

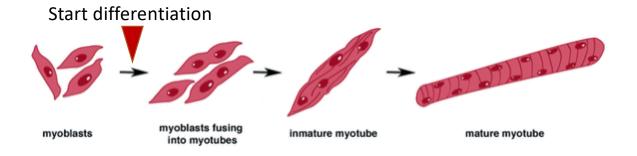
Bioactuator project

Skeletal muscle as Bioactuators

Y. Morimoto, Science Robotics, 2018

- Derived from myoblasts isolated from rat babies
 - Expensive
 - Limited growth

G.J.Pagan-Diaz, Adv Mater, 2018



- Derived from C2C12...cancer cell line of myoblasts
 - Inexpensive
 - Unlimited growth

Low power

Making tissue-engineered skeletal muscle

Making tissue-engineered skeletal muscle

Making tissue-engineered skeletal muscle

The force of engineered tissue is largely depends on maturation degree of myotube

Making tissue-engineered skeletal muscle

The force of engineered tissue is largely depends on maturation degree of myotube

Use mold to make a shape

Electrical stimulation

A Contest of Force —who is the strongest?-

Factors affects the force of engineered muscle

- 1) The number and length of myotubes
- 2) Volume of the tissue (remember nutrient diffusion limitation < 200μm)
- 3) Alignment of myotubes
- 4) Individual force of myotubes (the degree of maturation)

Let's set initial value of 1) and 2) same and compete by

- structure (include alignment of myotubes)
- maturation degree of myotubes = force of individual myotubes

