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Cold Dark Matter Basics
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Dark Matter Basics - Modifications of Gravity
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Current Search Strategies
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How to Proceed in the Search for Dark Matter

Need approaches to find the particle nature of DM

e How can we use next
generation gravitational
wave and radio
telescopes to find DM?

1905. XXXX

e What can ancient
minerals buried deep
underground tell us about
DM?
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Multi-Messenger Signal of
Axion Dark Matter



Strong-CP Problem and the QCD axion

The standard model displays charge parity (CP)
violation through the weak interaction

The strong interaction also admits a CP violating term
in its Lagrangian
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No evidence of CP violation has ever been observed in
QCD; this would manifest as a neutron electric dipole

0] <1077 8] 7 O(1)

Promoting theta to a field allows the CP-violating term
to dynamically reach zero

Goldstones theorem then produces a boson, the axion

0 — 0
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Axion Dark Matter

e The same QCD axion particle can make up all of the DM

e Behaves like matter, inherits all the successes of CDM Cosmology

e Axion like particles (ALPS) are generic predictions from various other extensions to
the standard model - compactifications of higher dimensional string theories
generically produce spin-0 particles

e (Can be considered as particles in astrophysical settings; Compton wavelength is
relatively small
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Multi-Messenger Signal

Gravitational Wave Strain

Radio Line Amplitude

Time
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Quick View of the Final Result
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e Can probe the QCD axion and axion like L= — ZgawaF“ Fpu/

particles (ALPs) through their coupling to

photons d I

e Requires the density to be high enough/
system to be close by
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Intermediate Black Holes

e |ntermediate mass BHs are the least
constrained mass window, between 103 and
10% solar masses

e They have not been detected by GWs but their
existence observed in the centres of galaxies

e The are thought to be quite abundant in star
clusters such as globular clusters

e They can form through multiple channels:

1. Merging of many stellar mass BHs

2. Merger and consequent collapse of
massive stars

1311.6918 1702.02149
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DM Halo and Formation of a Mini-Spike

e These IMBHs can be born in mini-halos of
106 solar masses

e Assume that the growth of the central BH
IS adiabatic i.e.

e Depends on the initial profile of the DM
halo

e (Can be disrupted by baryons i.e. IMBH
has to be left alone for a long time

9906391 0501625
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Structure of the Mini-Spike

—— NFW

Final structure of the spike is assumed
to be a power law

Power law depends on the initial

—— Mini-Spike, a = 7/3

--------- BH-NS 1000 Mpc > Galactic NS
----- BH-NS 10 Mpc > Galactic NS

density profile, NFW produces a slope
of 7/3 therefore we take this as the Radius [pd]
baseline scenario

_ 0 (Tsp
Density is extremely enhanced Psp = Psp \ =
towards innermost stable orbit (ISCO)
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Gravitational Wave Signal - Dynamical Friction

Thomas D. P. Edwards | GRAPPA

Phase difference

106

0z 1t I
Frequency [Hz]

The presence of the DM cloud
causes energy loss through
dynamical friction

Inspiral takes less time than vacuum
iInspiral
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Rates and Lisa Sensitivity

e Uncertainty in IMBH formation
channels make merger rate
calculations extremely uncertain

e Lisa will see these objects for 5
years prior to merger

R ~3—10Gpc > yr !

N

Rates for IMBH mergers with
stellar mass objects
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Neutron Stars

e Young pulsars have extremely high
magnetic fields

e They are formed at the end of a
stars lifetime

e They are surrounded by a dense
plasma

e They are highly abundant in stellar
clusters, therefore will be the
dominant merging stellar mass
object to IMBHSs
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Axion-Photon Conversion
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e The finite electron density in the
plasma gives the photon an
effective mass

e Signal is dependent on the velocity
distribution of the DM

e Velocity distribution calculated
using Eddington’s formula

E=V(r)— =v°
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Radio Signal

— My =5x10""eV

— my=5x10"eV

P(¢) [arb. units]

By assuming that not only radial trajectories contribute to the final signal, time
variations due to rotation of NS are averaged out

Probably cannot observe Doppler shift from rotation around the BH, since the velocity
of the
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Square Kilometre Array Sensitivity
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e Not much time variation,
therefore easy to use signal to
noise calculation

e Assumed 100 hours
observation

e Bandwidth of the signal is set
by the velocity distribution of
the DM
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Final Constraints
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e Depending on the distance to the source and characteristics of the NS, this system can
provide a multi messenger signal of QCD axion DM

e Difficult to set robust limits due to the uncertainty in the NS properties, magnetic field etc.

e [f many are found, utilising NS population properties will allow for a more robust

constraint
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Paleo Detectors:
Using Ancient Minerals to
Search for Dark Matter



How to Search for Dark Matter on Earth
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Dark Matter and Direct Detection Experiments

e | will assume the Dark Matter is a Weakly Interacting
Massive Particle (WIMP) and only consider spin independent
interactions.

* Basic premise of Direct Detection Experiments is to detect
any prompt emission from a WIMP-nucleon scattering event.

e Built underground to prevent muon background from Cosmic
Rays interacting with the atmosphere.

1705.06655
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Paleo-Detectors

e Paleo-detectors are minerals from far (e . VA L \ S
below the Earths surface (5-10 km). This | \ P e B
is necessary to shield the mineral from | ‘ , PR G / 5%
cosmic ray backgrounds. ‘ e Revogsy & A
 Instead of phonons, charge, and light, | | 2 o2 .
paleo-detectors look for permanent F P
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Paleo-Detector Basics

e Damage tracks are caused by recoiling
nuclei depositing energy through
multiple scatters. The detailed
mechanism is unknown.

 Annealing timescales are extremely
long compared to the age of the
mineral.

High track length
resolution allows us to
probe low energy recoils -
We are therefore
sensitive to lighter dark
matter
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Backgrounds

* Unlike Xenon1T we have many
backgrounds...

* Neutrinos from the Sun, Supernovae, and
produced in the atmosphere all contribute
to our background.

e We also have to contend with natural
radioactivity, most importantly
Uranium-238 which contributes multiple
background components.

A. Uranium-238 that has gone through
a single alpha decay.

B. Neutron emission from spontaneous

fission of the Uranium-238.

* We mitigate these by using minerals which
contain hydrogen and are formed with

extremely low abundances of Uranium-238.
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Dark Matter Signal

* Signal is proportional to the interaction
strength. X X

 We utilise the different shapes of the 4
backgrounds from a dark matter signal.

* Hydrogen effectively slows fast
neutrons, mitigating the background
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Sensitivity to Dark Matter Signal
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IUsing the faster scanning method we can can probe WIMP DM well below current
experimental limits > 1 GeV
More precision allows us to probe lighter DM masses
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Next Steps

e Paleo-detectors could be the most sensitive dark matter direct detection experiments to date.

e We are currently beginning the experimental program to make these detectors a reality.

* Have funding for initial feasibility studies:

e Understanding track formation.

e Natural abundances of Uranium-238.

* The background can also be thought of as a signal, we are investigating the possibility of using paleo-detectors as
long-lived neutrino detectors.

Thomas D. P. Edwards | GRAPPA | 1811.10549
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Swordfish - Analysis Tool
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[Tensor field Visualization] [Conﬁdence Contours]

1704.05458, 1712.05401
https://github.com/cweniger/swordfish
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Conclusions

* The time is right to think hard about
new directions in the search for dark
matter

e Ultilising the guaranteed next
generation of detectors is a good
start

 (Can we go further? What kind of new
observables are there?

Thomas D. P. Edwards | GRAPPA
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