UiO MiNaLab – Micro and Nanotechnology Laboratory

UiO MiNaLab is one of four cleanrooms within the national infrastructure NorFab – The Norwegian Micro- and Nanofabrication Facility, supporting and enabling research and innovation within micro- and nanotechnology.

UiO MiNaLab offers open laboratory access for fabrication, characterization and collaborative research to all students and scientists at the University of Oslo, to the broader (public) research community in Norway and the EU, as well as industry and start-up professionals.

UiO MiNaLab has a 440 sq. m cleanroom with a ISO5 classification and several characterization laboratories. The infrastructure is targeted towards flexibility and provides equipment for the synthesis, modification and characterization of various material systems, such as semiconductors, metals, etc. The facility is operated by the Semiconductor physics group at the Department of Physics, the University of Oslo.

Publications

  • A. Azarov, A. Galeckas, F. C.-C. Ling and A. Kuznetsov. Tuning defect-related optical bands by channeling implants in semiconductors. J. Phys. D: Appl. Phys. 56, 035103 (2023).

  • J. Borgersen, R. Karsthof, V. Rønning, L. Vines, H. Wenckstern, M. Grundmann, A. Kuznetsov, and K. M. Johansen. Origin of enhanced conductivity in low dose ion irradiated oxides. AIP Advances 13, 015211 (2023).

  • A. Galeckas, R. M. Karsthof, G. Kingsly, A. Kok, M. E. Bathen, L. Vines and A. Kuznetsov. Cross-sectional carrier lifetime profiling and deep level monitoring in silicon carbide films exhibiting variable carbon vacancy concentrations. Phys. Status Solidi A, 2200449 (2023).

  • M. Ghezellou, P. Kumar, M. E. Bathen, R. Karsthof, E. Ö. Sveinbjörnsson, U. Grossner, J. Peder Bergman, L. Vines, and J. Ul-Hassan. The role of boron related defects in limiting charge carrier lifetime in 4H–SiC epitaxial layers. APL Mater 11, 031107 (2023).

  • Y. K. Hommedal, Y. K. Frodason, L. Vines, and K. M. H. Johansen. Trap-limited diffusion of Zn in β−Ga2O3. Phys. Rev. Materials 7, 035401 (2023).

  • S. B. Kjeldby, P. D. Nguyen, J. García-Fernández, K. Haug, A. Galeckas, I. J. T. Jensen,   A. Thøgersen, L. Vines and Ø. Prytz. Optical properties of ZnFe2O4 nanoparticles and Fe-decorated inversion domain boundaries in ZnO. Nanoscale Adv., 5, 2102-2110 (2023).

  • V. Ney, B. Henne, M. de Souza, W. Jantsch, K. M. Johansen, F. Wilhelm, A. Rogalev, and A. Ney. Valence state, lattice incorporation, and resulting magnetic properties of Ni in Zn/Co-based magnetic oxides. Journal of Applied Physics 133, 033904 (2023).

  • S. Adeojo, J. Malherbe, A. Azarov, O. Odutemowo, E. Njoroge, H. Abdelbagi, S. Mpelane, and T. Hlatshwayo. Effects of implantation temperature and annealing on structural evolution and migration of Se into glassy carbon.  Solid State Sciences 129, 106914 (2022).
  • Azarov, K. Bazioti, V. Venkatachalapathy, V. Ponniah, E. Monakhov, and A. Kuznetsov. Disorder-induced ordering in gallium oxide polymorphs. Phys. Rev. Lett. 128, 15704e (2022).
  • A. Azarov, V. Venkatachalapathy, P. Karaseov, A. Titov, K. Karabeshkin, A. Struchkov, and A. Kuznetsov. Interplay of the disorder and strain in gallium oxide. Scientific Reports 12, 15366 (2022).
  • J. Garcia- Fernandez, S. B. Kjeldby, P.D. Nguyen, Ole B. Karlsen, L. Vines, and Ø. Prytz. Formation of γ-Ga2O3 by ion implantation: Polymorphic phase transformation of β-Ga2O3. Applied Physics Letters. 121, 191601 (2022).
  • R. M. Karsthof, M. E. Bathen, A. Kuznetsov, and L. Vines. Formation of carbon  interstitial-related defect levels by thermal injection of carbon into n-type 4H-SiC. Journal of Applied Physics 131, 035702 (2022).
  • R. M. Karsthof, Y. K. Frodason, A. Galeckas, P. M. Weiser, V. Zviagin, and M. Grundmann. Light absorption and emission by defects in doped nickel oxide. Adv. Photonics Res., 3, 2200138 (2022).
  • S .B. Kjeldby, A. Azarov, P. D. Nguyen, V. Venkatachalapathy, R. Mikšová, A. MacKová, A. Kuznetsov, Ø. Prytz, and L. Vines. Radiation-induced defect accumulation and annealing in Si-implanted gallium oxide. Journal of Applied Physics 131, 125701 (2022).
  • A. Langørgen, C. Zimmermann, Y. K. Frodason, E. V. Førdestrøm, P. H. Weiser, R. M. Karsthof, J. B. Varley, and L. Vines. Influence of heat treatments in H2 and Ar on the E1 center in β-Ga2O3. Journal of Applied Physics 131, 115702 (2022).
  • J. Mayandi, T. G. Finstad, M. Stange, G. C. Vasquez, M. F. Sunding, O. M. Løvvik, S. Diplas, and P. A. Carvalho. Controlling the electrical properties of reactively sputtered high entropy alloy CrFeNiCoCu films, Journal of Electronic Materials 51, 803 (2022).
  • J. Mayandi, T. G. Finstad, Ø. Dahl, V. Ponniah, M. Schrade, Ole M. Løvvik, S. Diplas, and P. A. Carvalho. Thin films made by reactive sputtering of high entropy alloy FeCoNiCuGe: Optical, electrical and structural properties. Thin Solid Films 744, 139083 (2022).
  • V. S. Olsen, Y. K. Frodason, Y. K. Hommedal, D. M. Nielsen, P. M. Weiser, K. M. H. Johansen, I. H. Lee, A. Kuznetsov, and L. Vines. Li and group-III impurity doping in ZnSnN2: Potential and limitations. Phys. Rev. Materials 6, 124602 (2022).
  • J. U. Rahman, P. Almeida, Carvalho, N. Soltani, M. Schrade, A. E. Gunnæs, and T. G. Finstad. Synthesis, microstructure, and thermoelectric properties of Sb-based high entropy alloys. Intermetallics 143, 107495 (2022).
  • B. P. Reed, M. E. Bathen, J. W. R. Ash, C. J. Meara, A. A. Zakharov, J. P. Goss, J. W. Wells, D. A. Evans, and S. P. Cooil. Diamond (111) surface reconstruction and epitaxial graphene interface. Phys. Rev. B 105, 205304 (2022).

Partnership

UiO MiNaLab is a partner in the national infrastructure NORFAB – The Norwegian Micro- and Nanofabrication Facility, together with NTNU NanoLab, USN MST Lab and SINTEF MiNaLab.

UiO MiNaLab is also a part of NNN – The Nordic Nanolab Network and Euronanolab – The European Nanolab Network.


logo

logo
logo

 

UiO MiNaLab is funded by The Research Council of Norway and The University of Oslo.

  logo