



Der Wissenschaftsfonds.



# Chesapeake Bay impact structure: Investigations of the impact breccia section (1397-1551 m) in the ICDP-USGS Eyreville drill core

#### Katerina Bartosova, Ludovic Ferrière, Dieter Mader, Christian Koeberl, and Uwe Reimold\*

Department of Lithospheric Research, University of Vienna, Austria \*Museum of Natural History, Humboldt-University, Berlin, Germany

### OUTLINE

- Chesapeake Bay impact structure
- Eyreville drill core
- Petrography and stratigraphy of the impact breccia
- Melt particles
- Shock metamorphism



### CHESAPEAKE BAY IMPACT STRUCTURE

35.3 Ma old, 85 km in diameter





## Gravity anomalies

5

15

O.

20

30

25

(Poag et al., 2004)

### **Chesapeake Bay impact structure**



Cross sectional structure and morphology Based on seismic reflection profiles and boreholes

(Poag et al., 2004)

#### **Tektite strewn fields**



#### (Montanari and Koeberl 2000)

### **ICDP-USGS EYREVILLE DRILL CORE**

Post-impact sediments

(Gohn et al., 2006; Horton et al., 2009)

444

Exmore breccia sediment-clast breccia and sedimentary blocks (interpreted as resurge breccia)

1096

Granite and granitic gneiss megablock

 1371 1397
 Gravelly sand (contains an amphibolitic block)
 Suevitic impact breccias

Basement-derived pegmatite/granite alternating with schist

BRECCIA

EXMORE

GRANITE

SUEVITE

SCHIST AND PEGMATITE

#### Exmore breccia 444-1096 m

**CB6-036** 

532.3 m







#### CB6-020 492.7 m





500 µm

BRECCIA EXMORE BRECCIA

#### Gravelly sand 1371-1397 m



CB6-089 1375.6 m

2 cm



#### CB6-091 1390.4 m







500 µm

#### Schist and pegmatite 1551-1766 m





#### CB6-141 1627.8 m

500 µm



POST-IMPACT

EXMORE BRECCIA

<u>۳</u>

CB6-145 1667.8 m

GRANITE

SUEVITE

SCHIST AND PEGMATITE

## PETROGRAPHY OF THE IMPACT BRECCIA

- mostly polymict and suevitic
- two thin layers of impact melt rock (upper part)
- large blocks of cataclastic gneiss (lower part)
- various types of lithic clasts, generally the clast size increases with depth in the impact breccia section
- minerals present quartz, K-feldspar, plagioclase, mica, opaque minerals, accessories, secondary minerals
- matrix mostly clastic, grayish, finegrained





SUEVITE

#### **Melt-rich suevite**



CB6-108 1451.01 m

#### Lithic clast-rich suevite





#### Geologic column of the impact breccia section

(modified from Horton et al., 2009)



# Stratigraphy of the impact breccia section - interpretations

U

U3

U5

**U6** 

- The subunit U1, above 1430 m with smallest clasts of all different target lithologies, most abundant matrix and abundant melt particles - represents fallback material.
- Melt-poor, crystalline clast rich subunit (U2) might represent ground-surge material or material slumped from the central uplift or transient crater margin.
- Subunit U3, which contains abundant melt particles, probably represents fallback material
- Subunit U4 may be a mixture of ground-surge and fallback material.
- The lowermost part of the impact breccia section (subunits U5 and U6, below 1474 m) - with large clasts, large blocks of cataclastic gneiss, relatively melt-poor represent ground-surge material.

# **MELT PARTICLES**

- millimeter- to centimeter-sized (up to 5 cm)
- frequently ovoid to amoeboid in shape
- mostly altered
- often with flow structures
- some are shard-like

(in the upper part of the impact breccia section)



~ 1413.0 m

#### **Melt distribution**









# Melt types

- 1) clear, brownish, or greenish, unaltered glass with high silica content
- 2) brown melt, entirely altered to finegrained phyllosilicate minerals

3) recrystallized silica melt

4) melt with feldspar and/or pyroxene microlites, with intersertal or microporphyritic texture

5) dark brown melt

### Melt type 1 (occurrence: 1399.2-1452.3 m)

500 µm

- clear, brownish or greenish glass
- only slightly altered
- often with flow texture
- amoeboid, some flame-shaped structures
- some shard-like with sharp contacts with
   the matrix
- rarely undigested grains or vesicles





# Melt type 1



### Melt type 2 (occurrence: 1399.2-1508.5 m)

- altered melt
- most abundant melt type
- ovoid to amoeboid
- completely altered to fine-grained phyllosilicates, e.g., smectite
- commonly fluidal texture, many cracks
- commonly with undigested grains – (mostly quartz)





# Melt type 2

#### back-scattered 1000 µm electron images CB6-093 1399.2 m matrix mel melt CB6-093 1399.2 m altered, with cracks, 1000 µm undigested grains

### Melt type 3 (occurrence: 1399.7-1452.3 m)

- recrystallized silica melt
- colorless, some brownish patches
- amoeboid, globules, some preserve shapes of the original clasts
- some have a cherty texture
- in melt rich intervals can be recrystallized to ballen quartz
- probably melted clasts of quartz and quartz-rich rocks





#### Melt type 4 (occurrence: 1402.9 - 1455.2 m)

- melt with intersertal or microporphyritic texture
- forms matrix in impact melt rock intervals or rare single particles
- irregular shapes
- tiny crystallites of pyroxene
  (Al-rich pyroxenes)
  or plagioclase (labradorite)





# Melt type 4



## **Type 5** (occurrence: 1443.7-1535.4 m)

- dark brown melt
- oval to amoeboid in shape
- possibly melt of shale or a finegrained sediment
- altered
- commonly small undigested grains (mostly quartz)



### **Melt particles**

- Generally the melt is more abundant in the upper part of the impact breccia
- Most abundant melt can be found around 1405 and 1450 m depth, where the suevite grades into impact melt rock
- We have distinguished five different types of melt particles
- The melt types have different appearance, and somewhat different but overlapping chemical composition and depth of occurrence
- Most of the melt particles are altered to secondary minerals, such as phyllosilicate minerals; only slightly altered melt particles are relatively rare (occur only in the upper part)

## SHOCK AND RELATED EFFECTS

- Planar fractures (PFs) in quartz
  - 1>>2 sets
- Planar deformation features (PDFs) in quartz 1, 2, rarely more sets per grain
- toasted appearance of quartz
- ballen quartz
- rare PDFs in feldspar
- kink banding in mica



KB-4 1405.7 m



# Proportion of shocked quartz grains (grains with PFs and/or PDFs)

Based on thin section point counting



No trend with depth

### Percentage of shocked quartz grains in clasts

- There is no linear trend
- Generally the abundance of highly shocked clasts decreases with increasing depth
- Some exceptions



#### All clasts in suevite





#### Note the different horizontal scales!







#### **U-stage**



### Shock metamorphism

- The suevite shows a variety of shock metamorphic effects, including abundant PDFs.
- On average, about 16 rel% of all the quartz grains are shocked (show PFs and/or PDFs) in the suevite.
- No trend in proportion of shocked quartz grains with depth was found.
- Presence of highly shocked as well as unshocked material implies mixing of the different target rocks, previously shocked at different pressures according to their original positions.
- The presence of impact melt rocks indicates that at least some target rocks experienced pressures of >60 GPa and temperatures >1500 °C.

### **Shock metamorphism - clasts**

- Clasts with higher proportion of shocked quartz grains (sqg) become generally less abundant with depth.
- Clasts derived from the upper part of the target (i.e., the pre-impact sediments) show a wide range of proportions of sqg, but include many clasts with higher proportion of sqg.
- The clasts of polycrystalline quartz are mostly highly shocked.
- Clasts derived from the deeper part of the target (i.e., the crystalline basement and metamorphed sediments) show mostly lower proportions of sqg.
- This is in agreement with attenuation of the shock wave with depth.
- The PDF orientations imply that the investigated clasts were moderately shocked, probably at 10–20 GPa

#### Acknowledgments:

#### Ralf-Thomas Schmitt, J.Wright Horton, Axel Wittmann, Franz Brandstaetter, Susanne Gier, Eugenainwitzy, OthFriedrich Koller

# The drilling at Eyr **O** wy **Sup R Extended**, and NASA. The present work was supported by the Austrian Science Foundation FWF, project P18862-N10 (to C.K.).