ |

F@“”‘”ﬁ) = ot ’ (43)

whence

T G

(44)

When the number of half-lives since t is less than about half of
logijgNp as found empirically, equilibrium methods for estimating 1, for
living taxa fail. 1In this case, and the method is unbiased in all cases
under the Law of Constant Extinction, the true 1y curve for living taxa
has to be estimated by converting the numbers of living taxa at each age
into the numbers of extinct taxa of each total duration; all taxa will
sometime become extinct if the Law of Constant Extinction applies to them.

The conversion of living taxa into extinct ones simply takes the
observed number of living taxa of each age and lets them become extinct
at the rate estimated from Equations (23) and (39). The taxa are then
cumulated as for other extinct taxa, and can be combined directly with
them if desired. My plots (Van Valen, 1973a) of living taxa used this method
in an earlier and simpler form. The overall shape of these curves is
appropriate, but they should be shifted to the right by an amount equal to

the life expectancy.
When a stable age distribution is approached closely enough for

equilibrium methods to work, as for species and even genera in most cases,
and families in many cases, a method given by Kaplan and Meier (1958) seems
best. This method estimates l,, from which a can be determined immediately
by Equation (2), or, better, by plotting 1y as a survivorship curve to
average out sampling error. There is no assumption as to the shape of the
survivorship curve, and living and extinct taxa are both used.

The method uses data in the form of a life table, living taxa being
directly included with extinct ones. n, is the number of taxa still
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present at age x, including those becoming extinct at that age. However,
when a living taxon drops out at the same age at which another taxon becomes
extinct, the extinction is taken to occur slightly before that age. Then

x m - |
= I |4 (45)
N y=| n«j

Gross and Clark (1975, p. 46) give a fully worked-out numerical example
for some simple data.

HETEROGENEITY

It is easy to prove that, when two loglinear survivorship curves are
combined, the resulting curve is concave. The steeper curve contributes
only to the early part of the combined curve, the later part being nearly
that of the gentler curve. This result is quite general and can be formalized,
but its applicability to real data is less than universal.

For instance, if the steeper curve has many fewer initial taxa than
does the gentler curve, the concavity will be so slight as to be undetectable.
The same is true for curves differing little in slope. There are too many
ways in which curves can be combined for there to be an easily statable rule
on the detectability of heterogeneity. However, I have done a number of
simulations and summarize the results to provide the general flavor of
the situation.

When the taxon with the gentler slope is the more numerous, even a
large difference in slope is poorly detectable unless the numbers of subtaxa
differ by a factor of less than about 2. When the taxon with the steeper
slope is the more numerous, detectability depends merely on the difference
in slope; a difference in slope small enough to be poorly detectable with 50
or 100 subtaxa is uninteresting unless the number of subtaxa are nearly equal.
With equal abundance, the combination of two or more curves differing in slope
by a factor of less than about 3 is poorly detectable. These results of
course depend on sample sizes and extraneous variation; the results given
are for no extraneous variation. It is therefore impossible to say with
any precision how much variation in susceptibility to extinction may be
contained in a roughly loglinear survivorship curve, but biological judgment
at least has a framework in which to operate.

A convex curve, for which the probability of extinction per taxon
increases with age, could arise from a real increase in the number of
interacting taxa over time without a corresponding increase in the energy
availability. Each taxon would have a progressively smaller average control
of trophic energy and would be buffeted by progressively more competing
taxa. The effect would depend on the rate of increase relative to the
expected longevity. It requires a shorter expected longevity for geologically
later taxa in the interacting group; this would be the crucial test.

DISCUSSION

Because of the lower effect of the specific pecularities of a single
stretch of time, the averaging effect of many overlapping intervals predominating,
the extinction rate as estimated from extinct taxa will ordinarily be better
than the estimate from living taxa. In fact sometimes the latter is wrong
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by more than its own value. Living taxa often also include a few with longer
observed longevities than would be expected with a single extinction rate.
This phenomenon is the basis for the bradytely postulated by Simpson (1944)
and usually misinterpreted by others later.

Raup (1975) and others have advocated testing taxonomic survivorship
curves for loglinearity. I think such an exercise is futile because the
null hypothesis isn't well defined. On the one hand, we know that the
observed curves can't be precisely loglinear because of inaccuracies and biases
in the data which can be demonstrated independently of the curves (Van Valen,
1973a). This in itself suffices to disprove strict loglinearity; tests on
the shape of the curves themselves are superfluous and have much less power.
Quantitative adjustment for the biases would produce curves which would be
amenable for statistical testing. However, we don't know enough to make
such adjustments; therefore there is nothing to test.

A useful approach would be to see what proportion of the total variance
of longevities is "explained" by loglinearity. (There is only one real
variable, but the geometry in relation to the variance about the expected
line is like that in the case of a regression.) This would give a joint
estimate of the effects of all biases plus sampling error plus measurement error
of both longevity and geologic time. Unfortunately this is a difficult and
unsolved problem because of the constraint that the points of a survivorship
curve aren't mutually independent. One could fit gamma or Weibull distributions
(on which see Gross and Clark, 1975) and see how closely the respective
parameters approach those of the declining exponential, but this is hardly
more than curvefitting and would give no information on the amount of
contribution of nonlinear effects.

I note here an important mistake in Van Valen (1973a). Equation (1),
which gives the basic formula for macarthurs, should read

“ﬁbﬁzO~P>
2t

mac = : (46)

The mistake (but not the correction) was kindly pointed out to me by
D.E. Simanek.

Among the causes of irregularities in survivorship curves there are
some for deviations of the overall shape of the survivorship curve from
loglinearity. They must be evaluated in each case and of course require
positive evidence. For instance, the major explanation of the convex
survivorship curve for echinocid families, as already mentioned (Van Valen,
1973a, p.9), is that there are few pre-Mesozoic families. The convexity
occurs between about 130 and 200 million years and the half-life of echinoid
families is more than 50 million years. It is obvious from the original
data that the observed convexity results from the fact that there hasn't
been enough time yet for loglinearity to be established over the longer
intervals. The same phenomenon occurs even more strongly for families
of mammals, for which I showed (Van Valen, 1973a, pp.8-9) that removal
of the bias produces loglinearity.

It may be, as Raup (1975) believes, that there is a strong disposition
by taxonomists to lump smaller supraspe&ific taxa and split larger ones.
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If so, a convexity in survivorship curves would result because (1) the

bias would concentrate sizes of taxa toward the middle and (2) the ‘
probability of extinction is inversely related to the number of subtaxa.
Simpson (1961, p.134) finds the bias weak and my experience agrees with

his. My evidence (Van Valen, 1973b) on consistency of size of subtaxa
among different groups could result, as I noted there, from either taxonomic
bias or evolutionary patterns. These possible causes have not yet been
tested, but I suspect both contribute. The bias in survivorship curves
produced by splitting larger taxa is in fact the only one I have considered
(aside from real exceptions) for which I have found no examples.

My paper (Van Valen, 1973a) was submitted in 1972 to Science, which
rejected it for a reason relevant here. The one referee who believed he
understood the paper thought that, at least initially, the curves should be
concave. (Damn the data; full speed ahead.) This expectation is the reverse
of that from the preceding argument and results from the belief that taxa
living in "archipelagoes, ancient lakes, etc. for which there is little
if any fossil record'" should be more susceptible than others to extinction,
thus biasing the observed curves away from concavity. I showed how this
sort of argument, which can be generalized, fails to affect (or account for)
the overall linearity; in fact I have more recently found a formally similar
situation in the loglinear survivorship of patients with the chronic leukemias.
However, it should at least be clear that the detailed shape of taxonomic
survivorship curves is a somewhat complex subject.

Raup (1978) has also noted that if species follow the Law of Constant
Extinction then higher taxa composed of random assemblages of species
will not do so. It follows that in order for higher taxa to show constant
extinction their component subtaxa must become extinct nonrandomly. The
extinctions of the subtaxa must be positively correlated, as 1f similar
phenomena were affecting them jointly more than they were affecting subtaxa
of other higher taxa. Because of this effect, which I mentioned too, I gave
evidence (Van Valen, 1973a, pp. 12-14) that such nonrandomness does at
least sometimes occur. Thus one must consider biological effects as well as
numbers. In fact this was an aspect of my motivation for proposing the
Red Queen's Hypothesis. Interactions of taxa are in some rather large part
nonrandom (in perhaps any sense of this word) even if certain analyses
aren't powerful enough to discover this.

ACKNOWLEDGMENTS

I thank M. Friedman, D.M. Raup, D.E. Simanek, S.M. Stanley, and
K.S. Thomson for discussion.

LITERATURE CITED

Foin, T.C., J.W. Valentine, and ¥.J. Ayala. 1975. Extinction of taxa and
Van Valen's law. Nature 257:514-515.

Gross, A. J., and V.A. Clark. 1975. Survival Distributions: Reliability
application in the Biomedical Sciences. New York: John Wiley and
Sons. 331 pp.



142

VAN VALEN

Kaplan, E.L., and P. Meier. 1958. Nonparametric estimation from incomplete
observations. Journal of the American Statistical Association 53:457-481.
Raup, D.M. 1975. Van Valen's Law. Paleobiology 1:82-96
1978. Cohort analysis of generic survivorship. Paleobiology 4:1-15.
Salthe, S.N. 1975. Some comments on Van Valen's law of extinction.
Paleobiology 1:356-358.
Sepkoski, J.J., Jr. 1975. Stratigraphic biases in the analysis of taxonomic
survivorship. Paleobiology 1:343-355,
Simpson, G.G. 1944. Tempo and Mode in Evolution. New York: Columbia Univ.
Press. 237 pp.
1961. Principles of Animal Taxonomy. New York: Columbia Univ.
Press, 247 pp.
Van Valen, L. 1973a. A new evolutionary law. Evol. Theory 1:1-30.
1973b. Are categories in different phyla comparable? Taxon 22:333-373
1975  [Reply to Foin, Valentine, and Ayala, 1975.] Nature 257:515-516.
1976a. The Red Queen lives. Nature 260:575,
1976b. Energy and evolution. Evolutionary Theory 1:179-229.

L



