Norwegian version of this page

Quantifying the role of cold season processes in vegetation-permafrost feedbacks – WINTERPROOF

Adventdalen, Svalbard, where temperatures have strongly increased in the past decade. Winters are rapidly warming across the Arctic, which has a strong impact on snow, vegetation, and permafrost. Photo: Carline Tromp

Adventdalen, Svalbard: Temperatures have strongly increased in the past decade. Winters are rapidly warming across the Arctic, which has a strong impact on snow, vegetation, and permafrost. Photo: Carline Tromp

About the project

Climate change has an amplified effect on the Arctic. The most northern part of our planet warms more than twice as fast as the rest of the world, especially in winter. Rapid winter warming impacts both permafrost and vegetation: higher temperatures will lead to the thaw of permafrost soils, while mid-winter warm spells melt away the protective snow cover which plants rely on to survive the long and harsh winters.

The cold season may contribute up to half of the yearly release of greenhouse gases from permafrost soils, and extreme winter events such as rain-on-snow or thaw-freeze events have increased in frequency. Damage from these events lowers the ability of plants to photosynthesize and remove CO2 from the atmosphere. Unfortunately, we do not know much about how these processes will develop in the future. The aim of this project is to obtain more reliable projections on how arctic winter warming may impact climate feedbacks.

Objectives

In this research project, we will add important wintertime processes that affect vegetation and permafrost to computer models. The models we currently use to predict how the arctic responds to climate change are not built to accurately simulate the winter. In warmer parts of the globe, where winters are short, this may not represent a problem, but the arctic winter can last as long as nine months. When models are only correct for one quarter of the year, they will not be able to predict how climate feedbacks from the Arctic will develop in the future.

By introducing these new processes into the models, we can make better projections of how changing arctic winters may contribute to enhanced climate feedbacks. These results can be communicated to policy makers to inform them more accurately on the consequences of climate change on the Arctic and the rest of the world.

Financing

The full name of the WINTERPROOF-project is 'Winter-proofing land surface models - quantifying the critical role of cold season processes in vegetation-permafrost'.

This project is funded through the FRINATEK program of the Norwegian Research Council under grant agreement 274711. The grant is given in the category Young Research Talent.

The project period for the WINTERPROOF-project is 2018 to 2022.

Cooperation

This project and research involved is a collaboration among a number of national and international institutes:

Publications

  • Watts, Jennifer D.; Farina, Mary; Kimball, John S.; Schiferl, Luke D.; Liu, Zhihua & Arndt, Kyle A. [Show all 38 contributors for this article] (2023). Carbon uptake in Eurasian boreal forests dominates the high-latitude net ecosystem carbon budget. Global Change Biology. ISSN 1354-1013. 29(7), p. 1870–1889. doi: 10.1111/gcb.16553.
  • Tømmervik, Hans; Julitta, Tommaso; Nilsen, Lennart; Park, Taejin; Burkart, Andreas & Ostapowicz, Katarzyna Anna [Show all 10 contributors for this article] (2023). The northernmost hyperspectral FLoX sensor dataset for monitoring of high-Arctic tundra vegetation phenology and Sun-Induced Fluorescence (SIF). Data in Brief. ISSN 2352-3409. 50. doi: 10.1016/j.dib.2023.109581. Full text in Research Archive
  • Lambert, Marius; Tang, Hui; Aas, Kjetil Schanke; Stordal, Frode; Fisher, Rosie & Bjerke, Jarle Werner [Show all 8 contributors for this article] (2023). Integration of a Frost Mortality Scheme Into the Demographic Vegetation Model FATES. Journal of Advances in Modeling Earth Systems. ISSN 1942-2466. 15(7). doi: 10.1029/2022MS003333. Full text in Research Archive
  • Euskirchen, Eugénie S.; Bruhwiler, Lori M.; Commane, Róisín; Parmentier, Frans-Jan W.; Schädel, Christina & Schuur, Edward A. G. [Show all 7 contributors for this article] (2022). Current knowledge and uncertainties associated with the Arctic greenhouse gas budget. In Poulter, Benjamin; Canadell, Josep G.; Hayes, Daniel J. & Thompson, Rona Louise (Ed.), Balancing Greenhouse Gas Budgets. Accounting for Natural and Anthropogenic Flows of CO2 and other Trace Gases. Elsevier. ISSN 9780128149522. p. 159–201. doi: 10.1016/B978-0-12-814952-2.00007-1.
  • Oehri, Jacqueline; Schaepman-Strub, Gabriela; Kim, Jin-Soo; Grysko, Raleigh; Kropp, Heather & Grünberg, Inge [Show all 74 contributors for this article] (2022). Vegetation type is an important predictor of the arctic summer land surface energy budget. Nature Communications. ISSN 2041-1723. 13. doi: 10.1038/s41467-022-34049-3. Full text in Research Archive
  • Lambert, Marius; Tang, Hui; Aas, Kjetil Schanke; Stordal, Frode; Fisher, Rosie & Fang, Yilin [Show all 8 contributors for this article] (2022). Inclusion of a cold hardening scheme to represent frost tolerance is essential to model realistic plant hydraulics in the Arctic-boreal zone in CLM5.0-FATES-Hydro. Geoscientific Model Development. ISSN 1991-959X. 15(23), p. 8809–8829. doi: 10.5194/gmd-15-8809-2022. Full text in Research Archive
  • Virkkala, Anna-Maria; Natali, Susan M.; Rogers, Brendan M.; Watts, Jennifer D.; Savage, Kathleen & Connon, Sara June [Show all 64 contributors for this article] (2022). The ABCflux database: Arctic–boreal CO2 flux observations and ancillary information aggregated to monthly time steps across terrestrial ecosystems. Earth System Science Data. ISSN 1866-3508. 14(1), p. 179–208. doi: 10.5194/essd-14-179-2022. Full text in Research Archive
  • Helbig, M.; Živković, T.; Alekseychik, P.; Aurela, M.; El-Madany, T. S. & Euskirchen, E. S. [Show all 33 contributors for this article] (2022). Warming response of peatland CO2 sink is sensitive to seasonality in warming trends. Nature Climate Change. ISSN 1758-678X. 12, p. 743–749. doi: 10.1038/s41558-022-01428-z.
  • Parmentier, Frans-Jan W.; Nilsen, Lennart; Tømmervik, Hans & Cooper, Elisabeth J. (2021). A distributed time-lapse camera network to track vegetation phenology with high temporal detail and at varying scales. Earth System Science Data. ISSN 1866-3508. 13(7), p. 3593–3606. doi: 10.5194/essd-13-3593-2021. Full text in Research Archive
  • Virkkala, Anna-Maria; Aalto, Juha; Rogers, Brendan M.; Tagesson, Torbern; Treat, Claire C. & Natali, Susan M. [Show all 49 contributors for this article] (2021). Statistical upscaling of ecosystem CO2 fluxes across the terrestrial tundra and boreal domain: regional patterns and uncertainties. Global Change Biology. ISSN 1354-1013. 27(17), p. 4040–4059. doi: 10.1111/gcb.15659. Full text in Research Archive
  • Bruhwiler, Lori; Parmentier, Frans-Jan W.; Crill, Patrick; Leonard, Mark & Palmer, Paul I. (2021). The Arctic Carbon Cycle and Its Response to Changing Climate. Current Climate Change Reports. ISSN 2198-6061. 7, p. 14–34. doi: 10.1007/s40641-020-00169-5. Full text in Research Archive
  • Pongracz, Alexandra; Wårlind, David; Miller, Paul A. & Parmentier, Frans-Jan W. (2021). Model simulations of arctic biogeochemistry and permafrost extent are highly sensitive to the implemented snow scheme in LPJ-GUESS. Biogeosciences. ISSN 1726-4170. 18(20), p. 5767–5787. doi: 10.5194/bg-18-5767-2021. Full text in Research Archive
  • Olefeldt, David; Hovemyr, Mikael; Kuhn, McKenzie A.; Bastviken, David; Bohn, Theodore J. & Connolly, John [Show all 34 contributors for this article] (2021). The Boreal–Arctic Wetland and Lake Dataset (BAWLD). Earth System Science Data. ISSN 1866-3508. 13(11), p. 5127–5149. doi: 10.5194/essd-13-5127-2021. Full text in Research Archive
  • Chadburn, Sarah E.; Aalto, Tuula; Aurela, Mika; Baldocchi, Dennis; Biasi, Christina & Boike, Julia [Show all 25 contributors for this article] (2020). Modeled Microbial Dynamics Explain the Apparent Temperature Sensitivity of Wetland Methane Emissions. Global Biogeochemical Cycles. ISSN 0886-6236. 34( 11). doi: 10.1029/2020GB006678. Full text in Research Archive
  • Myers-Smith, Isla H.; Kerby, Jeffrey T.; Phoenix, Gareth K.; Bjerke, Jarle W.; Epstein, Howard E. & Assmann, Jakob J. [Show all 41 contributors for this article] (2020). Complexity revealed in the greening of the Arctic. Nature Climate Change. ISSN 1758-678X. 10(2), p. 106–117. doi: 10.1038/s41558-019-0688-1. Full text in Research Archive
  • Pastorello, Gilberto; Trotta, Carlo; Canfora, Eleonora; Chu, Housen; Christianson, Danielle & Cheah, You-Wei [Show all 287 contributors for this article] (2020). The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data. Scientific Data. ISSN 2052-4463. 7. doi: 10.1038/s41597-020-0534-3. Full text in Research Archive
  • Box, Jason E.; Colgan, William T.; Christensen, Torben Røjle; Schmidt, Niels Martin; Lund, Magnus & Parmentier, Frans-Jan W. [Show all 20 contributors for this article] (2019). Key indicators of Arctic climate change: 1971–2017 . Environmental Research Letters. ISSN 1748-9326. 14(4). doi: 10.1088/1748-9326/aafc1b. Full text in Research Archive
  • Natali, Susan M.; Watts, Jennifer D.; Rogers, Brendan M.; Potter, Stefano; Ludwig, Sarah M. & Selbmann, Anne-Katrin [Show all 75 contributors for this article] (2019). Large loss of CO2 in winter observed across the northern permafrost region. Nature Climate Change. ISSN 1758-678X. 9, p. 852–857. doi: 10.1038/s41558-019-0592-8. Full text in Research Archive
  • Christensen, Torben R.; Arora, Vivek K; Gauss, Michael; Hoglund-Isaksson, Lena & Parmentier, Frans-Jan W. (2019). Tracing the climate signal: mitigation of anthropogenic methane emissions can outweigh a large Arctic natural emission increase. Scientific Reports. ISSN 2045-2322. 9. doi: 10.1038/s41598-018-37719-9. Full text in Research Archive

View all works in Cristin

  • Lambert, Marius; Tang, Hui; Aas, Kjetil Schanke; Stordal, Frode; Bjerke, Jarle Werner & Fisher, Rosie [Show all 10 contributors for this article] (2023). Winter survival of vegetation in the Arctic-boreal region: Integrating cold hardiness and frost mortality schemes into CLM-FATES.
  • Pongracz, Alexandra; Wårlind, David; Miller, Paul A. ; Rabin, Sam S.; Gustafson, Adrian & Parmentier, Frans-Jan (2023). Contrasting trends in snow thickness govern future trajectories of Arctic-boreal carbon release.
  • Parmentier, Frans-Jan W. (2022). Vinterskader: Hvordan påvirkes naturen av ekstremt vintervær og vintertørke?
  • Parmentier, Frans-Jan; Hessen, Dag Olav & Wang, You-Ren (2022). Ekstremoppvarmingen av Arktis gir økte CO2-utslipp. Dagens næringsliv. ISSN 0803-9372. p. 31–31.
  • Pongracz, Alexandra; Wårlind, David; Miller, Paul A. & Parmentier, Frans-Jan W. (2022). Quantifying the impact of winter warming on arctic-boreal ecosystems and greenhouse gas exchange.
  • White, Joel D.; Ahrén, Dag; Ström, Lena; Klemedtsson, Leif & Parmentier, Frans-Jan W. (2022). Methane producing and reducing microorganisms display a high resilience to the effects of short term drought in a Swedish hemi boreal fen.
  • Parmentier, Frans-Jan W. (2022). Klimaendring er ikke som ­å skru opp varmen med en grad. Klassekampen. ISSN 0805-3839. p. 2–3.
  • Parmentier, Frans-Jan W. (2022). På vippepunktet. Klassekampen. ISSN 0805-3839. p. 3–3.
  • Aas, Kjetil Schanke; Lambert, Marius; Tang, Hui; Althuizen, Inge; Berntsen, Terje Koren & Fisher, Rosie [Show all 11 contributors for this article] (2022). Recent high-latitude vegetation developments in CLM-FATES.
  • Parmentier, Frans-Jan W. (2022). Adjø, Sibir. Klassekampen. ISSN 0805-3839. p. 3–3.
  • Parmentier, Frans-Jan W. (2022). Langt, langt borte. Klassekampen. ISSN 0805-3839. p. 3–3.
  • Pongracz, Alexandra; Wårlind, David; Miller, Paul A. & Parmentier, Frans-Jan W. (2021). Quantifying the impact of wintertime changes on the arctic carbon cycle.
  • Helbig, Manuel; Zivkovic, Tatjana; Alekseychik, Pavel; Aurela, Mika; Euskirchen, Eugénie S. & Flanagan, Lawrence B. [Show all 27 contributors for this article] (2021). Early but not late growing season warming enhances peatland net ecosystem carbon dioxide uptake.
  • Lambert, Marius; Aas, Kjetil Schanke; Tang, Hui; Stordal, Frode & Parmentier, Frans-Jan (2021). Modelling insights into the effects of hardening during extreme winter root water release.
  • Lambert, Marius (2021). Grønt eller brunt? Uforutsigbar fremtid i Arktis. Naturen. ISSN 0028-0887. 145(5), p. 226–229. doi: 10.18261/issn.1504-3118-2021-05-03.
  • Parmentier, Frans-Jan W. (2021). Ingen unnskyldninger. Klassekampen. ISSN 0805-3839. p. 3–3.
  • Parmentier, Frans-Jan W. (2021). Zombier i skogen. Klassekampen. ISSN 0805-3839. p. 3–3.
  • Parmentier, Frans-Jan W. (2021). Helt på jordet. Klassekampen. ISSN 0805-3839. p. 3–3.
  • Parmentier, Frans-Jan W. (2021). Ko-ko-klima! Klassekampen. ISSN 0805-3839. p. 3–3.
  • Parmentier, Frans-Jan W. (2021). Permafrost: den sovende klimakjempen. Naturen. ISSN 0028-0887. 145(5), p. 230–235.
  • Parmentier, Frans-Jan W. (2021). Komplekst kaos. Klassekampen. ISSN 0805-3839. p. 3–3.
  • Parmentier, Frans-Jan W.; Nilsen, Lennart; Tømmervik, Hans & Cooper, Elisabeth J. (2021). A distributed time-lapse camera network on high-arctic Svalbard to track vegetation phenology with high temporal detail and at varying scales.
  • Parmentier, Frans-Jan W. (2021). Hvit jul for Rudolf. Klassekampen. ISSN 0805-3839. p. 3–3.
  • Nilsen, Lennart; Parmentier, Frans-Jan W.; Tømmervik, Hans & Cooper, Elisabeth J. (2021). Near-surface vegetation monitoring in Adventdalen, Svalbard (Rack #1-#10, 2015-2018).
  • Pongracz, Alexandra; Miller, Paul A.; Wårlind, David & Parmentier, Frans-Jan W. (2020). Model Simulations of Arctic Biogeochemistry and Permafrost Extent Are Sensitive to the Implemented Snow Scheme.
  • Lambert, Marius Stephane Astrid; Tang, Hui; Stordal, Frode; Aas, Kjetil Schanke & Parmentier, Frans-Jan W. (2020). Causes of plant mortality from extreme winter events: model insights into desiccation processes during frost droughts.
  • Parmentier, Frans-Jan W. (2020). Tampen brenner. Klassekampen. ISSN 0805-3839. p. 3–3.
  • Parmentier, Frans-Jan W. (2020). Godt nytt for klimaet? Klassekampen. ISSN 0805-3839. p. 3–3.
  • Parmentier, Frans-Jan W. (2019). Apokalypse nå? Klassekampen. ISSN 0805-3839. p. 3–3.
  • Parmentier, Frans-Jan W. (2019). 'Doomsday vault' town warming faster than any other on Earth. [Internet]. CNN Digital.
  • Parmentier, Frans-Jan W. (2019). Du grønne glitrende. Klassekampen. ISSN 0805-3839. p. 3–3.
  • Parmentier, Frans-Jan W. (2019). Arctic greening and browning: the two-sided impact of global warming on polar ecosystems and climate feedbacks.
  • Watts, Jennifer D.; Natali, Sue; Minions, Christina; Ludwig, Sarah; Rogers, Brendan M. & Risk, David [Show all 39 contributors for this article] (2019). Soil CO2 flux in the permafrost zone: New insight from a year-round chamber network in Alaska and Canada.
  • Mauritz, Marguerite; Celis, Gerardo; Commane, Roisin; Euskirchen, Eugénie S.; Goeckede, Mathias & Humphreys, Elyn [Show all 19 contributors for this article] (2019). Reconciling Historical and Contemporary Trends in Terrestrial Carbon Exchange of the High-latitude Permafrost-zone.
  • Parmentier, Frans-Jan W. (2019). Hva sier planten? Klassekampen. ISSN 0805-3839. p. 3–3.
  • Parmentier, Frans-Jan W.; Nilsen, Lennart; Tømmervik, Hans; Meisel, Ove H.; Bröder, Lisa M. & Vonk, Jorien E. [Show all 8 contributors for this article] (2019). Thicker Snow Cover Triggers Permafrost Carbon Loss Through Both Enhanced Warming and Surface Runoff.
  • Parmentier, Frans-Jan W. (2019). Ulven under tundraen. [Newspaper]. Klassekampen.
  • Parmentier, Frans-Jan W. (2019). Modellplaneten. Klassekampen. ISSN 0805-3839. p. 3–3.
  • Parmentier, Frans-Jan W.; Sonnentag, Oliver; Mauritz, Marguerite; Virkkala, Anna-Maria & Schuur, Edward A.G. (2019). Is the northern permafrost zone a source or a sink for carbon? EOS. ISSN 0096-3941. 100. doi: 10.1029/2019EO130507.
  • Parmentier, Frans-Jan W. (2019). Töväder mitt i vintern – ett nytt mönster i vädret kan påverka klimatförändringarna. [Newspaper]. Sydsvenskan.
  • Parmentier, Frans-Jan W. (2019). Slår fast att havsstigningen accelererar. [Internet]. Forskning & Framsteg.
  • Parmentier, Frans-Jan W. (2018). Det varme nord. Klassekampen. ISSN 0805-3839. p. 3–3.
  • Natali, Sue; Watts, Jennifer; Rogers, Brendan M.; Potter, Stefano; Abbott, Benjamin & Arndt, Kyle [Show all 72 contributors for this article] (2018). A pan-arctic synthesis of nongrowing season respiration: Key drivers and responses to a changing climate .
  • Parmentier, Frans-Jan W. (2018). Pando dør. Klassekampen. ISSN 0805-3839. p. 3–3.
  • Christensen, Torben R.; Arora, Vivek K.; Gauss, Michael; Hoglund-Isaksson, Lena & Parmentier, Frans-Jan W. (2018). Arctic methane as an amplifier of global warming.
  • Chadburn, Sarah; Fan, Yuanchao; Aalto, Tuula; Aurela, Mika; Bartsch, Annett & Boike, Julia [Show all 25 contributors for this article] (2018). Including microbial dynamics is essential for modelling Arctic methane emissions.
  • Parmentier, Frans-Jan W.; Nilsen, Lennart; Tømmervik, Hans; Meisel, Ove; Bröder, Lisa & Vonk, Jorien E. [Show all 8 contributors for this article] (2018). Thicker Snow Cover Triggers Lateral Permafrost Carbon Loss Both Through Enhanced Warming and Surface Runoff.

View all works in Cristin

Published Mar. 11, 2019 7:29 PM - Last modified Nov. 30, 2022 5:31 PM

Contact

Frans-Jan Parmentier, Researcher and Project Leader

Participants

Detailed list of participants