Level density and γ strength function in ^{118,119}Sn

Heidi Kristine Toft, PhD student

Department of Physics, University of Oslo

Outline

- Motivation
- Experimental setup
- 3. Preliminary analysis
- 4. Further investigations

Motivation

- **E** γ : Energy of γ from disintegration of excited product nucleus.
- Energy level density: Number of energy levels of excited nucleus per MeV.
- γ strength function: Probability function for $E\gamma$ independent of level density.
- **Earlier found: New, small resonance in** γ strength function for ^{116,117}Sn.
 - Enhanced γ emission.
 - Resonances are interesting because they indicate collective oscillations in the nucleus.

New resonance in 116,117Sn

- Detects $E\gamma < S_n$.
- Small enhancement. "Pygmy".
- $E\gamma \approx 8$ MeV.
- On the tail of GEDR (Giant Electric Dipole Resonance).

Resonances' origins

- GEDR: Out of phase oscillation of clouds of all (?) protons and neutrons.
 - Many nucleons involved \Rightarrow High γ strength.
 - Variation of a large charge distribution along an axis.
 - Emission of electric dipole radiation (E1 mode).
 - High frequency oscillation \Rightarrow Centroid $\hbar\omega \approx 15$ MeV.
- Pygmy: Origin unknown.
 - Theory prediction of small resonances at 8 MeV: M1 (GMDR) or E1 (neutron skin oscillations).
 - Neutron skin oscillations: Non-moving core of Z protons and N≈Z neutrons, while excessive neutrons (≈A-2Z) oscillate in nucleus skin.

Motivation for 118,119Sn

- Confirm pygmy.
- More excess neutrons in skin.
- Expect stronger pygmy, if skin oscillations.
 - Possibly scaled to number of excess neutrons.

Oslo cyclotron laboratory

- Norway's only nuclear particle research accelerator.
- Makes radioactivity for research and industry.

Cyclotron

Cactus

Control room

Experimental setup

Analysis overview

- Interested in particle and γ coincidences.
 - Pick-up reaction: ¹¹⁹Sn(³He, ⁴He γ)¹¹⁸Sn.
 - Inelastic scattering: ¹¹⁹Sn(³He, ³He′γ)¹¹⁹Sn.
- Particle detectors:
 - Measure particle energy \Rightarrow Estimate E_x .
 - Particle identification.
- γ detectors: Measure $E\gamma$.
- Keep only first generation γ . Matrix $(E_x, E\gamma)$.
- **E**stimate level density and γ strength function.
 - Nucleus properties.

Spectrum ΔE vs. E

- △E and E energy distribution depend on charge (Z), mass (A) and particle velocity.
- Distinguish ⁴He, ³He,
 t, d and p.

 ΔE vs. E

Spectrum of added ∆E + E

- ∆E detects some particle energy, E detects remainder.
 - Add up to total energy.
- Better resolution than partial energy in each telescope.
 - Statistical fluctuations.
- High-energetic p and d do not stop in E.
 - Increasing particle energy
 ⇒ Less total energy
 detection.
 - Sharp cut-off in right flank. Counts vs. total energy
- Particle overlap.

Spectrum of ⁴He area (zoomed)

- Energy difference of ⁴He peaks ⇒ Must match ¹¹⁸Sn energy difference in excitation levels (literature).
- Identify: Most energetic ⁴He peak ⇔ ¹¹⁸Sn ground state.
- Low cross section for ¹¹⁸Sn ground state.
 - Favour of high / neutron pick-ups.
 - High *Q* value.

Spectrum AE telesc. thickness

- ⁴He and ³He overlap in total energy. How to easily gate reactions?
- Function range R(E) for ⁴He in Si is known.
- Calculate ΔE thickness for ⁴He: $t = R(E + \Delta E) - R(E)$.
- Thickness:
 - Separates particles.
 - Criterion for gating on ⁴He or ³He particles.

Counts vs. µm Si

Time spectrum

- Δt: Time from particle detection to γ detection.
- Gated on: ⁴He particles.
- Peak: γ's from ⁴He reactions.
- Narrow. (FWHM: 15-20 ns)
- Rest: Background of random coincidences.
 - For substraction.

Counts vs. Δt (ns)

Future work

- **E**stimate γ strength function and energy level density.
- Compare results to earlier work on ^{116,117}Sn.
- Neutron skin oscillations?

Further investigations

- Matrix of E_x vs. E_y .
- Unfolding of Nal spectra with Nal response functions.
- Spectra of first γ emission from excited nucleus (first generation method).
- Decompose matrix $P = \rho x T$.
- Normalisation of ρ and T.
- Makenstrength function.

Spectrum **\Delta E**

- ³He elastic peak.
- Også inelastic område???
- No ⁴He peak since high-energetic.
- Hvorfor ikke 4He her?
- Er dette noe å vise?

Spectrum E

- E telescope stops particles.
- Lower-energy peak: Elastic ³He.
- Higher-energy peaks:
 ⁴He.

