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Abstract

In order to investigate gamma ray signals from dark matter originating from
close to the black hole at the galactic center, we investigate the effects of general
relativity on such a signal. The expression for the photon flux in flat spacetime is
derived, and then generalized to take into account the geodesics of the photons,
as well as the gravitational redshift. We calculate J(¢) in the Schwarzschild
spacetime, and find the photon flux for the case where the particles annihilate
at rest. It is found that these relativistic considerations could potentially alter
the spatial signal, but mostly for angular resolutions too small for present day
detectors, and only in a region heavily influenced by uncertainties in the dark
matter halo. The spectral signal shows a redshift of Ax = 0.1, which should
in principle be detectable if we had a better understanding of the background
processes. The spectrum also shows potential features for smaller x, though these
features might be because of numerical errors.
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Chapter 1

Introduction and outline

Today there is solid evidence for the existence of a substantial dark matter (DM)
component in the universe. Recent data from the Planck collaboration gives a
physical DM density of Q,h* = 0.1188 £ 0.0010, where h is the reduced Hub-
ble constant defined by Hy = 100h km/s/Mpc = 67.74 &+ 0.46 km/s/Mpc [1].
This means that DM makes up ~ 25% of the total energy density of the uni-
verse. However, the nature of this elusive matter remains unknown. Out of the
many proposed solutions, the possibility of Weakly Interacting Massive Particles
(WIMPs) is one of the most appealing, since they seem to satisfy all the cri-
teria of DM from a wide range of different observations [2]. For example, the
DM annihilation cross section which produces the correct relic density is just the
cross section one would expect for a particle interacting though the weak force,
which also allows the particle to be massive enough not to have been detected by
collider experiments [3]. The weak interaction of WIMPs also means that their
relic density today is a result of thermal production in the early universe. The
detection of these particles, either directly or indirectly, is crucial for determin-
ing what DM is and for settling a debate which is undoubtedly one of the most
important unsolved mysteries in physics.

In order to make up the majority of matter in the universe today, the DM par-
ticle has to be stable. But since they are weakly interacting, they can annihilate
to produce standard model (SM) particles. This gives us an indirect method for
detecting DM non-gravitationally. Out of the many produced particles, photons
are of particular interest, as they can propagate mainly undisturbed through the
galaxy and therefore point directly to their source. One promising place to look
for gamma rays from DM is at the center of the Milky Way galaxy, where the
DM density is expected to be especially high. But we know that for the photons
coming from the very center of our galaxy, they have to come close to a super-
massive black hole. It is therefore of interest to calculate the effects of the theory
of general relativity on these photons, as they should at some radius begin to be
influenced by the extreme gravitational field of the black hole.

When performing calculations involving DM annihilations in the galaxy, it
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is usually assumed that the DM particles annihilate at rest, i.e. with vanishing
relative velocity. However, when the DM particles annihilate in the vicinity of
the black hole, it is reasonable to assume that the relative velocity of the particles
can no longer be neglected. In fact, in may be the case that the black hole can
act as a particle accelerator for DM, producing energies of several times the rest
mass [4].

One DM model of particular interest is the Kaluza-Klein (KK) model, where
spacetime is assumed to consist of one or several extra spatial dimensions through
which all SM fields can propagate. In this case, the momentum of particles in
these curled up, extra dimensions (ED) are observed as additional mass states in
the effective 4-dimensional theory. Some of these new particles provide excellent
candidates for DM [5]. If this is the case, then when the full velocity dependence
is taken into account when calculating gamma ray spectra the signal can provide
striking features, in the best case scenario producing a comblike structure of
gamma ray lines as shown in [6]. In that article, the effects of gravitational and
Doppler redshift have also been described. However, it seems no investigation of
other general relativistic effects have been done.

Our goal is therefore to investigate the effect of some of the features in general
relativity on the gamma ray signal from DM, specifically to take into account the
curved photon geodesics and the gravitational redshift for photons in the vicinity
of a black hole.

The outline of this thesis is as follows: In chapter 2, a brief introduction to
the subject of DM is given, with some history and the general features of WIMPs.
we also include a summary of the different methods of detection, with a main
focus on indirect gamma ray detection. We then present some popular choices of
DM halo profiles, with special attention to the profile close to a black hole.

In chapter 3 the general properties of KK theories are presented, with em-
phesis on the case of one ED. We briefly present the model of universal extra
dimensions, as well as the basic features of KK DM.

In chapter 4 we focus on the gamma ray signal from DM, briefly considering
the different annihilation channels that produce photons. We then derive the ex-
pression for the photon flux in flat spacetime, and apply this to a simple example
in our galaxy before generalizing the expression to take into account some effects
of general relativity, using the Schwarzschild spacetime as our example.

In chapter 5, we apply this generalized expression to our galaxy and state our
results.



Chapter 2

Introduction to dark matter

The first suggestion of a non-luminous gravitational contribution is usually at-
tributed to Fritz Zwicky’s observations of the Coma cluster from 1933 [7], and
it was also Zwicky who coined the term dark matter. Zwicky used the Doppler
shift of light from galaxy clusters to find the velocities of galaxies within the clus-
ter, and compared this to the velocity distribution he expected from using the
virial theorem on the mass inferred from the luminous matter. He found that the
galaxies were moving much too fast for the cluster to be gravitationally bound,
and concluded that most of the cluster had to consist of non-luminous matter.
Although Zwicky slightly overestimated the ratio of dark to luminous matter in
the Coma cluster by using too large a value for the Hubble parameter, his con-
clusion was still correct and his result still stands as one of the first evidences for
DM.

Even though the concept of DM had been around since the 1930s, it wasn’t
until the 1970 that the idea began to be taken seriously, when Vera Rubin and
others studied the rotation curve of stars in the Andromeda galaxy and found
that the orbital velocities of the stars as a function of the radius seemed to remain
constant, instead of dropping quickly as one would expect from the amount of
inferred mass in the galaxy [8]. Afterwards the rotation curves of several other
galaxies were found, and they all showed that there should be more matter present
than what the stars and gas could account for.

There is also evidence for DM on larger scales, using gravitational lensing
of light around galaxy clusters. The light from objects behind the cluster is
deflected as it passes by, sometimes producing several images of the same object
as viewed from earth. The distortion of light around galaxy clusters can be
used to find the total gravitational mass, while one can use optical methods to
determine the luminous mass. Any difference between the two measurements
must then be caused by DM. One particularly interesting cluster is the so-called
Bullet Cluster, which consists of two different clusters that recently collided [9].
In this case the gas clouds in the clusters have slowed down after the collision
due to electromagnetic interactions, and since this gas makes up most of the
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luminous matter of the cluster, one would expect most of the total mass to lie
in the same area as the gas. However, gravitational lensing shows that most of
the mass approximately follows the galaxies of the cluster, which have passed
straight through each other without interacting. This means that a large part of
the cluster must be made up of DM which does not interact strongly with itself.
The bound on the self-interaction cross section of DM in the Bullet Cluster
obtained from measurements is o/m < 0.7 cm?g~! [10], which almost completely
excludes the allowed range for theories with self-interacting DM, which requires
o/m to be in the range 0.5 — 6 cm?g~! in order to explain the flat inner mass
profils of galaxies [11]. Thus the Bullet Cluster shows us that not only evidence
of a significant amount of DM, but also that this DM must be weakly interacting,
if it interacts at all.

One of the most important pieces of evidence for DM comes from the Cos-
mic Microwave Background (CMB). This is the leftover radiation from the early
universe, when the temperature had dropped enough that the plasma of ionized
baryons and electrons recombined into neutral atoms. This made the universe
transparent to radiation, since photons could now travel through it without scat-
tering on charged particles. The CMB thus provides us with a snapshot of the
universe at this excact moment of so-called recombination. While this radia-
tion is extremely uniform and isotropic, the small temperature fluctuations of
the CMB contains invaluable information about the structure of the universe at
early times, since these fluctuations reflect the structure of the ionized plasma
which would later collapse to form galaxies. If the matter content of the early
universe was mostly dark, one should then be able to see its effect on the CMB
today. The CMB has been mapped by the WMAP and more recently the Planck
experiment, who have used the data to determine several cosmological param-
eters, including the total amount of dark and baryonic matter in the universe.
They concluded that the DM density is Q,h% = 0.1188 £ 0.0010, while the bary-
onic matter density is Q,h% = 0.02230 & 0.00014, where h is the reduced Hubble
constant, Hy = 100h km/s/Mpc [1]. Thus there is over five times as much DM
as there is ordinary matter.

Since all the evidence we have for DM is in some sense gravitational, attempts
have been made to explain the observations by assuming that our current theory
of gravity, General Relativity, is not valid at all scales. One well known example
of such a theory is Modified Newtonian Dynamics (MOND) [12], which proposes
a different gravitational force law for the stars closer to the edge of the galaxy,
but so far all such theories seem to be unable to explain all independent DM
observations at the same time. It therefore seems tempting to assume that DM
is some new type of particle with properties that has so far made it impossible
to detect by means other than gravitational, such as a weak interaction with
electromagnetism. By determining the properties such a particle must have,
scientists have come up with a type of particles able to explain all the DM
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observations at once, which is the topic of the next section. Because of this, the
general consensus today is that DM is in fact a new type of matter.

2.1 The WIMP paradigm

In this section, we will discuss some of the properties of the DM candidates known
as WIMPs. For a more detailed analysis, see e.g. [3].

The standard model of particle physics is arguably the most successful particle
physics theory to date. However, there are several problems that the SM is not
able to solve, for example the hierarchy problem. In short, this is the problem
of why the Higgs particle has the low (compared to the Planck scale) mass that
it has, when one takes into consideration mass corrections from loop diagrams.
These corrections should make the Higgs mass explode, unless there is a large
amount of fine-tuning to make the mass corrections cancel each other out. This
can be done in a more natural way by introducing new particles to the theory
which couple to the Higgs, as is done for example in the theory of supersymmetry
(SUSY).

There are several proposed extensions to the standard model which predict
new, exotic particles. If the theory in addition contains a new conserved symme-
try obeyed by these particles, then the lightest of them must be stable, unable
to decay to lighter SM particles. Examples of this include the R-parity of SUSY
and the KK-parity of universal extra dimensions (UED). If this stable particle
interacts with SM particles only through a force with similar strength as the weak
nuclear force and has a mass in the GeV — TeV range, it satisfies the conditions
of a WIMP.

The amount of DM in the universe today is determined by its interactions
with SM particles in the early universe, with DM particles annihilating into SM
particles and vice versa. The evolution of the number density n, is described by
the Boltzmann equation,

dn
d_tx = —3Hn, — (mj>(n§< - niq), (2.1)

where H = a/a is the Hubble expansion rate of the universe, (ov) is the thermally
averaged DM annihilation cross section times the relative velocity of the DM
particles and neq is the number density in thermal equilibrium. The first term
describes the decrease in density due to the expansion of the universe, while the
second term describes changes due to deviations from the equilibrium density.

In the early universe, the first term is small and can be ignored, which means
that any change in the DM density would be driven back to equilibrium, causing
the density to drop as e ™. This behaviour continues until the expansion
term becomes large, and eventually the second term can be ignored, giving the
equation
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dn

-Ef+3ﬂnxzo. (2.2)
when using that H = a/a and multiplying both sides with a®, we can write this
as

d

%(a?’nx) =0, (2.3)
which means that the DM density in a comoving volume of space a®n,, called the
comoving density, becomes constant as the universe becomes colder. This process
is usually referred to as "freeze out”, and is illustrated in figure 2.1 which shows
the time and temperature evolution of the comoving DM number density. The
value at which the freeze out happens depends on the annihilation cross section
of DM, as a higher cross section means it will take longer for the expansion term
to take over and thus for the comoving density to stabilize.

The process can be thought of more heuristically as follows: the DM particles
are in equilibrium with the SM particles in the early universe, with both DM
and SM particles annihilating into each other at equal rates. But as the universe
expands, the average temerature of the SM particles is no longer high enough to
produce DM, while the DM annihilation is still unaffected, and the DM density
drops exponentially. At some point however, the expansion rate is so high that the
DM particles become to diluted to annihilate efficiently and the density stabilizes,
giving the DM density we observe today.

The present DM density can be calculated to be [3]

3 x 107%cm? /s
{ov)
which means that particles with interactions and masses around the weak scale

have just the right annihilation cross section to account for the DM we observe
today, since

Qh* =0.1 x (2.4)

(ov) ~ % ~ 107%°cm?/s. (2.5)

This is called the WIMP miracle.

It is important to stress that WIMPs were not introduced to solve the DM
problem specifically. Instead, they are a natural consequence of theories that try
to solve the problems of the SM, such as the hierarchy problem. This is one of
the main reasons why the WIMP solution to DM is so appealing.
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Figure 2.1: The comoving number density of DM as the universe cools with
time. The solid line is the equilibrium solution, where the DM density drops
exponentially. When the expansion of the universe begins to dominate, the
particles can no longer annihilate efficiently, and the density only drops as
1/a, meaning the comoving density becomes constant and the DM ”freezes
out”. The value at which the freeze out happens depends on the annihilation
cross section, with a higher cross section meaning a lower freeze out value.
Figure from [3].

2.2 Methods of detection

Searches for DM can be categorized into three main categories: production of
DM at particle colliders, direct detection of DM elastically scattering with SM
particles, and indirect detection of the SM decay or annihilation products of DM.
We here give a brief overview of the different detection methods, with a main
focus on indirect detection of gamma rays. For a thorough review, see [13].

2.2.1 Particle colliders

If DM is a particle with mass around 100 GeV, it should be possible to detect at
present day colliders. Since DM interacts so weakly with SM particles, it would
simply leave the detector in the form of missing transverse energy. In the case
of DM pair production one might then naively think DM would be undetectable,
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since both particles would escape the detector without a trace. But if one of the
initial particles radiates a SM particle, for example a gluon at a hadron collider,
then this particle would leave a signal in the detector and there would be an
energy imbalance due to the missing DM particles. At a hadron collider like
the LHC, initial state radiation of a gluon would cause a single hadron jet, and
searching for these monojets and missing transverse energy is one of the methods
used to look for DM.

It is also possible to produce DM through more complicated processes, where
the particle initially produced in the collider is some other, more massive new
exotic particle. This particle would be highly unstable, and would quickly decay
to lighter particles, both exotic and SM ones. The SM decay products would be
registered by the detector, but the exotic particles would continue to decay until
the only exotic particle left is the lightest and stable particle. This is the DM
particle, but as it has very weak interactions with ordinary matter it would simply
leave the detector without a trace, only showing up as missing total energy when
the SM decay products are added up. This information could then be used to
set limits on the properties of DM. These decay cascades are usually very model
dependent however, which makes it difficult to use them to set bounds on the
DM scattering cross section.

2.2.2 Direct detection

Direct detection experiments attemt to measure the interaction of DM particles
with SM nuclei in low background scattering experiments. The scattering rate
per recoil energy can be written [14]

dR o / do
= —d 2.6

Umin
where py is the DM halo density at the position of the earth, My is the mass
of the target nucleus and m, is the mass of the DM particle. do/dEg is the
differential scattering cross section, and f(v) is the velocity distribution of the
DM halo. The integral is taken over all possible velocities, from the lowest DM
velocity vn,in which can give the nucleus a recoil energy to the velocity where the
DM particles can escape from the halo, veg.

The scattering cross section can be calculated in any given DM model, while
the galactic halo density and velocity distribution must be calculated from other
methods and are subject to large uncertainties. Since the scattering cross section
for DM is very low, direct detection experiments need to be almost completely
free of background events in order to see a DM signal. To achieve this, the
detectors are usually placed deep underground to shield them from cosmic rays.
Another strategy for direct detection is to look for an annual modulation of the
signal, which should be caused by the earth’s changing velocity relative to the
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DM halo as it moves around the sun. Unfortunately, results from direct detection
experiments are inconclusive and in some cases even in conflict with each other.
The DAMA/LIBRA experiment sees an annual modulation of their signal [15],
but this result disagrees with other similar experiments.

2.2.3 Indirect detection

Indirect detection experiments attempt to measure the SM end products of an-
nihilating or decaying DM in the form of cosmic rays. There are several different
end products which in principle can be detected, all with different advantages
and drawbacks.

Photons

Photons are perhaps the most obvious form of cosmic rays for detecting DM.
They have the clear advantage of travelling in straight lines from the source to
the observer, which means that they carry both spectral and spatial information
about their origin. If the photons are produced directly from the annihilation, for
example through the processes xyx — vy or xx — Z7, then the energy spectrum
would contain a sharp line or cutoff, respectively, located exactly at the DM
mass. The majority of photons are usually produced through other processes
however, such as the decay products of other SM final states (mostly pions) or
synchrotron radiation from charged particles due to magnetic fields in the galaxy.
Such processes produce broader, smeared out spectra, and are more difficult to
use to detect DM.

The main challenge with using photons for indirect detection is the large
backgrounds. There are several sources of gamma rays in the galaxy, such as
pulsars and supernova remnants, and also other sources which are not completely
understood. This makes some of the gamma rays from DM difficult to distinguish
from the background, since they produce broad bumps with no distinct spectral
signature. However, the monochromatic lines produced by direct annihilation
into photons can in some DM models be significant enough that it becomes
possible to seperate the signal from the background. In general this is not the
case though, and higher resolution detectors are needed to be able to see a signal.

The expected differential photon flux per energy from annihilating DM in a
direction % is given by

o, 1
deEW(E%Q/}) - 87[

.0.8.

ov dN/
AW ) [<m2> > 8y

where l.o.s. means taking the integral along the line of sight, p, is the DM halo
density, (ov) is the velocity-weighed annihilation cross section and m, is the
mass of the DM particle. By is the branching ratio into channel f and Ny is

, (2.7)
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the number of photons produced per annihilation. The flux is averaged over the
opening angle of the detector, At. If the DM particle is not its own antiparticle,
the expression changes by a factor 1/2. This expression is deduced in chapter
4.1.

As can be seen from the expression, the flux is dependent on the square of
the DM halo density. This means that the result is highly sensitive to the details
of the halo, which is largly unknown and subject to much uncertainty. But the
square dependence also means that it’s favourable to look for DM in regions
of high DM density, such as the center of the Milky Way. The dwarf galaxies
surrounding our own are also prime targets for searching for DM, as they are
believed to have large DM halos relative to their luminous mass, meaning there
should be less background and therefore easier to distinguish a DM signal.

There have been a few claims of indirect DM detection. In 2012, it was
discovered that the data from the Fermi Large Area Telescope contained a line
at ~ 130 GeV, coming from the galactic center [16]. This has been attempted to
explain as a DM signal by many, but it is still entirely possible that the signal
is due to other sources, and the significance also seems to have diminished with
more data, making it more likely to be a statistical accident [17].

Neutrinos

Neutrinos are also a method of indirect detection, and they are in many ways
similar to photons, since they also point directly to the source. The backgrounds
for neutrinos are smaller than for photons, but neutrinos are much more difficult
to detect. Still, there are detectors dedicated to measuring them, both from
astrophysical sources and from processes in the sun. One thing that is unique
for neutrinos is that they can be used to detect DM trapped in the Sun or the
Earth. As DM particles travels through baryonic matter, there is a small chance
that they will scatter and lose energy, which can cause them to become trapped
in the gravitational field of the Sun or the Earth. There they will build up
and eventually annihilate with each other, producing SM particles. Of these
particles, only neutrinos can escape without interacting, which means they are
the only result of this process which potentially can be detected here on Earth.
The IceCube detector located at the geografical south pole is one of the most
recent neutrino detectors, and has set limits on the annihilation cross section of
DM in the Sun [18].

Antimatter

Charged particles in general have the disadvantage that they are affected by the
magnetic fields of the galaxy, since the inhomogeneities of the fields cause them
to scatter and change direction. The particles therefore lose their directional
information, and their propagation must be modeled as a diffusive process. One
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therefore has to rely mainly on the energy spectrum alone to search for DM.
Because there is so much more matter than antimatter in the universe, the back-
ground for antimatter is much smaller. And since both matter and antimatter are
assumed to be created in equal amounts from DM annihilation, there is a clear
advantage to using antiparticles to detect DM. The PAMELA experiment discov-
ered in 2009 a definite excess of high energy positrons [19], which has later been
confirmed by other experiments. If this was due to DM however, one would in
most models also expect an excess of antiprotons from DM decaying into quarks,
and this is not seen by any experiments. Therefore, it is likely that the positron
excess is due to other astrophysical sources.

2.3 Halo profiles

We here give a short description of different DM profiles, with additional focus
on the profile in the vicinity of a black hole. For a more detailed review, see for
example [20].

2.3.1 A general parametrization

As we have seen, the exact density profile of the DM halo is of great importance if
one wishes to detect DM. Unfortunately, direct observation of our galaxy cannot
adequately constrain the shape of the halo, and so we must turn to other means.
Most DM halo profiles are results of N-body computer simulations of galaxy
formations with cold dark matter. A parametrization which covers several of
these, is given by

B=vy

)= () [z ) 28

r L+ (r/rg)>

where «, 3 and 7 are the parameters which specify the profile. pg ~ 0.4 GeV /cm?
is the DM density at the position of the Sun [21], Ry ~ 8.5 kpc is the distance
from the Sun to the galactic center, and r, is a scale radius which determines
when the profile changes from depending on =% for large r to depending on 7~
for small 7. A much used profile is the Navarro-Frenk-White (NFW) profile [22],
with («, 5,7) = (1,3,1) and r¢ ~ 20 kpc.

These models which are favoured from computer simulations all exhibit sim-
ilar behaviour at small r, namely that the density increases steeply for smaller
distances, usually called cusps. However, observations of rotation curves from
satellite galaxies of the Milky Way suggest that the profile flattens out for small
r, so-called cores. This disagreement between simulations and observations of
smaller galaxies is called the core-cusp problem. This problem is still unsolved,
with possible solutions that there is some mechanism that ”cores” the halos of
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Figure 2.2: Models of DM density profiles for the Milky Way galaxy, using
the parameters from [25]. At the position of the Sun, all profiles have the
same value, but they differ greatly at the inner parts of the galaxy. The
profiles which keep increasing for smaller r are called cuspy profiles, while the
ones which flatten out and become constant are called cored.

the dwarf galaxies, for example baryonic feedback, where some mechanism drives
baryonic matter out of the central regions which can be shown to ”core” the
halo profile [23]. Another possibility is that the assumption of cold DM is sim-
ply wrong, and that some other type of DM would provide cored profiles also
in larger galaxies. In addition, since all simulations of galaxy formation have
some smallest resolution the innermost part of the halo has to be inferred by
extrapolation, and is therefore bound to be more uncertain than the rest of the
halo.

Another type of halo profile which is preferred by more recent simulations is
the Einasto profile [24],

p(r) = poexp (—Ar®), (2.9)

where o determines the degree of curvature of the profile.

Figure 2.2 shows some of the most common Milky Way halo profiles used in
computations, with parameters taken from [25]. For indirect detection of DM
from the galactic center, the innermost part of the halo is of great importance,
since the flux depends on the square of the DM density, as we have seen. The
best case scenario for indirect detection would therefore be a cuspy profile such
as the NFW profile, in order to pick out the signal from the background.
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2.3.2 The profile close to a black hole

Even though these density profiles fit nicely with observations on larger scales
such as rotation curves, the innermost regions are subject to influences from the
baryonic matter of stars and gas, in addition to the supermassive black hole at the
center. It is therefore possible that the halo looks significantly different inside the
central parsec of the galaxy. If the black hole was formed from a slow accretion of
gas, It could create a density spike in the DM halo [26]. Although processes such
as DM annihilations and DM interaction with stars could reduce these spikes
[27], there still could be a significant difference from a straight forward NFW
profile. As we get closer to the black hole however, the density eventually gets
high enough that DM annihilations become important over the lifetime of the
black hole, causing the density to stabilize and form a plateau at a radius 7,
where the annihilation time equals the age of the black hole [26], tgg ~ 101°
years:

plry){ov) = 1. (2.10)

BH

For our purposes, we will use the profile described in [28],

TBH

p(r) = - ’
Po ( - ) B ST

TBH

- r, <r<r
[ mlem)  rsrsran (2.11)

where rpg = 2 pc is the radius of influence of the black hole, v/ = 3/2 and
7, = 1075 pc. The constant pg is determined by extrapolating a NFW profile
inward, and demanding that the profiles are equal at r = rgy.

Figure 2.3 shows the density profile for three different values of 4. When
~" =1 the curve is just a continuation of the NF'W profile, while for other values
it becomes a broken power law. All three curves stabilize at the density plateau,
even though the values for 4/ = 1 are too small to show in the figure.



14 Introduction to dark matter Chapter 2

: : : : : : : : : : : : : : : : :
1010,

T 108

&

>

(0]

o,

= 6|

= 10
104 -

107® 107° 10 0.001 0.010 0.100 1 10
r[pc]

Figure 2.3: The DM density profile close to a black hole where the profile is a
broken power law, p~7 where v — 4/ inside the black hole radius of influence,
with three different values of 4/. The density plateaus at a radius r, where
the annihilation time equals the age of the black hole. The lowest curve with
~' =1 is simply a continuation of the NFW profile, while the others show the
profiles for v = 3/2 and «' = 7/3, where the latter is the most optimistic case.
Although it’s not seen in the figure, the profile for v/ = 1 also stabilizes at the
density plateau.



Chapter 3

Introduction to Kaluza-Klein
theories

In this chapter, we give a brief introduction to some of the general concepts in
Kaluza-Klein theories, as well as some of the history behind it. We then look
in some more detail at the theory of universal extra dimensions, giving a brief
description of the field content for the case of one extra dimension. A description
of the basic ideas from a general relativity perspective can be found in [29], while
for a complete description of the particle content in universal extra dimensions,
see [30].

3.1 Kaluza’s theory

In Einstein’s theory of general relativity, the dimensions of space and time are
unified into four-dimensional spacetime. In the wake of the success of Einstein’s
theory in the 1920’s, Theodor Kaluza entertained the idea of expanding spacetime
by including an additional spatial dimension [31]. His procedure was to introduce
a five-dimensional metric gy,n with M, N = 0,1,2, 3,4, which obeyed the five-
dimensional Einstein equations in empty space,

. 1.
Ryn — §R9MN =0, (3.1)

where Ry is the Ricci tensor in five dimensions and R = gy v RMY is the Ricci
scalar. The metric could then be parametrized as follows:

. L+ K2OPALA, kA
gMN — (gu H¢2§y : Q;Q N) ) (32)
where g, is the standard four-dimensional metric, A, is a tensor field and ¢ is a

scalar.  is a scaling factor for the tensor field. The Ricci tensor and Christoffel
symbols in five dimensions are defined the same way as in four dimensions:

15
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Ryn = 8Af11]?41v - aNfJ\A/[A + f}?ﬂvfﬁB - fJ\A/foﬁm (3.3)
1 . . N
i = 50" (Ougn + Ondsy — Oparn). (3.4)

Kaluza assumed what is called the cylinder condition, namely that the metric
does not depend on the fifth coordinate z*, so that all derivatives with respect
to this coordinate vanishes.

Thus, by inserting (3.4) and (3.3) into the Einstein equation (3.1) or equiva-
lently Ry = 0, the components pr, pd and 44 eventually give the equations

1 1
R, — §Rg,ul/ - ﬁ2¢ TEM a[vu(&,¢> - g#VD¢]’ (3:5)
VHF,, = _38%¢¢FW’ (3.6)
ng — 24¢3 #VF,LW (37)

where TPM = g, Fop FP [4 — FYFoo, F = 0,A, — 0,A,, 0= V"V, and V,, is
the four-dimensional covariant derlvatlve

If one then sets the scalar field to be constant, equations (3.5) and (3.6)
become Einstein’s field equations and Maxwell’s equations in four dimensions.
The form of the stress-energy tensor in equation (3.5) is precisely the form of
the electromagnetic stress-energy tensor. This means that the vector field A,
in the metric can be identified as the usual electromagnetic potential. We have
thus recovered general relativity and electromagnetism from a unified theory
in five-dimensional empty spacetime! The fact that equation (3.7) also puts
an additional constraint on the electromagnetic field tensor was not realized by
Kaluza and Klein at the time. It was discovered 20 years later, by Jordan [32].

Alternatively, the same result can be achieved by using variational calculus
by starting with the Einstein-Hilbert action in five dimensions,

= = f‘?\/—g d*z dy, 3.8
167G / (3:8)
where G is a constant, g is the determinant of the five-dimensional metric and
y = x* is the fifth coordinate. Using the cylinder condition the integral over y
can then be pulled outside the integral, and by inserting the metric (3.2), one
gets the action

¢ v

/ o < (3.9)

where G = G / | dy. This is the action for general relativity and electromagnetism
scaled by the field ¢, as well as the action for a massless scalar field.

2 8“@58,@)

167G HET
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3.2 Compactification

One of Oscar Klein’s contributions to Kaluza’s theory was to give an explanation
for the cylinder condition, by suggesting that the extra dimension was curled
up into a circle, with a radius small enough that it was unobservable for our
experiments [33]. Particles would then also travel in the direction of the extra
dimension, but would move around the circle and almost immediately return to
where they started. As a consequence, such a theory would contain additional
particles. To understand this, one simply has to realize that while any momentum
a particle has in the curled-up dimension would be unobservable to us, we would
still measure the extra kinetic energy of this particle. Since this extra energy
would not be interpreted as momentum to a four-dimensional oberver, it has to
be a particle of larger mass in the four-dimensional theory.

To see this in more detail, let us consider a scalar field ¢ with mass m in five
dimensions. Such a field would obey the five-dimensional Klein-Gordon equation,

(O +m®) la,y) = (0f — V> = 0, +m”) ¢(a*,y) = 0, (3.10)

where v is the coordinate along the compactified extra dimension. The compact-
ification means that
y~y+21R, (3.11)

where R is the compactification radius. This allows us to expand the field as a
Fourier series,

$(aty) = D o"(at) e, (3.12)

If ¢(x*,y) is real we have ¢ (z#) = ¢~ (z*), and we can sum from n = 0
instead. By inserting this expansion into equation (3.10) we get

i (af ~ V2t (%)2 + m2) o (@) R =0, (3.13)

which means that each ¢ has to satisfy the four-dimensional Klein-Gordon
equation

(02 = V24 m?2) ¢ () = 0, (3.14)
with )
2 2 n
m? = m? + (R> . (3.15)

Each particle of mass m is therefore accompanied with a so-called Kaluza-Klein
tower of n particle states in the four-dimensional theory with masses m,,. The
fact that we have not yet seen any such particles means that the compactification
radius must be small enough that the mass of the first exitation is inaccessible
to our energy scales.
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3.3 Other extra-dimensional theories

After the success of Kaluza and Klein of unifying gravity and electromagnetism
into a single theory by introducing an extra dimension, a natural next step was
to consider the possibility of unifying the other forces by introducing more di-
mensions. In the language of group theory, the compactified fifth dimension adds
a U(1) symmetry to the theory, due to translational invariance along the extra
dimension. The appearence of electromagnetism is then not so surprising, since
we have just included its symmetry group in a geometrical way.

The next step was then to add more dimensions in order to obtain more
complicated group structures in a similar manner, such as non-Abelian groups
[34]. Tt was then shown by Witten that in order to get the desired group structure
of SU(3) x SU(2) x U(1), one needed a minimum of 11 dimensions [35]. In
addition, 11 is the highest number of dimensions which does not contain particles
of spin higher than 2, which made it a reasonable choice for number of dimensions.
This led to D = 11 supergravity, which combines Kaluza-Klein theory in 11
dimensions with the theory of supersymmetry. This theory had some problems
however, for example it was difficult to include chiral fermions.

Some of these problems were solved by going to 10 dimensions instead, which
led to the creation of superstring theory, which is still one of the few theories
which could potentially provide a unified theory for all four forces of nature.

3.4 Universal extra dimensions

The theory of universal extra dimensions (UED) is essentially the standard model
of particle physics in more than four spacetime dimensions, which all fields are
allowed to propagate through [36]. We will here limit ourself to the case of one
UED. It is important to notice that in more than four spacetime dimensions the
SM is not renormalizable, so this theory should be viewed as an effective theory,
valid up to some energy cutoff scale A. As explained previously, each of the SM
fields come with a KK-tower of more massive states in four dimensions. However,
the simplest method of compactifying the ED on a circle leads to a problem in
the four-dimensional theory. The fifth component of a 5D vector field transforms
as a scalar under 4D Lorentz transformations, which means that the zero mode
of this field introduces a massless scalar field to the theory, but such fields are
not observed in nature. This problem can be solved by compactifying the ED on
an orbifold S*/Z, instead of a circle, which means that in addition to the circular
symmetry we also introduce a mirror symmetry between points on opposite sides
of the circle, through the orbifold transformation y — —y. Because of this the
ED is now compactified on a half circle, 0 < y < 7R.

Since the Lagrangian of UED must now also be invariant under orbifold trans-
formations, all fields in the theory must transform even or odd, ¢(z*,y) —



Section 3.4 Universal extra dimensions 19

+¢(z#, —y). Our previous expansion in Fourier modes still holds, but it now
makes sense to split it into sine and cosine functions to make it explicitly odd or
even. Hence, we can write

1 = n
Gorenl,y) = == (") + —= D" 3ft) cos (7)) (3.16)

1
V2rR
Poad (7", y) = ——= nzzzl qzﬁ(()’fi)d sin (n_}gy) . (3.17)

Since some fields now don’t have zero modes, we can avoid the problem of massless
scalars by assigning appropriate orbifold transformation properties to the fields.
Our procedure is then to consider the action of the 5D theory,

2rR
S = /d4x/ dy L(z",y), (3.18)
0

and perform the y-integral to eliminate the dependence on the ED, so that we
end up with the action of the effective 4D theory

S = /d%c(x“). (3.19)

3.4.1 Gauge fields

As mentioned previously, the fifth component of vector fields must be odd under
orbifold transformations. However, this can instead be achieved by demanding
that the first four components transform even (which they must do to reproduce
the SM at zero level) and use the requirement of gauge invariance. To see this,
consider the U(1) gauge transformation A (a#,y) — Ap(a*,y) + Onb(z",y).
We can then perform an orbifold projection Pz,, and demand that it doesn’t
change after the gauge transformation. Using that A, transforms even, we get

PZQAM - PZ2 (A/m A5) = (Aw PZ2A5)
— PZQ (Au + 8M97 A5 + aye) = (A,u + PZ2 [8u0]7 PZzA5 + PZz [aye])
(3.20)
This must mean that 0,0 and therefore also 6 transforms even, and thus 0,0
transforms odd, since y — —y. To be consistent with gauge invariance, this must
then mean that As also transforms odd.
We can now write down the Lagrangian for the UED gauge field strength. If
we limit ourself to SU(2) x U(1), the Lagrangian is

4 1 1
'Cgauge = _ZFMNFMN - ZF][\ZNF(LMN, (321)
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where
is the U(1) field strength and
Fin = O A% — On A% + ge™ AL AS (3.23)

is the SU(2) field strength. Apart from being in 5D, this looks identical to the
gauge field Lagrangian of the SM. To calculate the 4D Lagrangian, we simply
insert the odd and even expansions in equation (3.16) and (3.17) and integrate
out the y-dependence. For the U(1) field strength, we get

1 2TR
‘Cgauge = Z/ dyFMNFMN
0

— }1(8#35@ ~0,B) (9B — 0" BO")

1 — v
-7 (0.8 - 0,B0) (9B — 67 B")
n=1

1 n n
- (n) , '* It pnm)H
+2;(8MB5 + =B )(8“3 + =B )

(3.24)

R

The Lagrangian for the SU(2) fields will look the same, with the addition of
interaction terms. The first term in equation (3.24) is the kinetic term of the
familiar U(1) gauge field in the SM, while the second term is the tower of KK-
states with masses n/R. There also appears to be a KK-tower of massless scalar

ﬁelds B5" , but these fields can be eliminated by choosing a speciﬁc gauge. If the
B ) fields transform as B(n) — B ) 4+ Oy ( B ) the B ) fields disappear

and we are left with the massless B£ and massive B ) fields.

3.4.2 Fermions

In order to reproduce the SM at the lowest KK level, we need to get 4D chiral
fermions for n = 0, meaning that the fermions are represented by left- and
right-handed Weyl spinors. This becomes a problem in an odd number of extra
dimensions, since the matrix 7° used to make the projection operator Pry =
1/2(1++5) is part of the Clifford algebra in five dimensions, along with the four
familiar gamma matrices that make up the Dirac algebra in 4D. This means that
spinors in 5D are four-component Dirac spinors, and the representation is no
longer reducible into two inequivalent Weyl representations.

Fortunately, our choice of orbifold projection once again comes to the rescue.
By choosing appropriate transformation properties under orbifold projections,
we can make sure that the fermions do not mix left and right chiral states at the
lowest KK level. This gives us doublets and singlets
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[e.9]

Ya = \/;_w(o) \/i_R Z (’(/}dL cos —|— ¢dR sin —) (3.25)
1 1 ny
s = mwg + —— \/_ Z < o COS E + 9™ sin E) : (3.26)

Note that even though the SM result is achieved at n = 0, all the excited KK
levels still mix left and right chirality. We also get two fermions at each KK level,

M = ) 4 ), (3.27)
W = g . (3.28)

3.4.3 Higgs fields

For completeness, we also list the scalar mass eigenstates of the 4D theory which
arises from linear combinations of fields from the U(1) and SU(2) field strength
and the complex Higgs SU(2) doublet

6= (H ). (3.29)
namely
n M® n mz n
a(() )= (n) XS( ) (n) ZEE )7 (330)
My My
n mgz n M(n) n
G(() ) = (n) X3( - (n) ZEE )7 (331>
My My
. Mm n
o) = =™ W ) (3.32)
(n) (n)
My, My
(n) (n) "5
My My
where M(™ = n/R and
n ]- n n
= E(Xl( "Fi™), (3.34)
Wit = s w Ay, (3.35)

Z" = cos QwAg(n) — sin Qng(n). (3.36)
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Thus at the lowest level, we recover the familiar scenario with one Higgs
field H® and three Goldstone bosons, while for each excited KK level we have
four physical fields H™), a(()") and aﬁ? ) as well as four Goldstone bosons that

generate the masses of the vector modes AELn), Zfln) and Wi("). For a complete
consideration of the field content of UED as well as the interaction terms, see
[30].

3.4.4 Kaluza-Klein dark matter

With all the additional particles in the UED theory, we should investigate whether
some of them are viable DM candidates. If we are looking for a WIMP, the only
candidate would be a particle which is stable. When the ED is compactified on
an orbifold S!/Z,, there are some points which are invariant under the orbifold
transformation y — —y, namely the points y = 0 and y = mR. These are called
the fixpoints of the orbifold. These fixpoints break translational invariance along
the ED, which means that KK number is no longer a conserved quantity. But
there is a remnant of the original symmetry left, namely translations by 7R.
This leads to the conserved quantity (—1)" called KK parity, where n is the sum
of the KK numbers of all the particles involved in any interaction. Because KK
parity is conserved, the lightest KK particle must be stable, and all heavier KK
particles will decay down to this particle or SM particles.

The fact that no KK particles have been detected yet must mean that their
masses are large compared to electroweak masses, or equivalently that the com-
pactification scale R is small. Data from the 8 TeV run of the Large Hadron
Collider have constrained the size of the ED to be R~ 2> 700 TeV [37]. This is a
mass region which the new 13 TeV run of the LHC should be able to probe.

Because the masses of KK particles are much larger than the electroweak
masses, their mass spectrum will be nearly degenerate. This makes the radiative
mass corrections of UED crucial to determine the mass hierarchy of the theory. In
the case of minimal UED (mUED), however, one assumes that these corrections
don’t contribute at the boundaries of the orbifold, which means that only two
new parameters are introduced in the theory, namely R and A. In this case the
lightest KK particle (LKP) is the first KK excitation of the photon, which can be
approximated by the first KK level of the U(1) gauge boson, B,(}) [38]. The fact
that this LKP is stable, and that it is electrically neutral and does not interact
strongly makes it an excellent DM candidate. Note that the LKP is here a gauge
boson, and not a Majorana fermion which is usually the case in theories with
supersymmetric DM.

In order to get the correct relic density of DM, one can solve the Boltzmann
equation to determine what the LKP mass should be in order to agree with the
observations. In [39], it is found that the present relic density is consistent with
an LKP mass of around mpga) ~ 1.3 TeV. This region has long been impossible
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to probe by collider experiments, but it should be within reach of the LHC now
running at 13 TeV [40].






Chapter 4

Gamma ray signal from dark
matter

4.1 Photon-producing annihilation channels

In this section, we briefly describe the various annihilation channels of DM that
produce photons. For a more complete description of gamma rays from DM, see

[20].

4.1.1 Secondary photons

Since DM does not couple directly to photons, much of the gamma rays from
DM come from so-called secondary photons, which are the decay product of other
particles with a stronger coupling to DM. The DM itself decays to quarks, leptons,
Higgs or gauge bosons, which in turn decay or in the case of quarks, hadronize.
Most of these photons come from the process 7 — 7. Such signals result in
a continuous spectrum, with a cutoff at the DM mass. Because it would simply
show up as a broad excess over the background signal, it is considered a challenge
to use secondary photons to detect DM.

4.1.2 Monochromatic lines

The direct annihilation of DM into photons can occur through the process yy —
vX, where X = ~,Z, H. Because the photons don’t couple directly to DM
however, these processes can only happen through loop processes of order O(a?,),
which can make them difficult to spot over the much larger background. On the
other hand, the advantage with such a signal is that it is monochromatic, meaning
that the photons are produced with the exact energy E., = m, (1 — m%/ 4mi).

25
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4.1.3 Internal bremsstrahlung

When the annihilation product particles of DM are charged, there is a possibility
that one of them radiates a photon, since they couple at O(cey). This type
of radiation usually dominates at high energies. There are two types of this
radiation, namely final state radiation and virtual internal bremsstrahlung, where
the latter refers to photons coming from intermediate virtual particles.

4.1.4 Cascade decays

Another option is that the DM particles annihilate into two particles ¢, each of
which in turn decays into photons, either directly through ¢ — ~v or through
final state radiation. If they decay directly they produce a box-shaped spectrum
with a very small width, which is therefore usually indistinguishable from a line
signal.

4.2 Flat spacetime

Consider a region of space with N, DM particles. Since particle 1 colliding with
particle 2 is the same as particle 2 colliding with particle 1, the total number
of available interactions is (N7 — N,)/2, which approaches N7/2 if N, is large.
We assume here that the DM particle is its own antiparticle. If this is not the
case, like for a Dirac fermion DM particle, only half the particles are available for
annihilation, and hence the number of available interactions must be multiplied
by 1/2. Using the definition of the cross section o, the rate of annihilations is
then

2

W= (M%dv, (4.1)

where (ov) is the velocity-weighed cross section, dV' is the infinitesimal volume
of the region of space and n, = N, /dV is the number density of the particles.

When two DM particles annihilate they can produce many different particles,
but we are here only interested in the processes that produce photons. If we
call the different annihilation channels f with branching ratio By and number of
photons per energy d]\q /dE., the total number of photons produced per energy
becomes

dN, 1 I AN/
— = — B 7 d 4.2
iE, 2<<fv)mi zf: IiE, v, (4.2)

where we have used n, = p,/m,, where p, is the mass density and m,, is the
mass of the dark matter particles.
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Next we choose our coordinate system to be spherical coordinates with the
observer at the origin. The volume element dV is in a direction ¢, at a distance [
from the origin. It spans a solid angle df2, meaning our volume element becomes
dV = 12dldS). The geometry of the situation is shown in figure 4.1. Using Gauss’
theorem, the flux should be uniformly distributed in a sphere around the volume
element, so at the observer the measured photon flux is

d

d®., dN,/dE, 1 N/
dE,

dlds2. (4.3)

2

Px
= = — (o) XN B
dE, 472 87T<Uv>mi; /

Figure 4.1: Sketch of the geometric situation. The observer at O is observing
the galaxy at an angle i) away from the galactic center GC. He recieves gamma
rays from photons annihilating in the volume element dV, at a distance [ away
from the observer and a distance r from the galactic center. In order to obtain
the total gamma ray flux one must integrate the DM density p(r) along the
line of sight [, in principle from zero to infinity. The geometry is symmetric
with respect to rotations around the line Ry connecting the observer to the
galactic center. Since the density is a function of r, we need to relate this
variable to [ and v in order to perform the integral.

Thus for a continuous DM distribution, we get the total flux by integrating
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along the line of sight. Finally, our expression for the measured differential
gamma ray flux from dark matter annihilations in a direction 1 becomes

dd 1 9 (ov) dN{
deﬂB’ﬁv (B, ¥) = o [O_S. di () py (r) [ m2 Zde_Ey

In this equation, the terms in the parenthesis contain the particle physics
information. It is usually assumed that the DM particles in our galaxy annihilate
with vanishing velocity, which means that the particle physics part can be pulled
outside the integral. The remaining part is then the astrophysical factor,

. (4.4)

J() = / A (x), (4.5)

containing the spatial information about the signal.

It is however often more useful to consider the integrated flux over some solid
angle A(), corresponding to the region of observation. We then average our J (1)
over the region A2,

J(AQ) = ﬁ/m dsQ. (4.6)

If our region of observation is a cone centered on the galactic center, then our
solid angle becomes

wmax
AQ = 27T/ dip sint. (4.7)
0

While this assumption that the particles annihilate at rest is usually warrented
when considering DM in our galaxy, there are situations where this may no longer
be the case, such as for DM annihilating close to a black hole. Considering the
full velocity dependence could then enhance the signal, especially in the case of
KK dark matter [6].

As an example, we can calculate the J factor for a NFW profile, using
Mathematica to compute the integral numerically. We insert the expression for
r as a function of [ and ¢, using the law of cosines:

r = \/l2 + R% — 2IRy cosp, (4.8)

where Ry is the distance from the sun to the galactic center. In figure 4.2, we
show the function J(1) calculated for the different profiles presented in section
2.3. Here we see that the result is greatly dependent on the shape of the DM
halo, and whether or not it is enhanced by density spikes. The result for the
straight NFW profile with 4/ = 1 also seems to agree with the result from [25].
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Figure 4.2: The integral J(v)) which contains the square of the DM density
integrated along the line of sight. We here show J(1)) for three different density
profiles, where the lowest curve is just a NF'W profile, while the other two are
enhanced by density spikes by susbstituting v — + in the profile p=7. The
curves stabilize when our viewing angle reaches the density plateau, as the
DM density no longer increases closer to the black hole.

4.3 Curved spacetime

The equation for the recieved gamma ray flux from dark matter annihilations
in our galaxy, equation 4.4, is only valid when we can neglect the curvature of
spacetime, which is fine for most applications. But as we know, at the center
of our Milky Way galaxy there is a supermassive black hole, with a mass of 4
million solar masses [41]. For the photons coming from DM annihilations from
the innermost regions of the galaxy, the black hole will alter their trajectory and
energy, because of the spacetime curvature. It is intirely possible that this effect
is strong enough to significantly influence the gamma ray flux measured here on
earth, which is why it is of interest to investigate these effects.

In this section, we take into account the path the photons take when travelling
through curved space. In the original derivation of the equation in Minkowski
spacetime, we assumed that the photons produced from annihilations in the
galactic DM halo travelled in a straight line from the point where they were
created to the observer, and therefore integrated along that line. In order to take
into account curvature however, we should instead integrate along the geodesic
curves of the photons, which are not necessarily straight lines.

To model the black hole at the galactic center, we will assume a Schwarzschild
spacetime, which is discussed in Appendix B. For a more complete consideration
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of this metric and other topics in general relativity, see for example Carroll’s
textbook Spacetime and geometry: An introduction to general relativity [42]. The
geodesics of photons in the Schwarzschild spacetime are described completely by
the variables r and ¢, where r is the distance from the center and ¢ is the angle
in the z-y plane. the variables are parametrized by A, and the resulting geodesic

equations are
dr R\ L?
a (1o 2 4.9
A \/ ( r) r2’ (4.9)

d*¢  2d¢ dr
W—l—;ﬁa—o, (4.10)

where £ = (1 — Ry/r)dt/d\ and L = r?d¢/d\ are constants of motion. Since
the Schwarzschild geodesics are time-symmetric, we can solve the equations as
geodesics starting at the observer at r(0) = Ry and ¢(0) = 0, with ¢(O) = oo,
where the dot means differentiation with respect to A. This last initial condition
is a function of the angle v with which we observe the galaxy.

We can find expressions for the constants £ and L by evaluating them at the
observer at r = Ry, where Ry < Ry. To lowest order, we then get

dt
EFE=—=F 4.11
d\ v ( )
which by definition is the photon energy. We can relate L to the observation
angle ¢ by considering the three-vector

X

where €, and é, are unit vectors in the r and ¢ direction, respectively. at the
location of the observer, the components of equation 4.11 are related to ¥ by the
trigonometric relation

=17é + 10y, (4.12)

Ry (0) = \/7'"(0)2 + R2 $(0)2 sin ). (4.13)
By inserting equation 4.9 evaluated at A = 0 and only keeping terms to lowest
order in Ry/Ry, we get

L = RyE,siny, ¢(0) = % sin 1. (4.14)
0

By inserting these expressions for E and L in equation 4.9, we get our equation
for r in terms of E. and :

d R\ (Ro\® .
d—; ~E, \/1 - (1 - 7) (70> sin?1). (4.15)
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A solution to equations 4.15 and 4.10 can be seen in figure 4.3, where we
have plotted the photon geodesics for four slightly different values of 1, ranging
from 2 x 1072 to 9 x 107Y degrees. When viewed as photons falling toward
the black hole, we see that the three geodesics passing closest eventually fall in
through the event horizon, while the outermost geodesic carries enough energy
to escape after orbiting the black hole once. The geodesic curves are the same
for photons travelling in the opposite direction however, in which case the three
closest geodesics correspond to photons being produced close to the black hole,
with enough energy to escape and reach the observer at the point r = Ry along the
x axis. It is worth noting that the photons being produced at the event horizon
would have an infinite redshift, and they would therefore not be detectable in
practice. The last geodesic describes photons coming from infinitely far away, and
passing by the black hole in such a way that their trajectories get redirected just
right to hit the observer. However, we should remember that the DM density
far away from the black hole drops quickly, therefore the majority of photons
contributing to the observed flux will come from annihilations along the geodesics
close to the black hole.

y/Rs

x/Rs

Figure 4.3: A selection of geodesics close to the event horizon of a black
hole. Since the Schwarzschild equations are time symmetric, we can think of
these both as photons falling into the black hole or as photons being created
close to the event horizon. In the latter case, which is what corresponds
to our situation, all the geodesics coincide at an observer at the point z =
Ry, y = 0. There are two kinds of geodesics seen here, the ones that impact
the Schwarzschild radius of the black hole and the ones that slingshot around it
and continues to infinity. The geodesics shown here correspond to observation
angles ranging from 2 x 107 to 9 x 1077 degrees.
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Integrating along geodesics instead of the straight line of sight, our equation
4.4 changes to

dd,, 1 5 | (ov) dNJ
E = — dl(y, A B
daar, V) = 5 / (v, >Px<f)[mg< 2. BriE

, (4.16)

where dl(1, A) is the line element along the geodesic curve corresponding to the
observation angle 1. This line element can be written in terms of r and ¢ through
the relation

di(¥, \) = /r2d¢? + dr?, (4.17)

from which we can extract a factor d\ to get

e = (2) 4 () 119

Substituting d¢/d\ with L and inserting equation 4.9 for dr/d\, we get the line
element

2
di(y,\) = EW\/l + Rsfo sin? ). (4.19)
T

We can now calculate the J factor as we did in section 4.2, but this time the
integral is

J() = / A1, NP (r). (4.20)

4.4 Gravitational redshift

The next step in generalizing equation 4.4 is to consider the frequency shift of the
measured photons which occurs because they come from further down a strong
gravitational well. In order to do this, we need to realize that the energy £, of
the photons in equation 4.4 are no longer the same when they are emitted as
when they are observed, which means that we need to alter our equation to

o, 11

_ 2 (ov) dN“{
FED =g [ [O_S.dzw,wx(r) [m—iZde—,% L (21)

where £/ is the energy of the emitted photon. This is then the generalized form of
equation 4.4, taking into account both the gravitational redshift and the curved
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paths of the photons, where we have now integrated over A{Q) to consider the
total flux from photons from within an angle v of the galactic center.

In order to solve this equation, we thus need to relate £, to E/. This can
be found by using the formula for the gravitational redshift in Schwarzschild
coordinates, which is deduced in appendix B. This gives the relation

E’V
|- B

r

E = (4.22)

The simplest case to consider is monochromatic lines from the process yxy —
77, meaning that each photon produced has an energy £/ = \V/s/2, where s is the
center of mass-energy squared. If we also assume that the DM particles annihilate
at rest, the annihilation cross section (ov) becomes constant and can be moved
outside the integral, while the energy of each photon becomes simply the mass
of the DM particles, £/ = m,. The number of photons produced becomes

> B ANy _ 20(E!, — m,) (4.23)
de/ = y my). .
Y

Since we want to integrate over A, we use the following identity for the delta
function:

6(A — Ao)

o(f(N) Ol (4.24)
where f(A) = E.(r()\)) — my, Ao is the zero point for f(A) and f'(Ao) is the
derivative of f with respect to A at the point A = A\g. The only zero point of f
is when FE! (r(\o)) = m,, which gives us r at the zero point

R,

r(A) = ————. (4.25)
1—E2/m2
We can then perform the integral over A\ using the delta function.
Using all of this and changing to the dimensionless variable x = E. /m,, the

equation 4.21 becomes

d(I)7 RS <0"U> 2( Rs

dz :gmip 1 — 22

2 1 Prmax
) (1 —a:$2)2 1 —cost /0 9, z)siny'dy’, (4.26)

where

1+ R2/R2 (1 — x2)3 sin® ¢/
x) = 0/ s 4.27
g(wwr) \/1—R%/R§I2(1—5L’2)28in2@/}” ( )

and
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Ymax = Min {w, sin”! (%)] : (4.28)

This choice of integration variable comes from the fact that for a given value
of x, there is a maximum value 9., from which photons are recieved. This is

the angle where the expression g(¢’,z) is no longer well defined, because the
expression in the denominator becomes negative.



Chapter 5

Results and discussion

5.1 J(¢) in Schwarzschild coordinates

The J-factor in Schwarzschild coordinates as described in section 4.3 is calculated
numerically using Mathematica, and the result is shown in figure 5.1. For all cal-
culations we have used a black hole mass of 4.31 x 10° solar masses corresponding
to a Schwarzschild radius of Ry = 4.1 x 1077 pc, and Ry = 8.33 kpc [43]. The
DM profile is here chosen to have v/ = 3/2.

T T T T T T T T T T T T T T T T

1 36 |
0 —— Minkowski

103 - Schwarzschild

1032 L

10% &

J(y) [GeV?/cmd)

1028 L

1026 L

1070 1078 1077 1076 1075 10™*  0.001 0.01
y [degrees]

Figure 5.1: J(¢) calculated in Schwarzschild coordinates compared to the
same expression in Minkowski space. The vertical line inserted indicates the
angle at which a straight line from the observer comes within the Schwarzschild
radius of the black hole. For both curves the DM profile with 7' = 3/2 is used.
The Schwarzschild radius used is Ry = 4.1 x 10~7 pc, and the distance to the
observer is Ry = 8.33 kpc.
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The difference between the Minkowski and Schwarzschild solution seen for
large angles i appears to be a numerical error, as we would expect the two
solutions to be equal when we are viewing the galaxy far away from the black
hole at the center. When taking this into account, the two graphs are more or
less identical until we get to an angle equivalent to a radius from the center just
a little larger than the Schwarzschild radius. Here the J-factor for Schwarzschild
drops, which is because at this angle photons can no longer reach us by travelling
around the black hole, or in other words, the geodesics we integrate along now
impacts the black hole instead of curving around it. This means that the amount
of photons able to reach us are significantly reduced.

As the observation angle gets smaller, J(1)) for both graphs seem to become
constant. This is to be expected, since as the angle goes to zero the geodesics
are practically straight lines toward the center of the black hole. Note that the
vertical line only indicates the angle at which a straight line drawn from the
observer passes closest to the black hole at a radius equal to the Schwarzschild
radius.

While we do see a difference in the Minkowski and Schwarzschild solution,
this difference is only apparent for extremely small angles, and even then the
difference is probably too small to be observable. More importantly, the current
angular resolution of detectors is nowhere near the necessary resolution to resolve
these differences. The HESS collaboration has for example recently surveyed
gamma rays from the galactic center [44], but only at observation angles down
to 0.3°. Part of the reason why smalles angles are challenging is due to the
large uncertainties in the DM density profile at these small distances, as we have
discussed previously in this thesis. There is however the possibility that with a
better understanding of the behaviour of DM at the galactic center, as well as
with better detectors, we will eventually be able to observe the influence of the
black hole on the photons, as we have described.

5.2 The spectral signal

In figure 5.2, we see the expected flux of gamma rays for an observation angle
from the galactic center of ¢ = 5.7 x 107?°. We have set the DM annihilation
cross section to be (ov) = 107*cm?/s, and the DM mass to m, = 1 TeV. Since
we assume the particles annihilate at rest and therefore the photons are produced
with E/ = m,, we see that most of the particles are redshifted by a factor of
about Az = 0.1.

Figure 5.3 for a slightly larger value of ¢ = 5.7 x 1078° is more interesting,
as it shows a slight bump at x = 0.05, but unfortunately we cannot rule out
that this is due to a numerical error. It is however an intriguing possibility that
the slight excess of strongly redshifted photons are due to the unstable orbit
at r = 3Rs/2, where the photons can orbit the black hole multiple times before
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Figure 5.2: The gamma ray flux from the galactic center within a cone of
angular radius ¢ = 5.7 x 1072 °. The DM particles are assumed to annihilate
at rest, and the annihilation cross section and DM mass are set to 10~2°cm? /s

and 1 TeV, respectively.
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Figure 5.3: The gamma ray flux from the galactic center within a cone of
angular radius ¢ = 5.7 x 1078°. The DM particles are assumed to annihilate
at rest, and the annihilation cross section and DM mass are set to 10~2°cm? /s
and 1 TeV, respectively. The slight bump at x = 0.05 is possibly a numerical
error, but it could also be due to extremely redshifted photons originating
from close to the black hole.
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escaping and reaching the observer. If there is a buildup of photons at this radius,
we should expect to see an excess in the flux at the corresponding redshift. Note
also that there seems to be a slight relative increase of photons with x close to
one in this figure compared to figure 5.2, which we would expect as photons from
a slightly larger angle don’t come as close to the black hole, and are therefore
not as redshifted.

Our suspicion that the small bump in figure 5.3 is due to numerical errors is
strengthened when considering figure 5.4, where we show the photon flux for a
larger angle of ¥ = 5.7°. At such a large angle we don’t expect to see a large
flux of photons at all, and as we see the dominant contribution still comes from
the photons close to the black hole, redshifted by Ax = 0.1. We are however
unable to make physical sense of the steep increase close to x = 0, and if there
was a contribution from the stable orbit at r = 3R;/2 we would expect a bump
for the same value of x as in figure 5.3. We therefore think this comes from a
numerical error. If the result for the slight redshift of the majority of the photons
holds however, it could potentially be detectable with present day detectors. The
challenge is then to see this signal over the background from the galactic center,
which is still not completely understood.

1.2x10712
[ =5.7°

1.x10-12 | v

8.X1O_13 L

6.x10°13 [

d®/dx [cm=2s71]

4.x10713 |

2.x10"13 |

0 1 1 1 1 1 1 1 1 1 1
0.0 0.2 0.4

Figure 5.4: The gamma ray flux from the galactic center within a cone of
angular radius 1 = 5.7 x 1078°. The DM particles are assumed to annihilate
at rest, and the annihilation cross section and DM mass are set to 10~2°cm? /s
and 1 TeV, respectively. The steep increase at x close to zero strengthens our
suspicion that this feature is due to numerical error.

Finally, it is important to realize that our assumption of annihilation at the
resonance E; = m, is probably an oversimplification. While the DM particles
in the galaxy at large can usually be assumed to annihilate at rest, the situation
is probably very different in the vicinity of a black hole. In addition to adding
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a conventional Doppler shift to the energy E! due to the particles falling toward
the black hole, it also means that the cross section (ov) is no longer independent
of the velocity of the DM particles, and can therefore not be taken outside the
integral over dl(1, ). This completly changes the expression for the number of
photons produced from annihilations, as the velocity distribution of the particles
would also have to be taken into account. It would be interesting to see such a
calculation done, as it probably would yield more realistic results. Unfortunately,
we were not able to do so in this thesis due to time constraints.






Chapter 6

Conclusions

In this thesis, we have investigated the effects of general relativity on gamma
rays from annihilating DM. The motivation was that for certain DM models such
as KK DM, the inclusion of the velocity dependent annihilation cross section
could produce striking features making it easier to identify a signal. In [6], some
investigation of the gravitational and Doppler reshift for KK DM had been done,
but it seemed no consideration of other effects from general relativity on such
a signal existed. We therefore wanted to find out how this signal would change
when also things like the photon geodesics were taken into account.

In Section 4.2, we started by deriving the standard expression for gamma ray
flux in Minkowski space, and applying it on a possible DM density profile in the
region close to a black hole.

Then we proceeded to alter this expression to include relativistic effects, by
taking into account both the curved paths of the photons instead of simply in-
tegrating along a straight line, and that the photons would no longer have the
same energy when observed as when they were created, due to the gravitational
redshift. We used expressions derived in the Schwarzschild spacetime to model
the black hole at the galactic center.

We then proceeded to apply these expressions to an example, first by calculat-
ing the factor J (1)) in Schwarzschild coordinates and comparing to the equivalent
expression in Minkowski space. While there was a small difference for observa-
tional angles corresponding to photons coming from annihilations close to the
event horizon of the black hole, these differences are very small when one consid-
ers the large uncertainties in the DM density profile for small radii. In addition,
the observational angles at which the relativistic effects became apparent were
much smaller than the angular resolution of current gamma ray detectors.

Next, we considered the case of DM particles annihilating at rest in the
Schwarzschild spacetime, meaning that all photons were created at resonance
where the energy of the photons are exactly equal to the DM mass. We found
that these photons were redshifted by Ax = 0.1 for an observational angle of
Y = 5.7 x 107%°. For a larger angle of ¢ = 5.7 x 107%°, there seemed to be
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an increase in photon flux for photons redshifted down to z = 0.05, which could
be due to the unstable orbit located at 3R,/2 where the photons could build up
before travelling to the observer. We were however unable to determine whether
or not this was the case, and it remains a possibility that this increase is due to
numerical error. For a larger angle of ¢y = 5.7° the dominant contribution still
comes from photons close to the black hole that are redshifted by Az = 0.1, but
a steep increase close to x = 0 strengthens our suspicion that this feature and
the slight bump for ¢ = 5.7 x 1078° are due to numerical errors. if the redshift
of Ax = 0.1 for the other photons is correct it might be detectable however, but
such a signal could be difficult to filter out due to the many poorly understood
background processes at the galactic center.

It was originally our intention to also consider the case where the DM particles
have non-vanishing velocity, as is likely when considering the DM profile close to
the black hole. We were however unable to do this due to lack of time. In such
a scenario the DM particles would get an additional Doppler shift due to their
motion toward the black hole, and it would also have altered the signal because
the velocity dependent cross section would have to be included in the integral.

While the conclusion is that our results would probably be undetectable with
current data, it is hopefully just a matter of time before the density profile of the
inner regions of the galaxy and the background processes are known well enough
to actually see such effects originating from general relativity.



Appendix A

The geodesic equation

The geodesic equation is the equation for the shortest path between two points
in a (potentially) curved spacetime. If the curve is paremetrized by a parameter
A, then the length of the curve is given by the integral

S:/@m, (A1)

where ds is the infinitesimal line element of the curve and the integral is taken
over the entire curve. Using that ds® = g,,dx"dz”, we can write the integral as

SZ/\/guydxﬂdx”Z/\/g;wf“x"’d)\z/[/d)\, (A.2)

where 2 = %. In the rest of the calculation, we will assume that the metric

g, is only a function of the coordinates z*, not its derivatives.
Our task is then to minimize the length of this curve, meaning

S = / 5\/ G i dN = 0. (A.3)

However, in order to simplify calculations we note that minimizing the integral
over L is in this case the same as minimizing the integral over L?, so we will
instead consider the expression

/(5(gw,j:’“‘ab”) d\ = 0. (A.4)
The problem then reduces to the Euler-Lagrange equations,

d (OW ow

— (== ) - 222 — A.

dA (89&’5) oxh 0 (A.5)

where W = L? = g, xra".

We then have
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ow o
W == gumﬁx#xl/, (AG)

where , 5 denotes partial differentiation with respect to S.

oW ) ) )
308 = guy(égx” + 2rog) = 2g5,0". (A.7)

d [OW dz” 0 : - . y
d\ (W) =2 (ﬁ@gmz“ + gﬁuxﬂ) =2 (gﬁu,uW% + gguzv“) ’ (A.8)

where we have used the chain rule in the first term.
Inserting these expressions into the Euler-Lagrange equations and multiplying
by g**/2, we get
[3Yo ]. aﬁ . . . .
T+ §g <2gﬁ,u,ux'uxy - guu,ﬂxuajy> = 0. (Ag)
The first term in the paranthesis is symmetric in exchanging i and v, and
can be rewritten
208, THTY = g, T TV + gau PV (A.10)

Using this, our final expression becomes

@+ T et =0, (A.11)
where I'}j, are the Christoffel symbols,
a 1 af}
F;w = ig (gﬁu,u + 9Bvu — g,uuﬂ) : (A12)

This is the usual expression for the geodesic equation.
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The Schwarzschild solution

The Schwarzschild line element is

2 R 2 dr? 2/ 192 .9 2
ds” = — 1—7 dt +1 7o+ 77(d0” + sin® 0d¢”), (B.1)

where Ry = 2G M is the Schwarzschild radius. The non-zero Christoffel symbols
are

GM GM GM
r,=——(-R), T,=—— T, =—""
tt T‘3 (T ) T T(T’—RS) tr T(T‘—RS)
1 ) 1
Ty = r’ [gy = —(r — R,), Ff¢ - (B.2)
6
IV, = —(r— R)sin’d, TY, = —sinfcosf, Tf, = —
36 (r )sin 6, Ty, sinfcosd, Iy, =—-—

Using that ds* = g, dz"dz”, we can write the Lagrangian

1 dztdz” 1 R, ., 1 72 1, :
= —gy——— = —— 1— 214242 Zr2(62 in2 0 &2 B.3

29 IN TdA 2( r) +21_%+27’( +sin“0¢%), (B.3)
where the dot indicates differentiation with respect to A. We notice that our
Lagrangian does not depend explicitly on ¢ or ¢, and hence these are cyclic

coordinates. The corresponding conserved quantities are

oL Ry -
=—=|1-—|)t=-F B4
b= i ( r ) ’ (B4)
Py = g—i =r2sin?0 ¢ = L. (B.5)

Using that the four-velocity squared for photons is zero, we get the equation
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dx* dz¥ 1 RN ., 1 72 1, - :
it ([P ) 2 —r2(6% +sin?0 $*) = 0. B.
g 2( ) Frpom @ i) =0 (B9

We can now substitute E and L for the coordinates ¢ and qb

B? 72 ) L2
- + +r0 e =
1—% 1—% r2sin® 6

0. (B.7)

We can simplify this equation further by investigating the geodesic equation
for 6. Setting the index p = 2 and inserting Christoffel symbols, we get

4?0 2d6 dr o\’
I T _ginfeosh | —= ) =0. B.8
a2 T rdnay e (dA) (B-8)
This can be rewritten as
4 <r29> —r?sinfcosf¢? =0 (B.9)
d\ ’
and after substituting L for ¢ it becomes
d [ 5 L*cosd
— p— . B-l
d\ <r 9) r2sin 6 (B-10)

If we multiply both sides with 720, we can do the integral over A to get

<r29>2 — (si§9>2’ (B.11)

where k is a constant of integration.
We can always choose our coordinates such that the light moves in the equa-
torial plane at t = 0, namely with

0t=0)==, 0(t=0)=0, (B.12)

which means that we can determine the constant k to be L? and the equation

becomes
A2 1
2 72 _
(%) =1 (1 Sm29>. (B.13)

For this equation to hold, however, the expression

(1 _ ﬁ) (B.14)
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must always be positive, and the only way to make this happen is if § = 7 for
all t. Thus, our equation B.7 does not depend on 6, and it now becomes

r ) r?

LQ
—E2+¢2+(1—&)—:0. (B.15)

This is then our equation for . The equations for ¢ and ¢ can be obtained from
the geodesic equation, and read

¢+ %éﬁ?’“ =0, (B.16)

. R, .

t+ ——=7rt=0. B.17

r(r — Ry) ( )

We can also find the expression for the gravitational redshift in Schwarzschild
coordinates by considering an observer with four-velocity U*. If the observer
is at rest, this implies U* = 0. The four-velocity must satisfy the equation

g, UFU” = —1, and since goo = —(1 — R,/r) we get

U0 = <1 — ﬁ) _1/2. (B.18)

r

Thus, for a photon travelling along a geodesic z#()), the energy is

dz¥
E =—q,U"— B.1
gﬂ U d)\ 9 ( 9)
which becomes
RN\ at R\ V2
E=1-= —=(1-== E B.20
( r ) d\ ( r ) ’ ( )

where E is the constant determined in equation B.4.
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