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4 Evolution of density perturbations

4.1 Statistical description

The cosmological principle is obviously only valid on very large scales, not
very much smaller than the size of the horizon. The generally accepted pic-
ture, however, is that the universe started o↵ in an extremely homogeneous
and isotropic state, with initial conditions provided by an era of acceler-
ated expansion called inflation. The tiny primordial density fluctuations,
generated during inflation from quantum fluctuations of the vacuum, would
later grow under the influence of gravity and eventually collapse to form the
structures that we observe today, like galaxies, clusters and super-clusters.

The energy density in the early universe can thus be written as

⇢(x, t) = ⇢̄(t)[1 + �(x, t)] , (43)

where � ⌧ 1 and ⇢̄ is the homogeneous background density that corresponds
to the FRW space-time. Usually, it is much more convenient to work in
Fourier space so we will in the following use �⇢(x, t) ! �k(t). In analogy, for
a multi-component fluid, one can define �i ⌘ ⇢i/⇢̄i � 1. Assuming Gaussian
statistics for the primordial density fluctuations, as is the case in most models
of inflation, all modes are uncorrelated:

h�k�⇤k0i ⌘ 2⇡2

k3
P�(k) �(k� k0) . (44)

This equation also defines the power spectrum which often is assumed to
follow a simply power-law8

P�(k) / k3+n . (46)

The probability (density) to find an average density contrast � in a spherical region of size
R is then given by

pR(�) =
1p

2⇡�(R)
exp



� �2

2�2(R)

�

, (47)

8The way the spectral index n is introduced here has historical reasons. For n = 1, in
particular, one recovers the scale-invariant spectrum proposed independently by Harrison
and Zel’dovich: In this case, the spectrum evaluated at the time tk of horizon crossing of

the scale k (defined by aH = k) does not depend on k:

P�(k)|tk / kn�1 . (45)

The reason for this scaling will become apparent later when taking into account how �
evolves with time – which is not shown explicitly in Eqs. (44) and (46 - 48).
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where the mass variance �(R) is computed by convolving the power spectrum with a
top-hat window function:

�2(R) =

Z 1

0

W 2
TH(kR)P�(k)

dk

k
. (48)

Here, WTH(x) = 3j1(x)/x = 3x�3 (sinx� x cosx) denotes the Fourier transform of the

top-hat window function. Note that the introduction of a window function is necessary in

order to regulate the divergence of the integral
R

W 2
TH(kR)P�(k)dk/k at both large and

small k.

4.2 Newtonian treatment

In order to get a first, intuitive understanding of how density fluctuations
evolve, let us start with a Newtonian analysis, keeping in mind that this will
necessarily be restricted to p ⌧ ⇢ and scales � . (aH)�1. The starting point
are then the continuity, Euler9 and Poisson equations:

⇢̇+r(⇢v) = 0 (49)

v̇ + (v ·r)v = �r�gr � 1

⇢
rp (50)

��gr = 4⇡G⇢, (51)

where �gr is the Newtonian gravitational potential. The velocity of the fluid
elements can be written as v = d

dt
(a(t)x) = ȧ(t)x + a(t)u, where u is the

peculiar velocity (which is treated as a small quantity); similarly, in a co-
moving frame we have ri = a�1@i. Expanding all quantities that appear
above as in Eq. (43), and using ⇢ / a3, one can combine these equations at
first order in � to

�̈k + 2H �̇k +

✓

c2sk
2

a2
� 4⇡G⇢

◆

�k = 0. (52)

where c2s :=
@p
@⇢

= w is the sound velocity. An important length scale of this
equation is the Jeans length:

�J = 2⇡
a

kJ
where

✓

kJ
a

◆2

⌘ 4⇡G⇢

c2s
. (53)

For density fluctuations on scales �phys . �J , Eq. (52) takes the form of a
damped harmonic oscillator: the perturbations oscillate and slowly decay;
this is referred to as acoustic oscillations. For �phys & �J , on the other hand,

9This is essentially just the Jeans equation, which we already encountered in Eq. (36).
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there is both a growing and a decaying solution to the above ODE. Using
4⇡G⇢̄ = 3

2
H2 = 2

3
t�2, one easily finds that the former is given by

�k(t) / t
2
3 / a(t) (54)

and soon starts to dominate over the latter (/ t�1).

4.3 Relativistic analysis

For the full relativistic treatment, one has to consider arbitrary perturbations
of the metric and stress-energy tensor,

gµ⌫ = ḡµ⌫ + �gµ⌫ , (55)

Tµ⌫ = T̄µ⌫ + �Tµ⌫ , (56)

where ḡµ⌫ is the FRW background given in Eq. (1) and T̄µ⌫ is the unperturbed
stress-energy tensor that takes the form of Eq. (2). One of the complications
compared to the non-relativistic case is that among the degrees of freedom in-
troduced above there are unphysical modes that correspond to a mere gauge
transformation. In particular the density contrast � itself is gauge-dependent
and thus not a physical observable. For typically adopted gauge choices, how-
ever, it reduces to the Newtonian quantity – which was used in Eqs. (49-51)
– on scales much smaller than the horizon. In what follows, this is addressed
in some more detail.

The perturbed metric can always be brought into the form

gµ⌫dx
µ⌫ = �[1 + E]dt2 + a(t) [@iF +Gi] dtdx

i

+a2(t) [1 +A�ij + @i@jB + @iCj + @jCi +Dij ] dx
idxj , (57)

where the perturbations A...G are in principle arbitrary functions of x and t that satisfy
the following conditions:

@iCi = @iGi = @iDij = 0, Dii = 0 . (58)

Here, we are not interested in tensor modes (gravitational waves) described by Dij nor
in vector modes (which can be shown to have only decaying solutions and are thus of
minor cosmological relevance) described by Gi and Ci, and will thus neglect them in the
following. In a similar fashion, �Tµ⌫ can be de-composed as

�Tij = p̄ hij + a2
�

�ij�p+ @i@j⇡
S + @i⇡

V
j + @j⇡

V
i + ⇡T

ij

�

(59)

�Ti0 = p̄ hi0 � (⇢̄+ p̄)
�

@i�u+ �uV
i

�

(60)

�T00 = �⇢̄h00 + �⇢ , (61)

where the terms containing a ”⇡” represent dissipative corrections to the inertia tensor. In
the above equations, the vector and tensor perturbations are divergence-free and traceless
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as in Eq. (58); for the same reason as before, they will be neglected in the following
discussion.

Under a ”small” coordinate transformation

xµ ! x0µ = xµ + ✏µ(x) , (62)

the metric will be transformed to g0µ⌫(x
0) = g�(x)

@x�

@x0µ
@x

@x0⌫ . Correspodingly, this induces
the following change in the definition of the metric perturbation:

��gµ⌫(x) = �ḡ�µ(x)
@✏�(x)

@x⌫
� ḡ�⌫(x)

@✏�(x)

@xµ
� ✏�(x)

@ḡµ⌫(x)

@x�
. (63)

Similarly, such a coordinate transformation induces a change in the definition of �Tµ⌫ ,
which (after some algebra) can be expressed as

��p = ˙̄p✏0, ��⇢ = ˙̄⇢✏0, ��u = �✏0 . (64)

(The other degrees of freedom of Tµ⌫ are gauge-invariant). This means, as mentioned
before, that the density contrast � is gauge-dependent and thus not a physical observable!
Popular gauge choices that recover the classical interpretation on sub-horizon scales include

• the Newtonian gauge,

B = F = 0, E ⌘ 2�, A ⌘ �2 , (65)

where the potentials � and  are not actually physically independent: from the
field equations, it follows that for vanishing anisotropic stress (⇡S = 0, like for a
perfect fluid) one has  = �. The reason for the name of this gauge is that, on
scales much smaller than the horizon,  takes the role of the classical Newtonian
potential for non-relativistic matter; in particular, the field equations in this limit
reproduce the Poisson equation (� = 4⇡G⇢).

• the synchronous gauge,
E = F = 0 , (66)

where the e↵ect of gravitation on the total fluid (but not its individual components)
is entirely governed by the quantity  ⌘ @t

⇥

hii/(2a2)
⇤

. A potential problem of this
gauge is that there is a residual gauge invariance left. It can, however, be removed
in a natural way if there is a non-relativistic species (like dark matter) for which
we can impose �u� = 0; this completely removes any gauge ambiguities.

• the co-moving or total matter gauge,

F = 0 and �u = 0 , (67)

where one chooses a frame that moves with the cosmological fluid.

A gauge-invariant definition of the curvature perturbation is given by R ⌘ A/2+H �u.
In comoving gauge, it can also be introduced as

H2 ⌘ 8⇡G

3
⇢+

2

3
r2R , (68)

so its physical interpretation is the spatial curvature seen by a comoving observer. Using
the field equations, one can show that this quantity stays constant on scales much larger
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than the horizon, k ⌧ aH, for adiabatic perturbations (for which �i/(⇢̄i + p̄i) is the same
for each fluid component on these scales; these are the ones produced by inflation) and is
related to the density contrast by

Rk =
5 + 3w

3 + 3w

2

3

✓

aH

k

◆2

�k . (69)

Since the numerical value of this quantity at horizon crossing is very close (for standard
gauge choices) to the value on much larger scales it follows, in particular, that PR(k)|t=0 '
P�(k)|t=tk

/ kn�1 as claimed in Eq. (45). It also follows that before horizon crossing, all
density contrasts evolve as10

�ik / t2/a2 , (70)

as long as the equation of state stays constant. This implies, e.g., �ik / a during matter
domination and �ik / a2 during radiation domination.

In order to calculate the evolution of density perturbations after horizon entry, one
now proceeds in a way analogous to Eqs. (49-51) by specifying

• a gravitational field equation that follows directly from the Einstein equations (aka
a linear combination of the two ”Friedmann” equations for the perturbed metric),

• equations for energy conservation from T 0µ
;µ = 0 (one for each of the fluid compo-

nents) and

• equations for momentum conservation from T iµ
;µ = 0 (also one for each fluid com-

ponent j – recall that we neglected the �~uV
j and kept only the �uj).

These equations present a system of coupled di↵erential equations that takes a di↵erent

form depending on the gauge choice. Presenting the full set of solutions would be way

beyond this lecture, so we will just have a look at the most important aspects for our con-

text. We will only discuss growing adiabatic modes. In principle, there is also a decaying

adiabatic mode that arises as a solution to the evolution equations which, however, is not

important in practice.11 Finally, there are isocurvature modes that describe fluctuations

with R = 0; they are not produced in standard models of inflation and observationally

disfavored to be the dominant source of perturbations.

During radiation domination – and in fact essentially until recombination
– density perturbations in photons, baryons (tightly coupled to the photons)
and neutrinos stop to grow well inside the horizon and oscillate as

�� ' �b / cos krs , (71)

where rs ⌘ R t

0
dt cs/a ⇡ csdH(t) is the comoving size of the sound horizon

and cs =
p

dp/d⇢ ⇡ 1/
p
3 the sound speed. Note that the phase of the

10In synchronous gauge, a similar relation as Eq. (69) holds, albeit with a di↵erent
normalization. In Newtonian gauge, on the other hand, � / R and all �i are constant
outside the horizon.

11The idea that the very early universe was very close to homogeneous would also be in
conflict with such a mode that grows when looking back in time.
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oscillations is uniquely determined by the requirement of only keeping the
growing adiabatic mode. Dark matter perturbations well inside the horizon,
on the other hand, grow logarithmically during radiation domination, �� /
log t.

After matter-radiation equality, the cold dark matter component starts
to grow as �� / a(t) / t2/3 as expected from Eq. (54). At that time, baryons
and photons are still tightly coupled and oscillate like before – though with
a slightly increasing amplitude as they start to feel the increasing gravita-
tional potential created by dark matter. At recombination, the baryons then
decouple and fall into the gravitational wells created by dark matter. This
leads to a rapid increase of �b and, after a while

�b ' �� / a(t) . (72)

At recombination, the density contrast in baryons (measured by the CMB,
see below) is given by �b ⇠ 10�5. Without a dark matter component, it
would have grown until today to only �b(t0) ⇠ 10�5zr ⇠ 10�2 – which is
still in the linear regime: without DM, no gravitational structures would yet
have had time to collapse! As soon as the universe enters into the vacuum
energy-dominated regime, finally, the further growth of structures is strongly
suppressed and �b and �� stay essentially constant.

One more e↵ect to be discussed is the free streaming of non-interacting,
relativistic particles that can very e↵ectively reduce the density contrast in
over-dense regions. To describe this e↵ect, one needs to go beyond the perfect
fluid description and employ the full Boltzmann equation. Roughly, however,
one can say that the free streaming scale is given by

�FS '
Z

v

a
dt =

Z

v

aH
da , (73)

where v is the velocity of the relativistic particles. If these particles contribute
significantly to the total density, there will be no clustering for scales � < �FS

– which is a very e�cient way to constrain any warm or hot DM candidate
as well as standard neutrinos.

One may now go ahead and implement the density evolution in the various
components in detailed numerical simulations. These turn out to result in
perfect agreement with large-scale structure observations – if and only if the
main building block of matter is taken to be cold and non-interacting.
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