First experiments with LaBr₃(Ce) in Oslo

Ann-Cecilie Larsen Post.doc., OCL/SAFE

UiO **Department of Physics** University of Oslo

Special thanks to the Milano group!

 Franco Camera, Angela Bracco, Silvia Leoni, Nives Blasi, Benedicte Million

... and also special thanks to Sunniva, who started it all; Andreas and Tamas, who transported the detectors; Andreas and Magne, who did a great job with the electronics +++; Eivind, Andrey, and Jon, who operated the cyclotron; And all who took shifts!

OCL beam schedule March 2012

- March 2 12: LaBr₃(Ce) commissioning and first experiment: 16-MeV protons on ^{56,57}Fe [Si, C, paper, mylar]. SiRi forward. ACL.
- March 14 21: Second experiment: 38-MeV ³He and 16-MeV protons on ¹⁹⁵Pt [C]. SiRi backward and forward. Francesca Giacoppo.
- March 23 29: Third experiment: 15-MeV deuterons on ¹²C. SiRi forward. The Milano group.

Now up and running ©

OCL overview

Experimental technique

LaBr₃(Ce) commissioning

- 16-MeV protons on the targets Si (3.5 mg/cm²) and C (1 mg/cm²) => response functions and calibration
- Natural Si: 92.2% ²⁸Si, 4.7% ²⁹Si, 3.1% ³⁰Si
- Natural C: 98.9% ¹²C, 1.1% ¹³C
- SiRi angles: 40 54°

Particle spectra – Si target

Excited states – Si target

Nal vs. LaBr₃(Ce)

Only requirement: signal in E detector (master gate) No gate on excitation energy. Si target.

Nal vs. LaBr₃(Ce)

Nal vs. LaBr₃(Ce)

1779.0-keV peak, ²⁸Si

[Gate on peak @ E_x=8904 keV]

Linear calibration

10⁵

det. id.

30

[Gate on peak @ E_x=8904 keV]

Quadratic calibration det. id. 10⁵ 10⁴ 10³ 10² E(Nal) [keV]

[Gate on peak @ E_x=8904 keV]

		Si peaks	χ ²			
LaBr ₃	1779.0	2838.8	5108.1	7124.7	Linear	Quad.
1	2040.0	3223.3	5792.4	8111.1	232.0	0.704
4	2103.2	3319.8	5944.0	8298.8	82.0	0.002
5	2165.3	3433.3	6149.2	8594.6	87.0	16.60
6	2282.0	3639.1	6609.9	9351.3	1090.0	5.40
7	2077.8	3286.7	5835.9	8055.3	361.0	0.20
8	2092.5	3329.8	5999.5	8386.4	46.3	1.50

Resolution

Source and in-beam [acquisition room] Quadratic calibration, ²⁸Si target

Detector	¹³⁷ Cs	²⁸ Si		²⁸ Si	
	FWHM [keV] @ 662 keV	1779.0 keV	%	7124.7 keV	%
Nal 1		113.4	6.4	283.2	4.0
LaBr ₃ 1	29	51.8	2.9	153.2	2.2
LaBr ₃ 4	28	49.3	2.8	168.6	2.4
LaBr ₃ 5	28	42.7	2.4	106.4	1.5
LaBr ₃ 6	27	46.6	2.6	116.5	1.6
LaBr ₃ 7	29	42.7	2.4	104.8	1.5
LaBr ₃ 8	24	51.8	2.9	119.4	1.7

Fe experiment

- Again, 16-MeV protons, SiRi forward
- ⁵⁷Fe target (92.44%) and ⁵⁶Fe target (99.93%)
- Famous "upbend" in the gamma strength [A. Voinov et al., PRL 93, 142504 (2004)]
- Now: much better E_x energy resolution (≈400 keV vs. ≈100 keV), much better statistics, possibility of angular distributions (40 54° + CACTUS), and LaBr₃(Ce)!

Low-energy enhancement of gamma strength

Potentially large impact on n-capture reaction rates

A.C. Larsen and S. Goriely, Phys. Rev. C 82, 014318 (2010)

Research project: Nuclear structure studies relevant for astrophysics Financed by the Research Council of Norway and Dep. of Physics

E(Nal) : E_x

Nal: 10 million counts, LaBr₃(Ce): 1.8 million counts

E(LaBr) : E

Still a lot of work to do...

- Make response functions for LaBr₃(Ce) for proper unfolding [also update Nal response functions]
- Extract (level density and) gamma strength for the various angles and look for differences
- CACTUS angular distributions => determine multipolarity of the upbend (probably L=1)
- Look carefully for gammas above neutron threshold (7.646 MeV in ⁵⁷Fe)

Still a lot of work to do...

- Make response functions for unfolding [also update Nal r
- Extract (level density and) g various angles and look for
- CACTUS angular distribution multipolarity of the upbend
- Look carefully for gammas a (7.646 MeV in ⁵⁷Fe)

