Robert Oscar David

Image of Robert Oscar David
Norwegian version of this page
Room 2404
Username
Visiting address Blindernveien 31 Kristine Bonnevies hus 0371 Oslo
Postal address Postboks 1022 Blindern 0315 Oslo

Academic interests

  • Mixed phase clouds (MPCs): In situ measurements, microphysical properties, spatial distribution of cloud particles, efficiency of the Wegener-Bergeron-Findeisen process, influence of ice nucleating particles and secondary ice on MPC glaciation and lifetime
  • Ice nucleating particles (INPs): field and laboratory measurements of INPs, elucidating the mechanisms responsible for ice formation, physio-chemical properties of INPs, development of ice nucleation parametrizations
  • Holography: cloud particle measurements, phase discrimination and ice crystal habit classification using machine learning

Background

  • 2019-present: Postdoctoral Fellow, University of Oslo, Norway
  • 2015-2019: Doctorate (Dr. Sc.), ETH Zurich, Switzerland
Tags: Clouds, Holography, Ice nucleation, Meteorology

Selected publications

  • Carlsen, T., and David, R. O.: Spaceborne Evidence That Ice-Nucleating Particles Influence High-Latitude Cloud Phase. Geophysical Research Letters,  49(14), https://doi.org/10.1029/2022GL098041, 2022.

  • Vâjâiac, S. N., Calcan, A., David, R. O., Moacă, D.-E., Iorga, G., Storelvmo, T., Vulturescu, V., and Filip, V.: Post-flight analysis of detailed size distributions of warm cloud droplets, as determined in situ by cloud and aerosol spectrometers, Atmos. Meas. Tech., 14, 6777–6794, https://doi.org/10.5194/amt-14-6777-2021, 2021.

  • Hellmuth, F., Kokkvoll Engdahl, B. J., Storelvmo, T., David, R. O., & Cooper, S. J.: Snowfall Model Validation Using Surface Observations and an Optimal Estimation Snowfall Retrieval, Weather and Forecasting36(5), 1827-1842, https://doi.org/10.1175/WAF-D-20-0220.1, 2021 

  • Ramelli, F., Henneberger, J., David, R. O., Bühl, J., Radenz, M., Seifert, P., Wieder, J., Lauber, A., Pasquier, J. T., Engelmann, R., Mignani, C., Hervo, M., and Lohmann, U.: Microphysical investigation of the seeder and feeder region of an Alpine mixed-phase cloud, Atmos. Chem. Phys., 21, 6681–6706, https://doi.org/10.5194/acp-21-6681-2021, 2021.

  • Miller, A. J., Brennan, K. P., Mignani, C., Wieder, J., David, R. O., and Borduas-Dedekind, N.: Development of the drop Freezing Ice Nuclei Counter (FINC), intercomparison of droplet freezing techniques, and use of soluble lignin as an atmospheric ice nucleation standard, Atmos. Meas. Tech., 14, 3131–3151, https://doi.org/10.5194/amt-14-3131-2021, 2021.

  • Ramelli, F., Henneberger, J., David, R. O., Lauber, A., Pasquier, J. T., Wieder, J., Bühl, J., Seifert, P., Engelmann, R., Hervo, M., and Lohmann, U.: Influence of low-level blocking and turbulence on the microphysics of a mixed-phase cloud in an inner-Alpine valley, Atmos. Chem. Phys., 21, 5151–5172, https://doi.org/10.5194/acp-21-5151-2021, 2021.

  • Gute, E., David, R. O., Kanji, Z. A. and Abbatt, J. P. D.: Ice Nucleation Ability of Tree Pollen Altered by Atmospheric Processing, ACS Earth Space Chem., 4(12), 2312–2319, doi:10.1021/acsearthspacechem.0c00218, 2020.

  • McGraw, Z., Storelvmo, T., David, R. O. and Sagoo, N.: Global Radiative Impacts of Mineral Dust Perturbations Through Stratiform Clouds, J. Geophys. Res. Atmospheres, 125(23), e2019JD031807, doi:https://doi.org/10.1029/2019JD031807, 2020.

  • David, R. O., Fahrni, J., Marcolli, C., Mahrt, F., Brühwiler, D., and Kanji, Z. A.: The role of contact angle and pore width on pore condensation and freezing, Atmos. Chem. Phys., 20, 9419–9440, https://doi.org/10.5194/acp-20-9419-2020, 2020.

  • Cascajo-Castresana, M., David, R. O., Iriarte-Alonso, M. A., Bittner, A. M., and Marcolli, C.: Protein aggregates nucleate ice: the example of apoferritin, Atmos. Chem. Phys., 20, 3291–3315, https://doi.org/10.5194/acp-20-3291-2020, 2020

  • Mahrt, F., Kilchhofer, K., Marcolli, C., Grönquist, P., David, R. O., Rösch, M., Lohmann, U. and Kanji, Z. A.: The Impact of Cloud Processing on the Ice Nucleation Abilities of Soot Particles at Cirrus Temperatures, J. Geophys. Res. Atmospheres, 125(3), e2019JD030922, doi:10.1029/2019JD030922, 2020

  • Brennan, K. P., David, R. O. and Borduas-Dedekind, N.: Spatial and temporal variability in the ice-nucleating ability of alpine snowmelt and extension to frozen cloud fraction, Atmospheric Chem. Phys., 20(1), 163–180, doi:https://doi.org/10.5194/acp-20-163-2020, 2020.
  • David, R. O., Cascajo-Castresana, M., Brennan, K. P., Rösch, M., Els, N., Werz, J., Weichlinger, V., Boynton, L. S., Bogler, S., Borduas-Dedekind, N., Marcolli, C. and Kanji, Z. A.: Development of the DRoplet Ice Nuclei Counter Zurich (DRINCZ): validation and application to field-collected snow samples, Atmospheric Meas. Tech., 12(12), 6865–6888, doi:https://doi.org/10.5194/amt-12-6865-2019, 2019.
  • Baloh, P., Els, N., David, R. O., Larose, C., Whitmore, K., Sattler, B. and Grothe, H.: Assessment of Artificial and Natural Transport Mechanisms of Ice Nucleating Particles in an Alpine Ski Resort in Obergurgl, Austria, Front. Microbiol., 10, doi:10.3389/fmicb.2019.02278, 2019.
  • Borduas-Dedekind, N., Ossola, R., David, R. O., Boynton, L. S., Weichlinger, V., Kanji, Z. A. and McNeill, K.: Photomineralization mechanism changes the ability of dissolved organic matter to activate cloud droplets and to nucleate ice crystals, Atmospheric Chem. Phys., 19(19), 12397–12412, doi:https://doi.org/10.5194/acp-19-12397-2019, 2019.
  • Lowenthal, D. H., Hallar, A. G., David, R. O., McCubbin, I. B., Borys, R. D., and Mace, G. G.: Mixed-phase orographic cloud microphysics during StormVEx and IFRACS, Atmos. Chem. Phys., 19, 5387-5401, https://doi.org/10.5194/acp-19-5387-2019, 2019.
  • David, R. O., Marcolli, C., Fahrni, J., Qui, Y., Perez Sirkin, Y. A., Molinero, V., Mahrt, F., Brühwiler, D., Lohmann, U., Kanji, Z. A.: Pore condensation and freezing is responsible for ice formation below water saturation for porous particles, PNAS, 116, (17), 8184-8189, doi: 10.1073/pnas.1813647116, 2019.
  • Paramonov, M., David, R. O., Kretzschmar, R., and Kanji, Z. A.: A laboratory investigation of the ice nucleation efficiency of three types of mineral and soil dust, Atmos. Chem. Phys., 18, 16515-16536, https://doi.org/10.5194/acp-18-16515-2018, 2018.
  •  Mahrt, F., Marcolli, C., David, R. O., Grönquist, P., Barthazy Meier, E. J., Lohmann, U., and Kanji, Z. A.: Ice nucleation abilities of soot particles determined with the Horizontal Ice Nucleation Chamber, Atmos. Chem. Phys., 18, 13363-13392, https://doi.org/10.5194/acp-18-13363-2018, 2018.
  • Beck, A., Henneberger, J., Fugal, J. P., David, R. O., Lacher, L., and Lohmann, U.: Impact of surface and near-surface processes on ice crystal concentrations measured at mountain-top research stations, Atmos. Chem. Phys., 18, 8909-8927, https://doi.org/10.5194/acp-18-8909-2018, 2018.
  • Garimella, S., Rothenberg, D. A., Wolf, M. J., David, R. O., Kanji, Z. A., Wang, C., Rösch, M., and Cziczo, D. J.: Uncertainty in counting ice nucleating particles with continuous flow diffusion chambers, Atmos. Chem. Phys., 17, 10855-10864, https://doi.org/10.5194/acp-17-10855-2017, 2017.
  • Lowenthal, D. H., Hallar, A., McCubbin, I. B., David, R. O., Borys, R. D., Blossey, P., Muhlbauer, A., Kuang, Z., Moore, M. (2016). Isotopic Fractionation in Wintertime Orographic Clouds. I: Isotopic Measurements, J. Atmos. Oceanic Technol., 33, (12), 2663-2678, doi: 10.1175/JTECH-D-15-0233.1
Published May 10, 2019 9:59 AM - Last modified Nov. 8, 2022 11:06 AM