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If dark matter, after it has become non-relativistic, scatters elastically
with a relativistic heat bath particle, then the resulting pressure leads to
acoustic oscillations that suppress the growth of overdensities in the dark
matter fluid. If such an interaction can keep dark matter in kinetic equilib-
rium until keV temperatures, this effect then suppresses structure forma-
tion on scales roughly equal to dwarf galaxy scales and smaller, possibly
addressing the missing satellite problem. The goal of this thesis is to study
the possibilities for such late kinetic decoupling in particle models for dark
matter.

Using the Boltzmann equation, we discuss the thermal decoupling pro-
cess of dark matter in detail. In addition to discussing specific dark matter
models, we also go into important general considerations and requirements
for late kinetic decoupling, and models with dark radiation.

We summarize the results obtained in Bringmann et al., 2016, but go into
more details on two specific models. First a model consisting of two real
scalar particles, one dark matter particle, and one relativistic dark radiation
particle, interacting through a 4-particle vertex. This model is of particular
interest not only because it is so simple, but also because a large class of ef-
fective field theory models will also essentially map onto this model. When
combining relic density constraints with late kinetic decoupling, we need
very light dark matter m, < MeV. For these masses, the assumption that
dark matter is highly non-relativistic during chemical decoupling breaks
down. However, when the dust settles, we find that this is still a viable
model for late kinetic decoupling.

We also study a model where a fermionic dark matter particle trans-
forms in the fundamental representation of some SU (V) gauge group. The
scattering in the t-channel is so enhanced at low energies in this model,
that kinetic decoupling does not happen until the dark radiation becomes
non-relativistic. As we discuss, depending on what happens to the dark
radiation temperature when it becomes non-relativistic, the resulting sup-
pression of dark matter structures can be radically different. In any case
these models seem to require a low value for the dark radiation tempera-
ture, which is hard to achieve in model building without new input.
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Introduction

In the past 20 years or so, a series of excellent experiments have made cos-
mology into a precision science, converging on the ACDM model of cos-
mology, which has been a huge success. In recent years, however, a few dis-
crepancies between observations and cold dark matter (CDM) simulations
at small (dwarf galaxy) scales have emerged. The main ones are the miss-
ing satellites, the cusp/core and the too big to fail problems. These small-scale
problems motivate us to consider alternatives or extensions to the standard
CDM paradigm.

Detailed simulations have shown that DM with a significant self-interaction
can solve the cusp/core and the too big to fail problems. Acoustic oscilla-
tions in the DM fluid from interaction between DM and some relativistic
heat bath particle, can also help address the missing satellites problem. For
these acoustic oscillations to be relevant for structures the size of dwarf
galaxies, however, we need for the kinetic decoupling (KD) to happen much
later than in typical weakly interacting massive particle (WIMP) models.
This late KD is what we are interested in here.

Kinetic equilibrium for DM is maintained by elastic scattering between
DM and the heat bath particles. KD refers to the process when the elastic
scattering between DM and the heat bath become too rare to keep the tem-
perature of DM equal to the heat bath temperature and the temperature of
DM starts to drop.

Many models that give rise to late KD also naturally gives rise to a sig-
nificant DM self-interaction, which is also interesting, since self-interacting
DM has the potential to also solve both the cusp/core and the too big to fail
problem.

Relation of this Thesis to Bringmann et al., 2016

The main focus of my work for this masters project has been in classifying
all the simplest particle models for DM that can give rise to such late KD.
This work culminated in my contribution to the paper Bringmann et al.,
2016, for which I, among other things, calculated the tree-level scattering
processes relevant for KD. When writing this thesis then, I make an effort
to not just repeat what is in the paper, but to have this thesis stand on its
own as complementary to the results and work in the paper.

What I do in this thesis is that while I give a brief summary of the re-
sults in Bringmann et al., 2016, I do not discuss all the different models I
have worked with in detail. Rather, I focus on two models that are very
interesting, and, for different reasons, are not immediately amenable to the
simple analytic analysis that works well for most of the models. These mod-
els require some special care and are dealt with in detail.

For more on the other models and specific results see Bringmann et al.,
2016.



Outline of Thesis

This thesis is divided into five parts. First we go into the background
physics relevant for this thesis. This includes an introduction to cosmology
and structure formation (Ch. 1) as well as an introduction to thermody-
namics and kinetic theory in an expanding universe (Ch. 2).

The second part is focused on DM. First we discuss the motivation and
evidence for DM, as well as what we actually know about DM properties
(Ch. 3). We introduce DM detection and self-interaction, before going into
a thorough discussion of the decoupling of DM from the thermal heat bath.
Here we allow for the possibility of two separate visible and dark heat
baths. We discuss both chemical decoupling (CD) and KD in detail (Chs.
4 and 5).

The third part is specifically focused on late KD. First we discuss various
ways late KD can be achieved, and related issues (Ch. 6). Then we discuss
some important properties of the dark heat bath and dark radiation (DR),
like the evolution of the relative temperature of the dark and visible sec-
tors, and cosmological constraints on the amount of DR. After a summary
of previous work (Ch. 7), we then go into a detailed discussion of two in-
teresting particle models for DM and DR, and thermal decoupling in these
models (Chs. 8 and 9).

The fourth part consists of a short discussion section (Ch. 10) as well as
the conclusion. In the former we discuss the results of the models analyzed
in Bringmann et al., 2016, as well as the models considered in this thesis, we
discuss the plausibility of the models, and the motivation for going beyond
CDM at all.

Quantum field theory is also central to the masters project, but as it is
not as relevant to the discussion in this thesis, only a very brief introduction
is given in App. A. The appendix also contain a note on some technicalities
regarding the polarization sums for external gauge bosons that we had to
deal with in this project (App. B).



Part I

Background Physics






Chapter 1

Cosmology

1.1 Friedmann-Robertson-Walker Cosmology

Because the universe appears to be, on large scales, homogeneous and isotropic,
we can describe its large scale evolution completely by some simple equa-
tions. In the metric, the assumption of homogeneity and isotropy is imple-
mented by requiring the spatial 3-space to be totally symmetric. This results

in three possible spatial curvatures, closed, open and flat, all described by
the Friedmann-Robertson-Walker metric

2

1 — kr2

ds® = dt* — a*(t) ( + r2d92) : (1.1)

where a(t) is the scale factor, r, § and ¢ are the comoving coordinates in
space and k = a?Rg/6 is the curvature parameter, where Ry is the Ricci
curvature scalar in space. Note that k can take any real value!, and the sign
of k determines if the universe is open or closed. k = 0 corresponds to flat
space.

Since our observations are consistent with a completely flat universe
(k/a? < H?) (Planck Collaboration et al., 2015), we will simply set k = 0 in
the following. The metric for a spatially flat universe is given by

ds* = dt* — a®(t) (da® + dy® + d2?) . (1.2)

We will treat a as dimensionless and let the comoving coordinates carry
dimensions of length, and we will, unless stated otherwise, use the con-
vention where ay = a(tp) = 1, where ty is the present time. In this case,
if two galaxies have a comoving distance z, this comoving distance is given
by the physical distance, 7p(t(), between the galaxies today. If you want the
distance at some other time, ¢, you have to multiply by the scale factor a(t).
Thus in general the physical distance is given by

rp(t) = a(t) x. (1.3)

Let us also note a special feature of these spacetimes. If you look at a
galaxy at a certain (physical) distance rp, then it will be moving away from
(towards) you, depending on how fast the universe is expanding (contract-
ing). This velocity is proportional to the distance, and the proportionality

'In many texts the scale factor is defined such that k can only take the values -1, 0 and
1. In this case the comoving coordinates are dimensionless and a(t) carries dimension of
length. .
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coefficient is called the Hubble rate, H

d .
vp = e _ ar = grp = Hrp, (1.4)
dt a

where we see that H = a/a.

Hy = H(t = to) is the current value of the Hubble rate, often called
the Hubble constant. This is an important cosmological parameter, and
is usually defined in terms of the dimensionless Hubble parameter, h, as

follows

Hy = 100 h <2

S Mpc- (1.5)

1.1.1 Perfect Fluids

The requirements of spatial homogeneity and isotropy impose severe con-
straints on the various quantities, like scalar, vector or tensor fields that are
relevant in cosmology. In particular, isotropy implies that any three-vector
v must vanish (in the comoving frame), and homogeneity implies that any
three-scalar ¢ must be a function only of time.

A perfect fluid is defined as a medium that has, at every point, a locally
inertial frame of reference, moving with the fluid, where the fluid appears
isotropic. The energy momentum tensor of such a fluid in this reference
frame is given in terms of two scalars p and P (Weinberg, 2008, p. 521)

Ty = p(t), T =0, T} = —6:P(t). (1.6)

This can be thought of as the equation defining the energy density, p(t), and
the pressure, P(t), of a perfect fluid. In a frame with arbitrary velocity, the
energy momentum tensor of a perfect fluid is thus given by

™ = (p + p)ut'u” — g"”P. 1.7)

The conservation of energy and momentum (7%,” = 0) then implies the
following continuity equation

dp  La

=3 (p+P). (1.8)

a
This is in general not solvable analytically, but can be solved easily for a
fluid obeying an equation of state of the form

P = wp, (1.9)

where w is a constant (in time). Usually we have —1 < w < 1, but this
depends on the physical assumptions you want to make.? The solution in
these simple cases is given by

p = poa ), (1.10)

where py = p(tp) and we have used the convention ag = a(ty) = 1.
There are three special cases that will be very useful in describing our
own universe.

2For a nice discussion of these issues see (Carroll, 2004, p. 174-177).
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e Non-relativistic matter (simpliy called matter): w = 0 and p,,, = pmo/a’.
This is interpreted as the energy of each particle being constant (£ ~
m) and the number density scaling with the volume.

e Ultra-relativistic matter (called radiation): w = 1/3 and p, = pyo/a’.
Here, in addition to the number density scaling with the volume, the
radiation wavelength increases (A o a) and hence the energy de-
creases as I o< 1/a, leading to the extra power of a in the denomi-
nator.

e Vacuum energy (called the cosmological constant): w = —1 and pp =
pao- This is simply an energy contribution that is proportional to the
volume of space, leading to a constant energy density.

In general the universe, at any given moment in time, will consist of
several energy components, but as long as we can neglect the energy trans-
fer between the different components, we can apply Eq. 1.8 separately to
each of the components, simplifying things considerably. For now we will
assume that we can simply neglect this energy-transfer, but we will discuss
these issues in more detail when we get into early universe thermodynam-
ics in chapter 2.1.

1.1.2 The Friedmann Equations

If we write out the Einstein equations of a perfect fluid in a spacetime de-
scribed by the FRW metric, we obtain the two Friedmann equations

.\ 2 2
a IrG k
<) B (1.11)
a 4G

Here we should note that these equations are not independent of Eq. 1.8,
but that each of the three can be derived from the two others.

Let us now look at the solution of the Friedmann equations in cases
where a single energy component (with a constant w) dominates. In these
cases we can solve the equations explicitly

a(t) = (;) B , (1.13)

where we have set the value of ¢ at witch a = 0 to 0 (this would correspond
to starting the time at the Big Bang). Note that this only holds for w >
—1. For w = —1, which corresponds to a universe with just a cosmological
constant, we have no Big Bang, but we have an exponential expansion with

a constant H
a(t) = M t=to), (1.14)

Introducing the critical density, p. = 3H?/(87G), the density required
to have a completely flat universe, and using the solution to Eq. (1.8), we
can rewrite Eq. 1.11 in the following convenient form

Q;
2 _ 2 ?
H? = [ 2 j7a3(1+w”, (1.15)
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where ¢ denotes each of the different energy components, Q2; = p;(to0)/pc(to)
and we are also treating the curvature as an effective energy component
with pr, = —3k?/(87Ga?). With these conventions we will always have
>h=1

As a special case let us consider the best model we have for our own
universe, the ACDM - model. This is a model with three components,
matter, radiation and a cosmological constant, with 2y ~ 0.7, Q,, ~ 0.3,
Q. ~5-107%and Hy ~ 70 km/(s Mpc).3 Eq. 1.15 can then be written

L ] . (1.16)

2 2 T m
H —-]?b [({1<+-(f3%_£)A
At the present time, the radiation component hardly contributes, while the
matter and cosmological constant have contributions of the same order of

magnitude. At earlier times a ~ 107! — 1073 the universe was matter dom-
inated, and at a < 10~* the universe was radiation dominated.

1.2 Structure Formation

Until now we have looked at the evolution of the background universe. We
have assumed that the universe is completely homogeneous and isotropic.
Although these are very good assumptions in the early universe, and good
assumptions today at large scales, the most interesting stuff are the inho-
mogeneities (like us!).

In this section we will relax the assumption of homogeneity, and discuss
what happens to the small initial perturbations in density and pressure. We
will mostly discuss linear perturbation theory, but will mention some qual-
itative features of non-linear structure formation and cosmological simula-
tions.

1.2.1 Linear Perturbation Theory

The early universe was very homogeneous. This is evident from observa-
tions of the CMB which has relative fluctuations of order 10-5. The good
thing about this is that as long as the (relative) perturbations are small, we
can use linear perturbation theory, making all the complicated non-linear
equations for the dynamics of fluids in an expanding universe linear, and
simple to deal with.

A very nice property of linear equations is that when we go to Fourier
space, all the different modes decouple. This means that we can treat each
mode, corresponding to each length scale, independently.

The equations describing the evolution of perturbations are the Einstein
equations for GR

G =8rGTy,, (1.17)

and the Boltzmann equations for each species of particle

d
= =CIfi. (1.18)

*If you want the current best values for these parameters see Planck Collaboration et al.,
2015.
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For a few simple cases, however, a good assumption is that the particle
species evolves like an ideal fluid. This is valid for a non-relativistic DM
species and for baryons after recombination. It is also a good approximation
for radiation before recombination (Mo, Bosch, and White, 2010, p. 191).

For an ideal fluid we do not have to consider the full Boltzmann equa-
tion, but can use the local conservation of the energy momentum tensor
Ty =0.

Let us now define the perturbed quantities

p(x,t) = po(t)[1 + 0(x,t)], (1.19)
T = T 4 [T, (1.20)
g =gp" + [0g]", (1.21)

where 0 denotes unperturbed (background) quantities, and the perturba-
tions are considered "small" (in the sense that e.g. [07]"/T*" < 1). Since
we are free to choose any coordinates (gauge freedom), it is clear that these
perturbations are not unique, but will be gauge dependent.

Let us deal with the metric first, since this affects everything else. [§g]*”
is a symmetric four by four matrix, meaning that it has 10 independent
functions. We can, however, remove four of these by choice of gauge (coor-
dinates). This leaves six free functions. It is useful to classify these by how
they transform under rotations and translations.

In the following, we will only deal with two scalar perturbations to
the metric. There are also tensor and vector perturbations (or even more
scalars, depending on the choice of gauge). The vector modes decay as the
universe expands, even outside the horizon, and usually do not contribute
to structure formation. Tensor modes (in gauges where they are defined as
the divergenceless and traceless part of the metric perturbations) represent
gravitational waves and only start to decay after they enter the horizon.
They usually do not affect structure formation much, although primordial
gravitational waves, if they are detected, would be a very interesting probe
of inflation physics.

We will work in the conformal Newtonian gauge, which only includes the
two scalar functions, ® and ¥. The metric in this gauge is given by

ds® = a2(n) [(1 +20)dn? — (1 — 28)d;2' 27, (1.22)

where n(t) = f(f dt’/a(t') is called the conformal time and is equal to the co-
moving particle horizon of the universe at any given time.

As we see from the metric, ¥ corresponds to a time dilation, while @
corresponds to an isotropic stretching of space. The reason this gauge has
its name is that in the Newtonian limit, ® corresponds directly to the New-
tonian gravitational potential.

The perturbations in the energy momentum tensor, for a single species,
can be written as

4] —(1 v’
6T, = po <(1+w)vj (_;5%) ) (1.23)

where w = Py/py = ¢2 and v/ = aw/ = ada?/dr. 2 is the square of the
adiabatic sound speed.
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We are now ready to write down the equations we need to solve to study
the evolution of these perturbations. As mentioned we will work in Fourier
space e.g.

Ik(t) = ‘1//(5(x,t) exp (—ik - x),

where k is the co-moving wave vector. We will stay in Fourier space for
the rest of this section, so for brevity we will neglect the subscript k on the
various quantities.

We only need two of the Einstein equations, since we only have the two
scalar functions. We will use the time-time and the longitudinal traceless
space-space parts of the equations giving us (Mo, Bosch, and White, 2010,
p- 185)

/ /

K20 + 3% <<1>/ + “xp) = —4nGa?[sT]0, (1.24)
a a

E*(® — ) =0, (1.25)

where ' denotes d/dn.

We see that for an ideal fluid, we simply have ¥ = ®, making our lives
simpler.

We also get two equations from the conservation of energy and momen-
tum (Mo, Bosch, and White, 2010, p. 186)

&' + (1 +w)|ikv — 39'] =0, (1.26)

/
, G , wd
—(1-3 k|l ———+7 | =0 1.27
v+a( w)v 41 ((1+w)+ ) , (1.27)
where we have assumed that the velocities are irrotational (v* = vk’/k).*

1.2.2 Simplified Model

In order to study how perturbations evolve in the universe we will study a
simplified model with two fluids, both assumed to behave like ideal fluids.
We will have one radiation fluid denoted by v and one non-relativistic DM
fluid denoted by x. The equations for this model is given by

&, + ikvy = 39, (1.28)
a ,

v;( + = —ik®P, (1.29)

4
& + Sikvy = 49/, (1.30)

1
v+ Zikxs7 = —ik®, (1.31)

2 a ,,a 2] x v

K@ +3= (& + =9 ) = —4nGa |56+ £33 (1.32)

“This is a good assumption for two reasons. First, V x v ~ 1/a in the linear regime,
meaning that, since there are no sources of vorticity in the equations, that the curl of the
velocity can be neglected at late times. Also, since only the divergence of the velocity field
contributes to the equation for the overdensity, if any vorticity were there, it would not
affect structure formation (in the linear regime).
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Initial Conditions

In very early times (n — 0) we are in the strongly radiation dominated
phase and p{d, < pjd,. We can then rewrite Eq. 1.32 as

0.
(ﬁ,qf + q>) S (1.33)

a 2
where we have used Eq. 1.11 for a flat radiation dominated universe. We
will show that @ is essentially constant in the deep relativistic era, so the

derivative term is also negligible and we get
dy(n = 0) = =2y, (1.34)
where &) = ®&(n = 0).
We can also combine Egs. 1.28 and 1.32 and get

Oy — 257 = constant. (1.35)

We will chose the set this constant to zero. This choice correspond to
isentropic initial conditions and is a common choice (Dodelson, 2003). This

gives us

oy(n=0) = —g%. (1.36)

The velocities at early times are negligible.

Super-Horizon Evolution

As long as we are on super-horizon scales (kn < 1) we can make the same
argument as in last section meaning that

5y = =4, (1.37)

Eq. 1.32 is then given by

a a 4
— (' + =@ ) = —4nGa®p(o, |1+ — 1.
3a ( + . ) rGa Po‘sx[ + Sy}’ (1.38)

where we have introduced the variable y = a/aeq = p/pj Where aeq is the
scalefactor at matter radiation equality. Writing Eq. 1.32 in terms of this
variable gives us (Dodelson, 2003, p.190)

d*®  21y% + 54y + 32 dP P
>+ — 4+
dy?  2y(y+1)By+4)dy  yly+1)(3y+4)

= 0. (1.39)

An analytic solution to this equation was found by Kodama and Sasaki,
1984, given by

o 20 16y + 1+ 9y% +2y2 — 8y — 16

=1 " (1.40)

We see from Eq. 1.40 that on super-horizon scales, as we go from the radia-
tion dominated to the matter dominated phase ® only changes by a factor
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9/10. Using a similar argument that we used in the previous sections we
can show that on super-horizon scales, in the matter dominated phase

5, = —2@. (1.41)

So the main point from this section is that the perturbations on super-
horizon scales are essentially frozen in (in the conformal Newtonian gauge).
This also makes perfect sense, since there is no causal contact on these
scales.

Sub-Horizon Evoluition

On scales much smaller than the horizon (kn > 1) things are much more
interesting. In this limit Eq. 1.32 reduces to the Poisson equation

K20 = —4rGa® | oy + o, |, (1.42)

If we have p}d, < p}d, this equation can be combined with Egs. 1.30 and
1.31 to give the evolution equation for ¢

*® 44D

I, g 14

dz? + z dz + 0 (143)
where we have defined the variable z = nk/+/3. Since we are in the z > 1
limit we get

® ~ —Acos(z)/2%, (1.44)

where A is just a constant obtained from matching this solution for ¢ onto
the previous solution. Using Eq. 1.42 we then get

0y =~ 2Acos(z). (1.45)

Combining Egs. 1.28 and 1.29 we can get the evolution equation for ¢,
as well )
25 18y _
dz?2 2z dz
The solution of this equation is complicated, but in the limit z > 1 the
growing part of the solution is given by

—30, (1.46)

dy = 3AlIn(z). (1.47)

We see from these results that while 4, is oscillating, d, is growing, al-
beit slowly. This means that sooner or later, even while we are still in the
radiation dominated universe, we will get p{d, > pld,. Writing all the
equations in terms of y (= py/p]) in this limit, we get the Meszaros equa-
tion (Meszaros, 1974)

d?6, 2+3y doy 3

G __ 2 5 —o. 1.48
dy>  2y(y+1)dy  2y(y+1) " (145)

The growing solution of this equation is given by

dy o< 14 %y. (1.49)
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From this result we see that once pid, > p}d, the growth of §, essen-
tially stops until the universe starts to become matter dominated, at which
point it grows as

Oy X a. (1.50)

It is also interesting to study what will happen in a de Sitter universe,
like it looks like our universe is evolving into. In this (almost) de Sitter

space we will get
!/

(5; + 57;( = 4w Gpy oy, (1.51)
with no growing solutions.?

As we see from this, aside from a slow (but important) growth during
the radiation dominated universe, the matter perturbations can really only
grow a lot during the matter dominated phase. In the matter dominated
phase the perturbations grow proportional to the scale factor, a, but since
a only grows by a factor of ~ 103 during matter domination, this severely
limits the amount of growth possible.

It is also important to note that the perturbations can not start to grow
until they enter the horizon, so the growth of the various modes depend
crucially on when they enter the cosmological horizon. We should also
note that small scales enter the horizon first, and have most time to grow,
as can be seen in Fig. 1.1.

1.2.3 Pressure

The matter component that we did not mention is the baryon fluid. The
baryons are very strongly coupled to the photons until recombination (about
a = 1073), shortly after matter-radiation equality. The pressure in the rela-
tivistic fluid keeps the perturbations in the, highly non-relativistic, baryons
from growing.

The DM over-densities, however, are growing, and as the baryons begin
to fall into the potential wells created by the DM, and then forced out by
the photon pressure, the characteristic acoustic oscillations from the CMB
power spectrum are created. See Fig. 1.2.

When we modeled the DM fluid in the previous section we completely
neglected the pressure (w = 0). The equation for a non-relativistic pertur-
bation in a matter dominated universe in general (including pressure), is
given by

5/ k2 2 )
&+ Cs 5 = dnGpYo,, (1.52)

2
a
where we have assumed that the dominant contribution to the 1st order
Poisson equation comes from pd,. For the DM fluid itself this reduces to

/

)
8+ ;X + w2, =0, (1.53)

°Note that this analysis is only valid in the linear regime. Non-linear processes mean
that at small scales structures can grow even in a de Sitter background, if they go non-linear
already during the matter dominated phase.
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FIGURE 1.1: Overview plot of structure formation. On the
y-axis we have comoving length scale, A\.,, and on the z-axis
we have the scale factor, a. The thick blue line corresponds
to the comoving horizon of the universe. As the matter per-
turbations, J, can only start to grow after they enter the hori-
zon (Ao < 1/aH), we see that the perturbations on small
scales start to grow first, and have more time to grow. Note
that at some point the perturbations, on small scales, be-
come non-linear (§ ~ 1), and the results derived above are
not applicable. Perturbations on large scales enter the hori-
zon later and may still be in the linear regime § < 1 today,
at a = 0. Note also that as the cosmological constant, A,
starts to dominate, the comoving horizon starts to shrink,
and the largest scales move out of the horizon again.

where w? = 47Gpy (’]z—; — 1) and we have defined the Jeans wave-number
J

kJ by
X
gy= 2" 2”“\/%, (1.54)
AJ Cs T

where ¢? = <%—1;> < is the adiabatic sound speed. Note here that both k; and

A as defined here are co-moving scales (sometimes they are also defined as
physical scales).

The Jeans scale represents the equilibrium between gravitational and
pressure forces. On scales smaller than the Jeans scale, the pressure forces
are largest and we get oscillatory solutions, while on larger scales the grav-
itational forces are stronger and the perturbations grow.

1.2.4 Free Streaming

Another effect that can dampen the growth of structures is free streaming.
If a collisionless particle that starts in a potential well, corresponding to an
overdensity, has a large enough velocity to escape the well and move to an
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FIGURE 1.2: Power spectrum of the temperature fluctua-
tions in the cosmic microwave background. Based on nu-
merically solving the Einstein-Boltzmann equations for the
full ACDM model (without neutrinos). The odd peaks (1st,
3rd etc.) corresponds to compression peaks, while even
peaks corresponds to decompressions. The first peak rep-
resent the modes where the baryons and physics have just
had time to compress maximally in the DM potential wells,
and the pressure is just about to decompress the fluid. The
second peak corresponds to the first complete decompres-
sion, where the photon pressure have moved the fluid out
of the DM potential wells exactly once. The scale on the
y-axis is arbitrary.

underdense region, this will tend to dampen both over- and underdensi-
ties. To analyze this it is useful to introduce the (comoving) free-streaming

length
_[tu)
M = /tlS a(t’)dt , (1.55)

where 5 is the time of last scattering and v(t) is the particle velocity at
time ¢. A\(t) is then simply the comoving length traveled by a particle free-
streaming from last scattering to the time ¢.

Roughly we can say that density contrasts gets washed out on smaller
scales than \¢, but remain unsuppressed at larger scales.

If we define a5 as the scale factor at the time of last scattering of DM,
we have roughly v =~ vjsai5/a. Using this we can estimate the free streaming
length during radiation domination

¢ wv(a) 3T  a a
s = / da ~ ————In{— |, (1.56)

* " Ju, 0*H(a) my Heqady s
where we have used the fact that a?H =~ aqueq is almost constant dur-
ing radiation domination, and have introduced the average velocity v =
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/3T /m,. Note that ajs # axq (see Sec. 5), although the two are related.
This is because DM also scatters for a short period after KD, but with a rate
that is too slow to keep up the DM temperature. The free streaming length
quickly becomes constant when we enter matter domination, so it is usu-
ally a good order of magnitude estimate to just evaluate the free streaming
length at matter-radiation equality.

The free-streaming length of DM then decides the size of the smallest
scales where structure formation can go on unsuppressed. Since the free-
streaming length increases as the DM mass decreases, this effect allows us,
under certain assumptions, to put a lower bound on the DM mass. This
effect is discussed briefly is Sec. 5.4 where we compare it to the effect of late
KD, which is the main focus of this thesis.

1.2.5 The Power Spectrum

The distribution of the initial perturbations in the various fluids are consid-
ered random. It is simply one realization drawn from a general ensemble.
Theory clearly cannot predict the exact distribution of perturbations, but
it can predict the statistical properties of the ensemble that this realization
is taken from. The power spectrum, which denotes the variance of of the
various modes is given by

Pk t) = (3(k, D)%) = PURT(R)2D(1)?. (1.57)

The initial power spectrum FP;(k) is proportional to the square of the
initial value of ®
Pi(k) o< (|@o(k)[*). (1.58)

The transfer function, T'(k), is used to take into account the evolution of ®
during the radiation dominated phase. The modes that enter the horizon
during radiation domination get severely suppressed, since ® decays in-
side the horizon, but is frozen in outside the horizon. The growth function
D(t) takes into account the growth of the perturbations during and after
the matter dominated phase

8(k,t) = D(t)5(k).

Note that the density perturbation here is a late-time quantity, defined
in and after the matter dominated phase by the Poisson equation

K O(k,t)

Gy (1.59)

d(k,t) =
and not in general equal to the matter perturbation in the conformal New-
tonian gauge at earlier times.

If, as a simple assumption, we assume that the matter perturbations
grow logarithmically during all of radiation domination, we get the follow-
ing expression for the transfer function (Mo, Bosch, and White, 2010, p.

198)
1 if
T(k) = , i < Feg, (1.60)
Ok keq) > n(k/keg) if k> keg,
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where keq = 2m / Teq 18 the wave mode that enters the horizon exactly at
matter radiation equality and C' is some constant.

1.2.6 Simulations of Structure Formation

Linear theory is extremely useful, and the fact that it works is the reason
that we can extract so precise information out of the cosmic microwave
background radiation.

When the perturbations grow and we need to solve the full, non-linear
equations, things become a lot harder. We can do much by simulating struc-
ture formation using just DM. This works well, at least on large scales, since
most of the matter in the universe is dark.

Including baryonic physics, however, is much harder. One of the main
reasons this is so much harder, is that baryons have so many important
interactions to take into account. Cooling, heating, star formation, feed-
back mechanisms, radiation and black holes are just some of the interesting
but challenging features that need to be taken into account when including
baryons to your simulation.

Another important reason baryonic physics is hard to include, is the fact
that baryonic physics happens at so many scales at the same time. All the
way from stellar scales to reionization of the intergalactic medium, bary-
onic physics play an important role. You would need practically infinite
resolution to incorporate all important effects. This difference in scales ne-
cessitates the use of various prescriptions for sub-grid physics, which are
very hard to test or verify.
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Chapter 2

Thermodynamics and Kinetic
Theory in the Expanding
Universe

2.1 Thermodynamics in the Expanding Universe

In this section we will review the physics of particles at hight temperatures
and in an expanding background. This is certainly the physics describing
the SM particles in the early universe, and also in many cases the physics
describing the dark sector in this epoch.

It is clear that there is a certain contradiction in talking about thermo-
dynamic equilibrium in a system that is constantly expanding and cooling,
however, under certain conditions, the tools of equilibrium statistical me-
chanics will be both applicable and indeed very useful. As long as the equi-
libration time, teq, of the system is much smaller than the characteristic time
of expansion (e.g. teq < 1/H), the system will, at any given time ¢, be in its
equilibrium configuration at a common temperature 7'(¢).

Phase Space Density

The phase space density of a particle species in equilibrium at a temperature
T is given by the Fermi-Dirac distribution (fermions) or the Bose-Einstein
distribution (bosons)

1
filp,T) = B 21)
e T =£1

where E; = ,/p?+ m? is the energy and y; is the chemical potential of
species i. T' is the temperature. The Fermi-Dirac distribution corresponds
to the plus sign, while the Bose-Einstein distribution corresponds to the
minus sign. Note that the p that occurs here corresponds to the physical
momentum.

In general, even when a species is not in equilibrium, we can write the
number density, energy density and pressure of a species in terms of the
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distribution function
et =01 [ 40 A1) 22
px) =g [ (jfj;’gmp)fi(p,x, ), 23)
e Y ) 4
In general we have the energy momentum tensor
17700) = 0 [ SE L bt 5

where P* = m 0x*/0\ is the energy-momentum four vector (not to be con-
fused with the pressure), obeying

guP'P" = E? — a?6;;P'P! = E* — p? = m?. (2.6)

We can write the thermal average of any quantity O(p, x, t)

. 3
)ty = 2 [ L (0px)) o) @7)

We see immediately that p; = n(E;) and P; = n/3 (|p|v) = n(|p|?/3E;).

Equilibrium Values

In equilibrium we can calculate the number density, energy density and
pressure analytically in the relativistic and non-relativistic limits.
In the non-relativistic limit we get

T\ 3/2
nyt = gi (’;) T, (28)
3
Pyl = ngm; + iniTa (29)

(2

While, in the relativistic limit (m, p < T'), we get

w_ [(%#%) T Bosons, (211)
n, = '

i % (9i§§3)> T3 Fermions,

im2 4

- (937(7) T Bosons, (2.12)

i 7 ( gim? 4 i ‘

r (9378 ) T* Fermions,

P = p/3. &)
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2.1.1 Chemical Potential

For a species in equilibrium, you need to know the value of the chemical
potential, 1, in order to calculate the density or pressure. In order to de-
termine ;1;, we can use the fact that, in equilibrium, p is conserved in all
reactions. This means that if we have a scattering process i+ j — a+b, then
we know that p; + 1 = g + fip.

We also know that, since photon number is not conserved, the chemical
potential of photons is zero. This means that for any species in equilibrium
with photons, the chemical potential of the anti-particles are negative those
of the particles. This means that, for particles that have an antiparticle, a
non-zero chemical potential signifies an asymmetry between the number
of particles and the number of anti-particles. In the relativistic limit, the
difference in number densities is given by (Lesgourgues et al., 2013, p. 81)

w1 (M) ’
T, w2 \T;
Note that this is an exact result, and not a truncated power series in p;/7;.

When the universe cools down to temperatures below the rest mass of
a given species, the particles and anti-particles start to annihilate with ea-
chother leaving just this small excess. Even if ;1 = 0, however, there will be
a relic density of particles and anti-particles left over, since they could not
find a partner to annihilate with. This is usually what is thought to account
for the relic density of DM.

Since the particle/antiparticle asymmetry is very small in the standard
model, we can usually just neglect the chemical potentials in the relativistic
limit.

o T (2.14)

2.1.2 Entropy

To calculate the equilibrium entropy of a species, we use the grand poten-
tial, Q@ = — PV (Pathria and Beale, 2011, p.283)

o0 0P,
Si=— = =V . (2.15)
or|,yv or |,
A more useful quantity for us is the specific entropy, s, given by
i P d? i i(p, 1
Si:S:gT _ / T af{ﬂ(g’) (2.16)
4 i (2m)3 3Ei(p) p
For a Fermi-Dirac or Bose-Einstein distribution this becomes
Ei—p;
dp  p* Ei—p P ( T )
Si = Gi 27 3Ei(p) T2 o 3 (2.17)
E [exp (71T“’) + 1}
We can rewrite this as
d*p Ei—pi [ O 1
8i = —g; p F ) 218
/ (27‘(’)3 3T 8]9 exp (Eiﬁui> +1 ( )

T
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which, upon integration by parts, gives simply
5 = % (2.19)

For a relativistic boson, with no chemical potential, the entropy density
is given by

Since the entropy density of relativistic species usually dominate the
total entropy, it is useful to define the total entropy in terms of an effective
number of relativistic degrees of freedom (for entropy), g.s

2
2m* 5

—T 2.21
T 221)

Stot = xS

where

3 3
gs= Y G (r‘;’) +g Z gi (?) : (2.22)
bosons fermions
where T is the temperature of the heat bath, and we have allowed for the
possibility that some relativistic species have decoupled from the heat bath
and have a different temperature, 7;. Note that we have also assumed here
that the chemical potentials are negligible. Note also that the sum here is
only over relativistic species.
In most cases of interest, the expansion of the universe is adiabatic,
meaning that the comoving entropy density is constant in time

0
En (sa?’) =0. (2.23)

This means that we can directly relate the temperature, 7', and the scale
factor, a, which is incredibly useful

T = g5 "*(T)/a. (2.24)

2.1.3 Hubble Rate during Radiation Domination

During radiation domination the energy density of the universe was given

by
2

T
p=g.35T" (2.25)

where g, is the effective number of degrees of freedom for energy

9= gi <?> +£ > g (?) : (2.26)

bosons fermions

Inserting this energy into the first Friedmann eqn. (1.11), we get (as-
suming a flat universe)

_[amdg, T?

H(T) = .
(T) 45 Mp

(2.27)
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214 Chemical and Kinetic Equilibrium

It is useful to decompose the full thermodynamic equilibrium into two
parts, chemical equilibrium and kinetic equilibrium.

Chemical equilibrium means that the number density of a species, n;, is
equal to the equilibrium number density of the species, n; .

Kinetic equilibrium, however, means that the phase-space distribution
is proportional to the equilibrium phase-space distribution, while allowing

for a departure from chemical equilibrium
fi=rf (2.28)

where k = n;/n;. If we think about the temperature as the average kinetic
energy of the particles, then kinetic equilibrium basically means that the
temperature of a species is equal to the temperature of the heat bath.!

2.2 Boltzmann Equation

In this thesis we are studying the departure from equilibrium. When we
want to analyze the statistical behavior of a thermodynamic system that
is not in equilibrium, we can often use the Boltzmann Equation (BE). The
relativistic BE is given by

df(p,X,t) _ Pai _ FaﬂfyPﬁP’y

v Dz f(p,x,t) = C[f]. (2.29)

0P«
In a flat FRW universe, the BE is given by the much simpler
E(p)(0r — Hpp) fi(p,t) = CLfil, (2.30)

where p denotes the physical momenta of the species i. C[f;] is called the
collision term, and takes into account all the interactions that species i can
be involved in.

2.2.1 Collision Term

If we restrict ourselves, for simplicity, to processes involving only two par-
ticles in the initial and final state, the general form of the collision term is
given by (Kolb and Turner, 1990, p. 116-117)

Cli ZZgl / 2;1 %E 2:;55& (2:;55&
x (2m)*6(p+ pj — pa — mb)
X |IME b i) F5(E) (L F falBa)) (1 F fol(Ep))
— M i L B (B (L F F(E)AF (B, @31)

Note that these are not the definitions of chemical and kinetic equilibrium, but they the
main characteristics of a particle in chemical or kinetic equilibrium. The definitions would
involve comparing the relevant interaction rates to the Hubble rate. See Chs. 4 and 5.
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where j, a and b can be any species (including species i itself) part of a phys-
ically allowed process involving species i. Note that in our convention | M ?
is summed over all internal degrees of freedom (spins, colors, etc.).

2.2.2 Collisionless Boltzmann Equation

If the collision term is zero,

E(p)(0r — Hpdy) f(p,t) = 0, (2.32)

the BE has a very simple solution. If you know the distribution, fy(p) at
some time ¢, then the distribution at any other time is given by

1.0 = 1o (“40) 239
ap
This just reflects the fact that, during expansion, all momenta scale like p
1/a. This holds for both relativistic, and non-relativistic particles, leading to
T « p o 1/a for relativistic particles, but T' o« p* o< 1/a? for non-relativistic
particles.
In particular, a relativistic species decoupling from a heat bath at a tem-
perature Ty will follow a thermal distribution.

" ) 1/3
F(0.T) = fuq (p, a(;)Td) _ fu <p, [ j SS((;; )J T) S 3

Equivalently, we can say that the Fermi-Dirac and Bose-Einstein distribu-
tions, for relativistic particles, are solutions to the collisionless BE. As an
example, this is the reason why the CMB is, still, such a perfect blackbody
spectrum today.

If a species decouples?, instantaneously, while it is completely non-relativistic,
it will also follow a thermal-like distribution, but with a temperature depen-
dent chemical potential to ensure that the co-moving number density stays
constant.

In the case where a species decouples while it is semi-relativistic, or if
it becomes non-relativistic after decoupling, it is not, in general, possible to
write it like a thermal distribution. Even in these cases, however, we can
simply write down the distribution using Eq. 2.33.

If a species is not ultra-relativistic at decoupling, and we cannot assume
instantaneous decoupling, there is no such simple solution for the distribu-
tion f.

In these cases, we are often, but not necessarily, talking about KD, assuming CD has
already happened.
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Chapter 3

Dark Matter

3.1 Evidence, Constraints and Candidates

3.1.1 Motivation and Evidence for Dark Matter

We infer the need for an additional matter component to the visible matter
on a large range of scales. All the way from Dwarf galaxy scales M ~
109 M, to cosmological scales (Gorenstein and Tucker, 2014).

The first person to give a name to this excess mass was Fritz Zwicky
(Zwicky, 1933), who, in 1933 when studying radial velocities in the Coma
cluster, discovered a unexpectedly large velocity dispersions, that could not
be explained from only visible matter, but needed an extra component of
dark matter.

Since that time the DM paradigm has been extremely successful, becom-
ing part of the bedrock of modern cosmology. Strong independent lines of
evidence for DM comes from:

¢ Rotation curves of spinning galaxies:

In spinning galaxies, such as our own, we can study the rotational
velocity or the stars as a function of the distance from the centre of the
galaxy. Using the law of gravity, we can calculate the matter density
of the galaxy required to produce this rotation curve. When we do
this, we see that neither the amount, nor the distribution, of visible
matter can explain the shape of the rotation curve. Hence, we need
an additional, dark, matter component (see e.g. Borriello and Salucci,
2001).

e Velocity dispersion in galaxy clusters:

As Zwicky noticed, the velocity dispersions in clusters of galaxies are
too large for the system to be gravitationally bound, unless there is a
significant DM contribution in addition to the visible matter.!

e Gravitational lensing:

Gravitational lensing is a very powerful probe of the matter distribu-
tion of various astronomical objects. The presence of any mass bends
path of light traveling close to it, resulting in a distorted image of a far
away object if the light has passed through a dense matter distribu-
tion. This is usually called weak lensing. Astronomers can use statisti-
cal techniques to recreate the matter distribution from the distortion
of the light (see e.g. van Uitert et al., 2012).

!For a more modern analysis on the relation between cluster masses and velocity disper-
sion see e.g. Saro et al., 2013.
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In some rare cases, gravitational lensing can be so efficient that it
produces multiple images of the same background objects, or even
Einstein-rings. This is called strong lensing (see e.g. Moustakas and
Metcalf, 2003).

Since both strong and weak lensing offer ways to measure the distri-
bution of mass in an object, we can compare it to the mass inferred
for just the visible matter. If we do this than we see that in this case as
well we need DM.

e Cosmic microwave background:

The CMB has been precisely measured by the Planck satellite, and
provides a powerful probe of the linear physics of big bang cosmol-
ogy. In particular, the shape of the power spectrum is highly depen-
dent on the amount of various energy components in the universe
(see Fig. 5.6). The CMB results have confirmed the standard ACDM
model to great accuracy, meaning that it needs a DM component of
about 25 % (Planck Collaboration et al., 2015).

o Non-linear structure formation:

Cosmological simulations of structure formation using CDM only have
been extremely successful at reproducing the large scale structure of
the universe (see e.g. Boylan-Kolchin et al., 2009).

It is impressive that simply positing a new heavy non-SM particle with
small or no interactions with the visible sector can explain such a breath of
independent observations.

It is interesting to note, however, that in all the stated cases, DM is in-
ferred from its gravitational effects. This has led some to suggest a modi-
fication to gravity to explain these phenomena (see e.g. Milgrom, 2010). It
has, however, not been possible to devise a modification of gravity that can
explain more than a few of the above lines of evidence for DM at a time.

3.1.2 Constraints on Dark Matter Candidates

The most precise cosmological observable relevant for DM is the relic abun-
dance Qpy. From different observations this quantity is known with per-
cent accuracy (Planck Collaboration et al., 2015)

Qpmh? = 0.1188 + 0.0010, (3.1

where the dimensionless Hubble parameter h = 67.74 £ 0.46 is defined by
Eq. 1.5.

The precision of this value is impressive, especially because all we know
about DM is known indirectly, from the gravitational effect DM has on the
visible matter.

Although we do not know the precise particle nature of DM, we have a
number of strong constraints on its properties:2

o It must be non-luminous:

2A good and more expansive summary of such constraints is given by Taoso, Bertone,
and Masiero, 2008.
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In practice this means no coupling (or extremely weak) to U (1), and
no coupling to SU(3).. We know it cannot interact with the strong
force because e.g. radiation of gluons would give rise, among other
things, to neural pions that decay to photons. Although DM has to be
essentially neutral, small values of e.g. the magnetic moment is still
allowed (Pospelov and ter Veldhuis, 2000). In general DM can not
have any large coupling to any light standard model particle.

e It must not have too strong self interaction:

Many observations on different scales constrain the self interaction
of DM. A velocity dependent interaction however could get around
the strongest constraints to give a significant self interaction on other
scales. Also, the constraint is much weaker for higher DM-masses.
Constraints from self interaction will be discussed in detail in Sec. 3.3.

e It must be cold:

DM has to be non-relativistic during structure formation. The free
streaming from relativistic, or warm DM tends to suppress structure
formation on small scales. This means that DM must have a mass
larger than roughly m, 2 1 keV (e.g. Abazajian and Koushiappas,
2006). This constraint is dependent on the DM temperature.

o It must be stable:

If DM had a decay rate comparable to the age of the universe it would
affect cosmology significantly, something we do not see. This means
that the DM lifetime is constrained to 7,, > 1/ H.

3.1.3 Dark Matter Candidates

In this thesis we take a completely phenomenological approach to particle
physics models for the dark sector, setting the issue of embedding this sec-
tor into a complete and consistent theoretical framework aside. However,
we will still give a brief mention of some of the most popular candidates
for particle DM.

The most popular class of DM candidates are WIMP DM. WIMPs are
motivated, among other things, by the WIMP miracle (see Sec. 4.2.2). In
addition the hierarchy problem of the Higgs sector, suggests the need for
new physics at the weak scale.

Probably the most studied WIMP candidate is the neutralino, the light-
est supersymmetric partner to the neutral bosons of the SM. By the R-parity
often introduced to prevent proton decay, the lightest supersymmetric par-
ticle (LSP) is automatically stable. If the neutralino is the LSP, then it serves
as a natural WIMP candidate.

Kaluza-Klein exitations from universal extra dimensions can also pro-
vide a viable WIMP candidate (Hooper and Profumo, 2007), as well as the
Little Higgs DM (Birkedal et al., 2006).

Popular non-WIMP candidates are Axions (Preskill, Wise, and Wilczek,
1983), sterile neutrinos (Dodelson and Widrow, 1994 and Bezrukov, Hettmansperger,
and Lindner, 2010) and gravitinos (Bolz, Brandenburg, and Buchmidiller,
2001).
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3.1.4 Going Beyond CDM

Although the standard CDM-paradigm has been extremely successful, there
are some small scale problems of the standard ACDM model that motivates
us to look beyond CDM to consider models where DM is not completely
collisionless.

We will list three of the main problems here, the missing satellites prob-
lem (Klypin et al., 1999; Kravtsov, Gnedin, and Klypin, 2004), the cusp/core
problem (Dubinski and Carlberg, 1991; Stetson, 1994; Blok, 2010) and the too
big to fail (Boylan-Kolchin, Bullock, and Kaplinghat, 2011; Jiang and Bosch,
2015) problem.

The missing satellites problem comes from the difference in the num-
ber of small DM halos predicted by simulations and the small number of
satellite galaxies observed in the Milky-Way and Andromeda galaxies. This
problem could potentially be solved by DM having a late kinetic decou-
pling, since this will create a cutoff in the matter power spectrum on small
scales, as discussed in Sec. 5.4.

DM simulations predict cuspy galactic density profiles, while the ob-
served profiles in low surface brightness galaxies and dwarf satellites are
cored, this is called the cusp-core problem. The too big to fail problem is the
prediction that heavy satellites should be immune to many of the feedback
mechanisms proposed to prevent star formation in smaller satellites. Still
we do not observe these heavier satellites. Both these problems could po-
tentially be solved by self interacting DM, possible with the right velocity
dependence, as discussed in Sec. 3.3.

3.2 Detection of Dark Matter

There are many different ways of looking for DM, except for just its grav-
itational effect. Here we will give a brief overview of the main methods
used in the field. The things we will discuss here are mostly in the setting
of WIMP DM, although some of it is more general.

3.2.1 Direct Detection

Direct detection is based on the idea of a DM particle scattering off some
SM particle, usually a heavy nucleus, in our experiment, allowing us to
measure the recoil of this scattering. The chance of this happening to any
one particle is very small, but if we gather a lot of heavy atoms and try
to shield them from all other possible background sources (cosmic rays,
radioactive decay etc.), this is a viable strategy for detection.

Since the earth moves through the galactic DM halo the local flux of
DM particles can be fairly high. If we assume a local DM density of 0.3
GeV/cm3(Arneodo, 2013) and a WIMP mass of 100 GeV, the local flux
would be of the order ¢ = 10°/(cm?s).

The differential recoil rate per unit mass of detector is given by (Gelmini,

2015)
dR

dER

o do
Ny [ dofan@of 62
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where EpR is the recoil energy, N7 is the number of targets per unit mass
of detector, v, is the minimum velocity a DM particle needs in order to
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give a recoil energy of Eg, n, is the local DM number density, fgarin(?) is
the velocity distribution of DM particles reaching our detector (this distri-

bution is dominated by earths motion through the galaxy) and ‘2?; is the
differential cross section for DM to scatter with recoil energy Eg.

What cross sections we get is highly dependent on the DM model. If we
use nuclei as targets, DM needs to have some interaction with quarks which
we can translate into an interaction with whole nuclei. If the interaction
is scalar or vector, we get what is called spin-independent (SI) scattering.
This is the best case, since DM interacts with each nucleus proportional
to the number of nucleons, 4, squared e.g. o ~ A?. If the interaction is
pseudo-scalar or axial vector we get what is called spin- dependent (SD)
scattering. This is highly suppressed, since the interaction is proportional
to the total angular momentum of the nuclei (or the spin of the nuclei), e.g.
o ~ J(J + 1) (Arneodo, 2013). An overview of spin independent bounds
are found in figure 3.1.
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FIGURE 3.1: Summary of current (solid lines) and future
direct detection experiments. Bounds on spin-independent
WIMP-nucleon scattering cross section. Yellow area corre-
sponds to areas where neutrino backgrounds become sig-
nificant. Figure taken from (Cushman et al., 2013)

3.2.2 Indirect Detection

Indirect detection is based on observing the annihilation products from
DM-annihilation. Even though, if DM is thermally produced, the annihi-
lation rate I';o4,, < H, this does not imply that I';,q4y = 0. The nice thing
about this method is that we can use our (incomplete) knowledge of the dis-
tribution of dark matter in the nearby universe to predict which direction
to observe these annihilation products from (Bringmann, 2011).
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In order to get a signal that we can actually detect, we need the annihi-
lation products to be able to reach our detectors and we need to be able to
distinguish the signal from the background. The four main viable possibili-
ties are(Arneodo, 2013): gamma rays, neutrinos, antiprotons and positrons.

As an example the expected flux expected from DM annihilation to pho-
tons in a density distribution p(7) is given by (The Fermi-LAT Collaboration
etal., 2013)

, _ L {ogi) [dN 2
s(AQ) = Lo /E A /A ) /1 Pdde. (3)
J

A7 2m§<

Ppp

where i denotes the relevant annihilation channel to photons and l.o.s. de-
notes a line of sight integral. Note that this flux divides into to factors, ®pp
and J. ®pp is determined by the particle physics properties of your DM-
model, while J contains the astrophysical contents.

The main DM annihilation channels are usually quarks, leptons or W, Z,
these again decay into positrons, antiprotons and secondary photons (+
stuff with alot of background). We can then try to detect these final prod-
ucts. One large problem with these channels however is that the back-
grounds are usually significant, and to a large extent unknown, and the
signal is spread out in energy. Therefore it is often preferable to get direct
annihilation to photons (primary photons), even if it is highly suppressed
(eg. fig 3.2), since then we would have a clear smoking gun signal at some
specific energy corresponding to m,.

X v

X Y

FIGURE 3.2: DM annihilation to photons, fermions (could
be W W ) go in loop. This process is loop suppressed, but
would give a smoking gun signal at I, = m,,.

Using DM simulations of structure formation it was found roughly 20 years
ago that the density distribution in DM-halos can be fitted very well by a
simple analytical profile for DM halos (Navarro, Frenk, and White, 1996),
called the Navarro-Frenk-White (NFW) profile.

P
27
()
where py and ry are parameters that are dependent on the particular halo.
There are two main sources that are interesting to look at for these types
of detections, the galactic center, and dwarf spheroidal galaxies (DSG). The
galactic center is good because the density of DM is expected to be very
high, so we would get a high signal, but the astrophysical background is

also very large here. DSG are also interesting because they are totally dom-
inated by their DM content, so we expect low astrophysical backgrounds,

PNFW = (3.4)
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however they are alot smaller and we expect a lot lower signal. Some lim-
its placed on the annihilation cross section derived from DSG by the Fermi
large area telescope are shown in figure 3.3 (The Fermi-LAT Collaboration
etal., 2013).

3.2.3 Dark Matter searches at Large Hadron Collider

The goal of DM searches at Large Hadron Collider (LHC) is to create DM
and to be able to recognize it. We cannot expect to detect any of the po-
tential DM particles that are produced directly, but we can try to infer their
existence from the other particles involved in the collision. In a collision
DM would show up as missing momentum. We would see a set of visible
particles, but their momenta would not add up to zero, hence we would
know that something else had to be there. This is entirely analogous to
what is the case for neutrinos at the LHC.

The most straightforward way to create DM would be a collision be-
tween a quark-antiquark pair that created a DM particle-antiparticle pair,
like the left part of figure 3.4. The problem with this process is that although
there is missing momentum, since the interaction COM is not equal to the
lab COM, the missing momentum is in the longitudinal direction, and is
not picked up in the detectors. Therefore we need processes where we get
at least one visible particle out of the collision, like a gluon (middle part of
figure 3.4), a quark, a photon, W or Z. These processes are suppressed by
an extra factor of «, but this is not too bad, since e.g. a; ~ 0.1 at these ener-
gies. The missing momentum that we can then find is the missing transverse
momentum, often called missing transverse energy, fr.

ET = - ZﬁT(Visible)' (35)

One of the main problems with this approach is that neutrinos have
exactly the same signature as DM, see e.g. right part of figure 3.4. This
means that in order to get a detection of DM, we must be very sure about
the rate of the processes that involve neutrinos. Another problem is that
even if we actually detect another particle due to missing transverse energy,
we have no way of knowing whether or not this is the DM, or just another
unknown particle.

To try to get model independent constraints on DM properties, we can
parametrize different potential higher energy theories involving DM us-
ing an effective field theory approach, analogous to the Fermi theory of
electro-weak interactions. We can collect the lowest order operators pos-
sibly producing DM into a table, see table 3.1 (Askew et al., 2014). The
different operators clearly arise from a high energy theory, e.g. the vector
operator <3 X" xqVyq is just the low energy operator from a theory with a
vector boson, with mass m3, = A?/(gyg,), that couples both to y and ¢ with
couplings g, and g, respectively.

Various limits on DM properties from monojet + Fr events at LHC, for
the different operators, are given in figure 3.5.

A potential problem with the effective field theory approach mentioned
above is that it assumes that all the mediator particles have a very high
mass. If this is not the case, then the effective field theory approach really
does not make sense. What we can then do is to include the mediator into
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FIGURE 3.3: Upper limits on the annihilation cross sec-
tion from 15 DSG found by FermiLAT. The limits are as-
suming DM decays exclusively in each channel. Horizontal
dashed line represents thermal relic annihilation cross sec-
tion. Note that in indirect detection, while sensitivity typ-
ically increases with energy (or m, ), the limits are usually
weaker, since rates rapidly decrease with energy because of
the lower number densities of DM, as can be seen in equa-
tion 3.3. Figure taken from (The Fermi-LAT Collaboration
etal., 2013).

X q g X 9 q
v
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FIGURE 3.4: Left: ¢¢ — x)X, missing momentum in the lon-
gitudinal direction. This is not picked up in any detector.
Middle: qg — gxX, missing transverse momentum. “Mono-

jet” process. Right: Background "Mono-jet” + fr process
associated with neutrinos.
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Name Operator Type SI/SD
D1 XXAq Scalar SI
D5 % XY Xqvuq Vector SI
D8 =XV Y°Xqvuy°q | Ps.-vector | SD
D9 % XoH xqo g Tensor SD
D11 BXGGY, Gluon SI

Name ‘ Operator ‘ Type ‘ SI/SD

C1 ol odq Scalar SI

C3 L6t pgy,q | Vector | SI

C5 LoTeGH G, | Gluon | SI

TABLE 3.1: Table of effective operators for Dirac fermion

DM (top), and complex scalar DM (bottom). A represents

some heavy mass of the high energy theory. SI and SD de-

note spin-independent and spin-dependent interactions re-

spectively. Note that the scalar interaction is assumed to be
proportional to the quark mass.

10’30‘_ T IIIIIII| T IIIIIII| T T TTTTTL T T TTTTIT T ||||\||| T |||||||_E
E 90% CL, Spin Independent 90% CL, Spin Dependent E
109 —— CMS (19.5 fb™, 8 TeV), D5 ——CMS (195 157,8TeV), D8
o F ~ . = ATLAS (10.5 fb™, 8 TeV), D5 ~ .. ATLAS (10.5 15", 8 TeV), D8 ]
107 r ——CMS (5.0 fb™, 7 TeV), D5 —CMS(50f7,7TeV),D8  §
- FE Mono-jet ~ .= ATLAS (4.7 b, 7 TeV), DS Mono-jet - --ATLAS (47157, 7TeV), D8 ]
NE E CMS (19.5 fb™, 8 TeV), D11 ATLAS (4.7 6,7 TeV),D9  J
S10M ATLAS (10.5 fb™, 8 TeV), D11 CDF -
asE — .- ATLAS (4.7 b, 7 TeV), D11 g SIMPLE 2012 E
g 107 CDF ' — IceCube W*W’ E
= asf —LUX ' — PICASSO ]
QU r SuperCDMS . - . . XENON 100 (Neutron)
D17 L
%) E
0 4n38L
107
o E e
O10% ="
=
S10° \
S10*'r
ZI 1042 é'
P70 O Ny e R S L
10 SR
10 E
10—45:1 1 |||||||| 1 |||||||| 1111111 ‘ [ ||||||| 1 ||||\||| 1 |||||||F
1 10 101 10 10 10
M, [GeV] M, [GeV]

FIGURE 3.5: Note that LHC measurements are much more

competitive for SD processes than for the SI processes when

compared to the direct detection experiments. Figure taken
from (Askew et al., 2014).
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the analysis, and try to find joint limits on mediator properties as well. We
suddenly have more parameters to look at, since we need to include the
different couplings, widths etc, but this is doable. Some results for models
including the mediator properties are found in figure 3.6.
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FIGURE 3.6: Analysis of model with vector mediator for
two different DM masses, and three different mediator
widths. Figure taken from (Askew et al., 2014).

3.3 Dark Matter Self-Interaction

Self interacting DM is a large field of study in itself, and we will only scratch
the surface in this section. In many cases, models that give rise to late KD,
also, naturally, leads to a significant self-interaction. This is great, because,
since self-interaction of DM is severely constrained by observations and
simulations, we get strong bounds on model parameters, and it severely
restricts the landscape of viable models for late KD of DM.

In addition, since self-interacting DM has the potential to solve several
small-scale problems, like the cusp/core and too big to fail problems (Loeb and
Weiner, 2011; Vogelsberger, Zavala, and Loeb, 2012), if a model can obtain
both late KD and a significant self-interaction, then this is a very attractive
feature.
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In order to address the small-scale issues we need a transfer cross sec-
tion of at least the order (Tulin, Yu, and Zurek, 2013)

2 2

I > 01 x9.10-

My g GeV’ (3.6)

at dwarf galaxy scales. Meaning that a value lower than this is likely to be
indistinguishable from cold DM.

3.3.1 Constraints on Self-Interaction Cross Section

Upper bounds on the cross-section are dependent on the scale. The strongest
constraints on o7 /m, come from the observed X-ray cluster ellipticity (Loeb
and Weiner, 2011, Fig. 2), these scales correspond roughly to v ~ 10% km/s
and limit o7 /m, < 0.02 cm?/g. These bounds are somewhat controversial,
and more recent analysis suggests that they may be too strong Tulin, Yu,
and Zurek, 2013, Zavala, Vogelsberger, and Walker, 2013 and Rocha et al.,
2013. An upper bound of order or/m, < 0.1 cm?/g at these scales, how-
ever, seems to be a reasonable consensus.

At dwarf galaxy scales, v ~ 10 km/s, where the small scale issues
are potentially addressed, the constraints are significantly weaker. Here
the constraint is approximately or/m, < 35 cm?/g and comes from the
gravothermal catastrophe (Balberg, Shapiro, and Inagaki, 2002).

Since at a given scale, there will be a significant spread in the veloci-
ties of DM particles, it is usually more meaningful to talk about a velocity
averaged transfer cross section as the quantity that is constrained by obser-
vational bounds (Cyr-Racine et al., 2015)

d3U 1,2/,2
— 507 /v
where v = |vq1 — va| is the relative velocity, and vy is the most probable

(single particle) velocity, usually given in km/s.

3.3.2 Constant Cross Section

In this context, a constant Cross section is one that is independent of DM
velocity. As we see from the previous discussion, explaining the cusp/core
and too big to fail problems with a constant self-interaction cross section is
hard, and may already be ruled out, depending on how much you trust the
various constraints.

For such a model to work, it must have a cross section in the narrow
range (Zavala, Vogelsberger, and Walker, 2013) o /m, ~ 0.1 — 1 cm?/g.

3.3.3 Yukawa Potential

If (non-relativistic) DM is coupled to a light bosonic particle, this sets up an
effective Yukawa potential for DM-DM scattering. This scattering partner
could be the 7 that leads to late KD, or it could be some other particle that
couples to DM. For generality we will denote this mediator particle by ¢,
and DM by x in this section.
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The mass of the mediator, m, decides the range of the potential, given
by
a
V(r)= j:;e T (3.8)

If ¢ is a scalar, then the interaction is always attractive (-), while if ¢ is a
vector particle, the interaction can be both attractive or repulsive depending
on whether DM is scattering with an anti-particle or not (entirely analogous
to Coulomb scattering between electrons and positrons).

Calculating the interaction cross section for a Yukawa potential is in
general not that easy, but we have analytical formulas for the transfer cross
section o7 that are valid in different regions.

Born Limit

In the perturbative limit, « m, /mg < 1, we can use the Born approximation
to calculate the transfer cross section (Tulin, Yu, and Zurek, 2013)

8ra? m2v2 m2 02
ohom — 2T |14 - | - 2 ], (3.9)
myv m¢ m¢+mxv

here v is the relative velocity. Note that this result is the same for both
attractive and repulsive potentials.
Classical Limit

In the classical limit m,v/mg > 1 it is also possible to obtain parametric
expressions for the transfer cross section (Cyr-Racine et al., 2015)

2% 6%In(1 +1/5?) B0,
—d 7 B'5+280(8/10)'9-3 -2 2
or = nT%1+1.46+0.00654+160(6/10)10 10725 B < 107, (3.10)

2

\% (1+ImB—(2mp)~H" B 2107

ZEw1+1/5) 55107
1.8
0,;7 class _ %W 102 <p< 102, (3.11)

1
T (In28 —Inln28)* B> 102,
Mg

where 8 = 2am, /(m,v?). Here (—) corresponds to an attractive potential,
while (+) corresponds to a repulsive.

Resonant Regime

Outside the perturbative and the classical regime, the two expressions we
have discussed are not applicable. However, exact non-perturbative results
have been obtained for the Hulthén potential, which provides an excellent
approximation for the Yukawa potential (Tulin, Yu, and Zurek, 2013).

ade 0"
VHulthén () = im; (3.12)

where § = kmg and k = /2((3) ~ 1.55.
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Outside the classical region (m,v/mg < 1) we often expect the scatter-
ing to be dominated by the s-wave. The s-wave contribution to the transfer
cross section for the Hulthén potential is given by (Tulin, Yu, and Zurek,
2013)

5 16
optuthen — 2T i 6, (3.13)
myv
where the phase shift J is given by

4 ] m2v? .
5 i (Z::’?; ) ) 1+ ;;n%: * i:nn:; - 4’37"1 attractive,
o=arg | ———t /| A=
T\ )T | | i |
A Lt g iy [ 502+ Tz repulsive.

(3.14)

In the attractive case, this potential gives rise to resonant behavior both

complicating the picture, and making it more interesting. An example of
this behavior is shown in Fig. 3.7.

5 T T T

0.05- .

1072 ! ! |
107° 107 1073 1072

a

FIGURE 3.7: Example of the resonant behavior of the self

interaction in the non-classical regime. These results were

calculated using the Hulthén cross section, of!*™hén Here
m, = 100 GeV, my = 10 MeV.

Constraint on 7 Coupling for Bosonic ¥

If a dark radiation particle 7 is bosonic, a x x7 coupling will induce a Yukawa
potential, and hence usually lead to a substantial self interaction for x. If we
want the scattering with 4 to be responsible for keV-scale KD of x (see Pt.
III), then this requires m5 < keV. Since long range forces between DM are so
heavily constrained, this leads to serious bounds on the other parameters
of the model, see Fig. 3.8 (Bringmann et al., 2016).



40 Chapter 3. Dark Matter
— my =1MeV
BT =10 Mev RN R el
. -
m, = 100 MeV 7 -
X P _-
my = 1GeV ,,/’,,/
= 7 7

= 10- my =10 GeV //;/
(\E — my =100 GeV /,’//

S, — my =1TeV -

EX — my =10 TeV _-"
~ -

o 5-

I

A

~

v

o excluded /
(2]

] 0/ ]

-5L 4
-10 -8 -6 -4 -2

-12
logioa

FIGURE 3.8: DM self interaction from Yukawa potential
generated by xx7 interaction. The cross section (or),, is
plotted against the coupling, a = ¢?/4m, for many differ-
ent DM masses, m,.. The velocity averaging has been done
around vy = 30 km/s, a scale relevant for dwarf galaxies.
Here m; 100 eV. Lighter masses lead to stronger self-
interaction. The horizontal black line roughly corresponds
roughly to what is excluded from observations at this scale.
The dashed lines corresponds to areas of parameter space
that are ruled out because the strong coupling would de-
plete the relic density below the one required for DM. Note
that, for all these models, the bounds from self-interactions
are stronger than the ones from relic density considerations.
Figure taken from Bringmann et al., 2016.
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Chapter 4

Chemical Decoupling

Chemical decoupling of DM is a very important area of study, because it
is the process that decides the density of DM in the later evolution of the
universe. As the DM density is a quantity that is determined from cosmo-
logical observations, calculating the relic density from first principle parti-
cle physics provides a direct link between particle properties of DM models
and cosmology.

As we will see, for most WIMP models, relic density constraints usually
fixes, roughly, the ratio between the coupling and the DM mass «//m,. That
means that for heavy DM particles, we need a large coupling, while we
need a small coupling for light DM particles.

When talking about "Chemical decoupling" we have already implicitly
assumed that at some time DM was in thermal (or at least chemical) equi-
librium with some heat bath. As we see from Fig. 4.1 this need not be the
case. In any case, however, the results from this section will still be useful,
in the sense that they will give an upper bound on the couplings. This is be-
cause if the annihilation cross section is larger than the one required to get
the correct relic density, annihilations would still deplete the DM density
below the required value.

4.1 Boltzmann Equation for Chemical Decoupling
The BE in a flat FRW universe is given, as discussed in section 2.2 by:

E(p)(0: — Hpdy) f(p) = CIf], (4.1)

where f(p) is the phase space distribution function of the dark matter par-
ticles.
Integrating this equation over p we get the BE for the DM number den-

v 1d (na3) d3p
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Comparison of Rates
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FIGURE 4.1: Comparison of the equilibrium interaction rate
and the expansion rate in the early universe. We have cho-
sen a DM mass of 100 GeV as an example. Note that as long
as DM is relativisitic it tends towards equilibrium, but as it
becomes non-relativistic it goes out of equilibrium. So the
values of o and m,, as well as initial conditions, determine
whether DM ever goes into equilibrium or not.

Massaging the Collision Terms

The only parts of C[f] that survive the integration over p are those that
change the DM number density. The RHS, from Eq. 2.31, is then given by

) / B3p Z/ d3p 3k / B3k
9 | G2’ o) 32E k) @rPw ) 2P

x 2m)S(p+p—k— k)
[IMIXX_>W FE)F(E)(1+ g(w))(1 + g(@))
— M35 59 (w)g (@) (1 £ f(E))(1 £ f(E))] (4.3)

d3 d3
= Gy Z / / 3 703 V0xx—77

x [feq<E>feq<E> — [(BI(E)] (4.4)

where k = (w,k) and k = (@, R) are the momenta of the outgoing heat
bath particles, p = (E.p), p = (E,p) are the momenta of the two incoming

DM particles, and where v = vy = (EE) (p-p)?— mi is the Moller
velocity. g(w) = (e¥/T% £ 1)~ is the distribution of the heat bath particles,
assumed to be in equilibrium. In our convention |M| is summed over all

internal degrees of freedom (spins, colors etc.) both initial and final, and
the sum Zﬁ is a sum over all heat bath particles (SM or DR).
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To get from Eq. 4.3 to 4.4 we need to make a few assumptions, as well
as a few observations. First of all, we use Maxwell-Boltzmann statistics
instead of Bose-Einstein or Fermi-Dirac. If there is no Bose-Einstein con-
densate or degenerate fermions, this is a fairly good approximation, and in
this case we can also neglect the stimulated emission and Pauli-suppression
factors in 4.3 (Kolb and Turner, 1990, p. 118). In the non-relativistic limit
Maxwell-Boltzmann statistics becomes exactly correct.

We can also observe that since we are in equilibrium, by detailed balance,
the rate for production and annihilation of DM must be equal. We must
have!

M3y oi5Seq(B) feq(B) = M550 9(w)g(@).

However, by invariance under time reversal (or CP) we also have

2 _ 2
M-z = Mzxsae

We also use the definition of the scattering cross section (Peskin and
Schroeder, 1995, p. 106)

1 A3k 3k A N —)
TV T Ty / (27)32w / (27r)32@(277> 0(p+p—k = k)Mlg\ 55

Here we need to remember that in our convention |M|? is summed over

all internal degrees of freedom, while the standard W2 (from Peskin and
Schroeder) is averaged over the initial and summed over the final internal
degrees of freedom. This means that

—2
M = g M[,
giving us the last piece we needed to go from Eq. 4.3 to 4.4.
In order to go on, we can note that as long as DM is in kinetic equilib-

rium, which is usually the case until much later than chemical decoupling,
we have

Using this we can rewrite the factor

[fGQ(E)feq(E) — f(EB) f(E)} N ACINAC))

Defining

2 d3
(o0 = S towei = % [ 5k

3 p ~
/ (;iﬂl))?*vU)?X—Wﬁf(E)f(E),

we can rewrite the complete BE in the simple form

5 = o) (=)

'Note that this argument could be made even if we had not used MB statistics.
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Changing Coordinates

It is useful to introduce the dimensionless variables

x=my/T, (4.5)
Y =n/sy, (4.6)

where s,(T") = gVs(T') %T?’ is the entropy of all the particles in the SM heat
bath before CD of DM. This is meaningful since if the dark and visible sec-
tors are already decoupled, entropy will be conserved separately in each of
the sectors, so we can use either. Note also that we use the photon temper-
ature 7', which is not necessarily the same as the temperature of the heat
bath DM is interacting with, T5.

Using these coordinates we can rewrite the BE on the form van den
Aarssen, Bringmann, and Goedecke, 2012

" 2
fg — (1= z_dgis) Lann 1— E ’ (4.7)
Y dzx 39Y¢ dx H Y2

where 'ann = (ov)n is the annihilation rate of DM and Yeq = neq/s0-

4.2 Solving the Boltzmann Equation

When we talk about CD of DM, then "solving the BE" typically means find-
ing the relic density of DM. From cosmological observations we know that
the relic density of DM is given by (Planck Collaboration et al., 2015)

Qpmh? = 0.1188 + 0.0010. 4.8)

At late times, when the RHS of Eq. 4.7 becomes negligible, that is when
H > T'ann, the solution to the BE equation is just Y = constant = Y. Y is
equal to the number of DM particles per entropy, so, as long as entropy is
conserved, a constant value of Y means that the comoving number density
of DM is also constant. So our goal, in solving the BE, is to end up with the
right amount of DM left over, after all the DM annihilations have stopped.
This means we want to end up at the right value of Y.

The "Right" Amount of Dark Matter

In order to find out what is the "right" value of Y, we need to relate it to
the current DM abundance Qpy.
The dark matter density today is given by

272

5 10 (4.9)

Py = MMy = My Yoo 50 = My Yoo gy 5(T0)
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"non

where the subscript "y" denotes quantities today. {2y is then given by?

1673 Gmy Yoo gl (To) T3
Qpy = 2 = 21 2 0092*5( 0T (4.10)
Pc0 135H¢

4.2.1 Relativistic Decoupling

If DM decouples when it is still relativistic we do not need to solve the BE
at all to find Ys, unless g%4(7') changes during the period of decoupling®.
This is because for a relativistic species, Yq is a constant. This means that

ff 3

9x 45¢(3)§"(Tea)
VI = Voo (Teg) = =X 4.11
00 eq( cd) Q:S(Tcd)2W4 ) ( )

where gfcff = g, for bosons and giff = 3g,/4 for fermions.
Inserting this into Eq. 4.10, we get

89 G, C(3)3(Tea) TS g¥o (T

o, = SRGMCBET)T] gi(Ty) W)

37TH8 g:s (Tcd)

Inserting current values Ty = 2.346 - 10~% eV and ¢V4(Tp) = 2+ 7/8 - 2 -
3(4/11) =~ 3.91, we get

9vs(Ted) \ .- Qpmh?
m, = 1.56 eV (}(J) £73(Twg) (0.1188 . (4.13)

We see that for DM to decouple while it is relativistic while not producing
too large relic density requires that DM is very light. This observation can
also be though of as a lower bound on the DM mass?, that is, if DM is
lighter than this, it cannot have a large enough relic density to make up the
DM that we know exists today. We should note that for DM, this bound
is mostly of theoretical interest, since the bounds from structure formation
already restricts mywpm > keV.”

A species that undergoes CD while relativistic, typically also undergoes
KD at the same time. Since, in this thesis, we are studying models with late
KD, relativistic decoupling of DM is not a very interesting possibility for
us.

The same situation, however, shows up when we are looking at models
with a finite DR mass. In that case, these considerations will be a very useful
constraint for us (see Ch. 9).

2This assumes that Y is its own antiparticle, as we will do for the rest of this section. If
not there is an extra factor of two since we get Qpm = (px + px)/p0. A more complicated
case is the one of asymmetric DM, where the relic density is set by an asymmetry between
DM and anti-DM, similar to what is the case for baryonic matter (for a nice review of this
class of models se Petraki and Volkas, 2013).

*Interestingly, for the particles in the universe that we know decoupled while they were
relativsitic, namely neutrinos, gys(7") actually does change slightly since electrons and
positrons start annihilating during neutrino decoupling, as is discussed in Sec. 6.3.

*In the context of neutrino decoupling, this is referred to as the Cowsik-McClelland
bound (Cowsik and McClelland, 1972), but is then an upper bound on the neutrino mass,
since we know that it decoupled while relativistic.

*Note that these bounds hold for thermally produced DM, as long as the free-streaming
velocity is small, the mass of DM can be much smaller than keV.



46 Chapter 4. Chemical Decoupling

4.2.2 Non-Relativistic Decoupling

In the non-relativistic case we actually need to solve the BE. We can always
do this numerically, of course, but it is useful also to derive an approximate
analytic expression for us to look at, in order to understand the important
features of the solution®.

In Fig. 4.2 we show the evolution of the co-moving number density
of DM during CD. We can see clearly that the amount of DM left over is
tightly linked to the value of (ov). In general a larger annihilation cross
section leads to lower relic density, and a smaller cross section leads to high
relic density.

Evolutionof (comoving) Number Density
T T T T T T T T

=== N,
NX
— — N,°(Qpu=0.25)

(@ v)=10""? Gev2

(o v)=10"° GeV2 .

100 200

X=m,[T

FIGURE 4.2: Co-moving number density of DM during CD.
The number density (solid lines) follows the equilibrium
number density (thick dashed line) until the annihilation
rate can not keep up with the expansion rate any more. The
annihilations stop fairly quickly and the relic density of DM
is fixed from then on. The annihilation rate can keep the
number density in equilibrium longer if the cross section
for annihilation is larger, leading to a lower relic density.
Here we have chosen m, = 100 GeV. Changing this mass
will change the numbers on the y-axis, but the shape of the
curves would be roughly the same.

5This will be a fairly standard derivation of the relic density for DM in the non-relativistic
limit following Kolb and Turner, 1990 and Gondolo and Gelmini, 1991. The main new
feature is that we allow for the possibility that the dark sector has a different temperature
than the visible sector.
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Annihilation Cross Section in the Non-Relativistic Limit

We want to solve Eq. 4.7 in the non-relativistic limit. First, let us look at
how the thermal averaged cross section behaves in this limit

d3p d3p -
Oy #vamwmm (@.14)
o~ Z $/£ )2 v dvx(av)efvim/g, (4.15)

where v, is the velocity of one of the DM-particles in the COM frame, and
where the last approximation is valid in the extreme non-relativistic limit
(z/€ 2 10) (van den Aarssen, Bringmann, and Goedecke, 2012).
Often, in the non-relativistic limit, we can approximate ov with a power
law
ov =~ 0011)2(”

If this is the case we can evaluate the integral in Eq. 4.15, giving us

(o) ~ f/";r <n + ;’) (;)n 5o (Z) - (4.16)

In the radiation dominated era, we have H = /g.(2)/g«(m, ) H (my )z 2
and s, = g% (x)/g"s(my)s(my )z 3. We can then write Eq. 4.7 in the follow-

ing form
ay A 9 9
@ = (o Ya). ®.17)

where

)\(x)—<1— z__dgis(@ )Vg* )us (@) () mX)UO (4.18)

39:s(> dx V 9+( xg*s my ) H (my) 7
and
4553/2 ™12 g _x
Yeglo) = 5525 (g) ﬁxsﬂe /€ (4.19)

Since we are looking for a simple analytic approximation, we will make
the simplifying assumption that g, and g} do not change appreciably dur-

ing CD, which is usually a good approximation. If this is true than A(z) ~

&' (@)s(my)do
H(my)

relative temperature of the dark and visible sectors. If ¥ is the photon, or
another SM particle, or if the dark sector has not decoupled from the visible
sector yet, then of course £ = 1, but if the dark sector is already decoupled
then we need to take this change into account.

, and all the z-dependence of A comes from the change in the

Evolution of ¢ at Chemical Decoupling

Let us look closer at the function {(x) close to CD, for a decoupled dark
sector. We will assume, as is the case in many of the types of models con-
sidered in this thesis, that the dark sector consists of just the DM particle x
and a relativistic heat bath particle 4. Let us also, for simplicity assume that
they have an equal number of degrees of freedom.
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When x becomes non-relativistic it will start to annihilate, heating up
the dark heat bath relative to the SM heat bath. Since CD also happens
shortly after DM becomes non-relativistic, we may need to take this effect
into account.

Assuming that almost all x particles annihilate (which is equivalent to
the assumption that y is extremely non-relativistic at CD), we can calculate
the total temperature change

5 40X 1/3

Safter = (g*s:yg*s) Ebefore = 1.26 pefore- (4.20)
9y5

We see that to get a precise calculation of the relic density we would need

to take this change into account.

As long as we are in the non-relativistic limit, however, most of the tem-
perature change has already happened, so ¢ is fairly constant, and equal to
the final value of ¢, during the actual decoupling. From Fig. 4.3 we see that
this is a reasonable approximation if z.q/¢ 2 5.

For the rest of this discussion we will use the value £ & constant = ey,
to make things simple.

140
1.35¢ ]
1.30F 1
1.25F ]
o
8
21.20F ]
“un
v
1.15F ]
1.10F ]
1.05; ]
1.00" L e ]
0 2 4 6 8 10
x&=m X/ TV
FIGURE 4.3: Plot of how the relative temperatures of
the dark and visible sectors change as x becomes non-
relativisitc and annihilates heating the dark heat bath. Note
how the curve flattens out as almost all the x particles an-
nihilate before 75 ~ m, /5. Here we have assumed that
o X
Gvs = Gis-
Calculating Y,

If we can, as we have argued is an acceptable approximation in the non-
relativistic limit, treat A as a constant, then Eq. 4.17 is much easier to solve.
In order to get a simple analytic expression however, we will still have to
make a few more approximations.
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When x starts to go out of chemical equilibrium, Y very quickly be-
comes much larger than Ycq. To quantify this departure we introduce the
departure from equilibrium, A =Y — Yeq. We can now write Eq. 4.17 in

temrms of A A Iy \
=m T A
. o pore A(2qu +A). (4.21)

At early times, before decoupling, A and |dA/dz| are both small. In this
region we get the solution

A~ "2 /2,

At late times, after decoupling, however, A ~ Y > Y¢q and Eq. 4.21
becomes

A _ A
de ~—~ rp2tn

Integrating this function from x4 to co we get

A2 (Y > Yeq)- (4.22)

1 n+1
Yoo = W_/\)xcd’ (4.23)

leaving us only with the task to determine x 4.

Determining x4

The only thing left to do is to determine the value of x = m, /T at decou-
pling. If £ = 1 then this is equivalent to deciding how non-relativistic x is
at CD. In general, however, it is the quantity m, /Ty = x/¢ that is the mea-
sure of how non-relativistic x is. This should lead us to expect that as a first
approximation (for z.q/§ > 1)

ra(§)/€ = 134,

where 2%y = r4({ = 1), and we will see that this behavior does show up.
CD denotes the time when Y goes out of equilibrium, this turnover hap-
pens when A ~ Y¢q. Using this, we will define z.4 by the equation ’

A(2eq) = cYeq(ed), (4.24)

where c is some order one constant that should be decided by solving the
equations numerically and using the values of ¢ that reproduce the numer-
ical results best. If we now plug x4 into the early time solution A(z.q) ~
2""2/(2 + ¢)\ we can solve the equation to find zq.

Organizing the terms

4562 V12 gy 32
Yeq(Tea) € = (5) g%xstd e talt
A(zcq) 2o 212+ )\
(45 m\V2 g, 3/2,,—(1-2n)/2 —aq/¢
= (5 (§) " eteon ) @ tesals, a2
=a

7Following Kolb and Turner, 1990 here.
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gives us
oTed /€ — a§3/2xc—d<1+2n>/2, (4.26)

where a£3/? >> 1 since z.q/€ > 1.
Such an equation can be solved iteratively giving us a good approxima-
tion when a¢3/2 >> 1. We then get

rea = Elnfa] + S¢Inlg] — 2" Inflnfa]] -~ ¢ ]
+0 ( In[In[Ina]]], 1n[1n[g]]). (4.27)
As we expected we get
Fea = €xlg — (1= )¢ Inf1/¢] + O nllnfg]]) (428)
where 49
wty = Infa) — — " Inflnfa]] + O(ln[ln[ln[am).
Relic density

We are now ready to plug our value of Y into Eq. 4.10

my(n + 1):1:25“130

0 =
PM PO
. (n+1)
G gy, (D[ - O =mmi/a] " 2 s
V45 g% (my) Pco mpiGo

(4.29)

In many cases the annihilation cross section is dominated by the s-wave
(n = 0). In that case 59 = 09 = (ov) and we get

" 1 1/2 , Qoeh2\ !
—10.10"? _o, ( 9us(my) g« (my) Teg DM '
(ov) = 1.0-1077GeV ¢ < 100 100 25 ) \ 0.1188

(4.30)

where, for simplicity, we have made the approximation zq ~ {z7;.

The most striking and important general feature of Eq. 4.29 and 4.30
is that the value of (ocv) needed to obtain the correct relic density is (al-
most) independent of m,,.. There is of course an implicit dependence on m,,
through z7,, 975 and g. but this is only a very weak dependence.

Since the cross section usually scales like

2
a

(ov) x —5,

mx

the requirement of obtaining the correct relic density usually corresponds

roughly to fixing the ratio between a and m,,.
It is also interesting to note that since

2

Oy —10 -2
— —— ~5-10 GeV
647 (100 GeV )2 ey
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a new particle with weak-scale mass, charged under the weak force, will,
almost automatically, get a relic density of about the right order of magni-
tude. This is often referred to as the "WIMP miracle".

The precise number in Eq. 4.30 should not be taken too seriously, since
we made a lot of approximations in our analysis. A more careful analytical
or numerical analysis (Steigman, Dasgupta, and Beacom, 2012) leads to the
requirement (for £ = 1)

(ov) ~2.2-107°em’s ™t ~1.9-107? GeV™2 (10 GeV < m, <10 TeV),

(4.31)
and
(ov) ~5-10"%em3s ™! ~4-107° GeV™2 (100 MeV < m, < 5GeV),
(4.32)

in order to obtain the correct relic density.
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Chapter 5

Kinetic Decoupling

Kinetic equilibrium refers to the situation where the momentum of a species
follows a thermal distribution, while we allow for the possibility that the
species is out of chemical equilibrium. In terms of the phase space distribu-
tion function, we can say that a species, 4, is in kinetic equilibrium as long
as

fi(xa p) = K;fieq(xv p)a

where k = n;(x)/n;3(x).
Kinetic equilibrium is upheld by elastic scattering, as is shown in Fig.
5.1, with some heat bath particle, which we will denote by 7.

X X

3 — 5
FIGURE 5.1: Processes that maintain kinetic equilibrium.
Thick line corresponds to a heavy particle.

For typical DM models, which undergo CD while non-relativistic, ki-
netic equilibrium is usually maintained until well after CD. This means that
we can usually assume kinetic equilibrium during CD and that we can as-
sume a constant co-moving number density of DM during KD. In general,
however, it is not always possible to treat these processes separately, and
we must treat a set of coupled differential equations for departure from
both chemical and kinetic equilibrium, as is discussed in van den Aarssen,
Bringmann, and Goedecke, 2012. In this section we will assume that we can
treat KD separately, and that x is highly non-relativistic.

5.1 Boltzmann Equation for Kinetic Decoupling

In order to study the process of KD in more detail we need the BE for the
DM temperature. The temperature is a good variable by which to ana-
lyze KD, since the scaling of the temperature changes as DM decouples
from the relativistic heat bath. The temperature of the heat bath scales
like T5 ~ 1/a, while the temperature of the decoupled non-relativistic DM
scales like T\ ~ 1/a?, see Fig. 5.2. Therefore, we only need to find the
the temperature at which the scaling changes, and this will be the kinetic
decoupling temperature, Tig.
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FIGURE 5.2: Plot of the DM temperature during kinetic de-

coupling. At high temperatures 7', follows the heat bath

temperature 7%, while at low temperatures, after KD, it

scales like T}, ~ 1/a®. We define the kinetic decoupling

temperature, Tiq4, to be the temperature at which the two
asymptotic curves meet.

The collision term (Eq. 2.30) relevant for kinetic decoupling is the one
that involves elastic scattering between, x and 7. The general term is given

by
ol / 3k / d3k / d3p
29X 2m)32w ) (27)320 ) (27)32E

¥

x 2 WG+ k—p—k) Mls s

X | F(B)g* (@) (1F S (P) (1 F 9% (@)

— F)g* (@) (1F0*(@) (17 £(B))]. (5.1)

We should note here that we consider particles and antiparticles together.
So if  is a Dirac fermion g, = 4 and we consider both processes with parti-
cles and processes with antiparticles in |M|?. This differs from our conven-
tion in Sec. 4, where we considered particles and antiparticles separately.

Since DM is not in full thermal equilibrium, it is not entirely clear what
we mean when we talk about the DM temperature. It is natural, however,
to define it by the average kinetic energy in a thermal distribution

3., /PP \ g &p [ p?
2TX‘<2mX>‘7f/ (2n)? (m) F(E). 62
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It is also useful to introduce the dimensionless variables

Y= 2/3 (53)
Sv
my
= =, 5.4
p= 654

In order to get a BE for the temperature we need to multiply Eq. 2.30
by p? and integrate over d*p. Keeping only leading terms in p?/m? gives us
(van den Aarssen, Bringmann, and Goedecke, 2012)

x dy €T dgvs V(T:Y) Yeq
2 _ (- * Yea 4 .
y dx < 39l dx ) H(T) \ y ’ (5:5)
where yeq = m,T5/ 512,/ 3, where
L) = ; 4 + + 2
AT = gy | K F @) g @) (MP), 69

is called the momentum transfer rate, and where

1 0
2 - . 2
(IM| >t_8k4 _4kgzt( t) |IM%. (5.7)

As we are primarily interested in kinetic decoupling at the keV scale,
the electrons and positrons are long since done annihilating. This means

that g¢¢ will be a constant throughout the whole process of KD. As long as
this is the case, Eq. 5.5 simplifies, and we get

ar, Ty y(13) (T
7w (7). )

where, as we have indicated, ¢ is still, in principle, a function of 7'.

From Eq. 5.8 we can see clearly that it is the ratio v(75)/H (1) which
governs the transition between the two regions with different scaling of 7.
At early times, when ~(7%) > H(T) we see that the ratio T\ /7 is forced
to be equal to &, or equivalently 7', is forced to be equal to 7T5. At low
temperatures, however, when v(75) < H(T'), the RHS can be completely
neglected, and the change in T, is governed by the 27, /T term, leading to
Ty ~ T? ~ 1/a®. We define the temperature of KD, Tig4, as the temperature
where these two asymptotes meet, i.e.

T—:/ (T for T Z de,
T (T) = " 2 (5.9)
X( kad ( é{%?) for T 5 de.

This analysis requires that v(75) oc 77", with n > —2 (or an even
stronger dependence on 7T') in order for v to dominate at high temperatures
and H to dominate at low temperatures. If this is not the case, it is not clear
that KD will ever happen. We will return to this point later when we look
at the solutions of the BE.
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5.2 Analytic Solution of the Kinetic Decoupling Equa-
tion

In general, the BE for KD must be solved numerically. Under a few more
assumptions, however, we can find an exact analytic solution to the equa-
tion.

First, we assume that ¢ is constant during KD. Second, we assume that
the momentum transfer rate scales like a power law e.g.

T 44n
Y(T5) (mx> , (5.10)

where n > —1. These assumptions are actually very good in a wide range
of models that we will be considering.

We will now solve the BE analytically under the stated assumptions. In
solving Eq. (5.8) it is useful to first consider the homogeneous equation

n+2
e (1) ] 511)
My
My

B )

is a constant if H(T) o T? as it is in the radiation dominated phase (' >
eV).
This equation is separable and the solution is given by

T 2
hom — ¢ <> ek, (5.12)

ary, Ty

dar T

where

T n—+2
where k,, = n‘ljrlQ <m—) .
X

We now need to find a particular solution 7% to the full Eq. (5.8), fol-
lowing (Bringmann and Hofmann, 2007) we try the ansatz 7% = )\(T)Tf{‘om.
Inserting this into Eq. (5.8) we derive the following equation for A(7T')

d)\ T nt2
hom
ZX — =ayé (mx> . (5.13)

This equation can be solved to find the complete solution 7}, = T% + ATQOm

L/ 42) o,

T, =¢T [1- -2

WF(—U(”‘F 2), kn)

+ ATYO™, (5.14)

We want to match this general solution onto the asymptotic behavior
we expect

T, T2 ¢, (5.15)

2
T, '=2° T <> . (5.16)
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To do this we also need to look at the expansion of the incomplete gamma
function in these limits

T(=1/(n +2), kg) 2% g, V4D e g, (5.17)
T(—1/(n+2), k) "= (n +2) [knl/("”) -T (" + 1)) . (5.18)
n+2
Let us look at the T" — oo limit first
T—o0 1 h h
T, = €&&T'11— —— AT™O™ = €T + AT™O™, 1
[ g | AT e anen 1)

From this we see that A = 0. Looking at the 7" — 0 limit now lets us solve
for the kinetic decoupling temperature 7i4 in terms of the model parame-
ters

1
=5 2
T20 cppt/ntyp (PELY _(an N7 TT
T, = &Tk r = 5.20
X Tk <n+2 ¢ n+2 My (5:20)
giving
1 -
Td _ < in )"”r("“) (5.21)
My n+ 2 n+2

5.3 Momentum Transfer Rate, v(7%)

When looking at Eq. 5.8 (at least almost) all the interesting physics is in the
momentum transfer rate, 7(7%). Let us now look a bit closer at this function.
First we can do a little trick using integration by parts.

Using the following mathematical identity

9= (1 F gF) = ~T50.9%,

we can use partial integration to rewrite Eq. 5.6 as

AT5) = oy | dagu [ (MP), ] 622)

A8g, M3 Jpm
where we have only assumed that

: 4 2

fim 1 (1, ] =0

We have also included the limits on the integral over w to avoid any confu-
sion.

In general, this is as far as we get, and we have to solve Eq. 5.8 nu-
merically. We should try to examine, however, under what circumstances
v(T%) scales like a power law in temperature, since in these cases we have
an exact analytic solution.

If we assume that 7 is ultra-relativistic, this means ¥ ~ w and Eq. 5.22
simplifies. If we further assume that the leading term in the ¢-averaged
scattering matrix element squared scales like a power law

(IMP), ~ e <¢:) , (5.23)
X
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we can rewrite Eq. 5.22 in the following simple form

c o
T:) = — > +4/ dwg™t |w" 3. 5.24
W) = () | dug* "] (524)

This integral can be solved analytically, giving us

c €n+4m T n+4
T5) = = XNE . — 5.25
om) = e (o) (5.25
where
N, 3=((n+4)(n+4)!, (5.26)
Ni,=1-2"")N- .. (5.27)

In Figs. 5.3 and 5.4 we see the evolution of the momentum transfer
rate, y(7y), compared to the expansion rate, H(7T'). For the cases in Fig. 5.3
(n > 0) we can

+ T T T ! ! '
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FIGURE 5.3: Plot of the momentum transfer rate, (7%)
(dashed lines), compared to the expansion rate, H(T') (solid
line). The different lines correspond to different power
law scalings of the t-averaged squared matrix element,
(IMJ?), ~ cn(w/my)™. We see that i all cases we have ki-
netic equilibrium at high temperatures, and then we go out
of kinetic equilibrium at low temperatures. The values of ¢,,
have been adjusted to result in kinetic decoupling at 100 eV.

We can now put this result into the analytical solution. Using H? =
(473G /45)g.T* we get the following expression for a,,

an = > N ertain TP (5.28)

2(2m)9g. Gy My
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FIGURE 5.4: Plot of the momentum transfer rate, v(7%)
(dashed lines), compared to the expansion rate, H (T") (solid
line). The different lines correspond to different power
law scalings of the t-averaged squared matrix element,
(IM|?), ~ ¢n(w/my)". These are cases where it is impos-
sible to achieve kinetic decoupling (under the assumptions
that we have made in Eq. 5.25). For the n = —2 case, the mo-
mentum transfer rate scales in exactly the same way as the
Hubble rate, meaning that you are either always in equilib-
rium, or never in equilibrium. The n = —4 case, however,
corresponds to a case where you are out of equilibrium at
early times, but then go into equilibrium at some time (ki-
netic recoupling?). After it has gone into kinetic equilibrium,
it will stay there (at least until matter domination).

5.4 Suppressing Structure Formation on Small Scales

As long as the DM particles interact with a relativistic heat bath, the pres-
sure of the heat bath leads to acoustic oscillations that wash out the over-
densities that starts growing in the DM fluid, leading to a suppression of
structure on all scales (within the horizon). See Fig. 5.5 for a description.

KD corresponds (at least roughly) to the time at which the interactions
between the DM fluid and the heat bath become negligible. This means that
only modes on a larger scale than the horizon at KD remain unsuppressed.
So we should see a cutoff in the linear matter power spectrum at the scale
of roughly the size of the cosmological horizon at KD.

The cutoff in the linear matter power spectrum corresponds to a cut-
off mass, given, as a first approximation, by the mass (in DM) within the
horizon at KD

Moyt = 4m ppm(Tia) _ 47

“T 3 H3Ta) 3

—3/2
[ 473 :| / QDMPCOWLI?))] (5.29)

45geff Tl?dT(:)g ’

where Tj is the CMB temperature today, and we have assumed that gi5 does
not change between KD and today. This is clearly just a rough estimate, and
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FIGURE 5.5: Overview plot of structure formation. On the
y-axis we have comoving length scale, Ao, and on the z-
axis we have the scale factor, a. See Fig. 1.1 for more details.
The shaded area before Ti4 corresponds to scales and times
where acoustic oscillations from elastic scattering of x and
7, suppress the growth of the perturbations in the DM-fluid.
The first scale that enters the horizon after KD is the small-
est unsuppressed scale, and corresponds to the smallest DM
structures today.

recent numerical estimates of the cutoff gives a value of (Vogelsberger et al.,
2015)

T -3
110 kd -1
My, =5+ 10 (100 eV> h™ Mg . (5.30)
In WDM models, a similar cutoff in the power spectrum arises from the
free-streaming of light DM particles (see Sec. 1.2.4). The corresponding
numerical estimate for this effect is given by (Vogelsberger et al., 2015)

mMwDM

keV) h=l M, . (5.31)

Meyt,wpm = 101 (

Clearly, the largest of these cutoff masses is the one that is relevant. This

will have to be estimated on a model by model basis. For models where

a (highly) non-relativistic DM candidate undergoes KD at the keV-scale,

which is what we are mainly considering in this thesis, the cutoff from KD

is much larger. In Fig. 5.6 we can see a comparison of the linear matter
power spectrum in models with late KD and WDM models.
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FIGURE 5.6: Plot of the linear matter power spectrum,
AR or(k) = kP Pinear(k) /272, in different DM models. Fig-
ure taken from Vogelsberger et al., 2015. The solid black line
corresponds to regular CDM cosmology. The dotted and
dashed black curves correspond to different WDM models,
while the colored lines corresponds to models with late KD.
The exponential cutoff in the power spectrum arising from
WDM and late KD are similar, although the exact shape is
different, the acoustic oscillations taking place in models
with late KD is entirely absent in WDM models, but this dif-
ference is hard to see in the non-linear matter power spec-
trum.
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Chapter 6

General Considerations

6.1 Late Kinetic decoupling

In typical WIMP - models kinetic decoupling happens far too early to pos-
sibly address the missing satellite problem. For e.g. neutralino DM we
get kinetic decoupling temperatures in the range Ti4 ~ MeV - GeV, lead-
ing to cutoff masses of the order Myt ~ 10~ — 1073 M, far below the
Myt ~ 10'°M relevant for dwarf galaxy scales (Bringmann, 2009). This
means that we typically need to do something special in order to get Tiq ~
keV, like we need.

6.1.1 Scattering Partner 7y

The reason for the cutoff in the matter power spectrum is the pressure re-
sulting from the interaction between DM particles, x, and some heat bath
particle, 7. This particle has to be relativistic, or at least very light. The main
reason for this is that, since the number density, ns, of a non-relativistic par-
ticle is exponentially suppressed, the interaction rate for elastic scattering,
I' ~ ovns, is reduced correspondingly.

You can try to get around this by stipulating that 4 has decoupled from
the SM (or other) heat bath while relativistic, so that its comoving number
density is constant, like a relativistic particle. Another problem that arises
is then that the temperature, 75 ~ a2, quickly drops as 7 becomes non
relativistic, leading to a negligible pressure.

The observant reader will know that there is still a further possibility. 7
could be in kinetic equilibrium with a relativistic particle, but still have a
large constant comoving number density, perhaps arising from some con-
served charge or quantum number possessed by 7. This is possible, but
there is still a very strong constraint from the relic density of ¥ (see Eq.
4.13), making it very hard to avoid ms /¢ < Tig.!

6.1.2 General Requirements for Late Kinetic Decoupling

If we want some general expressions relating the kinetic decoupling tem-
perature to the other parameters we need to make some more assumptions.
We will first assume that 4 is ultra relativistic, second we will assume that
the amplitude is given by

(IM[?), = cn (;;) , ©6.1)

X

'In Sec. 9.2.2 we see a model where we push the limits of exactly these assumptions.
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where w is the energy of the heat bath particle 5. We showed in Sec. 5.2
that using these assumptions we can solve the BE for KD analytically for
the temperature of KD, Tiq. Using Egs. 5.21 and 5.28 this we get 2

c my \"+3 [ T, ~(n+2)
Cn _ pgEe—(n+a) (M kd 5
Iy n€ (GeV) 100eV ’ 62)
where
_ 2(2m)%g. n+2 1 GeV [ GeV \"'?
Ay = , (6.3)
5 (m+4)Kn+4) |p (L—H) Mp \ 100eV
n+2
and A
+ n
Al = 1 o-r3) (6.4)
To get a handle on this let us look at a couple of values of A,
Ay =1.8-1073, (6.5)
Ay =5.7-101, (6.6)
Ay =2.1-10%. 6.7)

We see that for n > 0 we need a significant enhancement of the "rest" of the
matrix element ¢,,.

In general we see that reducing n makes it easier to achieve late kinetic
decoupling, and for n = 0 we can achieve it simply with ¢, ~ 0.1 and m,, ~
GeV.

Another thing we can always do to achieve later kinetic decoupling is
to reduce m,, there are, however, limits to how light DM can be. The free
streaming effects from warm DM become relevant when m, approaches the
keV-scale (see Eq. 5.31), so this is a lower limit on the mass.?

6.1.3 Thermal Production

If we assume that DM was thermally produced in the early universe, then
this typically means that the ratio «/m,, is fixed.

The coupling, «, that is fixed by requiring the correct relic density, is not
necessarily the same as the coupling(-s) involved in the elastic scattering
process relevant for KD. However, since in many cases the two couplings
are the same, it is useful to study this possibility in more detail.

Let us assume that the DM annihilation process is dominated by the s-
wave and that the scattering cross section is given by (ov) = wa?/2m?3. If
we then use the canonical value for the WIMP annihilation cross section,
(ov) =3-1072cm3/s ~ 2-107°GeV 2 we get a ~ 6 - 10° m, /GeV.

2Note that this solution is only valid for n > —1. If this is not the case then, under our
definition, KD actually never happens, which is why we cannot get an expression for it. In
reality it means that KD does not happen under the assumptions we have made. KD can
happen if the assumptions are broken, for example when 4 becomes non-relativistic.

*1t is unclear how the free-streaming effects change for ¢ < 1. Since the effects come
from the velocity of the DM-particles, it seems clear that there should be an effect there, but
we have not found any work in the literature addressing this issue specifically.
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Introducing the ratio 7 = ¢, /g, we can rewrite Eq. 6.2 to get

n+1 T —(n+2)
~3.108 AT e—(n+4) ([ Mx kd _ .
re~ 310745 <GeV) 100eV (6.8)

We see that in this case it is significantly harder to achieve late KD. Also,
reducing the mass does not help nearly as much. This means that if the
coupling « is responsible for both CD and KD, we need a huge value for r,
or we need enormously light DM (or some combination thereof).

6.1.4 Enhancing the Elastic Scattering

As we see from the above discussion, in most cases we need a significant
enhancement of the matrix element (c,, > «?) in order to obtain late KD. As
long as we are in the perturbative regime (meaning that the leading term in
the expansion of the S-matrix dominates the scattering amplitude), we can
only create such an enhancement if we put a propagator almost on-shell.
At tree-level the scattering can occur in the s-, - and u-channels. We will
look at these in turn.

t-channel Enhancement

X

FIGURE 6.1: Feynman diagram for generic ¢-channel elastic

scattering (x¥ — x7). Since the kinematics forces ¢ to be

small, if we want an enhancement from the propagator, we
need to have a light mediator (mmediator <K 1My )-

We have made the assumption that m, > w. This ensures that kine-
matics of the elastic scattering in the ¢-channel forces t = (p1 — p2)? to be
very small (¢ ~ w? < m,), meaning that we need a light mediator mass
(Mmediator < My) in order to get an enhancement from the propagator (see
Fig. 6.1).

We expect the leading term in the squared amplitude to be of the form

m4 W n
ME ~ agas i () 69)

( — ""’medjiator My

where o, and o are the couplings between the mediator, x and 7 respec-
tively.



68 Chapter 6. General Considerations

If Mmediator > w then we get

4 n
Cp ~ Q5 (mx> (w) , (6.10)
Mmedjiator my

which can lead to a huge enhancement if m, > mmediator-

If the mediator is massless, then there is a pole in the amplitude at ¢ = 0.
In any real (finite temperature) system, however, this divergence will (at
least) be regulated by the thermal mass of the mediator (e.g Arnold and
Yaffe, 1995).

If we cannot make the assumption mmediator > w then the t-averaging
integral (see Eq. 5.7) also plays a major role in determining the form of the
solution.

s- and u-channel Enhancement

Js Gy,

k1 ko
kil k2

FIGURE 6.2: Feynman diagram for generic s/u-channel

elastic scattering (x7 — x7). Since the s ~ u ~ mi, if we

want an enhancement from the propagator, we need to have
a heavy mediator (Mmediator ~ M)

As long as m, > w then s and u are both dominated by the DM mo-
mentum p. To first order in w they are given by

s~ mi + 2myw, (6.11)
uxml = 2myw. (6.12)

We see that in order to get an enhancement from the propagator, we need
Mmediator ™~ M-

If Am = Mmediator — My > w, then we expect a squared amplitude of
the form

2 oy (w\"
M|* ~ — 6.13
MP ~ ot () 6.13
which can be enhanced if |Am| < m,,.

However, if Am < w, something more interesting can happen. In this
case the leading terms in the denominators are given by

§— mrznediator ~ mew’ (6.14)

U — M2 ediator = —2MyW- (6.15)
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meaning that we typically get a contribution mi Jw? from the propagator.
When combining the results from the s- and u-channels, however (which
we need to do in most cases), the difference in sign can mean that the lead-
ing terms from the two channels exactly cancel. This will depend on the
exact amplitudes in question.

6.1.5 Fermionic ¥y

We cannot say that much about the scattering matrix elements in general,
without specifying the particle physics model. We can, however, make an
observation about the case of fermionic 7. Any elastic scattering amplitude
involving fermionic 4 will need to contain two spinors u(k) and @(k) (or v
and 0).

Since these spinors are dimensionful and only depend on the momen-
tum, k, and mass, mj5, of 7, this has to mean that the amplitude gets a contri-
bution of either w or m5 in the numerator. In the limit where we neglect the
mass of ¥ this means that we get n > 2 (or, if the amplitude is proportional
to ms, we get nothing) for any process that involves fermionic 7.4

The only exception to this argument is if the denominator is enhanced
by the same (or higher) power of w. In both cases, however, fermionic ¥
reduces the maximally possible enhancement.

A similar argument can be made for scalar 7 interacting only via a gauge
boson, since then the vertices will always include one power of k.

6.2 Evolution of the Dark Radiation Temperature

In cases where the dark sector, that is DM, DR and possibly other particles
part of the DR heat bath, is entirely decoupled from the visible sector it
is important to keep track of the relative temperature by introducing the
temperature fraction £

Ty = ¢T.

In general ¢ is a function of time (or temperature), and in the limit where
entropy is conserved, which is usually a very good approximation, we can
calculate this time dependence by following the number of relativistic de-
grees of freedom in both the visible and dark sector.

Let us denote the total entropy density in the dark and visible sectors
by s4 and s, respectively. We then define the effective numbers of relativis-
tic degrees of freedom in the dark and visible sectors, g% and g%, by the
following expressions

2%

sa(Ty) = es 75 5> (6.16)
, 2m?

so(T) = gis =T (6.17)

As discussed in Ch. 2, since the entropy is dominated by the contribu-
tion from relativistic species, we can approximate the effective relativistic

*Note that we here rely on the assumption that the amplitude can be written as a power
law in w.
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degrees of freedom in the same way

dark 3 dark 3

T; 7 T

d _ E . v i E . v
9xs = i (T:y> + R i <T’y> )

bosons fermions
visible 3 visible 3
T; 7 T,
v E N =kl L E N i
95 = 9gi <T> + 8 : gi T .
bosons fermions

Entropy conservation implies 2 (sa®) = 0. After the the two sectors are
decoupled this conservation should apply separately in each of the sectors
(and of course on the total entropy as well). This means that the expressions

d 3.3
g*STﬁ/a

and
9YsT a’

are constants in time.

If the two sectors were in thermal equilibrium in the early universe, and
then decoupled at a time corresponding to a temperature Ty., we can find
a simple expression for £

9%6(Tae)g%s(T) >1/ ’
T: = T. 6.18
K (gfs(Y%)gis(th) (6.18)

Even if you do not know when the sectors decoupled, or even know if they
were ever in equilibrium at all, but you know the relation between the tem-
peratures at some initial time ¢;

T5r = &7,
you can still use this approach to follow the subsequent evolution of the
temperatures
d T- v (T 1/3
9s(T5)9.s(Tr)

Let us here just note briefly that although they are fairly simple, Egs.
6.18 and 6.19 are only implicit equations for 73, since the r.h.s. also depends
on T5, which will need to be taken into account when solving the equation.

What is happening here, physically, is that as the particle species in one
of the heat baths become non relativistic (thus reducing the effective num-
ber of relativistic degrees of freedom) they start to annihilate, this heats the
corresponding heat bath as compared to the other, changing the relative
temperature.

An example of this from the standard model is the case of neutrinos.
Neutrinos decouple from the SM heat bath at a temperature of a few MeV,
this is right before the electrons and positrons become non-relativistic and
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start to annihilate. Thus the photon bath gets heated compared to the neu-
trinos by the electron positron annihilations, leading to a permanent differ-
ence in temperature at later times, given by (using Eq. (6.18))

9 1/3
T,=(—i-—) T
(z7753)

It is interesting to take a look at possible values for £ can take. Let us
consider the case where the dark and visible sector are at equilibrium at
some high temperature. In this case ¢ is entirely decided from the number
of relativistic species in the different sectors.

To look at the most extreme case let us consider the case where the dark
matter becomes non-relativistic before the two sectors decouple, and there
are no other species that annihilate in the dark sector after decoupling. ¢
is then determined by the number of degrees of freedom available in the
visible sector at the time of decoupling

£ <2+7/8-2-3(4/11)>1/3'

g:S(TdC)
For a simple case we can consider all the SM degrees of freedom
247/8-2-3(4/11)\ /3
SM
1 — ~ 0.33. 2
$min ( 28 +17/8-90 033 (6.20)

We see that for the most extreme case, even with all the SM particles we
cannot even reduce ¢ below 0.3. Even if we have 10° degrees of freedom we
will not go lower that £ ~ 0.15. So if entropy is conserved, it is hard to get
a very small value for &.

However, if we consider processes that do not conserve entropy, or al-
low for models where the visible and dark sector are never in thermal equi-
librium, there is, in general, no lower bound on £. There will, however,
always be an upper bound coming from N that will be discussed in sec-
tion 6.3.

6.3 Effective Number of Neutrino Species, N

Adding DR into the mix in cosmology changes the energy density in radia-
tion affecting the cosmological evolution. These effects are usually parametrized
by introducing the effective number of neutrino species, Ng. At late times

the radiation density of the universe is given by

PR = P + 3pu + PDR. (6.21)

In section 6.2 we showed that the neutrino temperature, at late times, is

given by
40\ 1/3
no(4)"r
11

This however is only an approximation, it is what you would get in the
limit of instantaneous decoupling of massless neutrinos at a temperature
T9¢ > m,. The actual neutrino temperature will deviate slightly from this.
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We define N by the following equation (Lesgourgues et al., 2013, p. 103)

PR = Py + Neffpgv (6.22)

4/3
Py A /p
vy 8\ 11 v

In the simplest approximation, then, and in a universe with no DR, we
get Nege = 3. In the "standard model", that is, only SM particles and ACDM
cosmology, however, we get a slightly different result, coming from the fact
that the neutrino decoupling is not instantaneous and that m. /TS ~ 0.2.
We get (Nollett and Steigman, 2015)

where

SM Pv
v
When considering models with some DR, it is common to introduce the
parameter A Ngg. For us it is natural to define it in a way so that AN = 0

corresponds to cosmology with no DR. Following Nollett and Steigman,
2015 we will define it by the relation®

PR = py + (3 + ANeg) py.- (6.23)

Note that with this definition Neg # (3 + ANeg), although this equality
holds in the simple approximation discussed earlier. In general we have

4
v TV T
Negt = %8(3 + ANggg) = ((4/1{)1/3> (3 + ANgg) =~ 3.046(1 + ANeg/3).
(6.24)
We have already mentioned that N is a quantity that is defined at "late
times", but now let us be more clear what we mean by that. The standard
approach is to define N at a temperature m, < 7" < m,, but we want
to allow for the possibility that some DR becomes non-relativistic and only
contributes to the radiation density for a time. Therefore we will adopt a
temperature dependent ANy by the simple approximation

ppr(T)
Pv (T) ’

where we assume p, (T") evolves like the neutrino density would in a cos-
mology without any DR. This approach is not perfect, but it allows us to
fairly easily translate the bounds on N, to rough bounds on our dark sec-
tor models. A more careful treatment of this subject is simply beyond the
scope of this thesis.

Nt is a severely constrained parameter. The strongest bounds come
from analysis of the CMB. The Planck data, combined with data from other
experiments (Planck Collaboration et al., 2015) have the following bounds

A Negf (T) -

Ngg = 3.04 £0.18. (6.25)

5The literature, although it seems to agree on the definition of Nk, does not seem to be
consistent in the definition of ANgg. I have, as an example, seen both AN = Neg — 3 and
ANt = Neg — 3.046 in addition to the one used here.
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If we want to translate this 1o bound into an upper bound on ppr at the
time of recombination T < eV, we get the following bound

POR <0.17.

14

We can now translate all this into an upper bound on ¢ (or 75 /7)) for
dark radiation in the late universe. The general bound is given by

7017\ /43
< [ —— ~ 0. DR\—1/4 2
gN <4Q*DR> (11> 053(9* ) ) (6 6)

where

DR T\* 7 DR 7\

=3 a(z) +5 2 o(z)
bosons fermions

This means that if we for example have one real scalar as DR, &rs < 0.53,

while if we have one Dirac fermion we get {pp S 0.39. Keep in mind,

however, that these are just the 10 bounds from CMB. The main point is

that £ is severely constrained from above.

With the next release from Planck, we expect that the limits on Nyg will
become even stronger.6 It will then be interesting to see if the confidence
interval is still centered around the standard figure of Neg = 3.046 or if it
will favor some small amount of DR. If AN gets even more constrained,
then, based on the discussions in this section and those in Sec. 6.2, it may
simply rule out the possibility of thermally produced DR (without violating
entropy conservation).

The other main constraint on N comes from BBN. These are given by
(Nollett and Steigman, 2015)

N = 3.56 £ 0.23. (6.27)

Interestingly, this constraint actually favors some amount of DR, in mild
conflict with the CMB results. However, it is important to note that the
two sets of data constrain the radiation content of the universe at different
temperatures, so they are not directly comparable.

The apparent conflict between the CMB and BBN measurements of N
also suggests the possibility for DR that becomes non-relativistic after BBN
but before recombination. This is an possibility that can be relevant for
models where kinetic decoupling of DM is associated with DR becoming
non-relativistic.

For a nice review of the constraints on neutrinos and DR see Riemer-
Sorensen, Parkinson, and Davis, 2013.

®This is partly based on private conversation with members of the Planck team.
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Chapter 7

Summary of Previous Work

In this chapter we will summarize the work that has been done on late KD
in the literature. We will mostly focus on the work we did in Bringmann
et al., 2016 trying to classify all (the simplest) possible phenomenological
particle models for DM that can lead to late KD, but we will try to discuss
how other work fits into this classification as well.

In Bringmann et al., 2016 we use a completely phenomenological ap-
proach to classifying particle models. First we classify them after the num-
ber of particles involved in the model. As we argued is Sec. 6.1.1 (with some
stated reservations), in order to obtain late KD, we need the DM particle, x,
to scatter elastically off a relativistic heat bath particle, 7. This means that
the “simplest” models are those models that just contain x and 7, we call
these 2-particle models. Models involving another particle in addition to x
and 7 are called 3-particle models.

In addition to the classification according to the number of particle in
the model, we classify the models according to the spins of x and 7. This
gives a large multiplicity of possible models, which we look at in turn.

On top of this classification we can classify models according to the
topology of the main interaction (t-channel, s/u-channel etc.), giving us a
further multiplicity of models.

We work only with renormalizable interactions and we impose a Z
symmetry for x, in order to ensure stability. This means that multitude of
possible models gets narrowed down significantly. We also only consider
spin-1 particles that are gauge bosons, allowing, however, for the gauge
symmetry to be broken by giving the gauge bosons a mass.

7.1 2-Particle Models

The Z; symmetry imposed on x means that it is impossible to have fermionic
7 or gauge boson X. So x is a fermion or scalar, interacting with a bosonic
7. As we discussed in Sec. 3.3.3, considering the self interaction of x sets
severe limits on a xx7¥ coupling for bosonic 7. This means that either, the
coupling a has to be extremely small, or we need the mass of x to be really
large, and the mass of 4 not too small (see Fig. 3.8). As we see from Fig. 3.8,
it also means that it is (almost) impossible to have annihilation to 4 be the
process that gives the correct relic density of x.

The self-interaction constraint leads to models with large m, and (or)
small «. This combination means that it is hard to achieve late KD, particu-
larly, we need a large value for r = ¢, /(gya?) i.e. a large enhancement from
the propagator. Because of the cancellation between the contributions of
the s- and u-channels discussed in Sec. 6.1.4, this enhancement really only
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X Scalar Fermion
o TOP LKD TP or LKD TP or
4p my S MeV Yes Constant (dim > 4)
Scalar ; my ~ 1keV (or)30 Yukawa || ™3~ 1keV {(o7)30 Yukawa
my 21000’ TeV  (formy 2 1MeV) my 2100a¥PTeV | (formy 2 1MeV)
s/u {(o7)30 {(oT)30
Fermion Zs (dim > 4)
s/u {(oT)30 {or)30
Vector
SU(N) ms ~ 1keV <UT>30 Yukawa ms ~ 1keV <O’T>30 Yukawa
my 2 10075 Tev (for my > 1MeV) my 2 10a¥° Tev (for my 2 1MeV)

TABLE 7.1: Overview of results for late KD in the 2-particle
models from Bringmann et al., 2016. The different rows in-
dicates the topology (TOP) of the (dominant) y — 7 scatter-
ing diagram. LKD indicates if the given model can achieve
late kinetic decoupling e.g. Tiq ~ 100 eV, TP indicates if
the annihilation process xx — ¥7 can be responsible for the
thermal production of DM and o7 indicates what kind of
self interactions are present in this model (if the model is vi-
able). If a cell is white that means that the the model works
(i.e. it can obtain the corresponding property, like thermal
production (TP).), and for what model parameters. A gray
cell means that the model does not work (i.e. it is impossi-
ble, ruled out or violates our assumptions). The reason that
the model does not work is indicated in the gray cells. For
more details see Bringmann et al., 2016.

happens in the ¢-channel. One of the models with elastic scattering domi-
nated by the ¢-channel contribution is the SU(NN) model discussed in detail

in Ch. 9.

The one exception to the strong self-interaction constraint is the model
with scalar x and scalar ¥ interacting through a direct 4-point interaction.
This model will be discussed in detail in Ch. 8.

The results obtained in Bringmann et al., 2016 for the 2-particle models
is summarized in Tab. 7.1.
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7.2 3-Particle Models

For the 3-particle models we add another particle, in addition to x and ¥,
to mediate a force between them. In accordance with the discussion in Sec.
6.1.4, we add a heavy particle x’ slightly heavier than x in the s/u-channels
and we add a light particle 4’ in the ¢t-channel, in order to get a large en-
hancement of the amplitudes.

The s/u-channel models are viable for a range of different model pa-
rameters if Am = m,, — m, < m,. Models that are suppressed by the
energy of ¥ (i.e. n > 0) must have smaller m, in order to lead to late KD.
These models are also generally compatible with thermal production of x
through the annihilation process xx — 77, although the self interaction at
dwarf scales from these models is negligible.

The t-channel models are very interesting. If 4’ is heavier than 4 (msy ~
MeV), then the self interaction resulting from the xx3' vertex is weaker
than the corresponding one for xx7 that we met in the 2-particle models.
This allows for arranging both thermal production and an interesting self-
interaction at dwarf galaxy scales simultaneously (see Fig. 7.1), as well as
ensuring late KD. This triad of properties makes this class of models very
attractive.

7.3 Other Works

In Aarssen, Bringmann, and Pfrommer, 2012; Bringmann, Hasenkamp, and
Kersten, 2014; Dasgupta and Kopp, 2014; Ko and Tang, 2014; Binder et al.,
2016 the autors all look at models where fermionic DM obtains late KD and
self-interactions from coupling to MeV scale mediators and with sterile or
SM neutrinos as relativistic heat bath particles. These would correspond to
our 3-particle models in the ¢-channel.

Tang, 2016 looks at a similar model to some of our 2-particle models,
with fermionic DM and with scalar heat bath particles, but does not seem
to take into account the self interaction of DM that would arise from such
models.

Chu and Dasgupta, 2014 consider an interesting 3-particle model in the
s/u-channels with Majorana fermion DM and with a pseudoscalar heat
bath particle.
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FIGURE 7.1: Plot of parameters needed to obtain the cor-
rect relic density and an interesting self interaction at dwarf
galaxy scales for 3-particle models in the t-channel. On the
y-axis we have the coupling «,, corresponding to the xx7’
vertex, while the DM mass m, is plotted on the z-axis. The
black lines correspond to parameters that will give the cor-
rect relic density from the process xx — 4'%/, for s-wave
and p-wave annihilation respectively. Clearly these are ap-
proximate values, and will depend slightly on the models.
The colored lines correspond to parameters needed to give
a self interaction of (or)30 = 1g/cm? for different values
of the mediator mass, ms/. Anything significantly above
the colored lines are ruled out. Note that for high masses
my 2 1 TeV, and for low masses m, < 10 GeV, we can get
both thermal production and an interesting self interaction
in the same model. For more details see Bringmann et al.,
2016.
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Chapter 8

Scalar 4-Point Coupling

The simplest possible model for x3 — x7 scattering is simply a 4-point
scalar interaction. Given by the Lagranigian

A
Lint = J020%, CRY

where ¢, and ¢5 are real scalars representing DM and DR respectively.

In addition to being the simplest possible model, the results we get will
be essentially the same as for an effective higher dimensional operator, with
mi /A% ~ )\, where A is the cutoff-mass for the effective theory. This analogy
is valid as long as the scattering does not have a dependence on the DR
energy w. This means that the analysis of the simple model, is relevant for
a larger class of models.

8.1 Kinetic Decoupling

To calculate the kinetic decoupling temperature in such a model is fairly
straightforward, since there is no energy dependence (n = 0). We simply
have (|M|?); = A\2. This means that we can use the analytic solution in Eq.
5.21, giving us

3/ T, —2
2_g4.10"4¢4 My kd _ P
A 0 07¢ (GeV) 100eV (8.2)

As far as KD is concerned, as long as x is non-relativistic at KD, this is the
whole story.

For the sake of concreteness, let us, in the rest of this chapter, aim for
de = 100 eV.

8.2 Reconciling Late Kinetic Decoupling with Ther-
mal Production

In order to obtain the correct relic density from thermal production, we
want the thermal averaged cross section to be (Steigman, Dasgupta, and
Beacom, 2012)

(ov) ~4-107% GeV 2. (8.3)

In the non-relativistic limit, we have

)\2
(Oxx=77V) = S22’ (8.4)
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giving us
2
204107 Te () .
P () 5
Combining this with Eq. 8.2 we get the combination
A 410772 (8.6)
my =~ 0.6 MeV £°. (8.7)

This is a significant result. We see that we need a fairly small m,, in or-
der to have a small enough annihilation rate. The problem with this is that
we go outside the range of validity for the estimate in Steigman, Dasgupta,
and Beacom, 2012 for the annihilation cross-section. Also, for lighter DM,
the assumption that they are extremely non-relativistic at CD is no longer
necessarily valid. This means that we will have to look into the approxima-
tions that go into the expression in Eq. 8.3 in more detail.

8.3 Chemical Decoupling for Semi-Relativistic Dark
Matter

8.3.1 Approximations

Naively applying Eq. 8.3 to find ) is equivalent to doing many approxima-
tions that may or may not be valid for masses ranging from keV to MeV. In
particular we will look into 6 such approximations

1. We assume Maxwell-Boltzmann statistics for y.

We neglect Pauli-blocking and stimulated emission factors in the BE.
We use the non-relativistic expression for (ov).

We assume x5 o< §.

We neglect the change in £ during CD.

AL

We neglect the changes in g5.

We want to develop an estimate that we can actually trust, this means
that if any of the approximations mentioned introduce errors of the order
of a few percent, then we need to take it into account. If the error is less
than a few percent then we will let the approximation stand.

8.3.2 Maxwell-Boltzmann Statistics and Quantum Factors

First we want to analyze how large the error we get from using Maxwell-
Boltzmann statistics and neglecting the quantum factors is.

As the thermal averaging integral would be over the x distribution and
the quantum factors over the ¥ distribution (evaluated at something like
the x energy) we can use the following integral as a good measure for how
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the dependence on the distribution enters!

_ Ox d3p 1 1
IBE+QF(T) = nBE(T) / (Qﬂ):z eE(®/T _ 1 <1 + eE®)/T _1 )" (8.8)

eq
_ Y d®p 1 _ 1
Irp+or(T) = ”EE(T) / (om)8 E@/T 11 (1 EOT 1) (8.9)

Defining also the different number densities

d3p 1
BE _
dp
nlevcllB(T) ng/(27£3e Ew@)/T (8.11)
moT\ 32 .
neg (T) = gy ( 2; ) eTm/T (8.12)

where E(p) = /p? +m2, we now want to compare the different distribu-

tions in the not-so-non-relativistic range.

In Fig. 8.1 we have plotted the relative error in neglecting the quantum
factor for the Bose-Einstein distribution. We also include the Fermi-Dirac
distribution for comparison. We also see that if we use the Bose-Einstein
distribution, but neglect the quantum factor, we incur a relative error of
< 1.5 % for x/¢ 2 3. This is what we will chose in the following.

Comparing Maxwell-Boltzmann statistics to Fermi-Dirac or Bose-Einstein
statistics give very similar results, with small deviations for /¢ 2 4. See
Fig. 8.2.

8.3.3 Thermal Averaged Cross Section
In section 4.2.2 we used the following approximation for the cross section

)\2

- 327rm?< ’

(ov)NR = (0V)NR (8.13)

Since the cross section is independent of energy, the thermal averaging does
nothing.

This approximation is valid in the extreme non-relativistic limit, but in
the range we are now considering, we need to do better. The full expression
is given by

2 3 3 2
d d 1 1 A
<O"U> = gX / p1 / P2 ) (814)
(neB(}]E>2 (2m)3 | (27)3 eBV/T — 1 eB2/T — 1 \ 327 E1Es

!Clearly we should also add the p-dependence of whatever we are taking the thermal
average over, in our case (ov). But since in our case this is fairly constant, we will not take
that into account here. This way we also keep our analysis general, and not just for this
specific model.
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FIGURE 8.1: Plot of the relative error when neglecting the
quantum factors when doing the thermal average. We see
that we get a relative error of less than 1.5 % for z/¢ 2 3.
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FIGURE 8.2: Plot of the relative error when using Maxwell-
Boltzmann statistics to calculate the number density, or us-
ing the non-relativistic expression for the number density.
We see that for z/¢{ 2 4 we get very small relative errors
(S 2%) even when simply using Maxwell-Boltzmann statis-
tics. The non-relativistic expression for the number density,

2
mation. Even at x/£ ~ 10 there is still an error of about 15
%.

3/2
n = gy (mxT) e~™x/T however, is not a good approxi-

which can be rewritten

(o

1

2 g > 2 B2 2L
)= o (o | BN B B = s

(8.15)
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This gives us a significantly different result, as is shown in Fig. 8.3.
We see that the non-relativistic approximation severely overestimates the
actual scattering cross section. We also see that even at z/{ ~ 10 the error is
still around 30 %. This means that if we want precision in our estimate we
need to use the full expression.

1OE T ]

— Kov)nr/{ov) -1|

s
i,
o
=
©
[}
X 01-
_2 L 1 ]
10
1 10 100
X/§ =m,[ET
FIGURE 8.3: The non-relativistic expression for the annihi-
lation cross section, (cv)nR = 32;}% overestimates the ac-
X

tual cross section at high temperatures. At z/¢ ~ 10 the

error is still about 30 %, meaning that we need to use the

full energy dependent expression for the cross section, and

then take the thermal average, if we want a result with any
accuracy.

8.3.4 Evolution of Temperatures

Our back of the envelope calculation (Eq. 8.6), suggested that the DM
masses ended up in the MeV scale. As this is at the same scale as electrons
and positrons annihilating, this needs to be taken into account, in addition
to the effect of DM annihilation.

Visible Sector

In the visible sector, we need to keep track of the effective number of de-
grees of freedom for entropy g)s. For simplicity we will assume that the
neutrinos decouple before electron-positron annihilation starts heating the
photon bath.

The full expression for g)g is then given by

3
v _ Sv Se T,
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where 13
23
7, _ (24 25/ 5T /45) | 617)
2+42-2-7/8
and where n
s, = W. (8.18)

The evolution of g/ is shown in Fig. 8.4.
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FIGURE 8.4: Change in the effective number of degrees of
freedom for entropy in the visible sector, g}, during the
heating of the photon bath from electron positron annihi-
lations. Note that g} decreases for two reasons. First, the
electrons and positrons (almost) all annihilate and thus do
not contribute to the entropy. The second effect comes be-
cause the relative temperature of the neutrinos compared
to the photons decreases, reducing the entropy contribution
from neutrinos (compared to that of the photons).
Dark Sector

The dark sector consists of two real scalars, ¢, and ¢5. We assume that
the dark sector has already decoupled from the visible sector, and that its
temperature is given by T = {;T" at around 7" ~ 10 MeV. In this case the
evolution of the temperature is given by Eq. 6.19, which becomes

(8.19)

_ 2 2 + 25, /(20T /45) 1/3T
TSI\ 1+ s, /(272T3/45)  2+42-2-7/8

We see that at late times, if we can assume that s, and s, are negligible,
this reduces to

. 1/3
T%ate times __ &1 <181> T=~090¢&T. (8.20)
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If we use the equilibrium distribution for the electron and DM species
we can calculate the evolution the dark temperature parameter ¢, for differ-
ent m, /7. The result is shown in Fig. 8.5.
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FIGURE 8.5: Evolution of the temperature of the dark sector
relative to the visible sector for different m, /{; (assuming
equilibrium distributions for all species). Note that T = {T°
and &; = ¢(T ~ 10MeV) is the initial temperature fraction.
There are two events that change the relative temperature
of the dark and visible sector (in this temperature range).
One is the heating of the photon bath from electron-positron
annihilations. The other is the heating of the dark radia-
tion ¥ by the annihilating DM particles. These events oc-
cur around the time that the corresponding species become
non-relativistic. This means that the order of the events can
change depending on m, /&;. If m, /&1 > me ~ 0.5 (solid
line) MeV the DM annihilates first leading to an increase
in ¢ first at around T ~ m, /¢, followed by a decrease in
¢ at about T' ~ m.. If m,/&; < m. (small dashes), then
¢ first decreases before it increases again at T' ~ m, /&. If
my /&1 = m. then the two effects partly cancel each other
out, but since the effect from the electrons and positrons are
larger, £ decreases slightly. Note that in all cases end up at
the same value £ ~ 0.9.

All this assumes, however, that x follows the equilibrium distribution,

but we want to allow for the possibility that CD happens when the amount

of x left over is not completely negligible. We also want to follow the de-

tailed evolution of £ during the CD process. To do this simply we need to

relate the entropy of x, s,, to the corresponding number density n,. If we

2

have such a relation between s, and n, then, as we solve the BE for n,, we
can always keep track of the corresponding entropy s,..

’There clearly is no such relation in general, since s is dependent on the energy of the

particles, while n has no such information. We are only talking about an approximate rela-
tion.
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What we will do is to use the relation between n and s in equilibrium as
an approximation for the general relationship. The equilibrium entropy is
given by

_pt+P

— 8.21
s =" (8.21)

in the non relativistic limit s/n ~ m/T blows up (as long as we can neglect
the chemical potential), but not as fast as the exponential suppression of
both s and n. In the relativistic limit we get

471'2/30 1
/30 (1 4 L)y
5 = XB/ (T 5) ~ 3.6n. (8.22)

8.3.5 Solution of Boltzmann Equation

Now that we have listed and analyzed the different approximations, and
which ones are appropriate, we can go on to solve the full BE (Eq. 4.7)
numerically. If we fix A by the requirement that 7Tiy = 100 eV, then we
can find the relation between m, and ¢ that will result in the correct relic
density. This relation is given in Fig. 8.6.

1.2

Numerical ,
----- Analytic

0.8

Skd

0.6

0.4

10—3 10—2 0.1 1
m, [MeV]

FIGURE 8.6: Parameters that ensures the relic density
Qpmh? = 0.12 based on numerically solving the BE for CD.
The coupling, A\?> = 6.4 - 1074¢4 (%)3, has been fixed in
terms of £ and m, by requiring that we get Tiq = 100 eV.
The analytic expression m, ~ 0.6 MeV £°, is based on ex-
trapolating the canonical WIMP expression, including the
leading x4 o £ dependence we derived in Sec. 4.2.2, down
to MeV-scales. The fact that the analytic approximation ac-
tually fits so well with the numerical results appears to be
somewhat of a coincidence. It clearly gets the scaling in
& wrong, and it actually fits worse for higher masses and
¢ ~ 1, which is opposite of what we would expect.
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8.4 Summary

In summary it seems that the simple model with a constant interaction ac-
tually can give both late KD and the correct relic density if m, ~ keV - MeV.
This is a fairly significant result, since this solution represents a broad class
of models for DM and DR.

CD in this mass range is somewhat different from the standard RD cal-
culation for WIMP’s. We looked at 6 approximations that are commonly
used for CD of non-relativistic DM. 1. was using Maxwell-Boltzmann statis-
tics, 2. was neglecting the quantum factors, 3. was using the non-relativistic
expression for (ov), 4. was assuming x4 o &, 5. was neglecting the change
in £ and 6. was neglecting the change in g} .

After looking carefully at the various approximations and assumptions
made, we can conclude that 3 and 4 are the two most problematic ones,
these are just not applicable for anything more than order of magnitude
estimates at this scale. 5 and 6 are usually good approximations, but at least
6 has to be taken into account if CD happens exactly when a species (here
electrons and positrons) heat the photon bath. For 1 and 2 the errors were
less than order 1 % for z/¢ 2 3, which means they are usually really good
approximations, at least for all the parameters considered in this section.

When the dust settles, we see that this model can give rise to both late
KD and correct relic density. We can also add a self interaction term, as
is discussed briefly in Bringmann et al., 2016, but this would only lead to a
constant self interaction, which is at best problematic if you want to address
small scale problems (see Sec. 3.3.2).






89

Chapter 9

SU(N) Model

Models where DM is charged under some SU(N) gauge group have been
considered several times in the literature (Buen-Abad, Marques-Tavares,
and Schmaltz, 2015; Lesgourgues, Marques-Tavares, and Schmaltz, 2016;
Cyr-Racine et al., 2015). We, however, want to look at the possibility of late
KD in such models.

We will mostly consider fermionic DM, but the results for a complex
scalar are very similar, as we show in Bringmann et al., 2016. We will build
on the results from Bringmann et al., 2016, but will go into more detail on
some important points.

9.1 Elastic Scattering Amplitude

The DM - DR elastic scattering in this model can happen in both the s, and
t-channels, as is shown in Fig. 9.1. The total amplitude for elastic scattering

X X X X X X

v Y g gl v Y

FIGURE 9.1: Diagrams contributing to the process xv — xy
(to leading order). We see that scattering in both s (left), u
(middle) and ¢-channels (right) is possible.

is given by
en(k)es (k2)a(pa) (i T4 ) (o + v+ my) (= igy" T Ju(pn)
N s —m2
en(kn)es (k2)a(pe) (—ign"T5) (o — h +my) (= g7/ T} Ju(m)
u—mi

+ geu(kr)eg (k) f2%° [9"” (2kg — E1)" + g"7 (2k1 — k2)” — g™ (k1 + k2)g}

((pl —p2), (p1 — p2),
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where p; and k; are the momenta of the incoming x and 7 respectively,
while ps and k; are the corresponding outgoing momenta. We have also
allowed for the possibility that the gauge symmetry is broken by giving 7 a
non-zero mass.

Ultra-relativistic ¥

If we assume that m, > w > mj5, where w is the energy of the incoming
7 particle, we get the following leading term for the t-averaged amplitude
squared (Bringmann et al., 2016)

18¢4*CrCim2 In <4w2/m,2~y>
2 )

<|Mxv%xv‘2>t ~ 9.2)

w
where Cr = (N2—1)/2N and C4 = N. We see that this expression diverges,
albeit only logarithmically, as m5; — 0. This divergence comes from the
pole in the ¢-channel propagator, which makes the integral over ¢ diverge
att = 0, unless 4 has a finite mass.

Even if there is no explicit mass therm for the 4 gauge bosons, the am-
plitude will not actually diverge in this limit. This is because the gauge

bosons will acquire a thermal mass of the order m?ebye ~ gT5. Sincew ~ T
the logarithm should just give approximately a constant.

Relativistic or Non-Relativistic 4

If we do not assume that 7 is ultra-relativistic, but assume just that m, >
m5,w, we get the expression

29401701247713(
2

m5

<‘Mxv—>><7’2>t -

My

Flw) +0 <m”) ] : 9.3)

where w = w/m5 and we have defined

F(w) = | — 68w’ + 36w* + 56w? — 24

+ (36w* + 13w? — 30) w? log (4w” — 3) ]

1

X .
w? (w? — 1)? (4w? — 3)

(9.4)

Despite appearances, this expression is, in fact, finite as w — 1, which
means that it does not have any singularities (since we clearly need w > 1).

9.2 Kinetic Decoupling

As we see from Fig. 5.4 and the associated discussion, since the matrix ele-
ment of this model scales like n = —2, KD "never" happens for this model.
By this we mean that KD never happens, in the radiation dominated phase,
while the assumptions m, > w > my are valid. What is happening here
is that, as long as we are in the radiation dominated phase, n = —2 implies
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that both v(7%) and H(T') scale like 7%, meaning that we are either always in
equilibrium or never in equilibrium, depending on the model parameters'.

If the gauge symmetry in not broken (my = m?ebye), then, assuming
the model parameters are such that we get equilibrium, KD will not hap-
pen until the universe becomes matter dominated. This possibility, how-
ever, is ruled out by observations, since the cutoff in the matter power
spectrum would be at a very large mass (if we assume Ty ~ eV we get
Myt ~ 106 M, which is about ten thousand times heavier than the Milky
way galaxy!), meaning that there would be almost no galaxies today.

Another possibility is that the interaction is not strong enough to keep
DM in thermal equilibrium, but somewhat weaker. This case is studied
in Buen-Abad, Marques-Tavares, and Schmaltz, 2015, and results in a sup-
pression of all scales that enter the horizon during radiation domination,
but not the exponential cutoff we would get from full equilibrium. These
effects, though interesting, are not the within the scope of this thesis.

Introducing a constant mass for 7 that becomes relevant at keV-scales,
however, gives us something that looks more like the standard picture of
KD. We must however make an assumption about what happens to 7 after
it becomes non-relativistic. We will here look at two simple cases.

9.2.1 Massive ¥ with Chemical Equilibrium

If we assume that 7 is kept in chemical equilibrium with some other species,
lets call it ¢, then the number density of ¥ will be exponentially suppressed
when it becomes non-relativistic. The exponential suppression of the num-
ber density leads very quickly to KD of x. We will not go into detail about
the interaction between 4 and ¢, other than to require that it must not give
rise to strong interactions between x and ¢. This, for example rules out
the possibility of ¢ being in the fundamental representation of the ¥ gauge
group?.

Momentum Transfer Rate, v(75)

Using Eq. 5.22 and using the dimensionless parameters w = w/ms and
z = Ty/m5 we can write the momentum transfer rate for this model

1 a3m?
1) = iy 9.5
1T = g 1) 9.5)

where ay = VN2 — 1¢g%/4r, g, = 4N and

I(2) = /1 Caw—La, [(w? — 12F(w)]. 9.6)

ew/z — 1

When we solve the BE for KD (Eq. 5.8) our time variable is the photon
temperature, we see that apart from this, the process of KD only depends

1We should note that ~v(T%) scales like T;f, which deviates from 72 if ¢ changes, but this
is usually a small and temporary effect, and v(T) will soon scale like T2 again.

*This is not entirely correct. If ¢ is in the fundamental representation of the gauge group,
and we allow 7 to be significantly heavier (~ MeV), we would get a model that looks a lot
like one of the 3-particle models (B22) in Bringmann et al., 2016, which is certainly a viable
model, but not really what we are interested in studying here.
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on two dimensionful parameters from the model

2 m2
a= aNmV, (9.7)
My
M-
b= —L. 9.8)
5 (

Writing the momentum transfer rate in terms of these new parameters
we get simply
a

v(T,a,b) = I(T/b). (9.9)

127g,

In Fig. 9.2 we compare the momentum transfer rate to the Hubble rate
for some typical values of @ and b.
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FIGURE 9.2: Comparison of momentum transfer rate, v(7%5),
and expansion rate, H(T). Here a = a¥m2/m, = 107°
keV and b = my/§ = 2 keV. We see that at high tempera-
tures the two rates scale almost the same way, but as ¥ be-
comes non-relativistic, the momentum transfer rate quickly
drops due, mainly, to the exponential suppression of the ¥
number density. This means that we get Tiq ~ ms with
only a very weak dependence on the rest of the parameters.

It is clear that any change in the model parameters, m,,m5, g, N and &,
that leave a and b invariant will not change Ti4. This makes it much easier
to map the whole parameter space. In Fig. 9.3 we have plotted the com-
binations of a and b that lead to a cutoff mass of M = 10'°°M = M.
Translating this result back to the model parameters we can include con-
straints from self interaction as well, see Fig. 9.4 (Bringmann et al., 2016).

Evolution of ¢

Up until now, we have disregarded the change in £ as 4 annihilate to ¢.
This can be neglected if 7 is highly non-relativistic at KD, by the same sort
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FIGURE 9.3: Relation between the two parameters a =
ajm2/my and b = my/€ needed to get the cutoff mass
Meut = 101°M = My from KD. This corresponds roughly
to Tikq ~ 67 eV. KD only depends on the value of these two
combinations of model parameters, so this single plot is a
complete map of the parameter space. The disadvantage is
that not that clear how to interpret ¢ and b physically. We
therefore also include the plot from Bringmann et al., 2016,
using more transparent parameters, and also including con-
straints from self-interaction (see Fig. 9.4).

of argument as in Sec. 4.2.2. If, however, we want to consider the value of
¢ e.g. compared to the lower bound in Eq. 6.20, we would need to use the
value of £ while 7 are relativistic. On the other hand, when comparing to
the CMB-constraints we would like to use the value of ¢ after 4 are fully
annihilated.

Defining £ as the value of £ when 7 is fully relativistic, and £, the value
when annihilation is completed we get the following expression (using Eq.
6.19)

& _ (g¢ 4 3(N? - 1)>1/3. 9.10)

&1 9o
Assuming for simplicity that g4 = 1, and that {; = 0.33, which is the
lower bound assuming the dark sector was in equilibrium with the visible
sector at some early time, and the visible sector only consists of the SM
particles (Eq. 6.20), we get

V=t~ 0.71, (9.11)
)AL (9.12)
Both of these values are in some tension with CMB measurements (Planck

Collaboration et al., 2015). Increasing g4 will, while it decreases £, only in-
crease AN, meaning that the possibility of this model combined with the
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FIGURE 9.4: Plot of model parameters required for late KD
(Mcut = M), for a fermion ¥, scattering with light SU(N)
gauge vectors 7 (solid lines). Also includes constraints from
x self-interaction mediated by % for different m, (dashed
lines). Everything to the left on the dashed lines is excluded.
For the self-interaction constraints we assumed N = 2.
Larger values of IV lead to weaker constraints. Figure taken
from Bringmann et al., 2016.

assumption that the dark sector and the visible sector were in thermal equi-
librium at some time, is at least in some tension with observations. Allow-
ing for entropy violation could alleviate this tension.

9.2.2 Massive 7 without Chemical Equilibrium

The simpler assumption than the one we looked at in the previous section
would be to assume that the dark sector only consists of x and 4. In this
case when 7 becomes non-relativistic, there is no exponential suppression
of the number density. This is because there are no processes to maintain
chemical equilibrium, since 27 — 7 is not kinematically allowed.

However, when 4 becomes non-relativistic, the temperature scales as
T5 o 1/a? and this means that T}, « 1/a? as well.

Let us assume that 4 decouples, meaning no more interactions (except
for the few interactions with ), at some temperature T, while relativistic,
then we can use the solution to the collisionless BE (Eq. 2.33). The results
should not change qualitatively if kinetic equilibrium is maintained until
after 4 becomes non-relativistic. We then get

1

f5(0,T) = .
i) eXP( T3p?/T? +m%/§de) -1

(9.13)

Using this, we can calculate the momentum transfer rate, as well as the
evolution of 7%, see Fig. 9.5.
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FIGURE 9.5: Left: Figure showing the evolution of the tem-
perature of 4 as it becomes non-relativistic. Since x will
have the same temperature, we will, if we define KD as
the time where the two asymptotic curves meet, get a get

a KD temperature of about Tlf;almg ~ 30 keV. Right: Fig-
ure comparing the momentum transfer rate, (75), with the
expansion rate, H(T'). If we define KD as the time when
these two rates are equal, we get a KD temperature of about
T3 ~ 0.1 keV. This shows that, even though the two defi-
nitions of KD usually gives (roughly) the same results, they
are based on different phenomena, and in this special case
gives wildly different results.

Conflicting Definitions of Kinetic Decoupling

In this thesis we have used a definition of KD that relies on the scaling
of the DM temperature, defining (roughly) T4 as the temperature where

T, starts to scale like a2, lets call this temperature Tlf;ahng. But what if
the temperature of the heat bath itself starts to scale like a=2, like what
happens to 7 after it becomes non-relativistic. In this case, there is plenty of
interactions between y and # even after what we define as KD.

There is another definition of Ti 4, lets call it Tlfgtes, that better captures
what we actually mean by kinetic decoupling. KD should be when there
are essentially no interaction with the heat bath, we can use this and define
T73'* as the temperature at which the expansion rate equals the momentum
transfer rate

H(TE"®) = ~(T5). (9.14)

In almost all cases T3 ~ Tlf;ahng, so it is usually not that important

what definition we use, but here we get very different results for the two
definitions. It is also clear that, in this case, it is the definition based on the
rates that corresponds best to what we usually mean by KD.

What is Myt

On the other hand, what we really want to know here is not the tempera-
ture of KD, but rather, what is the mass of the cutoff in the matter power
spectrum.

This is a more complicated question, and we would need to solve the
full perturbed Eistein-Boltzmann equations in order to answer this. This is
beyond the scope of this thesis, but would make for an interesting future
project.

Let us, however, ask how the Jeans scale k; compares to the Hubble
scale aH after 4 becomes non-relativistic. Let us assume that this happens



96 Chapter 9. SU(N) Model

while we are still in the radiation dominated phase. We then get

3/2
LI N m&aw<a> ™ 9.15)
aH ¢\ py €T aeq Uegq Tog’

where aeq corresponds to the scale factor at matter-radiation equality and
we have used ¢2 ~ £T/m5. Equating this expression to 1 we get

msT2 1/3
Teut ~ ( Vg eq) ) (916)

suggestion that the Jeans length becomes smaller than the horizon at some
time between T' = m3 /¢ and T’ = Teg.

I must stress that this is only a very crude order of magnitude estimate,
however, it does indicate that scales entering the horizon even after 7 be-
comes non-relativistic are also suppressed, and only modes that enter the
horizon after 7' ~ Tty < my/€ remain unsuppressed. So it is more rea-
sonable to replace Tigq by Tcyt in Eq. 5.30, than to put in either Tlf;ahng or
le(aites.

Relic Density of ¥

A serious problem for this model, however, is the relic density of 7. Since,
under the assumption in this section, ¥ undergoes CD while relativistic, we
get a direct relation between msy and €25 from Eq. 4.13

Vo(T = ms/¢€ _g [ Q5h?
ms = 1.56 eV (9 s ggffmv/ )>§(T:mﬁ/§) 3<0'1”’188>. 9.17)

This is a problem if we want Tyt ~ 100 eV, since we have my/§ 2 Tey. If
we want 25 < 0.1Q,, we will need ¢ S 0.1, which would probably require
either a violation of entropy conservation, or a situation where the dark and
visible sectors were never in thermal equilibrium.

9.3 Summary

We have studied the SU(N) model (with fermionic DM), as a representative
of the 2-particle models with an enhanced scattering amplitude from the
t-channel. These models differ from the "standard" case in that the analytic
solution for Ti4 is not applicable. In these models, since n < —2, we do
not get KD as long as 7 is relativistic, so the process of KD is crucially de-
pendent on when and how % becomes non-relativistic. In this chapter we
have considered two different cases for what happens to ¥ when it becomes
non-relativistic.

First we assumed that annihilation to another species ¢, keeps 7 in
chemical equilibrium. In this case the number density of 4 becomes ex-
ponentially suppressed as it becomes non-relativistic, leading quickly to
KD. This possibility can lead to late KD while avoiding the self interaction
constraints for a wide range of model parameters.
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Second we assumed that 7 was already decoupled from the heat bath
and was simply free streaming. In this case the (comoving) number den-
sity of 7 is constant, but the effective temperature of 4 decreases quickly
after ¥ becomes non relativistic. Although we can still calculate Ti4 using
whatever definition we want, it is no longer clear that this temperature cor-
responds directly to the cutoff in the linear matter power spectrum, the way
that it usually does. In order to investigate this, we would need to solve the
full perturbed BE’s and look at the power spectrum. This is beyond the
scope of this thesis, but would make for an interesting future project.

For slightly different reasons, both these possibilities require a very low
value for £ in order to be consistent with cosmology, which is hard, but not
impossible, to achieve from a model building perspective.
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Chapter 10

Discussion

In this chapter we will discuss some aspects of the models we have been
considering. First we will give a brief discussion of the main results. Not
only from this thesis but also from Bringmann et al., 2016. Then we will
discuss the plausibility of these kinds of models and why we would want
to go beyond the CDM paradigm in the first place.

10.1 Discussion of Results

After looking at all the simplest DM models we see that late KD is possible
in quite a few of these models. For the 2-particle models the constraints
from self-interaction limited the number of possibilities severely (see Tab.
7.1), but for the 3-particle models all of the models we studied had at least
some part of the parameter space that was allowed.

The ways of achieving an enhanced elastic scattering amplitude from
putting a virtual particle on shell is fairly straightforward, although it was
a bit surprising that the leading contributions to the scattering amplitude
in the s/u-channels canceled exactly in all the 2-particle models we consid-
ered.

Another important point to note is that in some cases, we did not need
an enhanced scattering amplitude, but could achieve late KD simply by re-
ducing the DM mass. The prime example of this being the 4-point coupling
scalar model discussed in Sec. 8. As we showed for this model, however,
some care needs to be used when calculating the relic density of light DM
my S MeV.

It is interesting to consider what happens when the DM mass in these
kinds of models approach the masses associated with WDM candidates.
One of the reasons is that we need to know what happens to WDM with
¢ < 1. We are not aware of this case being studied in the literature at
all, although it seems plausible that a lower temperature leads to less free
streaming and such would allow for lighter WDM for small £, but a more
careful analysis of this possibility would be interesting.

t-channel enhancements in the 2-particle models also leads to very in-
teresting behavior, where the scattering amplitude increases as the temper-
ature drops. This means that KD is typically related to 4 becoming non-
relativistic. The process and significance of KD also depends crucially on
whether 7 stays in chemical equilibrium when it becomes non-relativistic
or not, as we discussed in Ch. 9.

In Aarssen, Bringmann, and Pfrommer, 2012 a DM model for late KD
is introduced, that can (possibly) address both the missing satellite prob-
lem, the cusp/core problem and the too big to fail problem simultaneously,
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as well as producing the correct relic density. The natural combination of
these features makes this model very attractive. In Bringmann et al., 2016
we show that this model actually fits into a larger class of models with es-
sentially the same phenomenology. Some other models are also similar to
these models but with elastic scattering that is independent of the energy of
7. It would be interesting to study i detail how the full results would differ
in these two classes of models.

We also find a class of 3-particle models in the s/u-channels that can
give late KD, but do not naturally give rise to strong self-interaction that
could address the cusp/core or too big to fail problems.

10.2 Unitarity

Some of the elastic scattering amplitudes, particularly for 2-particle mod-
els in the ¢-channel, become enormously enhanced. This should make us
ask questions about unitarity. Unitarity is typically studied in the ultra-
relativistic limit (see e.g. Kahlhoefer et al., 2016), which is very far from the
kinematic situation in these elastic scatterings, so it is unclear how relevant
the usual discussion is for us.

A detailed analysis of unitarity would typically involve a partial wave
expansion of our scattering amplitude, which is far beyond the scope of
this thesis. However, a reasonable first step to see if our results are physi-
cal, would be to calculate the first loop correction and compare that to our
tree-level result. Another member of our collaboration did this calculation
for the fermion-scalar 2-particle model in the ¢-channel (from Bringmann
et al., 2016). That calculation showed that the tree-level result completely
dominated the amplitude for all relevant model parameters, which is at
least a good sign.

A more thorough study of unitarity in this kinematic limit would be
both helpful and interesting for the kind of model building we are doing.

10.3 Plausibility

10.3.1 Input vs Output

In (at least almost) all cases we need some light heat bath particle to scatter
off. This usually means that we need to explicitly add a new particle in
addition to the SM particles. For the 3-particle models we also need to add
a mediator particle.

When assessing the plausibility of a given model, one of the main thing
to consider is the amount of "input" and compare it to the amount of "out-
put” you get back. As an example let us consider CDM. If we simply assume
that there exists some new particle species which is non-relativistic at low
temperatures, is somehow produced in the early universe to give a current
relic density of about 5 times the density of baryons and interacts weakly
with itself and the SM, then we can explain the whole breath of indepen-
dent branches of evidence summarized in 3.1.

While it is unreasonable to expect any model to be as successful as the
CDM model, we should still take into account the amount of input and
output when assessing our models for plausibility.
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These considerations mean that, all else being equal, 2-particle models
are preferred to 3-particle models. Also, a model with less free parameters
is also preferred. The fact that we find 2-particle models that can give rise
to late KD is then encouraging. However, the ¢-channel enhanced models,
while they can achieve an interesting strength of the self interaction, cannot
(except perhaps for very light DM masses) be thermally produced without
invoking some other interaction or mechanism. Also, in order to achieve
late KD we typically need to fine-tune the mass of 7. If we further assume
that 4 stays in chemical equilibrium when it becomes non-relativistic, this
means that we even need to introduce another particle to the model.

In Aarssen, Bringmann, and Pfrommer, 2012 the heat bath particles are
the SM neutrinos, meaning that, even though we would classify this as a
3-particle model, we only need to introduce one new particle, the mediator,
in addition to DM itself. Another nice feature about this is that, since we
know the neutrino temperature, £ is fixed, meaning that we have one less
free parameter.

Itis hard, and perhaps not very useful, to rank these different models by
plausibility. However, we should always have these thoughts in the back
of our mind, when working on model building.

10.3.2 Considerations on the Value of ¢

If the dark and visible sectors are in equilibrium at high temperatures, the
value of £ can be calculated exactly at any time if we know what is going
on in both the dark and visible sectors, and assuming entropy is conserved.

As we showed in Sec. 6.2, if we assume that the dark and visible sectors
decouple before any of the SM particles heat the photon bath, then the lower
bound on ¢ is given roughly by frsnl\l’; ~ 0.33.

This value can be compared to the 1o bound on Ngg from CMB which
gave an upper bound of e.g. £ < 0.39 for a single Dirac fermion DR species.

We see that the range of values for ¢ is very limited. We should also
note that the value for ¢M assumes that no particles heat the dark heat
bath. If x and possibly other particles in the dark sector heat the dark bath
after the two sectors decouple, then ¢5¥ should be multiplied by a factor
[(95 + gy + Gother)/95]"/?, making it even worse.

We see that the possibility of DR is severely limited if we assume both
that the dark and visible sectors were once in thermal equilibrium, and that
entropy is conserved after the two sectors decoupled. This begs the ques-
tion about what happens if we assume that the dark and visible sectors
were never in equilibrium.

Discussing how possible reheating models, or other high temperature
mechanisms can give rise to two completely decoupled sectors with differ-
ent temperatures is beyond the scope of this thesis, but we may in the not
too distant future get to the point where something like this might be re-
quired in order to have DR. If such a mechanism is indeed required, then
that at least makes the idea of DR somewhat less plausible, and it would
make the prospects of DM detection entirely hopeless.
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10.4 Why go Beyond CDM? Or, If it Ain’t Broke, Don’t
Fix it

As discussed in Sec. 3.1 the CDM paradigm has been extremely success-
ful. A wide range of independent evidence all point to the existence of
large amounts of new non-relativistic matter interacting through the gravi-
tational force.

Since the very simple CDM model is so successful, it begs the question
as to why we would want to add more complications on top, like DR or self-
interactions. Is this like adding epicycles to a simple and beautiful model?

This objection misses a large point, which is that the reason for bring-
ing up these more involved DM models (mainly small scale problems in
ACDM) are largely independent from the main evidence for DM. This means
that even if these new DM models were not able to address the small scale
problems, or if the small scale problems were solved in some other way
(e.g. by using baryonic physics), this would not be a significant blow to the
CDM paradigm.

Rather if some more complicated DM model, like the ones we are con-
sidering in this thesis, could (potentially) address the small scale problems,
this would just be a nice additional feature, making these models of DM
more attractive as compared to other models of DM. Whether or not these
additional features are compelling enough to justify adding the new bag-
gage (new particles, interactions etc) onto the simple CDM paradigm, is a
matter of judgement.

A nice thing about models with late KD, that we should also consider,
is that they provide us with new ways to look for DM. Since these acoustic
oscillations change the dark matter power spectrum, precise measurements
of the power spectrum at these scales could potentially detect these effects.
Also, if we detect some non-zero value for AN, that would be evidence for
dark radiation.

It also has to be noted that we expect in any case that DM is part of
some, more complete, beyond-SM model of particle physics. Therefore un-
derstanding the particle nature and interactions of DM is a very important
step towards understanding which direction to go for beyond-SM physics.
This means that mapping out the different possibilities of physics in the
dark sector has some value completely independently of small scale prob-
lems in ACDM.
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Conclusion

The search for models that can lead to late KD in Bringmann et al., 2016
must be said to be a success. In addition to recovering working models
for late KD in the literature, we see that these were in many cases just part
of a broader class of similar models. We also discover some new types
of models not considered in the literature before. The potential in some of
these models to solve all the three small-scale problems we have mentioned,
as well as producing the correct relic density, is at the very least promising.

The scalar 4-point coupling model is very interesting. Both because it
maps onto essentially any effective theory of xy — 7 interactions that leads to
a scattering that is independent of the energy of 4, but also because it is such
a simple model and yet still seems viable. Calculating the KD temperature
in this model is very simple, but when trying to obtain both late KD and
the correct relic density we see that we need very small DM masses (m, S
MeV). In this region we cannot trust the analytic expression we used for
the relic density, since the assumption that x is non-relativistic at CD is
not as certain anymore. However, after analyzing all the approximations
that usually go into calculations of relic density, and doing a full numerical
calculation, we find that the model is actually very viable.

The second model we have looked into in this thesis is the model where
a fermionic DM transforms in the fundamental representation of an SU(NNV)
gauge theory. This model, like other 2-particle models where the elastic
X — 7 scattering is dominated by the ¢-channel, gave rise to the interesting
behavior where KD does not happen until 4 becomes non-relativistic. As
we discussed, these models raise questions about how we should actually
define KD, and how KD is related to the cutoff in the power spectrum, Mcy:.
Also this model seems to require very small values of £, which, as we dis-
cussed in the precious chapter, is hard to achieve when building a complete
consistent model.

An interesting future project would be to solve the perturbed BE’s for
one of the 2-particle models in the ¢-channels. Since, as we discussed in
Sec. 9.2.2, it is not entirely clear how the suppression in the matter power
spectrum would look in those models.

Looking into early universe mechanisms to produce a dark sector that is
completely decoupled from the visible sector, would also be an interesting
area of study. This could tell us more about how easy it is to obtain small

values for £, and may also give us suggestions for what the dark sector
could look like.
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Appendix A

Quantum Field Theory

Quantum field theory (QFT) is, together with special and general relativ-
ity, the crowning achievements of theoretical physics in the last century. It
describes how the fundamental (and non-fundamental) particles of nature
behave and interact, and it describes how the physics at different energy
scales is related. Here we give a very brief theoretical introduction to a few
of the main aspects of QFT.

A.1 Classical Field Theory

In classical mechanics we derive the equations of motion for any system
from an action principle. The configurations of the system change in the
way that extremizes the action, S.

For a classical field the action principle leads us to the Euler-Lagrange
equations, which govern evolution of the fields ¢,, given by

oL oL
.~ (57) ~° .

where ¢, are the fields of the theory and £(¢,) is the Lagrangian density,
i.e. the function that is integrated over spacetime to give the action, S.

It is often useful to divide the Lagrangian into two parts, the free La-
grangian, Lo, and the interaction Lagrangian, £; such that

L=CLo+ L. (A.2)

The free part of the Lagrangian is usually the part that leads to linear equa-
tions of motions for the fields, while the interaction Lagrangian contains
higher order terms, and terms mixing different fields.

A.2 Quantum Field Theory

To describe the fundamental particles of nature we use QFT. In QFT, the
time evolution of a state (in the interaction picture) is given by the time
evolution operator U (¢, ty)

|\I/(t>> = U(t7t0)|qj(t0)>v (AB)

where .
Ul(t,to) = T exp <—i Hﬂt')dt’) : (A4)

to
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where T stands for time ordering and where H; = —L; is the interaction
Hamiltonian in the interaction picture. Here we use the exponential simply
as a shorthand for its series expansion.

When looking at scattering we want to study what happens to some
initial state, |i), presumably of particles moving towards each other, to a
final state, | f), presumably of particles moving away from each other. Such
a process is described by the S-matrix, defined by

lim (f|U(ts,t-)li) = (FIS]3)- (A.5)

t+—+too

Using this we can define the scattering amplitude M by

(fISli) = iMisp (2m)* D (py — py), (A.6)

where p; and p; are the momenta of the initial and final states respectively.
In order for this approach to work, we need to assume that H; is "small", in
the sense that the series in Eq. A.4 converges quickly. In this case we can get
a good approximation to S by treating Eq. A.4 as a perturbation series, and
taking the leading terms. If this is the case we can calculate M by drawing
the Feynman diagrams, corresponding to each term in the series expansion
of Eq. A4, and using the Feynman rules derived from the corresponding
Lagrangian (see e.g. Peskin and Schroeder, 1995).

A.3 Particles

Since our relativistic quantum theories should be Lorentz-invariant, the
Lorentz-group has a unitary (or anti-unitary) representation on our Hilbert
space (Wigner, 1939). We can write the action of the Lorentz group on all
the quantum fields in our theory by the unitary operator, U(A) (for an active
transformation)

UT(A)¢a(2)U(A) = Dap(A) (A ). (A7)

We can now choose to rearrange the fields in order to block-diagonalize
the matrix D. Each of the blocks would then correspond to an irreducible
representation of the Lorentz-group. We usually call these irreducible rep-
resentations of the Lorenz-group the particles of the theory. Note that al-
though U(A) is unitary, D(A) is not (in general).

The next question to ask is then, what form can these matrices D take,
as this will tell us what kinds of particles we can have.

The trivial (singlet) representation, where D = 1, is called the scalar
field

UT(M)p(z)U(A) = ¢(A™ ). (A-8)

The vector field is another simple case, in this representation D = A, the
regular Lorentz transformation matrices.

UT(A)¢H(2)U(A) = A*,¢" (A1), (A.9)
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In general, the matrix D(A) must be writable on the form
i o
Day(A) = exp (2%5MQ5> , (A.10)
where M has to satisfy the commutation relations
[M‘“’, /\/laﬁ} =1 (n”ﬁM”a + e MYE — B A n”a/\/l“5> . (A11)

Another important representation is the spinor representation
i
Dap(A) = exp (—4wa502‘£) = Su(A), (A.12)

where o#” = % [y#, "] obeys the commutation relations in Eq. A.11, where
~* obays the Clifford Algebra given by

{4} =20, (A.13)

and where 7 is the Minkowski metric.

We usually label the different particles by their spin. The scalar, spinor
and vector representations corresponds to particles with spin 0, 1/2 and 1
respectively. These three representations actually describe all the known
elementary particles in the universe.
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Appendix B

Gauge Boson Polarization
Sums

The treatment of gauge boson polarization in non-abelian gauge theories
requires some care. We will here summarize the main issues and find ways
to treat polarization sums of external gauge bosons consistently.

When considering polarization vectors it is natural to choose an or-
thonormal basis such that (with a slight abuse of notation since A and X
are not Lorentz indices)

> Vel =g, (B.1)
AN

where the sum is over all (four) polarizations.

If gauge bosons were described using all polarizations, then our life
would be simple, but since there is a large redundancy in using a four vec-
tor to describe a gauge boson, we need to be careful to distinguish between
physical and unphysical degrees of freedom.

B.1 Massless Gauge Bosons

If the gauge symmetry is unbroken the gauge bosons have two physical
polarization degrees of freedom. Since a general (Lorentz) vector has four
degrees of freedom, we must somehow remove two of them.

One approach would be to just use a basis of the two transverse polar-
ization states, and ignore the unphysical time-like and longitudinal polar-
izations. For a boson traveling in the z-direction, the transverse polarization
vectors are given by

1
' = —2(0, 1,—14,0), (B.2)
1
Ei = 75(0’ ]., +Z, 0), (B.3)

where we have chosen to use circularly polarized basis vectors.
The polarization sum is then given by (for a boson traveling in the z-
direction)

(B.4)
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We can generalize this to a boson traveling in any direction

> &l(k)e (k) = 6 — Kk (B.5)
= [

where T denotes transverse polarizations.

While this new expression is rotationally covariant, it is certainly not
Lorentz covariant. This is a perfectly valid approach to use, but a general
covariant formalism is usually much easier to deal with.

Note also that none of these expressions are gauge-invariant. They
amount to choosing a specific gauge, called the transverse gauge.

B.1.1 Axial Gauge

The axial gauge is obtained by adding the following gauge-fixing term to
the Lagrangian (De Wit and Smith, 1986, p. 439)

1
Laxial = _i(n ) A)2’ (B.6)
where A is the gauge field, n is an arbitrary four vector and £ is an arbitrary
gauge fixing parameter.
In this gauge we can write the sum over transverse polarizations in a
fully covariant way'

MR btk n? 4 k2
ey — g - IR B.7
2 T Ty ®7

We can make this simpler by specifying a gauge. If we choose { — 0
and n? = 0, we get the light cone gauge. With this gauge choice the sum over
transverse polarizations is simply

N y L ntEY +nVEH
Z ey (k)ex(k) = —g" + Tk (B.8)
A=T

We can see that, for a boson travelling in the z-direction, if we choose n* =
(1,0,0,—1) we recover Eq. B.4.

If we are calculating a specific process involving two external gauge
bosons with momenta k; and ks, it is very useful to simply choose n = k3 (or
k1), since we already have expressions involving k2 and it already satisfies
k3 = 0. This gives us e.g.

kb EY + Kk

2 Al (k) =~ + =

A=T

(B.9)

B.1.2 Ghosts

Another way to deal with the unphysical polarizations is to introduce ghosts
to cancel these contributions. Using the approach of Faddeev and Popov

'Here we see one drawback of this gauge, namely the singularity at n - k = 0, but unless
you are integrating over all k this should be avoidable.
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(Faddeev and Popov, 1967), we can add the following terms to the La-
grangian

Lpp = —215(8 - A)? +&(—0"Dy)e, (B.10)
where the first term is the gauge-fixing term, and the second term is the
kinetic term for the ghosts.

The ghosts, ¢, are not physical particles, but are introduced to cancel
out the unphysical polarizations of the gauge bosons. The ghosts have a
number of interesting properties. They transform in the adjoint representa-
tion of the gauge group, like the gauge bosons, they transform like a scalar
under Lorentz transformations, but they obey Fermi-Dirac statistics.

From the Lagrangian we can derive Feynman rules for the ghosts (see
e.g. Peskin and Schroeder, 1995, p. 515), so we can include them in scatter-
ing processes. This allows us, for external gauge bosons, to use the replace-
ment

> et k)e (k) — —g™ (B.11)
=T

if we also sum over ghosts in the same external states.

At tree level, the ghosts only appear in external states, and they are
included formally as if they were extra degrees of freedom for the gauge
bosons. However, we must remember to use Fermi-Dirac statistics when
permuting two external ghosts. In addition, when calculating the squared
diagrams, we need to include a factor (—1)”/ 2 where n is the number of
ghosts in the diagram (Nachtmann, 1990, p. 489). This can lead to what
appears to be negative probabilities, but these are needed to cancel out
the contribution from the unphysical polarization states we included when
making the replacement in Eq. B.11.

B.2 Massive Gauge Bosons

If the gauge symmetry is broken, by giving the gauge boson a mass, dealing

with the polarizations actually becomes simpler. A massive vector boson

has three physical polarizations, two transverse, and one longitudinal.
Using Eq. B.1 we can find the sum of the three physical polarizations

D k)l (k) = —g™ + e (k)eg (), (B.12)
A\=T,L

where L and 0 corresponds to the longitudinal and time-like polarization
vectors respectively.

The time-like polarization is proportional to the momentum (as can be
seen by moving to the rest frame), and its normalization is fixed by Eq. B.1

S

m

eh (k) (B.13)
This gives us, for the polarization sum of an external massive gauge

boson
kM EY
5

> k) (k) = —g™ + (B.14)

A=T,L

m
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