

The CubeSTAR Project

- Student satellite project at the University of Oslo
- Scientific motivation:
 - Demonstrate a new "Space weather" satellite
- Academic motivation:
 - Recruit students to space science and engineering
- Built by graduate and under-graduate students

Engineering model of the CubeSTAR satellite

The CubeSTAR Project

- Satellite systems built by students
 - Electronic Power System (EPS)
 - Attitude Determination and Control System (ADCS)
 - Communication system (COMM)
 - On-Board Data and Handling (OBDH)
 - Ground Station (GS)
- Project time frame, 2008-2012/13
- 2nd satellite in the ANSAT program
- CubeSTAR is built after the Cubesat satellite standard

3

The Cubesat-standard

- Pico-/Nano-satellite size
- Developed by Calpoly and Standford University
- Designed for "piggy-backing" on commercial satellite launches
- "1U"
 - Dimensions: 10x10x10cm
 - Weight < 1.33kg
- The CubeSTAR satellite
 - "2U"
 - 10x10x20cm

Thesis Goals

- Define the requirments of the CubeSTAR communication system (space segment)
 - Functional
 - Communication
 - Regulations
 - Space environment
- Design and implement the system
- Develop firmware drivers to interface the system with the CubeSTAR communication protocol
- Discuss and identify an antenna solution for the CubeSTAR satellite

7

Functional Requirements

- Data link
 - **Uplink**, transmit commands from the ground station to the satellite
 - Downlink, transmit telemetry and housekeeping data from the satellite to the ground station
- Tracking signal
 - **Beacon**, transmit a tracking signal containg housekeeping data
 - Help the ground station team to locate the satellite
 - Transmit satellite status in the event that the data link can not be established

The Global Educational Network for Satellite Operations (GENSO)

- A software standard designed to connect ground stations and satellites of educational space missions
- Allows for teams to operate amateur satellite ground stations through the internet
- Designed for the amateur and academic community
- The CubeSTAR ground station is designed after the GENSO reference ground station

O

Communication Scheme

- GENSO has recommended frequency bands:
 - Amateur satellite bands, greatly simplifies the application process for frequency band
 - VHF, UHF, S-band
- and radio configurations:
 - 9600bps / Gaussian Frequency Shift Keying (FSK) modulation scheme
 - 1200bps / Audio Frequency Shift Keying (AFSK) modulation scheme
 - Neither was applicable due to bandwidth and technical constraints

Space Environment

- Radiation
 - Total Ionization Dose, performance degradation caused by accumulated radiation dose
 - Singel Event Upset, software corruption caused by a a high energy particle
 - Single Event Latchup, electric shortcut caused by a high energy particle
- Vacuum
 - Outgassing
 - Deformation
- Temperature
 - Operating temperature
 - $-\div40~^{\circ}C$ $\rightarrow\div30~^{\circ}C$ \leq T \leq $40~^{\circ}C$ \rightarrow $85~^{\circ}C$

13

Link Budget

- Used to evaluate a wireless communication link given parameters like:
 - Transmitted power
 - Frequency
 - Bandwidth
 - Path loss
 - Modulation

- A budget for gain and attenuation of a radio signal
- Signal-to-Noise Ratio (SNR)
- Bit Error Rate (BER)
- Link margin, an error margin to account for unexpected attenuation in the link

$$S_{N}[dB] = \underbrace{\left(P_{tx} + G_{t} - L_{Path} - L_{atm} + G_{r}\right)}_{Signal} - \underbrace{\left(k_{Boltzmann} + T_{Noise} + Bandwidth\right)}_{Noise}$$

 $S_N - S_{N_{reg}} = \text{Link margin} \ge 10 - 12dB$

Recommendations

- Consider the current modulation scheme against other modulation schemes with a higher spectral efficency (bps/Hz)
- Operational redundancy, to increase the chance of mission success
 - An extra transceiver system for redundancy
 - Mitigate antenna problems and electrical malfunction
- Adaptive radio
 - Range between satellite and ground station may vary between from 600km to 1900km
 - Current link budget assumes max distance 1900 km
 - The transmitter output power may be reduced as the distance between satellite and ground station closes and conserve power

 - Important to maintain a constant S/N

25

Conclusion

- Identified the key requirments for a CubeSTAR communication system
- Analysed the link through a link budget and verified that the link closes
- Designed and implemented a prototype system
- Transmitted an AX25 data packet from the communication system to the ground station
- Transmitted a beacon from the communication system
- Remaining work:
 - Consider using a more spectral efficent modulation scheme to increase the data
 - Verify through testing that the system upholds the current EMC regulations and if not modify the design
 - Integrate the HAL driver into the protocol layer

