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FIG. 2. (a) The n = 3 term coming from expanding S
�

. (b)
The m = 3 diagram in the expansion of the integrand for the
momentum dependent susceptibility.

The diagram rules are: The (bare) spin propagator is
drawn as a solid line and gives a factorK�1

~q

. A wavy line,
which we will refer to as the (bare) constraint propagator,
gives a factor

D0~q =
2

N
s

2

4
X

~p

K�1
~p+~q

K�1
~p

3

5
�1

(9)

which originates from the quadratic part of the action
S
�

. The ~q = 0 component of D0~q is explicitly set to 0.
Every line, solid or wavy, carries a momentum. External
lines have a fixed momentum, and there is momentum
conservation at each vertex. Undetermined momenta are
integrated over. The numerical factors associated to a
diagram are: a factor �i for each vertex in a diagram,
a factor N

s

/2m for each ring with m wavy lines, and an
overall combinatorial factor 1/(k3!k4!k5! . . .) where k

m

is
the number of rings with m wavy lines.

Performing the average over � amounts to writing
down all diagrams and connecting the wavy lines. As
usual, only connected diagrams with two external legs
having the same momentum ~q will contribute to the mo-
mentum dependent susceptibility. We approximate the
averaging over � by summing just a selected infinite sub-
set of diagrams in the following way. First we define a
proper self-energy ⌃

~q

which renormalizes the spin prop-
agator according to the Dyson equation shown in Fig. 3.
The renormalized spin propagator is drawn as a bold solid
line. Solving this equation gives the renormalized spin

= + ⌃

FIG. 3. Dyson equation for the renormalized spin propaga-
tor.

propagator

K�1
e↵ ~q

=
1

J
~q

+�� ⌃
~q

. (10)

Similarly a proper polarization ⇧
~q

is introduced to

= + ⇧

FIG. 4. Dyson equation for the e↵ective constraint-field
propagator.

make a Dyson equation for the renormalized constraint

propagator (bold wavy line), see Fig. 4. Solving this gives

D�1
~q

= D�1
0~q �⇧

~q

. (11)

Next we approximate the self-energy and the polariza-
tion by the self-consistent diagrams in Fig. 5 which is

⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃ =

⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧ = -

FIG. 5. Self-consistent equations for the self-energy and the
polarization. Note that the bold lines on the right hand sides
also include the self-energy and the polarization.

equivalent to writing

⌃
~q

= (�i)2
X

~p

K�1
e↵ ~q�~p

D
~p

. (12)

⇧
~q

= (�i)2
N

s

2

X

~p

K�1
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� (�i)2
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s

2

X
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K�1
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K�1
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(13)

The expression for the proper polarization Eq. (13) is
finally converted, using Eqs. (9) and (11), into an equa-
tion for the renormalized constraint propagator

D�1
~q

=
N

s

2

X

~p

K�1
e↵ ~p+~q

K�1
e↵ ~p

. (14)

Equations (10), (12) and (14) represent the averaging
over the non-zero momentum modes of the constraint
field and define a system of self-consistent equations that
can be solved iteratively to give K�1

e↵ ~q

as a function of
�. After averaging over these modes the expression for
the spin susceptibility, Eq. (8), becomes

�
~q

=
N

s

T

2
hK�1

e↵ ~q

i
S� (15)

where the brackets denote the remaining average over
the zero momentum mode(homogeneous component) �
of the constraint field taken with respect to the weight
e�S� =

R
D�e�S� . This averaging is carried out by sim-

ply replacing it with a single value of � which for self-
consistency is the value which ensures that the unit vec-
tor constraint is satisfied as an average: h~S

~r

· ~S
~r

i = 1
which is equivalent to 1

V

P
~q

�
~q

= 1. Thus the value of

� (contained in K�1
e↵ ) is chosen so that it satisfies

N
s

T

2V

X

~q

K�1
e↵ ~q

= 1, (16)

and the spin susceptibility becomes

�
~q

=
N

s

T

2
K�1

e↵ ~q

, (17)


