Level density and γ strength function in ^{118,119}Sn Heidi Kristine Toft, PhD student Department of Physics, University of Oslo #### **Outline** - Motivation - Experimental setup - 3. Preliminary analysis - 4. Further investigations #### Motivation - **E** γ : Energy of γ from disintegration of excited product nucleus. - Energy level density: Number of energy levels of excited nucleus per MeV. - γ strength function: Probability function for $E\gamma$ independent of level density. - **Earlier found: New, small resonance in** γ strength function for ^{116,117}Sn. - Enhanced γ emission. - Resonances are interesting because they indicate collective oscillations in the nucleus. #### New resonance in 116,117Sn - Detects $E\gamma < S_n$. - Small enhancement. "Pygmy". - $E\gamma \approx 8$ MeV. - On the tail of GEDR (Giant Electric Dipole Resonance). # Resonances' origins - GEDR: Out of phase oscillation of clouds of all (?) protons and neutrons. - Many nucleons involved \Rightarrow High γ strength. - Variation of a large charge distribution along an axis. - Emission of electric dipole radiation (E1 mode). - High frequency oscillation \Rightarrow Centroid $\hbar\omega \approx 15$ MeV. - Pygmy: Origin unknown. - Theory prediction of small resonances at 8 MeV: M1 (GMDR) or E1 (neutron skin oscillations). - Neutron skin oscillations: Non-moving core of Z protons and N≈Z neutrons, while excessive neutrons (≈A-2Z) oscillate in nucleus skin. #### Motivation for 118,119Sn - Confirm pygmy. - More excess neutrons in skin. - Expect stronger pygmy, if skin oscillations. - Possibly scaled to number of excess neutrons. ### Oslo cyclotron laboratory - Norway's only nuclear particle research accelerator. - Makes radioactivity for research and industry. Cyclotron Cactus Control room # Experimental setup ## Analysis overview - Interested in particle and γ coincidences. - Pick-up reaction: ¹¹⁹Sn(³He, ⁴He γ)¹¹⁸Sn. - Inelastic scattering: ¹¹⁹Sn(³He, ³He′γ)¹¹⁹Sn. - Particle detectors: - Measure particle energy \Rightarrow Estimate E_x . - Particle identification. - γ detectors: Measure $E\gamma$. - Keep only first generation γ . Matrix $(E_x, E\gamma)$. - **E**stimate level density and γ strength function. - Nucleus properties. ### Spectrum ΔE vs. E - △E and E energy distribution depend on charge (Z), mass (A) and particle velocity. - Distinguish ⁴He, ³He, t, d and p. ΔE vs. E ### Spectrum of added ∆E + E - ∆E detects some particle energy, E detects remainder. - Add up to total energy. - Better resolution than partial energy in each telescope. - Statistical fluctuations. - High-energetic p and d do not stop in E. - Increasing particle energy ⇒ Less total energy detection. - Sharp cut-off in right flank. Counts vs. total energy - Particle overlap. # Spectrum of ⁴He area (zoomed) - Energy difference of ⁴He peaks ⇒ Must match ¹¹⁸Sn energy difference in excitation levels (literature). - Identify: Most energetic ⁴He peak ⇔ ¹¹⁸Sn ground state. - Low cross section for ¹¹⁸Sn ground state. - Favour of high / neutron pick-ups. - High *Q* value. ### Spectrum AE telesc. thickness - ⁴He and ³He overlap in total energy. How to easily gate reactions? - Function range R(E) for ⁴He in Si is known. - Calculate ΔE thickness for ⁴He: $t = R(E + \Delta E) - R(E)$. - Thickness: - Separates particles. - Criterion for gating on ⁴He or ³He particles. Counts vs. µm Si ## Time spectrum - Δt: Time from particle detection to γ detection. - Gated on: ⁴He particles. - Peak: γ's from ⁴He reactions. - Narrow. (FWHM: 15-20 ns) - Rest: Background of random coincidences. - For substraction. Counts vs. Δt (ns) #### Future work - **E**stimate γ strength function and energy level density. - Compare results to earlier work on ^{116,117}Sn. - Neutron skin oscillations? # Further investigations - Matrix of E_x vs. E_y . - Unfolding of Nal spectra with Nal response functions. - Spectra of first γ emission from excited nucleus (first generation method). - Decompose matrix $P = \rho x T$. - Normalisation of ρ and T. - Makenstrength function. ### Spectrum **\Delta E** - ³He elastic peak. - Også inelastic område??? - No ⁴He peak since high-energetic. - Hvorfor ikke 4He her? - Er dette noe å vise? ## Spectrum E - E telescope stops particles. - Lower-energy peak: Elastic ³He. - Higher-energy peaks: ⁴He.