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Abstract

Linguistic and semantic consequences of combining the ideas of order sorted algebras
(as in OBJ) and generator induction (as in LARCH) are investigated. It is found that
one can gain the advantages of both, in addition to increased �exibility in de�ning
signatures and generator bases. Our treatment also gives rise to typing control stronger
in a certain sense than that of OBJ, as well as the detection of inherently inconsistent
signatures.
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1 Introduction

Goguen et al [5, 6, 7, 8] have introduced the concept of order sorted algebras as a basic

mechanism in the speci�cation language OBJ. An order sorted algebra is a many-sorted

algebra with a partial order de�ned on the set of sorts, representing the subsort relation.

The purpose is to obtain increased �exibility within a regime of strict typing, and to provide

a way of dealing with a class of partial functions. Axioms are arbitrary quanti�er-free

equations over a given signature, and the language semantics is based on an initial algebra

assumption, implemented through term rewriting after Knuth-Bendix-like completion.

The technique of generator inductive function de�nitionwas introduced by Guttag et al [10,

11] and is used in the speci�cation language LARCH and other languages. Guttag axioms

have the important properties of preserving consistency as well as �su�cient completeness�.

They form convergent sets of rewrite rules. In the discussion we make use of elements of

a language for speci�cation and programming called ABEL, developed at the University

of Oslo [3, 4]. An important part of the language is based on the technique of generator

inductive function de�nition.

The paper is organized as follows: In section 2 we focus on the strength of the OBJ typing

mechanism. The type analysis of OBJ, without coercions, is sound in the sense that (i)

a well-formed ground term of type (sort) T has a well-de�ned value in the set associated

with T, and (ii) any ground instance of a well-formed term of type T is well-formed and

of type T. (A term of type T is also of type T' if T is a subsort of T'). In order to obtain

a strong type analysis, one may wish that the reverse of (i) and (ii) hold, i.e. (iii) if every

ground instance of a term has a well-de�ned value in T, then the term is well-formed and

of type T, and (iv) if every ground instance of a term is well-formed and of type T, then

the term itself is well-formed and of type T. We shall develop requirements that ensure

the latter property, called optimal typing. In OBJ optimal typing is not possible for terms

with multiple variable occurrences, such as x�x, which has optimal type natural for integer

x. It is clear that (iii) can not be achieved, for instance it is not possible to see statically

(without equations) that x� (x=2) is a non-zero natural number for all non-zero natural x.

Terms can sometimes be made well-formed by insertion of coercion functions. For instance,

the term sqrt(NAT (x � y)) is not well-formed without the NAT-application coercing an

integer to a natural. But soundness (part i) is lost if coercion, say from T to a subtype

T 0, is interpreted as unde�ned outside T 0; for instance, the term above is unde�ned if

y > x. (Algebraically, a coercion function can be de�ned as an unspeci�ed total function

[9]; an unde�ned term will then be represented by an irreducible term containing coercion.)

Insertion of unnecessary coercions may be avoided with a strong type analysis (for instance,

if x is natural and y is negative in the above example).

In chapter 3, after giving an overview of the basic mechanisms of generator induction,

we discuss the problem of ensuring ground completeness, by suggesting ways of de�ning

equality constructively.

In the rest of the paper we investigate the linguistic interaction between the concepts of

order sorted algebras and generator induction. It is possible to obtain stronger and more
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�exible type control than in OBJ. In order to obtain optimal type analysis with OBJ, one

must provide a signature with many pro�les for each function. A practical problem is that

it is di�cult to see if there are enough pro�les. Another problem is to see whether such a

signature satis�es the minimal requirements to monotonicity and regularity. Furthermore

the union of two signatures may not satisfy monotonicity, regularity, or optimality, even

if both do so separately. It is possible to overcome these problems in the case where each

value belongs to a minimal subtype and where the minimal subtypes are mutually disjoint

� which is the case for constructively de�ned (sub)type families. We shall develop methods

that from an arbitrary signature compute another satisfying monotonicity, regularity, opti-

mal typing and with the same interpretations as the given one. Optimal typing is possible

by systematically rewriting terms with multiple variable occurrences.

As additional advantages, we can detect inherently inconsistent signatures (those that

have no interpretation); and we can detect inherently unde�ned terms such as x=0, and

sqrt(�x � x) for non-zero x. Coercion (as in sqrt(NAT (�x � x))) is here of little help since

it would never succeed. Such detections are not possible in OBJ, because emptiness of

intersection of domains is not statically known. On the other hand, the unde�nedness of

terms such as 1=(x� x) depends on equations and can not be detected from a signature.

2 Order Sorted Algebras

Let T be a given �nite set of sorts, or types as in the terminology of programming languages,

and let � be a given partial order on T , called the subtype relation. Each type represents a

nonempty set of �values�, and the subtype relation represents the inclusion relation on the

corresponding value sets. In the following the letters T and D, possibly decorated, stand

for types and type products (possibly empty), respectively. A type product over T is an

element of T �; it represents the corresponding Cartesian product of value sets.

If T1�T2, we say that T1 is a subtype of or included in T2, and that T2 is an ancestor of

T1. Two types are said to be related if they have a common ancestor. We assume in the

following that the subtype relation is such that any two related types have a unique least

common ancestor. These concepts carry over to type products in the following way: D1�D2

holds i� D1 and D2 have the same length and the subtype relation holds for each pair of

components. D1 and D2 are related i� they have the same length and the components

are pairwise related. It is reasonable to assume, as in OBJ, that relatedness is a transitive

relation on T (and T �).

A signature is a �nite set of function pro�les of the form f :D!T , where f is a function

symbol. The pro�le is called a f -pro�le; it represents a function f total from the domain

D into the codomain T . If the former is an empty type product the function is a constant.

A signature may contain more than one pro�le with the same function symbol; they are

said to be coincident. In order to avoid complications of function overloading we assume

in the sequel that the domains and codomains of any two coincident function pro�les are

related. We interpret coincident pro�les as representing a single function which is total on

each domain, but unde�ned elsewhere and thus in general partial on any common ancestor

of these domains.
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In OBJ the following restrictions apply to any signature �:

1. Monotonicity: Any pair of coincident function pro�les with domains D1; D2 and cor-

responding codomains T1; T2 must satisfy D1�D2 ) T1�T2.

2. Regularity: For any domain D�T � and function symbol f , the set

fD0 j D�D0 ^ 9T j f :D0!T � �g

must have a unique minimal element if nonempty.

The expression language of an order sorted algebra is the set of well-formed expressions,

each of which has an associated minimal type. Let � be a signature and V a set of typed

variables. A well-formed expression of minimal type T over � and V is either

� a variable in V of type T , or

� a function application f(e1; e2; : : : ; en), n � 0, (possibly in in�x or �mix�x� notation)

where each ei is a well-formed expression of minimal type Ti (i = 1::n), and there is

a f-pro�le in � whose domain is an ancestor of the type product T1 � T2 � : : :� Tn,

and T is the minimal codomain of such f -pro�les.

The de�nition is meaningful if the signature � satis�es the above restrictions. But the

regularity restriction is unnecessarily strong: In order to determine the minimal type of an

application of f it may not be necessary to identify a unique pro�le for f , if only the minimal

codomain of feasible pro�les is unique. Thus, the following may replace the restriction 2

above:

2'. Weak regularity: For any domain D�T � and function symbol f , the set

fT j 9D0 j D�D0 ^ f :D0!T � �g

must have a unique minimal element if nonempty.

(This concept has been introduced by Goguen under the term �preregularity�. See e.g. [9].)

In the sequel the words �expression� and �term� are used interchangeably to mean expres-

sion over a signature and variable set determined by the context. Expressions are assumed

to be well-formed unless the context indicates otherwise.

The importance of the syntactic type checking embedded in the concept of well-formedness

lies in the following semantic invariant: In any model satisfying a given signature and set

of equations, a ground expression (without coercions) is well-de�ned in the model if it is

well-formed. (Its value is an element of the set corresponding to the minimal type of the

expression.) Well-de�nedness also holds for well-formed non-ground expressions, given that

each variable ranges over the set associated with its type. The last observation corresponds

to the following fairly obvious result for OSA term algebras.
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Theorem 1 For monotonic and weakly regular signature � and well-formed expression e

any ground instance of e is well-formed and its minimal type is included in that of e.

In an OSA an instance of an expression is obtained by replacing each variable, of type T

say, by an expression of a type included in T .

An expression violating typing constraints can be transformed to a well-formed one by

inserting calls for �coercion� functions (retracts) converting the types of certain subexpres-

sions to subtypes (provided that for each non-well-formed application there is a pro�le with

domain related to the type of the arguments). Coercion from type T to T 0 where T 0�T ,

is a partial function c : T!T 0, whose value is that of the argument if the latter actually

belongs to T 0, and is otherwise unde�ned. Thus, the semantic well-de�nedness property

does not hold for expressions containing coercions essential for the well-formedness.

Consider an expression of the form f(e), where (e) (a tuple of zero or more components)

has minimal type De, and there is no f -pro�le satisfying the typing constraint. Assume

that there is a unique maximal domain D related to De such that f : D!T is in � (for

some T ). Then the well-formed expression of �maximal well-de�nedness� is f(c(e)), where

c is the coercion which computes the conjunction of the coercions for those components of

e that are de�cient in the sense that their types are not contained in the corresponding

components of D. The coercion c is a (partial) function from De to a type DjDe, obtained

from De by replacing the types of the de�cient components of e by the corresponding types

in D. Since DjDe�D holds, f(c(e)) is well-formed and its minimal type is determined in

the usual way.

If there is no unique maximal domain D as above, but several pro�les f : Di! Ti exist

whose domains are maximal relatives of De, the optimal coercion c must compute the

disjunction of the coercions ci from De to DijDe. The minimal type of f(c(e)) must be

taken to be equal to the least common ancestor of the minimal types of the well-formed

expressions f(ci(e)).

Completeness of Signatures

We shall now discuss some properties of the typing mechanism de�ned for well-formed

terms; in particular we focus on conditions ensuring a notion of �optimal typing�. The

following de�nitions are needed:

� An expression e is optimally typed i� the minimal type of e is the least common

ancestor of the minimal types of all ground instances of e.

� A type T is basic i� it has no subtypes other than itself; and a basic product is one

whose components are basic types.

� A type T is basically equivalent to a set of types Ti i� the set of basic types included

in T is equal to the union of the basic type sets of the Ti's, and similarly for type

products.
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� f [D] denotes the minimal type of the expression f(x1; ::; xn) where the variable tuple

(x1; : : : ; xn) is of type D. f [D] is de�ned i� f(x1; : : : ; xn) is well-formed.

� A signature � is said to be complete i� for any f, D and set S of type products related

toD the following is true: ifD is basically equivalent to S and f[D0] is de�ned for each

D0 in S, then f[D] is de�ned and is basically equivalent to the set ff [D0] j D0 2 Sg.

Notice that completeness is a requirement to both T and �. If T is such that the least

common ancestor of any two related types is basically equivalent to the two types, then

completeness may be reformulated as follows (restricting � only): For any non-basic domain

D, f [D] is the least common ancestor of all f [Di] where Di is a basic subtype of D, and

f [D] is de�ned when all f [Di] are de�ned.

The following theorems express properties about well-formedness and optimal typing in the

context of complete signatures.

Theorem 2 Let � be a monotonic, weakly regular, and complete signature, such that for

every basic type T there is a well-formed ground term of type T . Then an expression

e is well-formed if all its ground instances are well-formed, provided that no variable of

non-basic type occurs more than once in e.

The proof is by induction on the structure of e, with the following induction hypothesis:

� If all ground instances of e are well-de�ned, then so is e and its minimal type is

basically equivalent to the minimal types of its ground instances.

Variables are well-formed by de�nition. For every basic type B, there is a well-formed

ground instance of minimal type B; therefore the induction hypothesis holds for variables.

For a function application f(e1; ::; en), each ei is well-formed with minimal type Ti by the

induction hypothesis, and Ti is basically equivalent to the set of minimal types of the

ground instances of ei. Since no variable of non-basic type occurs more than once in e, the

types of the argument instances can be combined in all ways. Consequently the product

T1 � : : : � Tn must be basically equivalent to the set of minimal types of the set of ground

instances of (e1; ::; en). For each product D
j in this set, f [Dj] is de�ned. By completeness,

f [D] is de�ned and is basically equivalent to the set of all f [Dj].

Theorem 3 If in addition (to the assumptions of the previous theorem) the set T is such

that each T �T is the least common ancestor of its proper subtypes, if any, then a well-

formed expression e is optimally typed if no variable of non-basic type occurs more than

once in e.

The condition on T serves to exclude any type T redundant in the sense of having a single

direct subtype. Notice that this implies that any type T is the least common ancestor

of all its basic subtypes. The proof is again by induction on the structure of e; the last

observation proves the basis of the induction, and the induction step can be done exactly

as above.
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3 Generator Induction

The notion of generator induction is based on classifying the functions of a �-algebra, say

on a single type T , as either basic or de�ned: � = �bas [ �def , where �bas \ �def = ;.

The purpose of this classi�cation is to provide a more explicit de�nition of the carrier of

the intended �-algebra, i.e. the set of values of type T . Informally the meaning of the

identi�cation of the subset �bas of �, say

�bas , fgi : T
ki ! T j i = 1::mg;

shall be the assertion that all values of type T can be expressed using the functions g1; : : : ; gm
only. For that reason �bas is called a generator basis (representing a so called �constructor

function set�) of T , and the associated set of ground terms is called the generator universe.

We may thus take these basic ground terms as names on the abstract T -values. If they are

in a one to one correspondence with the intended values, �bas is said to be a one-to-one

generator basis, otherwise it is said to be many-to-one.

Clearly, the generator universe is partially ordered by the subterm relation; and since that

relation is well founded it gives rise to an induction principle which is called generator

induction. Therefore, the meaning of a generator basis speci�cation may be formalized by

introducing, in an underlying system for �rst order logic with equality, an inference rule

for such induction, de�ned as induction over T .

T -induction:
P [x1=x]; : : : ; P [xki=x] j- P [gi(x1; : : : ; xki)=x]; i = 1::m

j- 8x : T j P

where P is a formula, x1; : : : ; xki are fresh variables, P [t=x] stands for P with t substituted

for x, and the expressions P [xj=x] are induction hypotheses. Generator induction is useful

for function de�nition as well as theorem proving.

Example.

Let �Nat be the signature of an algebra on natural numbers,

�
Nat = f0: ! Nat ; S : Nat ! Nat ; +: Nat2 ! Nat ; : : :g;

where the function symbols are intended to correspond to the concepts of zero,

successor, and addition. De�ning �Nat
bas = f0:! Nat ; S : Nat ! Natg leads to

the generator universe f0; S0; SS0; : : :g, and to an induction principle which

corresponds to ordinary mathematical induction.

Nat-induction:
j- P [0=x]; P [x1=x] j- P [Sx1=x]

j- 8x : Nat j P

In this case the basic ground terms are clearly in a one to one correspondence

with the intended abstract values. Notice that for instance the subsignature

f0: ! Nat ; +: Nat2 ! Natg would not provide a generator basis for Nat.
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The notion of generator basis is easily generalized to the domain of mixed algebras. Let

T be the set of types, mutually disjoint. We assume that there is exactly one generator

basis de�ned for each T �T , denoted �T
bas and consisting of functions with codomain T . Let

�bas =
S

T�T �
T
bas. Then the generator universe for T is de�ned as the subset of ground

expressions over �bas which are of type T .

The following syntactic criterion is a necessary and su�cient condition for each type in T

to have a nonempty generator universe (and value set).

� There exists a total order on T such that the generator basis of each type T�T

contains a function with domain D, such that each component (if any) of D precedes

T in the total order.

We consider a speci�cation system such that the functions of �def must be de�ned construc-

tively in terms of basic functions, by equational axioms possibly using generator induction.

A direct de�nition of a function f is an axiom of the form

f(v) = e

where v is a list of distinct variables, and e is a quanti�er-free expression in these variables,

basic functions, and functions previously de�ned.

Let the generator basis of T �T be �
T
bas = fgi : Di ! T j i = 1::mg, and assume that

f :Dx� T �Dy!T 0 � �def , Following Guttag, a de�nition of f , using generator induction

with respect to the indicated T -argument, is a set of equations whose left hand sides are

obtained from the one above by replacing the inductive argument in the left hand side by

each generator function in turn, applied to distinct fresh variables:

f(xi; gi(zi); yi) = ei; i = 1::m:

Recursive application of functions being de�ned is permitted, subject to syntactic restric-

tions strong enough to guarantee termination with respect to term rewriting � speci�cally,

the T -argument of any recursive application must be a proper subterm of that of the left-

hand-side. (It follows that direct de�nitions must be non-recursive.)

Assuming that all functions in �def are de�ned according to the above rules, the set of

axioms comprises a convergent set of rewrite rules. (Con�uence follows from the absence

of left hand side superpositions). Also all ground �-terms have basic normal forms; and all

basic ground terms are irreducible. In this sense the value of any ground �-term can be

computed by term rewriting. In algebraic terms it follows that the carrier of the �-algebra

is given by some �bas-algebra. Whether or not the latter is completely speci�ed, depends

on how equality relations are treated formally.

In the ABEL language we may collect the set of Guttag axioms for a function into a single

function de�nition, whose right hand side is a generalization of the Pascal case construct

(cf. also Standard ML [12]).
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f(x; z; y) = case z of g1(z1)! e1
[] g2(z2)! e2

: : : : : : : : :

[] gn(zn)! en
fo

Notice that for the purpose of term rewriting a de�nition whose right hand side contains

case-expression(s) corresponds to a set of rewrite rules, and the rule selection is performed

by the rewriting algorithm by a pattern matching mechanism deciding the indicated dis-

criminations. The case construct immediately leads to useful generalizations of the Guttag

schema, like nested induction and conditional axioms (the latter by discriminating on ex-

pressions other than variables).

These generalizations preserve con�uency since there will be no superpositions in the left

hand sides of the corresponding case-free axioms. The syntactic termination control may

be generalized in many ways, more or less powerful. For the purpose of the examples

occurring in the sequel it is su�cient to use the lexicographic order induced by a generalized

subterm relation, for each function according to a �xed permutation of its arguments.

The generalized subterm relation requires one or more subterms to be replaced by proper

subterms.

In the sequel we refer to function de�nitions in this format as ABEL style axioms. The

traditional if-then-else construct may be de�ned as a case discriminating on an expression

of type Bool, but it may be more useful to treat that construct as an ordinary function

with respect to term rewriting. The examples show that functions other than primitive

recursive ones are de�nable in ABEL style. Obviously, however, no syntactic termination

control can be strong enough to cater for the whole class of general recursive functions.

Example

The Ackermann function on natural numbers may be de�ned as follows:

ack(x; y) = case x of 0!Sx [] Sx! case y of

0!ack(x;S0) [] Sy!ack(x; ack(Sx; y)) fo fo

where the redeclarations of x and y hide the outer ones. The de�nition is

equivalent to the following case-free axioms:

ack(0; y) = Sy

ack(Sx; 0) = ack(x;S0)

ack(Sx;Sy) = ack(x; ack(Sx; y))

All three recursive applications satisfy the indicated syntactic restriction, since

the �rst argument becomes smaller or equal, and in the latter case the second

argument becomes strictly smaller (being a proper subterm).

We now consider the formal treatment of equality. Clearly the underlying logical system

de�nes equality as a (polymorphic) congruence relation, by means of axioms or inference

rules expressing re�exivity, symmetry, transitivity, as well as substitutivity. If the only
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additional axioms are function de�nitions, equality on ground terms is not in general fully

de�ned, and this corresponds to the intuition that di�erent basic ground terms may well

be intended to denote the same abstract value. It is clear, however, that the total axiom

set is consistent.

Let Bool � T and = : T 2!Bool � �T
def for all T �T . Let also �

Bool
bas = ffalse; trueg, and

:(true=false) be an axiom. We suggest that equality can be treated as an ordinary de�ned

function for each of the other types, axiomatized constructively by function de�nitions

according to the above rules. If the equalities thus de�ned are in fact congruence relations,

then consistency is preserved. The logic is also ground complete, in the sense that all ground

formulas, i.e. expressions of type Bool including equations, are reduced to true or false by

term rewriting. The equalities induce equivalence classes on the generator universe of each

type T , which represent the abstract T -values. The family of corresponding quotient sets

is (isomorphic to) the carrier of the resulting mixed �-algebra.

For a type T with a one-to-one generator basis �T
bas = fgi :Di!T j i = 1::mg the equality

relation is de�ned as follows by (nested) generator induction.

(x = y) = case (x; y) of []
i=1::m

(gi(zi); gi(wi))! zi = wi [] others ! false fo

A speci�cation system could construct this de�nition for any given generator basis speci�ed

as being one-to-one. If all types in T have one-to-one generator bases, the de�nitions express

syntactic equality of basic ground expressions, which implies that all congruence axioms

are necessarily satis�ed, and that logical consistency therefore is preserved. In that case

the carrier of the �-algebra is given by the initial �bas-algebra.

The mathematical and conceptual simplicity of one-to-one generator bases indicates that

one usually tries to �nd bases with the one-to-one property. However, that is not always

possible (see the example below). If a many-to-one generator basis must be used for a type

T , it remains to de�ne the intended equivalence classes on basic ground terms, by explicit

de�nition of abstract T -equality or by other means. In the former case there is a heavy

proof burden to show that the de�ned equality function is in fact a congruence relation.

In any case there is a constant danger to lose consistency through the subsequent use

of generator induction over T in function de�nitions. Technically this may happen as the

result of violating congruence axioms; intuitively the reason is that generator induction now

reveals structure in the generator universe which should be hidden within the equivalence

classes.

We may reduce the proof burden by de�ning a suitable subset of basic ground terms

as being unique representatives of the equivalence classes. It is sometimes possible to

include equational axioms on basic terms which preserve term rewrite convergence, such

that the irreducible ground terms are unique representatives, see below. Then a ground

complete system can be obtained as in OBJ. However, proving rewrite convergence and

logical consistency of the whole axiom set is non-trivial in general.

Another technique is to introduce an explicit function rep : T!T , de�ned in ABEL style,

for computing the representatives, and de�ning T -equality as syntactic equality on them.

(x = y) = case (rep(x); rep(y)) of []
i=1::m

(gi(zi); gi(wi))! zi = wi [] others! false fo
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Then consistency, as well as rewrite convergence will be preserved automatically, provided

that all case-discriminants of type T (except those used in the de�nition of rep itself) are of

the form rep(t). Notice that the discriminants of the proposed equality de�nition do have

this form. Consistency follows from the fact that only the unique representatives are now

considered in inductive de�nitions of other functions.

This idea of safeguarding generator inductive de�nitions by applying the rep-function to

the discriminant, guarantees logical consistency for any choice of rep-function. However,

any intuitively reasonable rep-function will be such that x = rep(x) holds, which means

that rep should be idempotent with respect to syntactic equality on basic ground terms.

Example

It appears that a type Set of elements of a given (in�nite) type T has no (�nite)

one-to-one generator basis. We may, however, de�ne the type through the

following many-to-one generator basis:

�Set
bas = f; :!Set; add : Set � T!Setg

where an expression add(s; x) is supposed to compute the union of the sets s and

fxg. Assuming that there is a total order << on T (the subexpression order

on any generator universe may easily be extended to a total order) we may

de�ne as unique representatives those generator expressions which correspond

to repetition-free sorted sequences. We de�ne a function rep : Set ! Set

computing these representatives.

rep(s) = case s of ;!; [] add(t; x)!

case rep(t) of ;! s [] add(u; y)!

if x = y th add(u; y) el

if y << x th add(add(u; y); x) el

add(rep(add(u; x)); y) � � fo fo

Notice that this function is idempotent. It also has the useful property that

any type Set subterm of a Set representative is itself a representative. Set

equality can now be de�ned as above without losing logical consistency. No-

tice that properties of representatives may be assumed when de�ning functions

by (guarded) generator induction. For instance, we may de�ne the cardinal

function as follows, assuming card : Set!Nat � �def , using the fact that no

member of a representative is repeatedly added.

card(s) = case rep(s) of ;! 0 [] add(t; x)!S card(t) fo

This de�nition represents the following two conditional axioms.

card(s) = 0; if rep(s) is of the form ;

card(s) = S card(t); if rep(s) is of the form add(t; x)

An obvious drawback of using function de�nitions of this form is that the resulting term

rewriting system will be quite ine�cient (and in this case only applicable to the evaluation

of ground terms).
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An alternative is to ensure that all constructed values of the type in question are in rep-

resentative form, by applying the rep function to any generator application (except in

case-discriminators and in the de�nition of rep). Then, if the rep function has the sub-

term property mentioned above, all allowed terms of this type have representative values,

including variables introduced in left hand sides and discriminators. Thus no discriminant

guards will be necessary, which implies that rep itself is simpli�ed. And equality is de�ned

as in the case of one-to-one generator basis. Since the subterm property can be determined

syntactically, logical consistency is syntactically guaranteed.

Example continued

It now su�ces to de�ne the rep-function on each generator as follows:

rep(;) = ;

rep(add(t; x)) = case t of ;! add(t; x) [] add(u; y)!

if x = y th t el

if y << x th add(t; x) el

add(rep(add(u; x)); y) � � fo

The recursive call satis�es our syntactic restrictions since u is a proper subterm

of add(u; y) which again is a subterm of add(t; x). Since we may assume that t

is a representative, this de�nition is more e�cient than the previous one.

It should be legal to shorthand those applications of rep which can be proved

redundant. For instance, the delete-function may be de�ned as follows:

del(s; x) = case s of ;!; [] add(t; y)!

if y = x th t el add(del(t; x); y) � fo

The occurrence of ; in the �rst branch is obviously allowed; for the last occur-

rence of add itmust be proved that add(del(t; x); y) evaluates to a representative.

A natural OBJ-like technique might be to include equational axioms on basic

terms expressing commutativity and idempotence:

add(add(s; x); y) = add(add(s; y); x);

add(add(s; x); x) = add(s; x);

Used as rewrite rules (the commutativity rule guarded by the condition y<<x),

they lead to exactly the same representatives as above. But proving rewrite

convergence and consistency is now non-trivial, even if the non-basic functions

are axiomatized in ABEL style. (Actually, equality de�ned as above destroyes

con�uency.)

It is clear that the above rigid rules of axiomatization in some ways restrict the class

of de�nable functions. In particular, only total functions are catered for. However, a

certain class of partial functions may be covered by introducing unde�ned constants (�error

symbols�), and/or by OSA techniques as explained in the next chapter.

Function de�nition by generator induction can be seen as a kind of functional programming

on data structures speci�ed by the generator basis. For that reason we believe that it is a

speci�cation tool easier to use for trained programmers than arbitrary equational axioms
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are likely to be. The gain in conceptual simplicity is clearly greatest whenever one-to-one

generator bases can be used. The following are more speci�c advantages:

� Axioms have a prede�ned form which guides the user.

� Consistency is established by syntactic checks (at least for one-to-one generator

bases).

� The same is true for ground completeness in the sense of logic.

� The axioms form a convergent set of rewrite rules. (Termination follows from syntactic

restrictions on the use of recursion.)

� There is an induction principle for every in�nite type usable for proof purposes.

� Proofs by Knuth-Bendix completion are simpli�ed if all generator bases are one-to-

one. (The test for inductive reducibility becomes trivial.)

4 Order Sorted Generator Induction

It is possible to combine the idea of order sorted algebras and that of generator induction

so as to gain the advantages of both. As before, a signature � is partitioned into �bas and

�def . Coincident function pro�les are permitted in all of �, but no two coincident pro�les

may both belong to �bas.

Consider a type T not included in any other type, and with generator basis �T
bas in which

the set of types occurring as codomains is exactly the set of basic types included in T (if

there is only one, T itself must be basic). Then we know that the union of the value sets

of these basic types is that of T itself. Furthermore, if the generator basis is one-to-one the

basic types are necessarily disjoint. Also for a many-to-one generator basis it is natural to

require that the basic types be disjoint; in that case each basic type may have to be the

codomain of more than one generator, and disjointness may require a semantic proof.

As a result of these restrictions it becomes possible to syntactically compute type unions

and intersections as well as the subtype relation, simply by representing any type as the

set of (names of) its basic subtypes. Thus, an empty set represents an empty type, and

the operations [;\;� on types are de�ned as respectively [;\;� on the representations.

Each type is interpreted by the union of the value-sets of its basic subtypes. We no longer

allow coercion from one subtype to another if the two have an empty intersection.

Let T be as above. The set of types consisting of the given basic subtypes of T and all

unions of two or more of them, including T itself, is called a type family headed by T , and

based on the basic types. Adding an empty type the family becomes a lattice with respect

to the operations of union and intersection. Let the total set T of types consist of type

families, and let the subtype relation on T be the disjunction of the subtype relations on

the individual families. If the families in T are mutually disjoint (except for the trivial

empty type) then relatedness as de�ned in section 2 is a transitive relation.
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Example

We may de�ne a type family of integer types headed by Int and based on Nat1,

Neg1, and Zero, representing the positive and negative integers and the singleton

set of zero, respectively. The other members of the family are:

Nat = Nat1 [ Zero;

Neg = Neg1 [ Zero; and

Nzero = Nat1 [ Neg1 :

A one-to-one generator basis �Int
bas may consist of:

0 : !Zero

S^ : Nat!Nat1 (successor)

N^ : Nat1!Neg1 (negation)

where boldface script is used to represent operator symbols, and the sign ^

identi�es an argument position. Notice that the one-to-one property is obtained

by the trick of restricting the domains of the generators S and N to suitable

subtypes of Int. An alternative one-to-one generator basis would result by

replacing the negation pro�le by one for the predecessor function restricted to

non-positive integers P^ : Neg ! Neg1 . It would be useful to extend these

functions to apply to arguments from all of Int. We may do so by introducing

the following pro�les in �def :

S^ : Neg1!Neg

N^ : Neg1!Nat1

N^ : Zero!Zero

(and possibly P^ : Nat1!Nat).

Let t, u, and v be terms of type Nat, Neg1, and Int, respectively. Then St, Su,

and Sv are applications of the basic part of S, the non-basic part, and the whole

of S, respectively. The two �rst expressions are respectively of type Nat1 and

Neg. The type of the last one should clearly be Int; so the pro�le S^ : Int!Int,

obtained by taking the �union� of the two given S-pro�les, should be added to

�def (and similarly for the other functions).

Axioms de�ning the non-basic parts of these functions semantically are given

in chapter 6.

We restrict type union and type intersection to only apply to related types. Then T itself

is a lattice with respect to these operations. We now extend the set T � of domains to a

set D which includes all unions of related Cartesian products. The elements of D can be

seen as unions of products of basic types, unique up to union reordering. This is a result of

the fact that Cartesian multiplication distributes over set union. The fact that basic types

are disjoint implies that the intersection of any pair of (related) elements of D is again a

union, possibly empty, of basic products. Thus, D too is a lattice. The subtype relation �

is extended to D meaning value set inclusion. Let Tbas be the set of basic types in T . Then

all relevant operators on D are easily de�ned syntactically by representing each element of

D by the appropriate subset of (Tbas)
�.
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The union and intersection of two coincident function pro�les, f : D1 ! T1 and f :

D2 ! T2, are de�ned as f : D1 [ D2 ! T1 [ T2 and f : D1 \ D2 ! T1 \ T2, respec-

tively. If D1 \ D2 is empty the intersection is said to be empty. An interpretation of two

f -pro�les must also be an interpretation of their union and nonempty intersection, since

the two former f -pro�les represent a function total from D1 [ D2 into T1 [ T2 such that

its restriction to D1 is into T1 and its restriction to D2 is into T2. Consequently its restric-

tion to D1 \ D2, if nonempty, must be into T1 \ T2, which is only possible when T1 \ T2
is also nonempty. Otherwise, the function cannot be represented and the two pro�les are

inconsistent. A signature is said to be (syntactically) consistent if it has an interpretation

with non-empty interpretation of every subtype.

The check on �bas, given in section 3, providing a guarantee that all types thereby de�ned

have nonempty value sets, can easily be adjusted to our context of order sorted generator

induction:

� There exists a total order on �bas such that the domain of each basic function pro�le

is a product (possibly empty) of types, where each type includes the codomain of a

basic pro�le occurring earlier in the order.

This implies that for every basic type T there is a well-formed basic ground expression of

type T .

Examples

Given the following set of pro�les for integer division:

^=^ : Nat � Nat1 ! Nat

Neg � Neg1 ! Nat

Nat � Neg1 ! Neg

Neg � Nat1 ! Neg

By means of union and intersection we may generate these additional pro�les

with domains in T �:

^=^ : Int � Nzero ! Int

Zero � Nzero ! Zero

Also from the following �rst set of pro�les for integer multiplication the second

one follows, and vice versa:

^ � ^ : Int � Int ! Int

^ � ^ : Nat � Nat ! Nat Nat1 � Nat1 ! Nat1

Neg � Neg ! Nat Neg1 � Neg1 ! Nat1

Nat � Neg ! Neg Nat1 � Neg1 ! Neg1

Neg � Nat ! Neg Neg1 � Nat1 ! Neg1

Nzero � Nzero ! Nzero Zero � Int ! Zero

Int � Zero ! Zero

A pro�le f : D ! T is said to be covered by a coincident one f : D0 ! T 0 i� D�D0

and T 0�T . It is said to be redundant by a signature � i� covered by a pro�le in �, and
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redundant in � (or simply �redundant� if the identity of � is clear from the context) i�

covered by some other pro�le in �. Redundant pro�les do not contribute information, and

may be removed from a signature without changing its interpretations.

A unique, monotonic, regular and complete signature 	� can be obtained from an arbitrary

signature � by �rst removing all redundant function pro�les and then taking the closure

with respect to non-redundant union as well as non-redundant, nonempty intersection of

pro�les. It is quite obvious that 	� has exactly the same interpretations as �. In particular

� is consistent if and only if 	� contains no function pro�le with empty codomain.

The following lemma states that 	� is well-de�ned, and the theorems that it has the desired

properties:

Lemma 1 The process of extending a set of non-redundant function pro�les by repeatedly

adding non-redundant pro�les formed by either union or nonempty intersection, is conver-

gent.

Termination follows from the fact that there are only �nitely many pro�les related to those

in �. Con�uence follows from the fact that union distributes over intersection and vice

versa.

Theorem 4 For arbitrary consistent �, 	� is monotonic and regular.

Obviously, if 	� were not monotonic, it would contain a redundant pro�le. For proving

regularity consider, for given D and f , the intersection, say f : D0 ! T 0, of all f -pro�les

f : Di ! Ti in 	� such that D�Di (we may assume that this set is nonempty). The

intersection must satisfy D�D0 and T 0�Ti for each i, and it must occur in 	� unless it is

redundant, in which case 	� contains f :D00 ! T 00, where T 00�T 0 and D0�D00. Since D�D00

follows, T 00 must equal Tj for some j, and must also equal T 0. Since T 0 = Tj�Ti for each

i, the set fT1; T2; : : :g has a unique minimal element, and weak regularity follows. Strong

regularity is then a consequence of the following lemma:

Lemma 2 For a given function symbol, 	� has at most one pro�le with a given codomain,

and at most one pro�le with a given domain.

If there were two pro�les with the same domain their intersection would make both re-

dundant. If there were two pro�les with the same codomain their union would make both

redundant.

Consequently, well-formedness and minimal type of expressions may be decided in terms of
	� as in the order sorted case, cf. section 2; the only requirement to the given signature �

is consistency. Coercion, however, would be simpler than explained in section 2, avoiding

the most di�cult case. This follows from the following lemma:

Lemma 3 For a given function symbol f there is a unique pro�le in 	� with a maximal

domain.
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If there were several maximal pro�les, their union would have a larger domain.

The following lemmas state that 	� is complete and minimal in a certain sense.

Theorem 5 For arbitrary consistent �, 	� is complete.

Completeness is quite obvious, since T is closed with respect to union and since 	� is closed

with respect to non-redundant union.

Theorem 6 The set 	� is minimal in the sense that no function pro�le can be removed

without loosing either interpretation equivalence with �, regularity, or completeness.

This implies that 	� is also minimal in the sense that no pro�le can be removed without

weakening the concept of minimal type as de�ned in section 2. Furthermore, if 	� is con-

sistent and satis�es the syntactic requirement above to the total order of �bas, then all

assumptions of theorem 3 (on the signature) are satis�ed; consequently, an expression e

in which no variable occurs more than once, is well-formed i� all its ground instances are

well-formed, and its minimal type is the least common ancestor of the minimal types of all

its ground instances.

Furthermore, a term t with more than one occurrence of a variable x of non-basic type, say

T , may be rewritten as

case x of []
i=1::kT

Ti! t fo

where T1; : : : ; TkT are the basic subtypes of T . With respect to the typing algorithm the

case-construct with a discriminant of minimal type T behaves as a polymorphic function

case^ : : :^fo : T � U1� : : : � UkT !U

where U1; : : : ; UkT are the minimal types of the alternatives, and U is their least common

ancestor. (�def may be assumed to contain one such pro�le for every non-basic type T

and every list of kT mutually related types Ui.) Notice that x is of a basic type in each

branch, and therefore the multiple occurrences do not violate optimal typing. We may thus

obtain optimal typing with the original type analysis for any well-formed expression t, by

systematically rewriting t in this way for all variables of non-basic type occurring more

than once. For instance, the case-rewriting makes Nat the minimal type of x�x, for x : Int,

using the pro�les for the multiplication operator occurring in a previous example.

The theorems and lemmas above do not depend on the existence of a generator basis, they

only assume the existence of disjoint basic (sub-)types. The fact that the closure 	� of any

signature � in this case can be constructed mechanically and has the same interpretations

as �, and that only consistency is required of � leads to �exibility of speci�cation. It

becomes possible to strengthen a signature � by adding new pro�les thus providing addi-

tional syntactic information with no need of rewriting any part of �. Also signatures with

overlapping sets of types and functions can be joined together, provided that the respective

subtype and type disjointness relations are not in con�ict. In particular, any ordinary order
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sorted signature may be combined with (and checked against) one whose types are de�ned

by order sorted generator induction. Notice that the strengthening of a signature preserves

well-formedness of expressions.

Cunningham et al [2] have also de�ned a signature closure by lifting coincident pro�les;

however, this closure guarantees neither completeness, regularity nor monotonicity (and

does not preserve interpretations in the general case of OSA).

5 Implementation Considerations

For implementing the computation of minimal types of expressions in an e�cient way it

is useful to extend the subtype relation on T to a total order. That is easy, based on the

representation of each type as a union of basic types, given some total order on the basic

types in T . For types such that neither is a subtype of the other, the smallest may be

de�ned as the one with the smallest basic type not contained in the other. Now, by lemma

2, each maximal set of coincident function pro�les in 	� is totally ordered by the order on

codomains. Consider an expression f(e), where (e) is tuple of minimal type De. It follows

from the regularity of 	� that the minimal type of f(e) is determined by searching the list

of f -pro�les in the order of increasing codomains, looking for the �rst domain D such that

De�D. (If none occurs the expression is not well-formed.)

The subtype test on domains, used in the algorithm, can be implemented by representing

each domain D canonically as indicated in the last section, i.e. as �D � (Tbas)
�. Then

D1�D2 i� �D1 � �D2.

This implementation, although theoretically simple, is not easy to realize in an e�cient

manner; and the canonic representation is also impracticable as a linguistic device:

� Lists of basic products tend to be long and unreadable.

� The syntactic properties of functions are usually expressible in a natural way by a

few pro�les with domains in T �.

� The minimal type of an argument list is directly expressed as a type product in T �.

Fortunately, for any signature 	� obtained as above (with domains in D) it is easy to con-

struct a signature �� equivalent with respect to interpretation, whose pro�les have domains

in T �, and is monotonic, weakly regular, complete, and of minimal cardinality. The con-

struction may be in two steps, starting with �� = ;:

1. For each pro�le f :DD!T in 	� add to �� the set

ff :D!T j D�DD; D�T �g.

2. Delete from �� all redundant pro�les.
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Let �1 be the result of step 1. It is fairly clear that �1 is interpretation equivalent to
��, as well as regular and complete (with respect to domains in T �, not D). This follows

from the fact that the subset of �1 corresponding to any pro�le f : DD! T in 	� has

elements corresponding to all T � domains included in DD (including those occurring in

the canonical representation of DD).

It is clear that step two preserves interpretation equivalence and completeness, and that

monotonicity and minimality (in some sense) is attained. Regularity may be lost, but �� is

at least weakly regular. This follows by reasoning as in the proof of Theorem 4, since any

nonempty intersection of pro�les in �� is either contained in �� or is redundant by ��.

It is possible to construct �� directly from a user de�ned signature � (with domains in

T �). The construction is based on the syntactic concept of a merge of two related domains,

D = T1 � : : :� Tn and D0 = T 0
1� : : : � T 0

n:

merge(D;D0)
def
= fT1\T

0

1� : : :�Tk�1\T
0

k�1�Tk[T
0

k�Tk+1\T
0

k+1� : : :�Tn\T
0

n j k = 1::ng

(Notice the union operator in the k'th component.) We also de�ne a merge operation on

coincident pro�les:

merge(�; �0)
def
= ff :D00!T [ T 0 j D00� merge(D;D0)g

where � is f :D!T and �0 is f : D0!T 0.

It is easy to prove that each pro�le covered by �[�0, and with domain in T �, is redundant

by the set merge(�; �0)[ f�; �0g, and vice versa. This shows that �� can be constructed in

the following two steps:

1. Construct the closure of � with respect to merging and intersection.

2. Remove redundant pro�les.

Notice that merging and redundancy removal do not in general commute. The set of pro�les

with domains in T � is closed with respect to pro�le merging and non-empty intersection.

��, as well as � itself, are easily represented in terms of types in T . Notice that T is closed

with respect to union and intersection of related types. The algorithm for computing

minimal types of expressions is now easy to implement e�ciently; the same technique of

ordering pro�les is useful (those with the same codomain, if any, may be ordered arbitrarily).

Coercion, however, must be handled as in section 2.

Example

Let � consist of the �rst groups of pro�les listed for the division and multipli-

cation operators as examples of section 4. Then �� consists of all four groups

listed.
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6 Function De�nition

Generator inductive de�nitions by means of the case-construct can be generalized to order

sorted generator induction as follows:

For each function symbol f , with pro�les in �def , we may give one constructive de�nition,

say f( 	w)
def
= e, where 	w is a list of distinct variables, and e is an expression possibly

containing case constructs. For each f -pro�le f : D ! T in �def e must be well-formed

and the minimal type of e must be included in T , assuming the type of the variable list 	w

is D. Notice that well-formedness must be required without the use of coercion since f is

to be interpreted as a total function. It is su�cient to type check a de�nition of f for every

(non-redundant) f -pro�le in �. It then follows that the de�nition satis�es all f -pro�les in
�� (and 	�).

New variables introduced in a case construct are implicitly typed so that the discriminators

are the basic restrictions of the generators, as speci�ed by the (unique) basic pro�le for

each generator. For the purpose of type checking, the case-construct may be considered

as part of the expression language, as explained in chapter 4, its minimal type being the

least common ancestor of its branches. The minimal type of an IF-expression is de�ned in

a similar way.

The de�nition of a representation function may be as in section 3, but it should satisfy

rep : B ! B for every basic subtype B of the family under de�nition. This additional

syntactic requirement to the de�nition of rep provides a guarantee that the basic types

have disjoint value sets.

Examples

The generator basis of the type Set of the example in section 3 may be rede�ned

as follows:

�
Set
bas

def
= f; :!Eset ; add : Set � T!Nesetg

where Eset and Neset are the basic subtypes of Set. It is easy to see that the

representation functions de�ned in the example satisfy the required signature

frep : Eset!Eset ; rep : Neset!Nesetg.

The functions S andN introduced in examples of section 4, basic on the domains

Nat and Nat1, respectively, may be extended to functions on the whole of type

Int by de�ning them on the domains Neg1 and Neg, respectively.

SNSx =Nx (for x : Nat)

Nx = case x of 0!0 [] Ny! y fo (for x : Neg)

Notice that only the relevant branches occur for the case constructs of S and

N. For the former there are two nested case constructs, both with a single

non-redundant branch. Therefore, in order to simplify the syntax, the dis-

criminations have been replaced by a Guttag-style left hand side, where the

outermost function application is by de�nition non-basic and the inner ones are

basic. Notice that the minimal type of NSx, for x of type Nat, is exactly Neg1,

the domain of the non-basic part of S.
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The predecessor functionPmay now be de�ned directly in terms of the extended

S and N functions.

Px =NSNx (for x : Int)

The division operator of section 4 may be de�ned convergently using an auxil-

iary function:

^mod^ : Nat � Nat1!Nat

x mod y = case x of 0!0 [] Sx!

if S(x mod y) = y th 0 el S(x mod y) � fo

x=y = case y of Nz! (Nx)=z [] Sz!

case x of 0! 0 [] Nx!NS(x=y) [] Sx!

if x mod y = z th S(x=y) el x=y � fo fo

With this de�nition the rest is always non-negative. Notice that the last occur-

rence of the expression xmod y is well-formed. This is because the type of y,

of type Nzero in the left hand side, may be strengthened to Nat1 in the latter

branch of the outer case-construct. Termination of the ^=^ de�nition follows

by giving the second argument highest priority in the lexicographical ordering.

7 Conclusion

We have shown that the concept of order sorted algebras and the idea of generator induction

can be combined in a way which brings out the bene�ts of both: the �exibility of typing

and treatment of partial functions of the former, as well as the syntactic control with

logical consistency and ground completeness of the latter. The proof technique provided

by generator induction is easily generalized to the order sorted case.

In our treatment the union and intersection of related types and type products are syn-

tactically computable. This makes it possible to detect inconsistent signatures and to

automatically construct a monotonic, weakly regular and complete signature based on an

arbitrary (consistent) one. This implies increased speci�cation �exibility in the sense that

signatures become extendable and composable. In contrast to [2] our signature completion

is interpretation equivalent with the given one. The typing control is stronger than in

OBJ, and [1], in the sense that any expression is well-formed if all its ground instances are

well-formed.

Through an example we show that the trick of de�ning functions as basic generators on part

of their domains can be useful for constructing one-to-one generator bases. Through another

example we indicate a way of achieving syntactic guarantee for consistency combined with

ground completeness (equalities included) for types with many-to-one generator bases.
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