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5 Cosmic microwave background

The existence of the cosmic microwave background radiation (CMB), with
its almost perfect isotropy and black-body spectrum of T = 2.725K= 2.3 ·
10�4 eV, is one of the most compelling evidences for big bang cosmology. It
was released shortly after electrons and ions (re)combined to atoms, thus
making the universe transparent for the first time; the temperature and red-
shift of last scattering (mainly Thompson scattering o↵ free electrons) are
given by Tr = 2970K = 0.26 eV and zr = 1090 (these values are mainly
related to the ionization energy of hydrogen and essentially independent of
any cosmological parameters). Even more interesting is the existence of tiny
temperature fluctuations in the CMB, of the order of �T/T ⇠ 10�5, which
correspond to tiny density fluctuations in the early universe. The CMB thus
really is a snapshot of the universe at the time of last scattering, providing
detailed information about the composition of the cosmological fluid.

The observed temperature fluctuations can conveniently be expanded in
spherical harmonics:

�T (�, ✓)/T =
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l,m

almYlm(�, ✓) . (74)

Observations indicate that the alm are Gaussian random variables, with

halmal0m0i ⌘ Cl�ll0�mm0 , (75)

so the variance (or power) of the fluctuations becomes
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Note that the relation between multipole number and angular scale is roughly
✓ ' ⇡/l; the appearance of the first peak in the power spectrum at l ⇠ 200
thus corresponds to an angular size of about 1�.
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In conformal Newtonian gauge, with � and  denoting the gravitational
potentials, the temperature fluctuations observed today can be written as
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T
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�⇢�
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+ �+ vk +

Z t0

tr

dt(�̇�  ̇) . (77)

In total, there are thus four e↵ects that change the photon temperature:

• Fluctuations in the energy density of photons (⇢� / T 4) at the time of
last scattering.

• A redshift (blueshift) �T/T = � of photons that start o↵ from a poten-
tial well (a potential hill). Together with the first e↵ect, this is called
the Sachs-Wolfe e↵ect.

• A Doppler shift �T/T = vk, where vk is the velocity component of
the photon-baryon medium, at the time of last scattering, towards the
direction of observation.

• The so-called integrated Sachs-Wolfe e↵ect that arises from the fact
that photons transverse time-dependent gravitational fields from the
time of emission until today; for constant fields, they would gain(loose)
the same amount of energy when entering a potential well(hill) as they
would loose(gain) when leaving it again.

Numerically, the first two terms in Eq. (77) dominate; they receive their
main contribution from the baryon-photon system (which to an excellent
approximation is a single fluid prior to recombination) and dark matter.

Before recombination, density perturbations in the baryons and photons
inside the horizon oscillate like in Eq. (71).

�� ' �b / cos krs . (78)

Since the phase of these oscillations is uniquely determined, we expect peaks
in the fluctuation spectrum at kn ⌘ n⇡/rs. This corresponds to an angular
size of ✓n ' (⇡/kn)/⌘0 = rs/(n⌘0) today, where ⌘0 is the conformal time
since last scattering, i.e. the comoving distance to the last-scattering surface.
Maximal values for Cl are thus expected at

lmax ' ⇡

✓n
= n⇡

⌘0
rs

. (79)

Because zr is essentially independent of cosmological parameters, the sound
horizon at last scattering, rs, provides a cosmological standard ruler. ⌘0, on
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the other hand, depends on the expansion history of the universe since the
release of the CMB:
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(80)
Furthermore, the angular scale for a given co-moving distance depends on
the geometry. The position of the peaks thus provides a way to measure both
curvature and late-time evolution of the universe (with a certain degeneracy).

So far, we have neglected the e↵ect of dark matter (apart from its contri-
bution to the total curvature, as discussed above). Let us first estimate the
direct e↵ect, namely its contribution to the gravitational potential. From the
Poisson equation, we get

r2�� = �k2

a2
�� = 4⇡G�⇢� . (81)

Since �⇢� = �� · ⇢� / a�2, it follows that @t�� = 0 and �� / k�2. For a
relativistic medium (with �⌧ 1), the Newtonian equation of hydrodynamic
equilibrium (40) is generalized to

rp = �(p+ ⇢)r� . (82)

With p = p� = ⇢�/3 and ⇢ = ⇢b + ⇢�, this can be written as 1
3
�⇢� =

�(4
3
⇢� +⇢b)� in Fourier space. Using � ⇡ ��, the first two terms in Eq. (77)

thus combine to
�T

T
⇡ �3

4

⇢b
⇢�
�� . (83)

Note that this is proportional to ⇢b – without baryons, there would thus be no
e↵ect of � on the CMB. The scaling �� / k�2 largely explains the observed
overall suppression of power on small scales.

There is another, more indirect e↵ect from the interplay of baryons and
DM. Consider, on top of the contributions in Eq. (83) the contribution
from baryon oscillations to the gravitational potential, which adds a term
A cos(krs). For the observed square of the fluctuations, interference terms
become important:
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Peaks with odd n (cos[krs] = �1) are thus enhanced and peaks with even n
(cos[krs] = 1) are suppressed – an e↵ect that should be most pronounced at
small l (due to �� / k�2).
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At small scales, the CMB power is rather strongly suppressed (on top of
the expected k�4 scaling) by two e↵ects: CMB photon scattering on high-
energy free electrons in the plasma (Sunyaev-Zel’dovich e↵ect) and the free
streaming of CMB photons after their mean free path increases drastically
already quite some time before recombination (Silk damping). There are
various other mechanisms that result in (usually less important) changes of
the CMB spectrum that we will not discuss here. After 7 years of data,
the observations of the WMAP satellite can all nicely be described by a
rather small set of cosmological parameters that, on top of that, can be
determined to a high precision. Again, one finds overwhelming evidence for
a DM component that is about five times as big as the baryonic component
(the latter of which being in agreement with BBN data).

6 Summary – DM properties

The preceding lectures can be summarized as follows: There is overwhelming
evidence for a sizable dark matter component in the universe, coming from
observations at distance scales that range from the size of small galaxies, to
clusters of galaxies, to cosmological scales close to the present size of the
horizon. Its cosmological abundance can be determined rather precisely as

⌦�h
2 = 0.1186± 0.0031 , (85)

which is much more than the abundance of ordinary (”baryonic”) matter,
⌦Bh

2 = 0.02217 ± 0.00033. (Here, h = 67.9 ± 1.5 is the present Hubble
expansion rate in units of 100 km/s/Mpc). Note that the ratio of dark to
baryonic matter locally can di↵er drastically from the cosmological value of
⌦�/⌦B ⇡ 5: while, e.g., the Milky Way within the solar radius is largely
dominated by baryons, it might be as high as ⇠ 1000 for Dwarf galaxies.

Even though the amount of dark matter is known very well, so far basi-
cally nothing is known about its nature. Since all evidence is obtained some-
how indirectly, i.e. through its gravitational e↵ects, also the list of inferred
properties looks more like a list of what dark matter is not : In particular,
dark matter must

• be non-baryonic in order to be consistent with BBN and CMB,

• be electrically neutral because it does not seem to emit electromagnetic
radiation (it is dark...),

• be color-neutral, because such heavy partons (confined inside color-
neutral hadrons) would interact too strongly with baryons (with con-
sequences for BBN, the CMB and even the stability of galactic disks),
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• have a small coupling to bosons charged under SU(2) in order to evade
constraints from direct detection (see chapter 13),

• be cold (highly non-relativistic), because only if matter is dominantly
dissipation-less and has negligible free-streaming e↵ects observations
of large scale structures agree with the results from numerical N -body
simulations of structure formation,

• be collision-less in order to explain observations like the bullet cluster.
(Again excluding baryonic dark matter, but not putting very stringent
constrains on the self-interaction of typical particle DM candidates).

In the literature, there have literally been zillions of proposals to explain
the nature of dark matter. Roughly, they can be divided into two classes:
modifications of gravity or (new) elementary particles that make up the dark
matter. While attempts of the former type often very nicely explain isolated
phenomena like the flattening of rotation curves, they usually lack a sound
theoretical motivation and generally fail to give a consistent description of
all observed phenomena.

For the latter option, the first interesting point to note is that the stan-
dard model of particle physics does not contain any particle with the above
properties – so the very existence of dark matter provides strong evidence
for physics beyond the standard model. Many proposed particle dark matter
candidates, however, are disfavored for similar reasons as given above for
modifications of gravity. A good dark matter candidate should thus be con-
sistent with all observations and have an independent (strong) motivation
from particle physics. As it turns out, there are a couple of proposals that
do, indeed, satisfy all these criteria.

7 Thermal relics

7.1 Weakly interacting massive particles

Let us consider the case of some massive (’cold’) particle � in the early
universe that interacts with standard model particles f through annihilations
�̄� $ f̄f . The evolution of its number density is given by the Boltzmann
equation (or, rather, its first moment, see Section 7.2):

@t
�

a3n�

�

= ṅ� + 3Hn� = �h�vi �n2
� � neq

�
2
�

, (86)

where h�vi is the e↵ective, thermally averaged annihilation cross section
times the relative velocity of the two annihilating � particles and neq

� their
number density in thermal equilibrium.
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The limiting behavior of this ODE can be easily understood. At early
times, or very high temperature, the Hubble expansion term can be neglected
because the annihilation term on the rhs dominates (n� / a�3 / T 3 vs.
H / t�1 / a�2 / T 2): as a result, n� is very e�ciently forced to follow the
equilibrium solution, almost independent of the initial conditions. When the
particles become non-relativistic, the interaction rate � ⇠ h�vin� will start
to fall behind the Hubble expansion rateH due to the Boltzmann suppression
of n� / exp[�m�/T ]. Eventually, the rhs can be completely neglected and
the co-moving � number density stays constant – until today, where it will
contribute to the measured value of ⌦. The process of leaving the thermal
distribution, at some temperture Tcd, is known as (chemical) decoupling or
freeze-out. Numerically, one finds (assuming dominantly s-wave annihilation)

⌦�h
2 ⇠ 0.1⇥ 3 · 10�26cm3/s

h�vi|Tcd

. (87)

The fact that this agrees with the observed value for ⌦�h
2 ⇠ 0.1, see

Eq. (85), for particles with masses and coupling strenths at the electroweak
scale [h�vi ⇠ ↵2

SU(2)c/(100GeV)2 ⇠ 10�3(1010cm/s)(10�16cm)2] is sometimes
referred to as the WIMP miracle. Such weakly interacting massive parti-
cles are predicted in many extensions of the standard model of elementary
particle that were introduced to solve its shortcomings at energies above the
electroweak scale (⇠ 100GeV), in particular the fine-tuning problem con-
nected to the fact that the scalar sector is not protected against radiative
corrections (the sum of loop contributions to the Higgs mass, in particular,
are quartic in the assumed cuto↵ scale of the theory). Examples for such
extensions include supersymmetry (SUSY), Little Higgs models and theories
with extra dimensions and will be discussed in more detail later.

The lightest of the new particles predicted in these theories is often neu-
tral; if stable on cosmological time scales (which is usually guaranteed by
some internal symmetry), it provides an excellent DM candidate – not only
because it will be thermally produced in the early universe, with a relic den-
sity that is generically of the right order of magnitude, but also because
it provides, in principle, ways to test the DM particle hypothesis by means
other than gravitational: Since the interaction with standard model particles
are more or less of the standard SU(2) type (i.e. weak but not unreasonably
weak), one may hope to i) produce WIMPs at colliders, ii) observe their
recoil o↵ heavy nuclei in large detectors or iii) detect the results of galactic
DM pair annihilation in the spectrum of cosmic rays of various kinds. All
these detection strategies will later be discussed in some detail.
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