
Security Debt in Practice

A Qualitative Case Study

Maren Maritsdatter Kruke

Thesis submitted for the degree of
Master in Informatics: Programming and System

Architecture
60 credits

Department of Informatics
Faculty of mathematics and natural sciences

UNIVERSITY OF OSLO

Spring 2022

Security Debt in Practice

A Qualitative Case Study

Maren Maritsdatter Kruke

© 2022 Maren Maritsdatter Kruke

Security Debt in Practice

http://www.duo.uio.no/

Printed: Reprosentralen, University of Oslo

http://www.duo.uio.no/

Abstract

Context
Implementing the required security at all the needed layers of the software
product is important as malicious actors find that there is a greater potential
gain in cyber-attacks. It is therefore important to be aware of the solutions in
the software systems that does not meet the desired security goal. Properly
managing these sub-optimal solutions is essential for keeping them under
control.

Objective
The goal of this study is to provide further insight into the security debt phe-
nomenon by producing a security debt definition, a way to manage this secu-
rity debt, and find the relation between security debt and technical debt (TD).
These three aspects are looked into in order to answer the research problem:
what is security debt, how is it managed in practice, and what is its
relation to technical debt?

Method
An exploratory case study was conducted. I collected data using semi-structured
interviews and a brief document study. A total of 26 software practitioners
from one company were interviewed. Their answers have been analyzed and
presented.

Result
The following security debt definition is proposed on the basis of the respon-
dents answers: security debt is a set of design or implementation so-
lutions that hinder or has the potential to hinder the achievement
of a system’s optimal/desired/required security goal. Security vulner-
abilities have been shown to be a part of security debt to a varying degree.
Two figures are proposed to show their relation. The technical debt manage-

i

Abstract

ment process have been described by respondents to also be relevant for the
management of security debt. It has also been pointed out that security debt
have a higher priority than technical debt. The three additional approaches
for managing security debt mentioned by the respondents are threat mod-
elling, bug bounty program, and security testing. The governing factors for
the backlog prioritization is communication, the use of labels, and adding
a severity/priority score. Security knowledge have been described to be im-
portant in the management of security debt. Finally, evidence of a relation
between security debt and technical debt have been presented, visualized by
two figures.

Conclusion
The security debt definition proposed in this study differs from other attempts
to define security debt through the focus on the potential to hinder the achieve-
ment of a system’s security goal. The definition provides the basis for describ-
ing the difference between security debt and security vulnerabilities; security
vulnerabilities that do not have existing solutions cannot be security debt as
there is no room for improvement. The security debt management can ben-
efit from having approaches that are more security oriented as security debt
combines technical debt and security. The main factors for security debt prior-
itization is communication, labels, and severity/priority. A lack in the needed
security knowledge can contribute to the accumulation of security debt. Evi-
dence have been found to support security debt being a part of the technical
debt landscape. It has been further observed that there is a relation between
architectural technical debt (ATD) and security debt. Having different ap-
proaches for the different types of technical debt can be beneficial as it sup-
ports the individual needs of the specific types of debt. Thus, security oriented
approaches can benefit the management of security debt.

ii

Acknowledgements

This thesis marks the end of the two-year master’s program Informatics: Pro-
gramming and System Architecture. It has been both an educational and
challenging journey for me. I had a lot of support and this thesis would not
have been possible without many awesome people!

Firstly, I would like to thank my supervisor Antonio Martini (University of
Oslo) and co-supervisor Daniela Soares Cruzes (Norwegian University of Sci-
ence and Technology) for the support and guidance, and not to mention pa-
tience! Additionally, I would like to thank my company contact and all my
respondents for their contributions in making this study possible.

To my family and friends who supported me on this journey, thank you!

Maren Maritsdatter Kruke

Oslo, May 2022

iii

Contents

Abstract ii

Acknowledgements iii

1 Introduction 1

1.1 Research problem . 3

1.2 Research questions . 3

1.3 Structure . 4

2 Background 6

2.1 Security in software . 6

2.1.1 Vulnerabilities and risk management 7

2.1.2 Attack surface, threat modelling, and incident manage-
ment . 8

2.1.3 Security controls . 8

2.1.4 Security knowledge . 9

2.2 Debt as a metaphor . 10

2.2.1 Technical debt . 11

2.2.2 Security debt . 15

2.3 Technical debt process . 16

2.3.1 Prevention . 18

iv

CONTENTS

2.3.2 Identification . 18

2.3.3 Representation/Documentation 19

2.3.4 Measurement . 19

2.3.5 Monitoring . 20

2.3.6 Communication . 20

2.3.7 Prioritization . 21

2.3.8 Repayment . 23

2.3.9 Differences in the technical debt process 24

3 Methodology 26

3.1 Company context . 26

3.2 Research design . 26

3.3 Qualitative research design and data collection method 29

3.4 Research approach . 30

3.5 Methods for data collection . 31

3.5.1 Literature review . 31

3.5.2 Interviews . 33

3.6 Data analysis . 36

3.7 Research ethics . 38

4 Results 39

4.1 Security debt definition (RQ1) . 39

4.1.1 Definition . 44

4.2 Difference between security debt and security vulnerabilities
(RQ1.1) . 47

4.3 Security debt process (RQ2) . 53

4.3.1 Prevention . 56

v

CONTENTS

4.3.2 Identification . 58

4.3.3 Documentation . 60

4.3.4 Analysis . 62

4.3.5 Monitoring . 64

4.3.6 Communication . 65

4.3.7 Planning . 66

4.3.8 Repayment . 67

4.3.9 Additional observations - security self-assessment 69

4.4 Security debt prioritization (RQ2.1) 70

4.5 Security knowledge (RQ2.2) . 73

4.6 Relation between security debt and technical debt (RQ3) 78

4.6.1 Technical debt, security debt, and security vulnerabilities 78

4.6.2 Security debt and architectural technical debt 81

4.6.3 Technical debt processes for different types of technical
debt . 84

5 Discussion 86

5.1 RQ1 How is security debt defined? 86

5.2 RQ1.1 What is the difference between security debt and security
vulnerabilities? . 88

5.3 RQ2 How is security debt managed? 90

5.3.1 Prevention . 91

5.3.2 Identification . 92

5.3.3 Documentation . 94

5.3.4 Analysis . 95

5.3.5 Monitoring . 96

5.3.6 Communication . 97

vi

CONTENTS

5.3.7 Prioritization . 98

5.3.8 Repayment . 99

5.3.9 Summing up of RQ2 . 100

5.4 RQ2.1 How is security debt prioritized compared to other kinds
of technical debt, feature development, bug fixing, etc.? 101

5.5 RQ 2.2 What role does security knowledge play in the different
activities of security debt management? 104

5.6 RQ3 What is the relation between security debt and technical
debt? . 106

5.6.1 Technical debt, security debt, and security vulnerabilities 107

5.6.2 Security debt and architectural technical debt 108

5.6.3 Differences in the technical debt process 110

5.7 Contributions . 111

5.7.1 Recommendations . 112

5.8 Validity . 113

5.9 Limitations . 116

6 Conclusion 117

Bibliography 125

A Interview guide 126

vii

List of Figures

2.1 Flower’s quadrant presented in Fowler, 2009 12

3.1 Research design model displaying the three phases of data col-
lection, the methods of data collection, and data analysis. De-
scriptions of the elements used in the model are explained in
"Legend". 28

3.2 Example of thematic analysis from interview answers to themes.
Here it is shown that three codes are part of the theme "security
debt process". 37

4.1 Two visual representations of the relation between security debt
and security vulnerabilities. Figure (a) have a shared area be-
tween security debt and security vulnerabilities while figure (b)
shows that security debt completely surrounds security vulner-
abilities. 52

4.2 A simple visual representation of the technical debt process flow
and the annual self-assessment for finding how the team cur-
rently work with technical debt. 55

4.3 Two visible representations of the relation between security debt,
security vulnerabilities, and technical debt. Figure (a): techni-
cal debt completely surround security debt and have the same
shared area as security debt and security vulnerabilities. Fig-
ure (b): technical debt completely surrounds security debt and
security debt completely surrounds security vulnerabilities. . . 81

viii

List of Tables

2.1 Technical debt management activities found in the three earlier
publications Ampatzoglou et al., 2015; Li et al., 2015; Rios et al.,
2018 . 17

3.1 Hits per search on Google Scholar. 32

3.2 The table shows the roles the respondents have, the size of the
team they are a part of, and how old the project(s) they are work-
ing on is/are. One of the interviews consisted of three respondents. 35

4.1 Groups of security debt explanations based on the respondents’
answers and the number of respondents per group. Respon-
dents can be in several groups depending on how they answered. 40

4.2 Groups that explain the differences between security debt and
security vulnerabilities based on the respondents’ answers and
the number of respondents per group. 48

4.3 Security debt process adapted from the studied company’s tech-
nical debt process. The sections are presented together with
their corresponding approaches. The additional approaches that
are specific to the security debt process are highlighted in bold. 56

4.4 Number of respondents who view security knowledge as impor-
tant per mentioned process activity. 74

4.5 Groups that explain how the respondents think of technical debt
and the number of respondents per group. 79

ix

Chapter 1

Introduction

Our society is increasingly becoming more digitalized and computers are con-
necting most of the critical infrastructure and the functions we rely on in our
daily lives. We rely on these software systems to be engineered so that they
continue to "function correctly under malicious attacks" (McGraw, 2004, p. 80),
that they are of the required quality, or security (ISO/IEC, 2011). Security is
to a greater extent an important part of the development of software systems
due to malicious actors seeing greater potential gain in cyber-attacks (Ardi
et al., 2007). Even though security is becoming a more important concern,
security is in many cases added as an afterthought because software develop-
ers are rather more focused on functionality (Maymi & Harris, 2019, p. 1083).
There is a desire for short time-to-market as this allows a company to get
the systems to the end-users earlier (Kruchten et al., 2013). The result is an
increase in technical debt and a reduction of the software quality (Lindgren
et al., 2008) (e.g. security). Technical debt is a fairly new concept that has
been both refined and expanded since its introduction (Kruchten et al., 2012)
by Cunningham, 1992. Avgeriou et al., 2016 defined technical debt as:

"a collection of design or implementation constructs that are expedient in the
short term, but set up a technical context that can make future changes more
costly or impossible. Technical debt presents an actual or contingent liability
whose impact is limited to internal system qualities, primarily maintainability
and evolvability" (Avgeriou et al., 2016, p. 112).

Technical debt is detrimental to software systems (Lim et al., 2012) and is,
according to Fowler, something that all development teams accumulate, even

1

Introduction

the most experienced teams (Fowler, 2009), in their practice. Managing the
technical debt is central for keeping it under control. Technical debt can be
an investment (e.g. for shorter time-to-market) as long as the development
teams working on the software systems are aware of the debt that is being
accumulated. Additionally, the increased risk to the system due to the techni-
cal debt should also be something the teams considers and tracks (Kruchten
et al., 2012) in their practice.

The metaphor of technical debt encompasses various types of debt, but the
definition does not cover all the important topics that needs studying (Avge-
riou et al., 2016). Rios et al., 2018 have identified 15 types of technical debt;
design debt, code debt, architectural technical debt, test debt, documentation
debt, defect debt, infrastructure debt, requirements debt, people debt, build
debt, process debt, automation test debt, usability debt, service debt, and
versioning debt. Not only is the quality attributes maintainability and evolv-
ability, as explained by Avgeriou et al., 2016 in their technical debt definition,
impacted by technical debt, but Li et al., 2015 and Tom et al., 2013 pointed out
that other quality attributes such as usability, reliability, security, etc. may
also be compromised due to technical debt. Therefore, further research on the
affected quality attributes in the form of debt is required, which brings us to
security debt.

Security debt is understood as "the intersection of security aspects with tech-
nical debt" (Martinez et al., 2021, p. 1). Security debt is a term that has
been attracting increasing attention by practitioners and researchers. As a
result, security debt has been described in research throughout the last few
years. However, a formal definition has not been offered. Publications, such
as Martinez et al., 2021; Rindell et al., 2019; Silva et al., 2016 and Rindell and
Holvitie, 2019 discussed security debt definitions. In addition, Siavvas et al.,
2020 pointed out that Izurieta et al., 2018 and Izurieta and Prouty, 2019 pro-
vided initial attempts to define security debt. These publications were used
as data analysis entries when Martinez et al., 2021 aimed to propose a defini-
tion of security debt, map its main characteristics, find out how security debt
is managed throughout the life-cycle of a software product, and identify the
security debt items in the current literature.

The findings above indicate the need for further research on the topic of secu-
rity debt and the relation to technical debt. A closer look at security debt in

2

Introduction

connection with technical debt can help determine the extent to which secu-
rity debt is harmful and how this debt should be handled. Thus, the objective
of this thesis is to bridge this gap. This is accomplished by analyzing software
practitioners’ views on security debt and how they think it should be handled.

1.1 Research problem

Based on the literature presented above, the defined research problem is as
follows:

What is security debt, how is it managed in practice, and what is its
relation to technical debt?

1.2 Research questions

RQ1 How is security debt defined?

RQ1.1 What is the difference between security debt and security vulnerabili-
ties?

RQ2 How is security debt managed?

RQ2.1 How is security debt prioritized compared to other types of technical
debt, feature development, bug fixing, etc.?

RQ2.2 What role does security knowledge play in the different activities of se-
curity debt management?

RQ3 What is the relation between security debt and technical debt?

Listed above are the six questions created for answering the research prob-
lem. The three main research questions (RQ1, RQ2, and RQ3) aim to find
out how security debt can be defined, how it can be managed, and its relation
to technical debt. Additionally, the three sub-questions (RQ1.1, RQ2.1, and
RQ2.2) are created for helping to answer the main research questions. These
dive into the difference between security debt and security vulnerabilities,

3

Introduction

how security debt is prioritized compared to other kinds of work, and the role
security knowledge plays in the management of security debt.

The first research question and sub-question (RQ1 and RQ1.1) aim to get an
idea of what security debt actually is and if there even is such a thing. In
order to get a deeper understanding on how security debt is set apart from
other security issues, RQ1.1 is created. The purpose of this sub-question is
to study potential differences between security debt and security vulnerabili-
ties. It would be interesting to find out in which cases security issues can be
viewed as security debt and in which cases they are viewed as security vul-
nerabilities, and if there exists security vulnerabilities that are considered to
be security debt.

The second research question and sub-questions (RQ2, RQ2.1, and RQ2.2)
aim to find out how security debt can be managed during the software devel-
opment. The two sub-questions are set to provide a deeper understanding of
the management of security debt. RQ2.1 looks at how security debt is prior-
itized, not only compared to other types of technical debt, but also compared
to feature development, bug fixes, etc. as these things are all work that needs
to be done. The purpose of RQ2.2 on the other hand is to find out the role that
knowledge of security plays in the management of security debt.

The goal of the third research question (RQ3) is to find the relation between
security debt and technical debt. Other software qualities such as scalability
have been studied as a type of technical debt (Hanssen et al., 2019). This
poses the question of why not look into security debt as a technical debt?

1.3 Structure

• Chapter 2 - Background
The background provides insight into security in software, the metaphor
of debt, and technical debt management.

• Chapter 3 - Methodology
The methodology describe the methodical choices made during the the-
sis which include the research design, methods of data collection, and
research ethics.

4

Introduction

• Chapter 4 - Results
The results is presented according to the order of the research questions.

• Chapter 5 - Discussion
In the discussion chapter, the findings from chapter 4 are discussed to-
gether with the background and related work from chapter 2. The chap-
ter is structured according to the research questions. Finally, contribu-
tions, recommendation for practice and research are presented together
with validity.

• Chapter 6 - Conclusion
The main conclusion coming out of the discussion are presented in this
chapter.

5

Chapter 2

Background

In this chapter I will describe the background for the topic of this thesis. The
first section dive into security in software, the second section explain the
metaphor of technical debt and its landscape, and the last section describe
technical debt management.

2.1 Security in software

It is fair to assume that the identification of risk and management of soft-
ware security compete for the same resources as other software development
work such as feature implementation, requirements, and the fixing of bugs.
The security work is often not prioritized as it is viewed as less urgent or
that it does not produce visible value (Rindell et al., 2019). Many software
developers still associate software quality firstly with the implementation of
functionality and not security (Maymi & Harris, 2019, p. 1084). A thorough
understanding of vulnerability, risk, and security is required for making in-
formed decisions related to security in software.

When developing secure software it is central that it is of good quality. The
reason for this is that "quality refers to how good or bad something is for its
intended purpose" (Maymi & Harris, 2019, p. 1083). According to ISO/IEC,
2011, security is a characteristic that speaks to the quality of a software prod-
uct. Having the needed security for the different systems depends on the
understanding of the environment in which these systems exists. Under-

6

Background

standing the environment, meaning how the environment works and what is
in it is necessary for applying technologies in a controlled and comprehensive
manner (Maymi & Harris, 2019, p. 1086).

McGraw, 2004 explains software security "is the idea of engineering soft-
ware so that it continues to function correctly under malicious attacks" (Mc-
Graw, 2004, p. 80). It is described by Maymi and Harris, 2019, p. 1083 that
developing both functionality and security together at all phases of the de-
velopment life cycle will provide protection at all the needed layers of the
software. The security will then be woven into the core of the software. Se-
cure coding "is the process of developing software that is free from defects,
particularly those that could be exploited by an adversary to cause us harm
or loss" (Maymi & Harris, 2019, p. 1121). The adoption of secure coding
standards can help to hold people accountable for their work. Validating in-
put, sanitizing data, keeping the code simple, etc. are practices that can be
used as part of the secure coding standard (Maymi & Harris, 2019, pp. 1122–
1123). In the process of developing secure software a thorough understanding
of vulnerability and risk is required.

2.1.1 Vulnerabilities and risk management

A vulnerability is explained as "a weakness in a system that allows a threat
source to compromise its security" (Maymi & Harris, 2019, p. 6). Risk is "the
likelihood of a threat source exploiting a vulnerability and the corresponding
business impact" (Maymi & Harris, 2019, p. 7). Risk is also about uncertainty.
According to Aven and Renn, 2009 "risk refers to uncertainty about and sever-
ity of the consequences (or outcomes) of an activity with respect to something
that humans value" (Aven & Renn, 2009, p. 1). It is also explained that "a
probability is a measure of uncertainty, but uncertainties exist without specify-
ing probabilities" (Aven & Renn, 2009, p. 4). As a result, we need to deal with
uncertainty when managing risk.

Risk management "is the process of identifying and assessing risk, reduc-
ing it to an acceptable level, and ensuring it remains at that level" (Maymi &
Harris, 2019, p. 93). Risk assessment is performed as a tool for risk manage-
ment and is described as "a method of identifying vulnerabilities and threats
and assessing the possible impacts to determine where to implement security

7

Background

controls" (Maymi & Harris, 2019, p. 101). Controls are added in order to mit-
igate risks, controls can be several different countermeasures e.g. procedures
where vulnerabilities are eliminated or that the likelihood of the vulnerability
being exploited is reduced (Maymi & Harris, 2019, p. 7). Risk management
and risk assessment is required because all environments have threats and
vulnerabilities. Being able to identify these threats and assessing them is
therefore important (Maymi & Harris, 2019, p. 93) for system reliability.

2.1.2 Attack surface, threat modelling, and incident man-
agement

Being aware of the possible ways the systems can be used in attacks is es-
sential. "An attack surface is what is available to be used by an attacker
against the product itself " (Maymi & Harris, 2019, p. 1093). The attack sur-
face is modelled and analyzed for the purpose of narrowing the ways the sys-
tems can be attacked (Maymi & Harris, 2019, p. 1093). Threat modelling
is a way to understand the valued assets and the threats against them be-
fore developing defences (Maymi & Harris, 2019, p. 97). Maymi and Harris,
2019, p. 97 define threat modelling as "the process of describing feasible ad-
verse effects on our assets caused by threat sources" (Maymi & Harris, 2019,
p. 97).

Attacks on software products happen. The incident management process
consists of different phases: detection, response, mitigation, reporting, recov-
ery, and remediation (Maymi & Harris, 2019, pp. 1000–1008). The discussion
in this thesis is limited to the last phase. The remediation phase tries to
make sure that that kind of attack is never successfully carried out again.
The incident is reviewed in the hopes of learning how to prevent those kinds
of incidents and to find out how to handle similar situations (Maymi & Harris,
2019, pp. 1008–1009).

2.1.3 Security controls

Looking into the environment in which the system will run is central for find-
ing out how many and what kind of security controls should be implemented
(Maymi & Harris, 2019, p. 1084). Implementing a security control by the

8

Background

means of an IT asset is called a technical control. When these technical con-
trols are audited, the ability they have for mitigating risks is tested (Maymi &
Harris, 2019, p. 871). Auditing technical controls can be done in many ways.
Code reviews, penetration testing, and vulnerability testing are three of the
listed approaches.

1 Code reviews are performed before a piece of code is pushed. During
the review, it is not the author that checks the code. The reason for
this is that it is not easy to find one’s own typos, grammatical errors,
etc. (Maymi & Harris, 2019, p. 888). Code reviews are described to be
essential for making sure that the software is of good quality (Maymi &
Harris, 2019, p. 1084).

2 Penetration testing is a process that is requested by the owner, senior
management. During this process, attacks are simulated so that the
environment’s weaknesses can be identified and the level of resistance
can be measured (Maymi & Harris, 2019, pp. 873–875).

3 Vulnerability testing can be automated, manual, or as a combination
of the two (Maymi & Harris, 2019, p. 871). This type of assessment is
for identifying vulnerabilities that are present in the environment.

The difference between penetration testing and vulnerability testing is that
during a penetration test, the tester finds and exploits vulnerabilities to show
the company that hackers can be able to access the systems while vulnera-
bility testing is for identifying vulnerabilities that can be used in order to get
access to the system. (Maymi & Harris, 2019, p. 878). There may exist vulner-
abilities that when they are apart are not important but when they are put
together they can result in a critical outcome if exploited (Maymi & Harris,
2019, p. 871).

2.1.4 Security knowledge

Barnum and McGraw, 2005, p. 74 described that "knowledge is information in
context". Meaning that knowledge and information are in fact not the same
thing, but they are related to each other. Practitioners that work with soft-
ware security put a high value on both experience and knowledge. Knowledge
of software security can be used and applied in many ways. Software security
knowledge comes in handy in many of the phases of the life-cycle of the soft-

9

Background

ware, e.g. best practices that are knowledge-intensive (Barnum & McGraw,
2005). Furthermore, Assal and Chiasson, 2018 found that there is a direct
connection between security knowledge and security integration; "we found
that the expectation of security knowledge (or lack thereof) directly affects the
degree of security integration in developers’ tasks" (Assal & Chiasson, 2018,
p. 291). In instances with limited security knowledge it was expected that the
security practices were lax (Assal & Chiasson, 2018).

Sharing security knowledge "can give a new software security practitioner
access to the knowledge and expertise of all the masters" (Barnum & McGraw,
2005, p. 74). This can be done by compiling critical security knowledge and
expertise from security craftsmen (Barnum & McGraw, 2005), to make this
available for the rest of the software practitioners.

The "security in software"-section provide the security background for this
study. The topics in this section are relevant as they are used to describe
and discuss the security perspective of the research questions. Most of the
explained topics (e.g. risk management, risk assessments, attack surfaces,
threat modelling, etc.) will be used to discuss how security debt should be
managed. Vulnerabilities are discussed in order to find the difference be-
tween security debt and security vulnerabilities in RQ1.1, and risks and un-
certainties will also be discussed during the management of security debt.
Additionally, the background on security knowledge will be used when dis-
cussing RQ2.2, where the aim is to find what role security knowledge plays in
the management of security debt.

2.2 Debt as a metaphor

Metaphor is understood as a "word or phrase literally denoting one kind of
object or idea is used in place of another to suggest a likeness or analogy be-
tween them" (Merriam-Webster, n.d.). Technical debt is a metaphor used as a
communication mechanism between developers and other interested parties
(Avgeriou et al., 2016; Ernst et al., 2015; Kruchten et al., 2012; Sneed, 2014).
Sneed, 2014 explains that the use of a monetary metaphor made it easier for
business managers to understand the cost of having poor software quality.
Thus, a metaphor is a rhetoric instrument to increase focus on sub-optimal
solutions. Another rhetoric instrument is securitization. When introducing

10

Background

security debt into the technical debt discussions, security aspects will gain
importance, a process also called securitization. Securitization is understood
as applying a rhetoric of threat to issues in order to increase security priorities
(Buzan et al., 1998).

2.2.1 Technical debt

Avgeriou et al., 2016 defined technical debt as "a collection of design or imple-
mentation constructs that are expedient in the short term, but set up a technical
context that can make future changes more costly or impossible. Technical debt
presents an actual or contingent liability whose impact is limited to internal
system qualities, primarily maintainability and evolvability" (Avgeriou et al.,
2016, p. 112).

The three main concepts that are included in this definition are: debt, inter-
est, and principal (Avgeriou et al., 2016):

• The debt is the existence of none-optimal solutions in a system.
• A debt has an additional cost, an interest, that have to be repaid be-

cause of the debt.
• The principal is described as the cost in order to either refactor the

system to remove the accumulated debt, or the cost of developing the
system without the debt.

Fowler, 2009 looked further into the technical debt metaphor and pointed
out that it could be divided into four sections; reckless/prudent and deliber-
ate/inadvertent, giving a quadrant. Figure 2.1 shows the quadrant. Below
are explanations for each section of the quadrant (Fowler, 2009):

• Reckless-deliberate: reckless debt is due to messiness, which means
that the mess results in a lot of interest that needs to be repaid. Reckless-
deliberate debt occurs when a development team is aware of good design
practices but chooses not to follow them because they do not think they
have the time for writing clean code, although clean code and a good
design helps with faster development.

• Reckless-inadvertent: reckless debt can also be inadvertent, meaning
that a team is ignorant to good practices. The accumulation of technical
debt is then due to them not realizing that they are taking on the debt.

11

Background

• Prudent-inadvertent: Prudent debt is not due to mess but rather
choices that are made in regards to design flaws. Prudent-inadvertent
debt occurs when an experienced development team follow a good design
strategy but finds out during the development what kind of design strat-
egy they should have chosen. This realization is prudent-inadvertent
debt and even the best development teams will accumulate technical
debt when working on a project.

• Prudent-deliberate: If the interest produced by the choices that are
made are small enough then it might not be something worth repaying,
meaning that it is about whether or not the short-term benefit is worth
the repayment needed in the future.

Figure 2.1: Flower’s quadrant presented in Fowler, 2009

In addition to Fowler explaining technical debt as a quadrant based on factors
such as awareness (reckless/prudent) and intention (deliberate/ inadvertent),
point Kruchten et al., 2012 out that technical debt also can be due to change in
technology. What is meant by this is that gaps in technology is not generated
internally as a result of a wrong choice but rather externally as a result of the
change in context (Kruchten et al., 2012). It is something that can be seen in
retrospect.

Technical debt causes poor product quality, increased cost and can slow the
progress of the software development which can affect its success in the long

12

Background

term (Lim et al., 2012). Quality attributes such as maintainability, perfor-
mance and usability, reliability, security, etc. are impacted by technical debt
(Li et al., 2015; Tom et al., 2013).

There are many kinds of technical debt that make out the technical debt land-
scape. Li et al., 2015 found in their systematic mapping study ten types of
technical debt: requirement TD, architectural TD, design TD, code TD, test
TD, build TD, documentation TD, infrastructure TD, version TD, and defect
TD. Alves et al., 2016 found an additional five types of technical debt: peo-
ple debt, process debt, automation test debt, usability debt, and service debt.
In their tertiary study, Rios et al., 2018 found the same 15 technical debt
kinds by studying a number of systematic literature reviews. Alves et al.,
2016 and Rios et al., 2018 found that the most researched types of technical
debt was design debt, architecture debt, documentation debt, test debt, and
code debt. An additional type of technical debt will be presented in subsection
2.2.1. Three of these types of technical debt are described below.

Architectural technical debt

Architectural technical debt is the kind of technical debt that is "incurred at
the architectural level of software design" (Verdecchia et al., 2020, p. 1) and
"is caused by architecture decisions that make compromises in some internal
quality aspects, such as maintainability" (Li et al., 2015, p. 201). It is found
that architectural technical debt is the most difficult technical debt type to
uncover (Kruchten et al., 2012).

Verdecchia et al., 2021 described the relation between security and architec-
tural technical debt as the following:
"security breaches are a recurrent symptom of ATD. Due to the complexity
caused by the ATD present in a software-intensive system, inadvertent secu-
rity flaws can be introduced, leading to the unintentional disclosure of private
information to unauthorized parties. Such data leaks can be a strong signal of
ATD, that has to be tackled with a reactive management strategy ... as soon as
the symptom arises" (Verdecchia et al., 2021, p. 14).

13

Background

Defect debt

Akbarinasaji et al., 2016 described defect debt as "the trade-off between the
short-term benefit of postponing bug fixing activities and long-term consequence
of delaying those activities" (Akbarinasaji et al., 2016, p. 1). This means that
all identified defects, failures, and bugs that are not fixed during the same
release as they are found is considered defect debt. It is important to both
measure and monitor defect debt as it can cause system bankruptcy due its
accumulation in the issue tracking system (Akbarinasaji et al., 2016). "The
concept of bankruptcy as it is applied to technical debt refers to a situation of
overwhelming debt interest, whereby progress is halted and a complete rewrite
is deemed necessary" (Tom et al., 2013, p. 1503).

Social debt and lack of knowledge

In addition to the 15 kinds of technical debt found by Rios et al., 2018, have
something called social debt been studied. Tamburri et al., 2013 used four
scenarios in order to exemplify social debt. The four scenarios followed the
visualization of technical debt quadrant (Kruchten et al., 2012) where the
fourth section shows social debt as invisible and that is has a negative effect.
This fourth scenario describes a situation where a legacy product is to be ren-
ovated where the original development knowledge and expertise is no longer
available/is lost. "In this case, the socio-technical decision to renovate without
the original community and its knowledge exposes an invisible and negative
effect: a social debt" (Tamburri et al., 2013, p. 94). The community that is
currently developing on the legacy product is sub-optimal as they do not have
the needed knowledge and therefore have to equalise the debt by for example
reverse-engineering the lost knowledge (Tamburri et al., 2013).

Martini et al., 2015 listed factors/causes for the accumulation of architectural
technical debt where one of the causes is lack of knowledge. The lack of knowl-
edge was divided into inexperience, lack of domain knowledge, ignorance, and
carelessness. All these sub-factors can contribute to sub-optimal decisions
resulting in architectural technical debt (Martini et al., 2015, p. 246):

• Inexperience: "New employees are more subjected to accumulating ATD
due to the natural non-complete understanding of the architecture and

14

Background

patterns".
• Lack of domain knowledge: "This factor might be related to the pre-

vious one, or, as the informants mentioned, to the generalization of Agile
teams, which might need to develop a feature accessing a complex compo-
nent of which they do not have expertise".

• Ignorance: "Lack of knowledge about where the architectural rules are
stored (documentation)".

• Carelessness: "Lack of awareness of the importance of architecture. A
recurrent statement from the informant is that having documentation is
not enough to avoid architecture violations".

Thus, knowledge is an important part of software development and for the
system’s security. Siavvas et al., 2019, p. 1 found evidence that technical debt
can "be used as an indicator of software security".

2.2.2 Security debt

Security debt is a term that has been attracting increasing attention by prac-
titioners and researches as the technical debt management is getting more
mature (Martinez et al., 2021). Security debt have been described in research
throughout the last years but a formal definition have yet to be created.

In 2016, security debt was described as "a particular solution that compro-
mises the security of the system, e.g., introducing a particular breach of secu-
rity" (Silva et al., 2016). Then in 2019, Rindell et al., 2019 explained security
debt as "a technical debt containing a security risk" (Rindell et al., 2019) and
Rindell and Holvitie, 2019 explained a two-fold defining of security debt: (1)
technical debt found through security verification or validation methods, and
(2) technical debt in a software component that is critical to the security. Mar-
tinez et al., 2021, p. 2 created the latest definition on the basis of 22 publica-
tions, including the three explanations above: "security debt is incurred when
limited approaches or solutions are applied (intentionally or unintentionally)
to reach the needed security levels for the system in operation". Having secu-
rity debt in a system makes it more vulnerable to attacks (Martinez et al.,
2021).

Both Rindell et al., 2019 and Siavvas et al., 2019 discuss the relationship be-

15

Background

tween technical debt and security. Rindell et al., 2019 described that security
debt has a relation to technical debt and security risks. Looking at security
risks and technical debt together would make it possible to use security en-
gineering techniques for finding them as these techniques provide a way of
finding issues in the internal quality related to requirements, architecture,
coding, and testing.

This "debt as a metaphor"-section has described the information needed to
discuss the debt perspective of the different research questions. When dis-
cussing how security debt is defined, the information gathered on earlier re-
search on security debt will be used. Additionally, the definition of technical
debt and the quadrant by Fowler, 2009 will be used to discuss the relation
between security debt and technical debt (RQ3). Defect debt will be used in
order to discuss the difference between security debt and security vulnerabili-
ties. Social debt and the lack of knowledge, together with security knowledge,
will be used to discuss the role security knowledge plays on the different se-
curity debt management activities. RQ3 aim to find the relation between
security debt and technical debt as described above. In this discussion, ar-
chitectural technical debt will also be used to discuss the relation between
security debt and architectural technical debt.

2.3 Technical debt process

Technical debt can be an investment as long as the team working on the sys-
tem is aware of (have the required knowledge) the technical debt that is be-
ing accumulated. Additionally, the increased risk to the system due to the
technical debt should also be known of and tracked (Kruchten et al., 2012).
Technical debt is found to be detrimental (Lim et al., 2012), so if not managed
properly, technical debt can cause a lot of problems e.g. financial problems
and technical problems. Such problems can lead to maintenance and evolu-
tion costs increasing (Nord et al., 2012). For keeping track of the technical
debt it needs to be managed properly.

Technical debt management (TDM) consists of several activities for prevent-
ing the occurrence of potential technical debt or for handling the existing
technical debt so that it is kept at a reasonable level (Li et al., 2015). Am-
patzoglou et al., 2015; Li et al., 2015; Rios et al., 2018 are three studies that

16

Background

found a number of TDM activities. The activities found by each publications
can be seen in table 2.1. The additional three activities visualisation, time-
to-marked analysis, and scenario analysis found by Rios et al., 2018 were de-
scribed by Fernández-Sánchez et al., 2017 as elements. In that paper they dif-
ferentiated between activities and elements: "the elements, as defined within
this paper, conceptually different from activities, are used during the execu-
tion of activities as inputs, outputs, or mechanisms" (Fernández-Sánchez et
al., 2017, p. 23).

Activity Ampatzoglou
et al., 2015

Li et al.,
2015

Rios et al.,
2018

Prevention - x x

Identification x x x

Documentation/
representation

- x x

Visualization - - x

Communication - x x

Measurement x x x

Prioritization x x x

Monitoring x x x

Repayment x x x

Time-to-market analysis - - x

Scenario analysis - - x

Table 2.1: Technical debt management activities found in the three earlier
publications Ampatzoglou et al., 2015; Li et al., 2015; Rios et al., 2018

Strategies (Rios et al., 2018), approaches (Li et al., 2015), actions (Freire et
al., 2020), and practices (Pérez et al., 2021) have been described to be uti-
lized during TDM activities. Even though different publications use different
words, they have some overlapping aspects, e.g. cost-benefit analysis have
been found by Alves et al., 2016; Ampatzoglou et al., 2015; Li et al., 2015 and
described as both approaches and strategies. There are a lot of approaches
and strategies that are not relevant for this study and will therefore not be
included. The following eight sub-sections corresponds to the eight activities
found by Li et al., 2015 presented in table 2.1. After these activities, follows
a discussion on specific approaches/tools that can be used for different types
of technical debt, including security related approaches for security debt (see
sub-section 2.3.9).

17

Background

2.3.1 Prevention

Technical debt prevention aims to "prevent potential TD from being incurred"
(Li et al., 2015, p. 204). Li et al., 2015 mentioned four approaches for prevent-
ing technical debt, Pérez et al., 2021 found nine practices for preventing tech-
nical debt, and Freire et al., 2020 highlighted the 5 most cited preventative
actions in their study. The most relevant (for this study) ways of preventing
the accumulation of technical debt mentioned in these publications are:

• Human factors analysis: "cultivate a culture that minimizes the unin-
tentional TD caused by human factors, e.g., indifference and ignorance"
(Li et al., 2015, p. 208).

• Adoption of good practices is discussed by both Freire et al., 2020;
Pérez et al., 2021. Pérez et al., 2021, p. 8 described the adoption of good
practices as "related to code development and covers the following sub-
practices: following a well-defined development standards and adoption
of pair programming".

• Code evaluations/standardization: "this practice can go hand in hand
with the use of tools to perform a continuous inspection of the code qual-
ity to detect bugs, code smells, and security vulnerabilities" (Pérez et al.,
2021, p. 8).

• Training (code review/refactoring): "training on code reviews could
be useful to reduce TD occurrence. On the other hand, training on refac-
toring is more related to TD payment practices" (Pérez et al., 2021, p. 8).

2.3.2 Identification

Technical debt "identification detects TD caused by intentional or uninten-
tional technical decisions in a software system through specific techniques,
such as static code analysis" (Li et al., 2015, p. 204). Two of the four ap-
proaches mentioned by Li et al., 2015, p. 206 for identifying technical debt
are:

• Code analysis: "analyze source code to identify violations of coding
rules, lack of tests; calculate software metrics based on source code to
identify design or architecture issues".

• Check list: "check against a list of predefined scenarios where TD is

18

Background

incurred".

Tools for identifying technical debt have also been found, e.g. DebtFlag, Find-
Bugs, Sonar TD plugin, CodeVizard, SonarQube (Li et al., 2015). Tools such
as Coverity and SonarQube have been mentioned to be used when prioritiz-
ing technical debt (Lenarduzzi et al., 2021). Coverity and SonarQube will be
further discussed later in this study.

2.3.3 Representation/Documentation

Technical debt "representation/documentation provides a way to represent
and codify TD in a uniform manner addressing the concerns of particular
stakeholders" (Li et al., 2015, p. 205). Saraiva et al., 2021 mentioned three
project management tools for documenting technical debt: Hansoft, Jira, Red-
mine. When documenting the technical debt, a number of fields (15 fields) for
describing the technical debt and its context are proposed (Li et al., 2015,
p. 207). Some of them are presented below because of their relevance to the
study:

• ID: "a unique identifier for a TD item".
• Location: "the location of the identified TD item".
• Responsible/author: "the person who is responsible for repaying the

TD item".
• Type: "the TD type that this TD item is classified into, e.g., architectural

TD".
• Description: "general information on the TD item".

Technical debt is not only something that can be marked with "TODO" or
"fixme" in the code but can also be added to issue tracking systems. In these
systems the technical debt (sub-optimal implementation decision) can be doc-
umented with labels such as "technical debt" or "debt" (Xavier et al., 2020).

2.3.4 Measurement

Technical debt "measurement quantifies the benefit and cost of known TD in
a software system through estimation techniques, or estimates the level of the
overall TD in a system" (Li et al., 2015, p. 204). 17 strategies for measuring

19

Background

technical debt was found by Rios et al., 2018 and 6 approaches was found by
Li et al., 2015. Two relevant measurement approaches for this study are:

• Cost-benefit analysis: whereas Rios et al., 2018 just mention the cost-
benefit analysis, Alves et al., 2016 describes it in more detail as an anal-
ysis to find out if the interest that is expected is large enough to justify
repaying the debt. There are two parts to the rate of the interest: 1)
the probability that the non-paid debt will result in extra costs, and 2) a
calculated amount of extra work that needs to be done if the debt is not
repaid (Alves et al., 2016).

• Human estimation: "estimate TD according to experience and exper-
tise" (Li et al., 2015, p. 207).

2.3.5 Monitoring

Technical debt "monitoring watches the changes of the cost and benefit of un-
resolved TD over time" (Li et al., 2015, p. 204). Three of the approaches men-
tioned for monitoring technical debt are (Li et al., 2015, p. 208):

• Planned checks:"regularly measure identified TD and track the change
of the TD".

• TD monitoring with quality attribute focus: "monitor the change of
quality attributes that detrimental to TD, such as stability".

• Threshold-based approach: "define thresholds for TD related quality
metrics, and issue warnings if the thresholds are not met".

A tool used for quantifying code metrics as a means for monitoring is Sonar-
Qube (Saraiva et al., 2021).

2.3.6 Communication

Technical debt "communication makes identified TD visible to stakeholders so
that it can be discussed and further managed" (Li et al., 2015, p. 205). Com-
munication is one of the activities that are continuously carried out during the
TDM (Rios et al., 2018). Li et al., 2015, p. 208 identified six approaches for
communicating technical debt. Three relevant approaches to communication
are:

20

Background

• TD dashboard: "A dashboard displays TD items, types, and amounts
in order to get all stakeholders informed of the existence of the TD".

• Backlog: "All identified TD items as well as anything to be resolved in
the development are put into the backlog of the software project, so that
the TD items can be treated as important as known bugs and unimple-
mented planned features and functionalities".

• TD list: "A TD list keeps all identified TD items and make them visible
to stakeholders".

2.3.7 Prioritization

Technical debt "prioritization ranks identified TD according to certain pre-
defined rules to support deciding which TD items should be repaid first and
which TD items can be tolerated until later releases" (Li et al., 2015, p. 204).
Due to limited resources allocated to the repayment of technical debt is it not
possible to repay all the system’s technical debt (Fernández-Sánchez et al.,
2017). Rios et al., 2018 found 13 strategies for prioritizing technical debt, Li
et al., 2015 found 4 approaches to technical debt prioritization, and Lenar-
duzzi et al., 2021 explained 5 aspects of the prioritization and a number of
strategies. Two of the relevant approaches are:

• Analytic hierarchy process (APH): Rios et al., 2018 found APH as a
prioritization approach while Alves et al., 2016 described it as as way to
rank the different technical debts, where the ranking gives an indication
to what technical debt should be repaid first. This strategy is based on
different identified technical debt instances (Alves et al., 2016).

• Portfolio approach: Rios et al., 2018 found the approach but it is de-
scribed by Li et al., 2015 and Guo and Seaman, 2011. "The portfolio
approach considers TD items along with other new functionalities and
bugs as risks and investment opportunities (i.e., assets)" (Li et al., 2015,
p. 206). "The goal of portfolio management is to select the asset set that
can maximize the return on investment or minimize the investment risk"
(Guo & Seaman, 2011, p. 32).

Both the portfolio approach and cost-benefit analysis have been found to be
used during the TDM activities measurement, monitoring, and prioritization
(Rios et al., 2018).

21

Background

Lenarduzzi et al., 2021, p. 7 performed a literature review where they identi-
fied strategies, processes, factors, and tools for the prioritization of technical
debt and mentioned five "themes illustrating different prioritization aspects":

1) Internal software quality: the publications that had a focus on in-
ternal software quality also focused on software quality assessments for
finding technical debt that caused the most amount of maintenance cost.
Additionally, factors such as the remaining product life, severity of the
debt and the impact it has on the future development activities, and the
constraints that are related to business was taken into consideration.

2) Software productivity: considering the decrease in productivity is
also something that is done when prioritizing technical debt.

3) Software correctness: prioritizing the technical debt that has the
greatest negative effect on software correctness.

4) Cost-benefit analysis: finding the most lucrative prioritization of the
technical debt and the possible refactoring activities.

5) Combinations of approaches: combining approaches can also be done,
e.g. combining Analytic Hierarchy Process (AHP), the Portfolio method,
etc..

In the study Lenarduzzi et al., 2021, 12 tools for prioritizing technical debt
were named. The static analysis tools most central for this thesis are Coverity
and SonarQube. If the code is not in compliance with a set of rules, technical
debt issues are raised. When this happens, the issue’s severity is provided to-
gether with a classification, for example that it can lead to bugs or to security
vulnerabilities (Lenarduzzi et al., 2021).

Ribeiro et al., 2017 found a multiple decision strategy criteria model where
several prioritization approaches are used. This model can be used in many
phases in the project and has four categories of decision criteria (Ribeiro et al.,
2017, pp. 335–336):

1) Nature: "criteria that are related to TD’s properties, such as their sever-
ity and time when the debt was incurred".

2) Customer: "criteria into this category concern about the impact that
debt items have on customers.

3) Effort: "criteria that are related to the cost of TD, such as the impact of
TD on the project and what effort will be necessary to pay the debt item
off, and".

22

Background

4) Project: "criteria that are related to projects’ properties, such as their
lifetime and their possibility of evolution".

Tools can also help with the prioritization of technical debt. AnaConDebt,
Coverity, and SonarQube are thee of them (Lenarduzzi et al., 2021). Ana-
ConDebt is a tool that provides a value that is easy to understand and is
comparable to other values. Having these comparable values can help with
the prioritization (Martini & Bosch, 2017). The static analysis tools Coverity
and SonarQube can also help with the prioritization (Lenarduzzi et al., 2021).
Static analysis tools "analyze the code without actual code execution to un-
cover defects and provide a characterization of the code, e.g., size and quality
attributes" (Eisenberg, 2012, p. 1).

2.3.8 Repayment

Technical debt "repayment resolves or mitigates TD in a software system by
techniques such as reengineering and refactoring" (Li et al., 2015, p. 205). Li
et al., 2015 identified seven approaches for technical debt repayment and Rios
et al., 2018 identified two strategies for the repayment.

• Refactoring: "Make changes to the code, design, or architecture of a
software system without altering the external behaviors of the software
system, in order to improve the internal quality" (Li et al., 2015, p. 208).

• Reengineering: "Evolve existing software to exhibit new behaviors, fea-
tures, and operational quality" (Li et al., 2015, p. 208).

• Repackaging: "Group cohesive modules with manageable dependencies
to simplify the code" (Li et al., 2015, p. 208).

• Rewriting: "Rewrite the code that contains TD" (Li et al., 2015, p. 208).
• Bug fixing: "Resolve known bugs" (Li et al., 2015, p. 208).
• Partial refactoring for ATD: Rios et al., 2018 found the approach but

it is explained by Martini et al., 2015. In this approach, the techni-
cal debt is partially refactored, as complete refactoring is not possible
and little to no refactoring can result in a development crisis. Partial
refactoring then leads to the most amount of refactoring (Martini et al.,
2015).

23

Background

2.3.9 Differences in the technical debt process

The 8 activities in the technical debt process have been described above with
a number of approaches. There have been found specific approaches and tools
directed to specific types of technical debt. Some of the differences relevant
for this study are tools, approaches, and security.

Tools
Saraiva et al., 2021 found in their systematic mapping that 34% of the tools
could be used for several types of technical debt (e.g. SonarQube), meaning
that they are not dedicated to one type of technical debt in particular. 60% of
the tools they found, on the other hand, was found to be tailored to specific
types of technical debt. Saraiva et al., 2021 also found an increase in the use
of tools when it comes to architectural technical debt. They found that 40%
of the tools in their systematic mapping could support architectural technical
debt.

Approaches
Alfayez et al., 2020 performed a systematic literature review on prioritiza-
tion approaches and found that ≈ 71% of the identified technical debt prior-
itization approaches works for specific types of technical debt while the rest,
≈ 29%, can work for any type of technical debt. The highest number of pri-
oritization approaches was found to address the prioritization of code debt,
design debt, and defect debt.

Freire et al., 2020 used data from the InsighTD 1 2 project and performed
analysis for finding the most used preventative actions in practice. Their find-
ings showed that several preventative actions such as "following the project
planning" and "training" was used for several types of technical debt. It was
also found specific preventative actions for specific types of technical debt,
e.g. "using the most appropriate technology version" is something that can
be done for preventing architectural technical debt, "code standardization" is
for preventing code debt, and documentation debt has the preventative action
called "well-defined documentation".

Both security (ISO/IEC, 2011) and technical debt (Kruchten et al., 2012) are
1"A family of industrial surveys specifically designed to study software engineering TD"

(Freire et al., 2020).
2http://www.td-survey.com

24

Background

connected to a system’s internal quality. As this is the case can approaches
for TDM also be used for security risk management, e.g. the portfolio ap-
proach (Rindell et al., 2019). Rindell and Holvitie, 2019 explains that their
way of defining security debt is in direct relation to technical debt. Using the
portfolio approach for security debt requires extra input; risk (as a product of
probability and impact) "or a similar quantitative risk assessment measure"
(Rindell & Holvitie, 2019). Siavvas et al., 2019 found in their empirical eval-
uation "evidence for the ability of TD to indicate security risks in software
products" (Siavvas et al., 2019) as described above.

Rindell et al., 2019 explained that "security engineering techniques provide an
effective method to recognize internal quality issues in software requirements,
architecture, coding, and testing" (Rindell et al., 2019) and that "software secu-
rity engineering offers a wide set of techniques and tools directly applicable for
the management of technical debt" (Rindell et al., 2019). Rindell and Holvitie,
2019 found that "managing the security risk as debt provides new means for
security risk mitigation in software development. Security debt can be directly
integrated into existing technical debt management frameworks and tools with
few technical adjustments". A significant addition here would be a security
risk management process (Rindell & Holvitie, 2019).

The described activities, approaches, and tools that are used to manage tech-
nical debt will be used when discussing the security debt process. This sec-
tion contributes with the technical point of view on how security debt should
be managed. The activities and approaches presented in this section will be
discussed together with security related topics, e.g. risk management, secure
coding standards, threat modelling, etc.. Together they will help discuss the
process for handling security debt.

25

Chapter 3

Methodology

In this chapter I will present the methodical choices made during the project.
First I will present the research design, then I will discuss the research ap-
proach and methods for data collection. I will end the chapter with describing
how the data was analyzed and the ethics surrounding the research.

3.1 Company context

The company used in this study is a conglomerate of multiple multinational
companies that are organized using self managed teams. They have global
processes that can be used by each company, still each team can adapt these
processes to their needs. To have a unified way of measuring the self managed
teams, the company uses a maturity index system which is based on penalty
points. This can be seen as a way to help the teams decide and prioritize some
of the work they do, like security.

3.2 Research design

The main focus of this study is finding out how service/system architects view
security debt, how they think it should be managed, and how security debt
relates to technical debt. It is then essential to have a research design that
allows for getting the needed data from the practitioners. A visual repre-

26

Methodology

sentation of the research design is presented in figure 3.1. There are four
different elements in the figure and they are described in "Legend". The three
boxes with different shades of blue represents data collection, methods, and
analysis and the white oval element represents the results.

As shown in figure 3.1, there are three phases of the data collection. In phase
1, a preliminary study was performed. The method used was literature review
for gathering current literature on security debt. The result of the literature
review showed a lack of a formal security debt definition, limited research on
security debt management, and a possible relation between security debt and
technical debt. This was the groundwork for the detailed formulation of the
research problem (RP), the research questions (RQs), and the interview guide.
The results from the literature review brought me to phase 2, qualitative
data collection. This data collection was divided in two: document study and
semi-structured interviews. I received a document containing the company’s
technical debt process, and this document was kept in mind when conduct-
ing the interviews and was used during the thematic analysis. The second
method used during phase 2 was semi-structured interviews. Following the
completion of the interviews and the transcriptions, two things happened: 1)
the transcribed information was ready for analysis and 2) gaps in the col-
lected information were found. These gaps were filled by phase 3 of the data
collection. This third data collection gathered the last bits of information by
using email before all information from the respondents were analysed. The
thematic analysis produced 7 themes based on the coding of the respondents
answers. From the presented themes the goal is to provide an understanding
of security debt, its management, and its relation to technical debt. In order
to answer this, the results from the literature review is discussed together
with the results from the thematic analysis. This is visualized by arrows
pointing from the first oval element (after the literature review) and the 7
oval elements (after the thematic analysis), both pointing to the last oval ele-
ment. More detailed explanations of the phases will be presented later in this
chapter.

27

Methodology

F
ig

ur
e

3.
1:

R
es

ea
rc

h
de

si
gn

m
od

el
di

sp
la

yi
ng

th
e

th
re

e
ph

as
es

of
da

ta
co

lle
ct

io
n,

th
e

m
et

ho
ds

of
da

ta
co

lle
ct

io
n,

an
d

da
ta

an
al

ys
is

.D
es

cr
ip

ti
on

s
of

th
e

el
em

en
ts

us
ed

in
th

e
m

od
el

ar
e

ex
pl

ai
ne

d
in

"L
eg

en
d"

.

28

Methodology

3.3 Qualitative research design and data col-
lection method

There are different kinds of qualitative research designs, two of which are
grounded theory and case study (Creswell & Creswell, 2018, pp. 13–14). In
addition to these two, action research is another qualitative research design
(Wohlin et al., 2012, p. 56).

• A grounded theory is "a design of inquiry from sociology in which the
researcher derives a general, abstract theory of a process, action, or in-
teraction grounded in the views of participants" (Creswell & Creswell,
2018, p. 13).

• In software engineering a case study "is an empirical enquiry that
draws on multiple sources of evidence to investigate one instance (or a
small number of instances) of a contemporary software engineering phe-
nomenon within its real-life context, especially when the boundary be-
tween phenomenon and context cannot be clearly specified" (Runeson et
al., 2012).

• The purpose of action research is to "influence or change some aspect
of whatever is the focus of the research" (Robson, 2002). A more detailed
explanation is presented by Greenwood and Levin, 2006 as "a set of self-
consciously collaborative and democratic strategies for generating knowl-
edge and designing action in which trained experts in social and other
forms of research and local stakeholders work together."

Thus, a difference between case study and action research is that action re-
search has both a focus on and is involved in the process of change. Case
studies on the other hand is more observational (Wohlin et al., 2012, p. 56).
Grounded theory does not only look at processes, but also actions, and in-
teractions (Creswell & Creswell, 2018, p. 13) while I am studying a software
engineering phenomenon. Based on the research problem described in section
1.2 I have come to the conclusion that the qualitative research methodology
case study is the best way to provide answers. The reason for this is that
a case study is fitting when studying a contemporary phenomenon such as
security debt as it gives a more in depth understanding of the studied phe-
nomenon (Runeson & Höst, 2009, p. 132), within the context of a software
company. The thesis is also of an exploratory nature (Grenness, 1997) due

29

Methodology

to the limited research on security debt and management.

I conducted a number of interviews with software/system architects from one
software company to collect data on how they understand and manage secu-
rity debt. Interview as a data collection method is important in case stud-
ies (Runeson & Höst, 2009, p. 145). Three ways of structuring interviews
are structured interviews, semi-structured interviews, and unstructured in-
terviews (Robson, 2002). Runeson and Höst, 2009, p. 145 describe the three
forms of interviews:

• When performing structured interviews, "all questions are planned
in advance and all questions are asked in the same order as in the plan".

• During semi-structured interviews, the "questions are planned, but
they are not necessarily asked in the same order as they are listed".

• When doing unstructured interviews, "the interview questions are for-
mulated as general concerns and interests from the researcher".

I performed semi-structured interviews as this kind of interview struc-
ture is common when doing case studies. Semi-structured interviews makes
it possible to do some improvisation and exploration during the interviews
(Runeson & Höst, 2009, pp. 145–146).

3.4 Research approach

The three approaches to research are quantitative research, qualitative re-
search, and mixed methods research. When choosing the research approach,
things such as the research problem, the researchers’ philosophical assump-
tions, the research designs, and what research methods to use, etc. should be
taken into consideration (Creswell & Creswell, 2018, p. 3).

The simplest way of describing the difference between quantitative and qual-
itative research is that quantitative research produces numbers while quali-
tative research produces words. Mixed methods on the other hand is a com-
bination of the two, where elements from both quantitative and qualitative
approaches are used (Creswell & Creswell, 2018, p. 3);

• The qualitative research approach "is an approach for exploring and
understanding the meaning individuals or groups ascribe to a social or

30

Methodology

human problem. The process of research involves emerging questions
and procedures, data typically collected in the participant’s setting, data
analysis inductively building from particulars to general themes, and the
researcher making interpretations of the meaning of the data." (Creswell
& Creswell, 2018, p. 4).

• The quantitative research approach "is an approach for testing ob-
jective theories by examining the relationship among variables. These
variables, in turn, can be measured, typically on instruments, so that the
numbered data can be analyzed using statistical procedures." (Creswell
& Creswell, 2018, p. 4).

• The mixed methods research approach "is an approach to inquiry in-
volving collecting both quantitative and qualitative data, integrating the
two forms of data, and using distinct designs that may involve philo-
sophical assumptions and theoretical frameworks" (Creswell & Creswell,
2018, p. 4).

The approach was based on what kind of data I was looking to collect: I
wanted to produce words and not numbers. The aim of the study is to find
out what the security debt phenomenon is and how it is managed, and thus it
is important to talk to software practitioners to produce general themes and
interpret the collected data. Based on the research problem and the research
questions, the exploratory case study design, and semi-structured interviews,
pointed in the direction of a qualitative approach.

3.5 Methods for data collection

A literature review and interviews form the basis for data collection in this
study.

3.5.1 Literature review

I conducted a literature review to provide an understanding of the current
literature on security debt and technical debt. A literature review "provides a
framework for establishing the importance of the study as well as a benchmark
for comparing the results with other findings" (Creswell & Creswell, 2018,

31

Methodology

p. 26). The review laid the foundation for the formulation of the research
problem and the research questions, and later for the creation of the interview
guide.

In order to find papers on security debt, I used the search engine Google
Scholar 1. Table 3.1 shows the initial search words used for finding articles
that related to security debt. As shown in the table, there is a decline in num-
ber of hits when the search becomes increasingly specific. From what I have
seen, there is no consistent use of only one term for the phenomenon stud-
ied in this thesis. Therefore an "OR" statement between "security debt" and
"security technical debt" was added in order to find all studies that mention
either of them. The last row in the table has the least amount of hits. Here
I specifically searched for "security debt" and "technical debt" in a software
context. This search limits the amount of hits as studies that strictly mention
"security technical debt" are not found. Additionally, when discussing secu-
rity debt, it is often in the context of technical debt so this is a term that most
likely is used when discussing security debt. It is also important to remember
that included in the number of hits are publications that only mention "secu-
rity debt" or "security technical debt" in the title and in the abstract but not
necessarily in the rest of the study. The majority of the papers found came
from IEEE, ResearchGate, Wiley, acm, and ScienceDirect.

Search words Number
of hits

Include
citations

security debt 2 970 000 Yes

"security debt" 1 800 Yes

"security debt" 1 730 No

"security debt" OR "security technical debt" 1 750 No

("security debt" OR "security technical debt")
+software

275 No

("security debt" OR "security technical debt")
+software -"social security debt"

194 No

("security debt" OR "security technical debt")
+"technical debt" +software

51 No

"security debt" +"technical debt" +software 35 No

Table 3.1: Hits per search on Google Scholar.

1https://scholar.google.no

32

Methodology

3.5.2 Interviews

Before the interviews, I needed some preliminary information regarding the
technical debt process so that I could easier keep up with the respondents
during the interviews. A meeting with a company employee was set up where
they explained the process and after the meeting I was sent a document of the
process. This initial preparation assisted me in the creation of the interview
guide. The interview guide is presented in the appendix.

I chose to perform semi-structured interviews, as explained earlier. After
three interviews I found that the initial interview guide had to be more spe-
cific. The same type of information was gathered but the interview guide had
to be expanded in order to get in-depth information. In addition to data on
the degree to which they identified technical debt, I also needed information
on how they identified technical debt (by hand or with the use of tools). As I
performed semi-structured interviews, this was something I was able to do as
these types of interviews open up for improvisation and exploration (Runeson
& Höst, 2009, pp. 145–146).

After wrapping up the interviews I transcribed them and found that I got
some important information during the last interviews that was not discussed
during the initial interviews (e.g. "Are there any cases/scenarios where the
fixing of security debt is not prioritized? Please explain a little bit."). There-
fore, I sent out customized emails with follow-up questions (Phase 3). This
also included getting the needed information from the first three respondents
before the change to the interview guide. 21 of my respondents replied with
answers to the follow-up questions.

I set aside one hour for each interview session. Some of the interviews lasted
45 minutes while others lasted for more than one hour. This depended on
how fast the respondents answered and what they said. My interviews were
structured according to the four phases presented by Runeson and Höst, 2009,
p. 146:

1) I explained that the interview would be recorded, I fixed consent, and
had a brief description of what we would be talking about,

2) Introductory questions to establish background,
3) The central part of the interview where I got the main information for

33

Methodology

answering the research questions, and
4) I rounded up the interview, described that I would send the respon-

dent(s) some additional information about the meeting/thesis, thanked
them for participating, and spoke of follow-up emails.

Both during the creation of the interview guide and during the interviews I
had a goal for each question in the interview guide in mind. This made it
easier to follow the discussion during the interview.

The interviews were conducted on Zoom as there is an ongoing pandemic and
the majority of the respondents are not in Norway. I do not think the fact that
I did not meet the respondents in person hugely affected the quality of the
answers I got but it is hard to know as I do not have any physical interviews
to compare with. During the interview some of the respondents chose not to
have their camera on. This was not a problem but this resulted in me not
being able to observe them when they answered the questions. There were
very little technical issues during the interviews so very little information
was lost. All the interviews were conducted in English. The reason for this is
that all the information I have read is written in English and it is easier to
communicate the topic in the same language. It is hard to say if conversing
with the respondents in English was a hinder but none of the respondents
seemed to have an issue with this.

Respondents

The respondents interviewed in this study was selected by my company con-
tact. The selection criteria was discussed with my supervisors and the com-
pany contact in order to find out who would know the most about technical
debt and security debt, i.e. who would be the relevant respondents. Accord-
ing to the company the people with most technical debt knowledge are the
architects. As a result, I primarily interviewed architects. An overview of re-
spondents is presented in table 3.2. I was given a list of architects and sent
them emails to find out who would be interested in being interviewed. I ended
up interviewing 26 people from the same company where all are working in
agile development teams. The respondents are from several countries.

Table 3.2 shows the respondents; which roles they have, the size of the team
they are a part of, and the duration of the project they are working on. De-

34

Methodology

Interview Respondents’
roles

Team size Project duration

1 SA 10 4

2 SA 20, - -, -

3 SA 7 4+

4 SA, SE, dev 16 10

5 dev 20 10+

6 SA, SE 15 10+

7 SE, IE 100 20+

8 SA, dev 3, 6 10, 4+

9 SA, team lead 25 11

10 IE, dev 5 5

11 SA, dev 9 1

12 SA, dev 13 5

13 SA, dev 15 1

14 SA, SE, IE 6 3

15 SA, dev 5 10+

16 SA, dev 9 4

17 SA, SE, IE, dev 80 11

18 SA, SE, IE, dev 3 4

19 SA, dev 100 20+

20 SA, dev, team lead 3 8+

21 SA, IE, dev 9 7+

22 SA, IE 17 32+

23 SA, scrum master 28 7

24 SA, SE 10 7+

25 SA, dev, tech lead 100 9

26 SA, SE, dev 6 15+

Table 3.2: The table shows the roles the respondents have, the size of the
team they are a part of, and how old the project(s) they are working on is/are.
One of the interviews consisted of three respondents.

scriptions of the abbreviations used in the table: SA- service/system architect,
SE- security engineer, IE- infrastructure engineer, dev- developer. Some of
the respondents are part of more than one team and works on more than one
project. This can be seen in the table (e.g. team size 3,6 and project duration

35

Methodology

10, 4+). In the thesis I refer to the interviews as respondents, meaning that
"respondent 4" is interview number 4.

It is difficult to specify the degree to which all the respondents were relevant
given the research problem and the topic of the interviews. As shown in table
3.2, the respondents had a mix of different roles meaning that they had dif-
ferent views on the topic. The respondents have different roles and come from
different countries but they all work in the same company.

3.6 Data analysis

After the interviews were conducted, they were transcribed and anonymized.
During this process, a document was created for noting the missing informa-
tion, analytic memos 2 (e.g. "connection between postponed security debt and
deliberate technical debt?"), and any distinctive information was pointed out.
The missing information that was not gathered during the interviews was re-
quested via follow-up emails. The transcribed interviews were imported into
the analysis tool MAXQDA 3. As the emails were answered, the information
in MAXQDA was updated.

Thematic analysis is, according to Cruzes and Dyba, 2011 "a method for
identifying, analyzing, and reporting patterns (themes) within data" (Cruzes
& Dyba, 2011). The synthesis process of thematic analysis starts with all the
pages of text and ends up with a number of themes that describe the patterns
in the data (Cruzes & Dyba, 2011). Figure 3.2 shows an example of how I
was able to go from the interview answers to themes. For analyzing the inter-
views, codes were used. Miles et al., 2013, p. 71 explain codes as "labels that
assign symbolic meaning to the descriptive or inferential information compiled
during a study" (Miles et al., 2013, p. 71). Coding is an analysis method that
happen in two cycles; first cycle coding and second cycle coding. One of the
elemental methods in coding is called descriptive coding. I used descriptive
codes when labelling chunks of information, where the labels summarized the
information they labelled. (Miles et al., 2013, pp. 71, 74). There are different
coding techniques that can be used, e.g. deductive coding and inductive cod-

2"An analytic memo is a brief or extended narrative that documents the researcher’s reflec-
tions and thinking processes about the data" (Miles et al., 2013, p. 95)

3https://www.maxqda.com

36

Methodology

ing. Deductive coding is when there is a "start list" of codes before the
fieldwork. Inductive coding on the other hand is when codes emerge during
the collection of data (Miles et al., 2013, p. 81). I used inductive coding as
it is quite hard creating codes before the data collection when doing an ex-
ploratory case study. Some of the codes I found to be helpful during the data
collection was "SD description", "SD process", and "TD description". All codes
were described in order for them to be consistently applied over time (Miles
et al., 2013, p. 84). I got feedback from my supervisors on the codes and ways
to do the analysis. The main themes of the collected data was related to the
security debt definition, security debt management, and the relation between
security debt and technical debt. After getting some last details from the
company contact, I added the analytic memos mentioned earlier to the codes.
After adding the memos I looked for relationships between the created codes.
To accomplish this, I did axial coding in order to not only find general prop-
erties of the studied topic but also find different dimensions in the data (Scott
& Medaugh, 2017).

Figure 3.2: Example of thematic analysis from interview answers to themes.
Here it is shown that three codes are part of the theme "security debt process".

Miles and Huberman, 1994 explain data reduction as something that is
a part of the analysis. As part of the data reduction, decisions are made

37

Methodology

regarding the type of data that is relevant for coding and further analysis.
A reduction of data have been done as all 230+ pages of transcribed raw data
is not relevant when answering the research questions. After the coding and
the analysis, the results are described in chapter 4.

3.7 Research ethics

The sensitivity of data in this project is more related to internal company
issues rather than personal identifiable information. As the company con-
tact participated in the development of the interview guide, possible security
pitfalls were avoided during the interviews. Nevertheless, anonymity was
secured both for the respondents and the company.

Runeson and Höst, 2009, p. 146 points out that recording the interview is
recommended as it is hard to capture all details if the interviewer only takes
notes. I chose to record the interviews for this reason. Before starting the
interviews I sent a notification form to NSD 4 (Norwegian centre for research
data) because I intended to collect personal data in the form of consent and
recording. The notification form needed the interview guide and a consent
form. In addition, the storage and the usage of the data that would be col-
lected had to be described and approved before starting the interviews. The
first thing that happened before the recording started was that I asked the
respondents if they were okay with the recording and that I needed to docu-
ment their oral consent on the recording. I read the most central points from
the consent form, pointed out that I would send it to them after the interview,
and then emailed the full consent to the respondents when the interview was
finished. In the consent form, a specification was made that the answers they
provided would be made anonymous and only used for answering the research
problem. This means that all respondents are referred to as "they" and not
"he"/"she".

All data from the interviews are stored and treated in accordance with the
notification form sent to NSD.

4https://www.nsd.no/en

38

Chapter 4

Results

I will in this chapter present the findings. The information will be viewed to-
gether and analyzed. The sections in this chapter corresponds to the research
questions described in the introduction (1.2). At the end of each quote I refer
to the respective respondents with a number in parenthesis (ref table 3.2).

4.1 Security debt definition (RQ1)

How did the respondents describe the term security debt? A security debt
definition will be presented in section 4.1.1 that is a result of the following
descriptions provided by the respondents.

From the interviews I found that the respondents have different ways of de-
scribing the term security debt. When I asked how they would describe se-
curity debt many of them talked about it in more than one way. I chose to
create groups of explanations based on the respondents answers in order to
see which respondents view security debt in the same manner. Thus, sev-
eral of the respondents are in more than one group. Some of the groups have
a higher number of respondents than others. Table 4.1 shows the created
groups.

Three of the groups with the highest number of respondents are 7, 6, and
4. These address security levels, the similarity to the technical debt
definition, and the postponement of security issues.

39

Results

Group
number

Security debt explanation Number of
respondents

6 Security debt is related to technical debt 14

4 Security debt is security related issues that
has been postponed

12

7 Security debt is described as security levels 10

9 Security debt are known security issues 7

1 Security debt is the needed work in order
to address security concerns

6

3 Security debt is having to update third-
party dependencies

6

2 Security debt are holes in the system that
can be used against you

4

5 Security debt are security cases that do not
have straight forward fixes

4

8 Security debt say something about how
safe the system is & the overall security
footprint

3

10 Security debt are unknown security issues 3

Table 4.1: Groups of security debt explanations based on the respondents’
answers and the number of respondents per group. Respondents can be in
several groups depending on how they answered.

Groups 7, 2, 1
A respondent from group 7 described security debt as:

It is clearly an evolution, so you are between two levels of security and you are
on the wrong one, on the lower one, so if you are there, you are not allowed to

stay there because it’s a danger and a risk. (15)

Nine other respondents either described security debt in this way or spoke
of examples where this proved to be the case. One of the examples used by
several of the respondents is regarding the TLS (Transport Layer Security)
protocol version and the need to update. Respondent 8 from group 7 describe
the TLS example:

using TLS 1.2 doesn’t expose you, doesn’t give you a security vulnerability, but
as soon as 1.3 is available this occurs because there is a gap. Now you can
improve your security by stepping up and using that protocol instead. (8)

40

Results

Group 2 consists of 4 respondents. They describe security debt as holes that
can be used against the organization. The TLS example above explains that
an update can close this hole that is a result of the release of a new protocol
version. There are also other holes in the system that can be used against
the system. Respondent 6 from group 2 explains that if there exists a way
to for example kill the performance with the means of a DDoS (Distributed
Denial of Service) attack then that existing hole can be maliciously used to
get something the attackers shouldn’t. This is in close relation to group 1
where the respondents answered that they view security debt as the work
that needs to be done in order to address security concerns. According to
respondent 5 from group 1 these concerns can for example be that you have
a slow endpoint that can be used in a DoS (Denial of Service) attack. One of
the respondents that is in both group 1 and 7 showed the following during the
interview:

I’m thinking that we have some sort of quality criteria or imagination of how
the system should be kind of: good quality or really secure. So we have our
vision here [“right hand raised high”] and we have our state over here [“left
hand underneath right hand”] and over here ["the section between the two

hand placements"] is the debt. (24)

This description is similar to the description by respondent 15 (quoted above).
Respondent 24 showed that there are two levels of security; the vision and the
current state, where the section between them is the existing security debt.
In order to move from the current state to the vision they have to remove
this gap between the two states. This is done by repaying the security debt
and/or adding security controls. This gap between the two security levels can
be related to both groups 1 and 2 as these groups represent the respondents
that view security debt as work they have to do in order to address security
concerns/holes that can be used against them. Addressing the work that fixes
these issues can be the work needed in order to reach the systems security
vision. Looking at the groups 7, 2, and 1 together, the total number of respon-
dents becomes 15.

Group 6
Group 6 contains the 14 respondents that view security debt as a technical
debt or describes security debt in a way that points to similarities with the
technical debt definition and Fowler’s quadrant. The respondents 24 and 10
from this group described security debt as the following:

41

Results

Technical debt which kind of has a label of security you know. I would
imagine it as some improvement pending which should improve security. (24)

... when you know that there are parts in the code that maybe are not optimal
when it comes to security and you know that you need to fix it somehow but
maybe of course you don’t have time to do it well at once so you have kind of

have a backlog with the security fixes that needs to be done. (10)

The respondents above described security debt as technical debt that has se-
curity implications and as not optimal solutions that impacts the security.
The descriptions from the respondents in group 6 can be divided into three
sections; not deliberate security debt, deliberate security debt, and security
debt due to change in technology. There are respondents that have described
security debt in a manner that involve more than one of the sections listed
above. Respondent 4 spoke of security debt as both not deliberate and delib-
erate where not deliberate security debt is a result of lack of knowledge and
deliberate security debt is due to trade-offs:

...security debt then it’s security due to ignorance or not knowing, not being
aware that you have problems. (4)

...when we develop things, when we design things you take shortcuts just to be
able to deliver faster and then you are making trade-offs. Security is a good

example of such trade-offs. (4)

Another respondent (respondent 17) in group 6 described deliberate security
debt as something that is planned and then done. Half of the respondents
that described security debt as something deliberate also described it as se-
curity levels (from group 7). Respondent 17 also explained that the planning
is about choosing security solutions that will help them avoid security vul-
nerabilities. This respondent join the two groups by connecting security debt
as being deliberate choices where these planned choices will get them to a
higher security level. The last section is security due to change in technology.
Respondent 3 explains that change in context affects the system:

...it might be that it is sufficient now but not in long run, so it’s kind of a
quick fix so that we get the security measures OK for now, but tomorrow the

thing is different because we need to have more strict rules or whatnot, and I
would say it’s a debt. (3)

42

Results

This improvement can for example be compared to updating to a newer ver-
sion of a dependency or doing changes in the code as a result of new technol-
ogy being created (e.g. updating from Python version 2 to 3). These changes
can indicate moving up or keeping the current security level as the context is
continuously changing. Respondents have also talked about whether or not
security debt can and/or should be kept in certain instances. Respondent 5
said the following:

I don’t see a difference between technical debt and security debt [it’s all about
improvements]. Also, debt is such a negative word, some debt you don’t ever
need to pay back, it works, but then some things you need to improve because

of circumstances (5)

The context can change as explained by respondent 3’s earlier. The security
solutions can be sufficient for now but things are different in the future which
means that improvement must be done. Respondent 5 also referred to secu-
rity as a factor for attracting attention to the issues:

security is just a way to maybe measure how important or justify how
important the fixes are, how much attention the thing needs. (5)

On the other side respondent 6 disagrees with what has previously been said
regarding not repaying security debt. Respondent 6 mention that the security
perspective is always important and security debt is something they do not
choose to keep:

...we cannot live with that kind of changes or features that are not kind of
secure enough. So we are not really taking shortcuts in that area while in

technical debt side we might take shortcuts. (6)

Here is a clear difference between security debt and technical debt according
to respondent 6. Security debt, according to the same respondent, is not some-
thing you take on deliberately because there are no shortcuts in security, but
rather something that you do not know of:

... we are not kind of cutting the corners and accepting some security issues, so
that’s not happening. But it doesn’t mean that we don’t have security issues, of

course we have, people are writing the code so we have security issues... (6)

43

Results

Group 4
The last group that contains a high number of respondents is group 4. This
group contain the 12 respondents that view security debt as something that
can be postponed. This is explained by respondent 7:

... that’s more security debt in that we have accepted the risk and while we
might not do something about it now you might do something about it in the

future. (7)

This description indicate a connection to the security debt process, meaning
that the respondents in group 4 associate security debt with the process of
postponement. What is interesting is the reasons behind the postponements.
This is something that will be further discussed in chapter 4.2. It was ex-
plained earlier that many respondents view security debt in more than one
way and are therefore in more than one group. Only two of the respondents
in group 4 is not found in group 7 and/or 6.

4.1.1 Definition

The groups with the most respondents have been explained. These groups of
respondents explain security debt as:

• Security levels
• The similarity to the technical debt definition
• Due to postponement of security related issues

In addition to describing each group individually they were also looked at
together in order to see similarities. Group 7 was discussed together with
groups 1 and 2. They pointed out that security debt can be the gap between
two levels of security where the gap is the work that needs to be addressed in
order to reach the top level of security needed for the system. The respondents
from group 6 described security debt in three ways:

• not deliberate security debt
• deliberate security debt
• security debt due to change in technology

One of the respondents from the group connected deliberate security debt and
security levels with the help of planning. It was also explained that keeping

44

Results

up with the change in technology could indicate moving up or keeping the
current security level. Here it is shown that there is a connection between
groups 7 and 6. Group 6 also have two respondents that had different views
on whether or not security debt in some circumstances can and/or should be
kept just like with technical debt. The last group, group 4, was briefly ex-
plained because of the high number of respondents. They associated security
debt with the process of postponement. Because postponement is a process
action it did not have a direct impact on the formulation of the security debt
definition. But as almost all of the respondents in group 4 was also found in
group 7 and/or 6 it means that many of the respondents from the other large
groups also view security debt as something that is not fixed immediately due
to various reasons.

Following the discussion above I propose the following definition of security
debt:

Security debt is a set of design or implementation solutions that
hinder or has the potential to hinder the achievement of a system’s

optimal/desired/required security goal

Security debt definition explanation
The security debt definition does not limit security debt to being one specific
type of problem. It is described in a way that shows that security debt is
related to the fact that there exist a better solution to an issue. These non-
optimal solutions are a collection that makes it hard or has the potential to
make it hard to get the optimal/desired/required security for a system. Not
all design or implementation solutions necessarily hinder the achievement of
the system’s optimal/desired/required security goal, but rather has the poten-
tial do hinder. What is meant by this is that it is possible to have security
solutions that are less than optimal/desired/required but the security solu-
tion does not make out any danger as long as it is an internal issue. The
team knows about the security issue but chooses not to fix it while it is in-
ternal. As soon as the system is exposed to environments where they can
be misused , the security issue that did not pose any danger earlier has now
become security debt. The security in a system is dependent on the context.
Some respondents mention that they do not compromise security in any cir-

45

Results

cumstances (e.g. respondent 6) while others (e.g. respondent 5) might have
situations where security suffers from the trade-offs.

The use of optimal, desired, and required as ways of describing the needed
security in a system allows for people from different contexts to choose what
fits them. The use of goal in the definition refer to the system’s security vision
described earlier in the section. The use of security goal incorporate security
levels and security criteria as both these point to an optimal/desired/required
security. When explaining the respondent’s most favoured views on security
debt it was mentioned how security debt can occur in more than one way, e.g.
as both deliberate and not deliberate. This is not mentioned in the definition
but there is no limitation pointing to how security debt is accumulated.

Some of the groups created in order to categorize the respondent’s answers
did not have a direct impact on the formulation of the security debt definition
as they consisted of few respondents and did not have a direct connection to
the larger groups. Even though not all groups was used in the formulation
of the definition, it does not exclude them. The groups 3, 5, 8, 9, and 10
contain the respondents that view security debt as having to update third-
party dependencies, security issues that do not have straight forward fixes, it
says something about how safe a system is (overall security footprint), known
security issues, and unknown security issues.

Groups 8, 9, 10
Group 8 contain the respondents that view security debt as how safe the ser-
vice is and the overall security footprint. Respondent 22 describe the overall
security footprint as:

... all the things that are lying in the system, either that are discovered and
put on the board or not. (22)

The reason for this is that there is no secure system, meaning that there are
probably some things that cannot be found by tools or by the people working
on the system. This divides group 8 into security debt as known (group 9)
and unknown (group 10) security issues, where respondent 22 is one of the
respondents that is in both groups. These groups contain the respondents
that specifically mentioned whether or not the security issues were known or
not.

46

Results

Groups 3, 5
The last two groups are 3 and 5. Group 3 describe security debt as the need to
do updates (e.g. TLS example from earlier) and group 5 explain that security
debt cases are not straight forward, meaning that they are not easy to fix.
Respondent 26 from group 5 points out that security debt is the

...overall problem in the end, it’s not particularly related to a certain version
of whatever component, it’s the overall picture (26)

This is in contradiction with group 3 where security debt is described as the
need to do updates. The same respondent also explains that in cases where
for example a package update in order to fix a security vulnerability is not
possible because of a deadlock problem, this will be a security debt because
larger changes needs to be made in order to fix this part of the system.

4.2 Difference between security debt and secu-
rity vulnerabilities (RQ1.1)

In this section I will look at how the respondents view the difference between
security debt and security vulnerabilities. Their answers resulted in the cre-
ation of several groups, just like for the security debt definition. As with the
security debt definition groups, several of the respondents are in more than
one group. Table 4.2 shows the groups.

When asked how security debt is different from security vulnerabilities 16
respondents said that security vulnerabilities is like a current status, it is
something exploitable that should be fixed fast. Respondent 11 explained the
following:

a security vulnerability outcome to something that can be exploited with
knowledge about the vulnerability. (11)

Group 1 is the group with the highest number of agreeing respondents. They
described that the difference between security debt and security vulnerabili-
ties is that security debt is something that is postponed while security vulner-
abilities will not be postponed. It is the reason behind the postponement that
is interesting as the postponement itself is part of the process, it is a reaction.

47

Results

Group
number

Difference between security debt and
security vulnerabilities

Number of
respondents

1 A security vulnerability is a current status,
it is exploitable, and security debt is some-
thing that has been postponed

10

3 Security debt is the same as security vulner-
abilities

9

6 Security vulnerabilities is a part of security
debt, a subset

8

5 Postponed security vulnerabilities become
security debt

5

2 Security vulnerabilities are easy to fix and
security debt is not easy to fix

2

4 Security debt can lead to security vulnera-
bilities

1

Table 4.2: Groups that explain the differences between security debt and se-
curity vulnerabilities based on the respondents’ answers and the number of
respondents per group.

Group 1 is divided in four as a result of there being four mentioned reasons
behind the postponement. Respondent 10, 15, and 18 described it and 25 gave
an example:

a vulnerability is just a weakness in the system I guess, but security debt is
something you knew about, that you are aware of but you have not had time

to fix it yet. (10)

it’s the danger or the risk that comes that affect us. I mean you feel the risk
because you are responsible ... Normally the attitude in the team is that if it’s
security related you don’t postpone it but sometimes, as I told you, you cannot

address it if you have dependencies or something, so then it’s becoming a
security debt. (15)

a vulnerability is something like concrete, this is vulnerable, this can be
exploited, it has to be fixed, it has bigger priority. And security technical debt

is something we need to change in our security or something which is not
vulnerable right now but fixing those things would make things better

technically. (18)

[Example about change in encryption] I would say that the risk that someone
is able to hack this encryption is much less than the risk that we’ll create some

48

Results

bugs with this migration or conversion to the new encryption method. This is
technical debt or security debt in my opinion. But we have evaluated the risk

to be very low and the risk by migration or doing something with that is
higher than not doing that. So this is an example with low priority. (25)

What can be seen here is that the respondents explain that the postponement
is due to not having enough time, having dependencies that makes it very
hard to repay the security debt, it can be seen as strategy in order to become
more secure, and that some issues are so low risk that it is not worth fixing
yet. Almost all of the respondents that view security debt as something that
can be postponed also said that security vulnerabilities have a higher priority
than security debt and will therefore be addressed first. Security debt and
security vulnerabilities can also be described as being the same. The 9 re-
spondents that agree with this is found in group 3. Respondent 21 explained
the following:

I would say it is the same ... because both can be vulnerability and debt. They
can point to there is some something existing weakness in the service. They

can also be prioritized in different ways, something we can live with,
something we will fix, something that is critical. (21)

Here it is described that security debt and security vulnerabilities points to
weaknesses in the system and that they are not really different. In addition to
talking about security debt as something that is postponed due to dependen-
cies, explains respondent 15 from the same group that differentiating between
security debt and security vulnerabilities is a philosophical problem. They do
not really do that. This is due to the fact that they are responsible and they
feel the risk that can affect them. Respondent 5 agree with this. They do
not differentiate between anything; they view everything as equal, meaning
that it is the evaluation and the context that decide what they do next. Many
other respondents agree that it comes down to the analysis of the issues of
whether or not they are repaid. The third largest group is group 6. The 8
respondents in this group view security vulnerabilities as a subset of security
debt. Respondent 8 and 19 explain the following:

I would say that security vulnerabilities is like a subset of all these issues
[security debt]. This is like the ones that is really severe that you should fix

tomorrow, or today if possible. And then there is this superset which is kind of

49

Results

OK there is an issue there but it’s not a fire, it’s not serious, you should fix this.
(8)

I would say security debt includes security vulnerabilities. But there is more
to it. So I would say security vulnerabilities is one of the inputs into the

security debt and I would say there are different inputs in this security debt. I
would include also those unknown- we need to find as well. (19)

The two respondents above point out that security debt is this larger set
where security vulnerabilities is a subset. Respondent 19 further explains
that security debt also has other inputs where one of those inputs are issues
that are yet to be found. This respondent is also in the two groups that view
security debt as both known and unknown security issues from section 4.1
shown in table 4.1. Another respondent that pointed out that security debt is
more than security vulnerabilities that are not fixed is respondent 24. They
pointed out that lack of tooling (e.g. static code analysis tools) and intrusion
detection systems are things that are considered security debt as well. The
reason for this is that it is measures for trying to counter upcoming issues like
vulnerabilities. Another group that is a bit smaller than group 6 is group 5.
This group view security debt as the postponement of security vulnerabilities.
This is explained by respondent 23:

... if there is some vulnerability for some reason doesn’t have priority. If we
don’t do anything then eventually it will be debt of course if it’s postponed.

(23)

This group separates from group 1, the group that was first mentioned, be-
cause in this case the security vulnerability is postponed due to low priority.
Respondent 20 point out that when a security vulnerability becomes a secu-
rity debt it is still considered a security vulnerability but it is also considered
a security debt. The repayment of this debt will also resolve the security vul-
nerability. On the other hand respondent 16 from group 4 explained that a
security vulnerability can be a result of a security debt and not the other way
around as described by group 6. Respondent 16 explains:

If the security vulnerability is caused by security debt because of lack of
upgrading library then upgrading the library will also fix the security

vulnerability. (16)

50

Results

Respondent 16 and 20 both agree that repaying the security debt will also fix
the security vulnerability. Group 2 is the last group and consists of respon-
dents that view security vulnerabilities as something that might have easier
fixes than security debt. Respondent 1 gave the following explanation:

Vulnerabilities, sometimes I see them as easier to fix if the fix will be like I just
need to upgrade to a new version of that package or to add an extra input

validation that is not done by a given library. This is how to solve a
vulnerability issue. When it comes to security debt I think sometimes that

might involve a bit more on refactoring. It is not something quick to do. (1)

Respondent 26 agrees with this and described that security debt would in
certain situations result in larger changes, for example if there are deadlock
problems that makes it impossible to do the wanted updates in order to keep
the system up to date.

Relation between security debt and security vulnerabilities
The relation between security debt and security vulnerabilities has been de-
scribed by the respondents in seven different ways. The groups with the
largest amount of respondents are 1, 3, 5, and 6. Together they make up
24 of the respondents, where five of the respondents overlap, meaning that 19
respondents only appeared in one of the four groups. Two figures (4.1) have
been created in order to visualize the relation between security debt and se-
curity vulnerabilities. Figure 4.1a show that there are some security issues
that are both security vulnerabilities and security debt while other issues are
only in one of the groups and figure 4.1b show that security vulnerabilities is
a subset of security debt.

At the start of the section it was explained that security debt as postponement
of security issues could be divided into four reasons;

1) time limitation,
2) dependencies that make it hard to repay,
3) as a strategy for more secure systems, and
4) low risk issues not worth fixing.

These are all types of security debts that can be repaid as better solutions
exist, they might not be easy to implement, but they exist. Respondent 9 on
the other hand did not describe security debt as postponement but said that

51

Results

(a) (b)

Figure 4.1: Two visual representations of the relation between security debt
and security vulnerabilities. Figure (a) have a shared area between security
debt and security vulnerabilities while figure (b) shows that security debt
completely surrounds security vulnerabilities.

a typical security debt that will not be prioritized for repayment is when a de-
pendency or a library have a security issue but there is no available updates.
It is then not possible to fix the security issue because of the lack of a solution.
This goes against the definition of security debt, if there is no better solution
then it cannot be a security debt as security debt states that a better solution
exist. This type of security issue is then not a security debt but rather just a
security issue that cannot be solved. The relation between security debt and
security vulnerabilities can be further described because of this. Security vul-
nerabilities is according to respondent 15 something that just pops up. If the
security vulnerability has a solution then it is a security debt until it is fixed
because a better solution exists. On the other hand, if the security vulnerabil-
ity does not have a possible fix then it cannot be a security debt because of the
lack of a better solution. As soon as it is possible to fix the security vulnera-
bility it becomes a security debt until it is fixed. Respondent 24 explains that
security vulnerabilities are explicit things where as soon as the team is aware
of them and see that there is a need for improvement, they are considered to
be security debt. Many security vulnerabilities are short-term security debts
as they often are fixed fast. Respondent 7 explained that security debt can be
divided into short-term debt and long-term debt:

... until they [security issues] are fixed there is a cost and the cost is that we
are vulnerable so in a sense they are a security debt until they are fixed but

52

Results

they are not a long-term debt, it is just more like a credit card compared to a
house loan. (7)

The two figures 4.1a and 4.1b propose relations between security debt and
security vulnerabilities. There are three sides to figure 4.1a:

1) Security vulnerabilities with existing solutions that are not fixed (post-
poned) is security debt.

2) Security vulnerabilities that do not have existing solutions are not secu-
rity debt.

3) Other security issues that are not security vulnerabilities can also be
security debt.

Figure 4.1b show another way of displaying the relation between security vul-
nerabilities and security debt. Here security debt completely enclose the
security vulnerabilities. Both figures 4.1a and 4.1b show that security
debt can be something other than only security vulnerabilities but
figure 4.1b show that all security vulnerabilities are also security debt.

4.3 Security debt process (RQ2)

The company has several processes for different parts of the development of
their software products. One of the processes is for the management of tech-
nical debt. Respondent 22 briefly describe the technical debt process and its
importance:

... generally I’m putting, or the developers are putting, some NFR technical
debt in the Jira board, say let’s refactor code, an annotation, fix me or

/TODO, or something like that. So that you don’t forget about it. The problem
with this is that if you don’t make clear cases and don’t have a process it will

just stay there, nobody will really look at it after. (22)

The quick description from respondent 22 of the technical debt process will
be described more in depth in this section. During the interviews I asked the
respondents how they think the security debt process should be. The answer
with the highest amount of respondents was regarding the use of their already
existing technical debt process. Respondent 3 said the following about the
process for security debt:

53

Results

... these [security debt] should be prioritized higher than the technical debt
issues, but otherwise, the process should be pretty much the same. (3)

Even though not all respondents thought that the technical debt process would
work for security debt, all respondents were asked the same type of questions
about security debt as with technical debt. The official company process for
technical debt is comprised of several sections: prevention, identification, doc-
umentation, analysis, monitoring, communicating, planning, and repayment.
Each section describe a part of the technical debt management. I will describe
all sections but the main focus will be on the section that is mostly mentioned
by the respondents.

Technical debt self-assessment
Each year the teams perform a self-assessment of how they work with techni-
cal debt. The sections in the process is divided into levels based on a maturity
model used in the company. The maturity model and the technical debt pro-
cess was described in a meeting with a company employee and by an internal
company document. When the teams assess their technical debt work they
find what level they are on for each section. The levels are:

Level 1 - unorganized
Level 2 - semi-organized
Level 3 - organized
Level 4 - super organized

The different levels says something about the amount of work they put in
for technical debt. Level 1 is the lowest level where the team does not work
with technical debt and level 4 is the highest possible level where they have
a structured and more strict way of working with technical debt. The target
level for the teams is the organized level (level 3).

Figure 4.2 gives a simple overview of the flow of the technical debt process and
the annual self-assessment they perform. Technical debt can be prevented
after its identification or it can be documented, analyzed, planned, and then
repaid. The sections monitoring and communication are continuous during
the technical debt process. I will go more into depth on the different sections
of the technical debt process below.

Each team work with technical debt differently. Some teams are quite strict

54

Results

Figure 4.2: A simple visual representation of the technical debt process flow
and the annual self-assessment for finding how the team currently work with
technical debt.

while others tend not to be as strict. Most of the respondents talk about the
technical debt process in a way that matches one of the levels for each section.
It can be argued that level 1 in fact is not a process seeing as the teams then do
not work with technical debt. They then have the potential for improvement
especially since the target level is the organized level. If they are not on level
3 or higher, they can be seen as "deviating" from the process seeing as how
they are meant to be on level 3. In this case they have to register a ticket in
their management tool, Jira, that says that they are not on level 3 and this is
added as something they have to work on.

Table 4.3 gives an overview of the level 3 approaches from the technical debt
process that can be applied to the management of security debt. The bold text
mentions additional approaches that can be used in the security debt process.
The sections, approaches, tools, etc. will be explained underneath.

55

Results

Section Approaches

Prevention
The team follows coding standards and performs code
review for all non-trivial changes
Threat modelling

Identification

The team identifies security debt during implementa-
tion and code reviews
The team identifies security debt using static code anal-
ysis tools (e.g. ReSharper, SonarQube, Coverity)
The team identifies security debt as part of operational
processes like incident reviews and problem manage-
ment
Security debt is identified through a bug bounty
program
Security debt is identified by tests performed by
the internal security team in the company

Documentation Security debt is documented in the same backlog as ev-
erything else

Analysis Security debt is analyzed and a severity score is calcu-
lated and documented in Jira

Monitoring Different types of security debt metrics is measured
over time by looking at the sum of all severity scores
and metrics in SonarQube

Communication The team continuously communicates security debt
risks to stakeholders, focusing on the business and/or
customer value of paying down the security debt with
the highest severity score

Planning The team decides on what security debt should be paid
down next based on the severity scores

Repayment Some of the team’s capacity is always reserved for pay-
ing down security debt (20% or more is the industry
standard and highly recommended for technical debt)

Table 4.3: Security debt process adapted from the studied company’s technical
debt process. The sections are presented together with their corresponding
approaches. The additional approaches that are specific to the security debt
process are highlighted in bold.

4.3.1 Prevention

The first presented section, prevention, is about to what extent the teams
follow coding standards and the code review activity in order to prevent the

56

Results

accumulation of technical debt. 21 respondents talked about code reviews as
a means for preventing technical debt. Among these respondents there is a
range from "not important" to "important" as described by respondent 5 and
9:

We do not enforce anything basically, so it is up to the person or the author
itself or the authors to get the feedback on the code produced. (5)

We do code reviews on all code (including infrastructure code), and its not
allowed to push to our main branch without a code review. (9)

The first code review description matches level 2 and the second points to level
3. Finding technical debt during code reviews is a good way of preventing
them. It gives the team the opportunity to either fix it before the merging of
branches or to create a ticket in their management tool. The use of coding
standards are also mentioned. Respondent 5 explained that following coding
standards is a central part of the technical debt process.

The use of code reviews is also mentioned by the respondents as an approach
to prevent the accumulation of security debt. Having the opportunity to fix the
security debt before it is materialized in the system is a good way to prevent
potential misuse of the system because of the security debt. It follows from
these arguments that security issues such as security vulnerabilities found
during the code review and other preventative approaches before the merging
of branches is not considered security debt as they are not yet materialized in
the production code. Even though 21 respondents mentioned code reviews for
technical debt only four specifically mentioned it for security debt. The reason
for this might be that security debt is a term that has not been researched
very much and might therefore not be something the respondents and their
teams specifically look out for. Respondent 1 was the only one that mentioned
threat modelling for avoiding security debt. This happens when there is a
change in the architecture as these changes can introduce security debt.

A summary of the key points:

• 21 respondents spoke of code reviews as a means for preventing tech-
nical debt where the importance of the code reviews range from "not
important" to "important".

• Four respondents specifically mentioned code reviews for preventing se-
curity debt. The decrease in numbers from technical debt might be due

57

Results

to security debt not have been researched as much as general technical
debt.

• Threat modelling have been mentioned as an approach to help prevent
security debt.

4.3.2 Identification

This section focuses on how the teams identify technical debt. Level 3 men-
tion identifying technical debt during implementation, code reviews, by using
static analysis tools (e.g. SonarQube, ReSharper, Coverity), and as part of op-
erational processes. All 26 of the respondents mentioned using various tools
in order to identify technical debt where the most mentioned being SonarQube
(21 respondents), Coverity (22 respondents), and Snyk (22 respondents). Not
all respondents work on projects where the use of the standard static code
analysis tools can be applied, but in those cases other tools are used (e.g. lin-
ters). In addition to using tools, almost all respondents said that they find
technical debt manually, meaning that technical debt is identified not only
when they are performing code reviews but also when they are working on
the code, for example when implementing. One of the respondents explained
it nicely with an example:

... boy scout- leave the camp area a nicer place than it was when you arrived.
(14)

When explaining this the respondent meant being on the lookout for issues
and other problems such as technical debt that they could fix or notify so that
the area in which they are working will be better then when they started
working there. Respondent 5 on the other hand is one of the respondents that
do not actively look for technical debt because as long as the system works it
does not need fixing. Respondents have also mentioned that they have testing
as part of their pipeline and that this is also a means for identifying technical
debt. Respondent 2 pointed out that technical debt could also be identified
during incidents. The majority of the respondents described the identification
of technical debt that matches the third level. The security debt process differ
a bit from the technical debt process here. When it comes to identification 11
respondents pointed out that security debt could be found manually, where
some mentioned code reviews and others mentioned that they could identify

58

Results

security when going through or working on the code. On the other hand two
respondents said that finding security debt manually in this manner is quite
difficult (this will be further discussed in section 4.5). One of the differences
that sets the identification of technical debt and security debt apart is the
use of bug bounties. 16 respondents said that being part of the bug bounty
program helps them identify problems in their system. Respondent 5 and 4
said that

... this bug bounty has maybe been the most valuable thing when it comes to
finding security issues and like people actually having the time to look at

solutions and try to find loopholes. That has been super-valuable. (5)

I see very big value in this this bug bounty program, because it’s like when
we’re hiring external security guys who tell us- look in your code you have this

problem, and yes this problem might come from using third-party library
which brings the problem, but it’s also from your code. (4)

This bug bounty program reports all kinds of different security issues that can
be problematic in the systems. Some of these issues can be security debt while
others are not. In addition to the bug bounty all 26 respondents have tools
that run periodically as mentioned above. The tools SonarQube, Coverity,
and Snyk are the tools that are mentioned the most and these can detect se-
curity issues among other things. In addition to this mentioned 4 respondents
that security people inside the company manually tests their system as
these people know how to identify specific issues. Three of the four respon-
dents that mentioned security testing specifically pointed out penetrations
testing for finding security issues. These security issues might be security
debt but other security issues may be found as well.

A summary of the key points:

• Technical debt is identified manually (when implementing and during
code reviews), with the use of tools (e.g. SonarQube, Coverity, Snyk),
during testing, and during incidents.

• 11 respondents spoke of identifying security debt manually, where some
mentioned code reviews and others mentioned finding security debt when
working on the code.

• The same tools used for identifying technical debt are also run for finding
security issues.

59

Results

• The bug bounty program can be used for identifying security issues, in-
cluding security debt.

• Four respondents mentioned testing for finding security debt, where
three of the respondents specifically mentioned penetration testing.

4.3.3 Documentation

This sections is regarding the documentation. Level 3 in the technical debt
assessment describe that technical debt is to be documented as everything
else: in the same backlog. The majority of the respondents spoke of having
everything in the same backlog as described by respondent 17:

... when it comes to technical debt we are having technical debt tasks in the
same backlog as the features. They are prioritized together and so on. (17)

Respondent 5 is one of the respondents that do not keep technical debt in
the same backlog as everything else, but pointed out that having different
backlogs for different things is not helpful for them. The reason for this is
that it is the same people working on everything, it is the teams responsibility
to work on the important things together. 25 respondents said that they are
adding technical debt tickets in Jira but it does not mean that all technical
debt that is identified is registered. Two of the respondents that mentioned
this is respondent 11 and 14. Respondent 11 explains that they only add it to
Jira if there is a probability that they will fix it and the reason for that is that
they do not have a process for technical debt in place yet (as they are not part
of a formal company <process> at this time). Respondent 14 explains that if
a tool finds a technical debt then they will probably just fix it while working
and not create a Jira issue as it is often simple things. On the other side,
respondent 22 said:

I’m adding it [technical debt] to Jira because it gives me leverage in
discussion with management. Although I could fix things quick and dirty and

just make it work. The idea is that I can have a leverage to explain. (22)

This respondent points out that even if there is a technical debt that is a quick
fix it will still be added to Jira as it is a means of keeping track of the time
spent and the issues that they have.

60

Results

Labelling technical debt and security debt
Labelling the technical debt registered in Jira makes it possible to filter them
so that an overview of the technical debt can be shown. The yearly assessment
that the teams need to do states that the technical debt should be labelled. 24
respondents mentioned the labelling of technical debt but not all respondents
label the technical debt every single time they register a new ticket. Respon-
dent 10 mention that they are more focused on the use of labels when they
are doing the assessment. Several labels can be attached to the tickets reg-
istered in Jira. Most of the respondents talked about labelling the technical
debt with the "NFR" label (non-functional requirement). In addition, labels
that describe the source of the identified technical debt such as "Coverity" and
"assessment" can be added. Respondent 2 explained the following:

In Jira, we tag technical debt cases with "NFR" (non-functional
requirements). This may change at some point. If we have security technical

debt cases, we add the label "security" next to "NFR". (2)

The security debt process is not very different from the technical debt process
when it comes to documentation. As described above, respondent 2 mentions
that an additional label, "security", is added together with "NFR". Almost
all respondents that mentioned using "security" also mentioned adding the
"NFR" label. Respondent 14 said the following:

Security typically takes precedence right, so anything related to security
typically gets the "security" label and then it [security debt] may also get the

"technical debt" or "NFR" label. (14)

Respondent 14 points out that using the "security" label helps show the im-
portance of the security debt. As with technical debt, other labels can be
added, for example its source and if it is detected during an assessment. Even
though most of the respondents use some labels when adding a security debt
ticket in Jira, not all have a specific/strict way of labelling this specific debt.
Respondent 3 explains the following:

Not for now [labelling security debt] but I think it’s a good idea. Something
that I haven’t really thought of before. (3)

Just like with technical debt is security debt mentioned to be in the same
backlog as everything else.

61

Results

A summary of the key points:

• Technical debt and security debt is documented in the same backlog as
everything else.

• Technical debt is often labelled with "NFR" (non-functional requirement).
Additionally, labels that specify the source of the technical debt can be
added.

• Security debt if often labelled with "NFR" and "security". Additionally,
labels that specify the source of the security debt can be added.

4.3.4 Analysis

In this section the technical debt is analysed. Level 2 mention that the teams
use the priority field (low, medium, high, critical) in Jira while Level 3 is
more in depth and specify the calculation of the severity of the technical
debt, where the severity is calculated as a product of impact (what is the
damage/consequence to the system/organization?) and likelihood (what is the
probability that the debt will have an impact on the time horizon of the prod-
uct roadmap?), S = I ∗ L. The severity, impact, and likelihood is referred to
as "risk severity", "risk impact", and "risk likelihood" in the documentation.
Applying this analysis to the technical debt tickets says something about how
severe/critical an issue is.

It is hard to distinguish between the use of priority and severity as the re-
spondents talk about it in a mix, but 18 respondents mentioned severity and
6 talked about using the priority field. There are a few that specifically men-
tion the difference between using the severity score and the priority field. Two
of these respondents are number 9 and 10. They said the following:

I’m in the process actually now to convert [from using priority to severity], or
to make the correct severity and impact on these things... Moving issue by

issue over to that. (9)

... in our daily work we don’t do this [calculate severity]. We just set the
priority of the Jira issues based on our experience of how great the security

risk would be if we don’t fix the issue. (10)

Putting the severity vary from important to something that the respondents

62

Results

do not spend time on. Respondent 9 described moving from priority to sever-
ity. This indicate that they are working on moving from level 2 to level 3 in the
assessment. Respondent 10 on the other hand do not focus on the calculation
of the severity but rather uses the priority field. A few respondents talked
about not being strict on adding analysis to the technical debt Jira tickets at
all. Respondent 3 said the following about severity, impact, and likelihood:

Yes, that is kind of how it is set in the paper but in the real life it is most likely
that we work it immediately when we find the problem. It quite often goes like

that- we fix it. (3)

This respondent explains that they are not strict on calculating and adding
severity. Two other respondents (18, 20) pointed out that they do not calculate
the severity every time they add a new technical debt ticket. Both respondent
18 and 20 said that they only calculate the severity score once a year. Re-
spondent 18 calculate the overall severity of all the technical debt cases while
respondent 20 calculate for each individual technical debt case (because of
the yearly assessment). Respondent 20 also explained that they discuss the
prioritization of the technical debt together with the service architect and
the business owner. A strict calculation of the severity score is therefore not
something they do.

As with technical debt, it is not easy to differentiate between the use of sever-
ity and priority in the analysis of security debt. It stands to reason that the
respondents use the same analysis method as for technical debt, only that the
importance is considered to be higher in the case of security debt. Respondent
18 (from above) is an exception and pointed out that they only add individ-
ual analysis scores to security issues identified by tools such as Coverity and
Snyk. Respondent 11 is also one of the respondents that do not strictly fol-
low the analysis guidelines. This respondent include the team size as a factor
when it comes to the calculation of the severity:

If you are a small enough team then you might have some sense of the
respective priority without turning to too many matrices and loaded

parameters for your calculation. (11)

18 respondents said that they calculate the severity based on their experi-
ence and 6 respondents said that if the debt is reported by a tool then the
score from the tool is taken under consideration. In addition, respondents 16

63

Results

and 8 mentioned that they do the calculations together in the team during
one of their meetings. 7 respondents specifically mentioned that they have
scales in the team for determining the likelihood and impact. The scales are
determined by the team and vary from 1-3 to 1-10.

A summary of the key points:

• The technical debt and security debt can be analysed by the use of a
priority field or with a severity score (where the severity score is the
product of impact and likelihood).

• Adding the severity score to the technical debt varies from important to
something the respondents do not spend time on.

• Security debt is considered to be more important (have higher priority)
than technical debt.

• 18 respondents said that the severity score is calculated based on their
experience and 6 respondents said that when the debt is found by a tool
then they take that analysis under consideration.

4.3.5 Monitoring

The monitoring section is about keeping an eye on the amount of technical
debt and using different kinds of metrics in order to control the amount of
technical debt. Monitoring was not specifically mentioned by the respondents
when it comes to technical debt or security debt. Two exceptions to this in-
clude respondent 18 and 21. Respondent 18, as explained in the last section,
go through all their technical debt once a year and calculate the overall sever-
ity. They then have the opportunity to compare the yearly results in order to
see if the technical debt and security debt is more or less severe than previous
years. The other exception is respondent 21. This respondent talks about hav-
ing a special routine each week that is related to both security and technical
debt. During this routine they go through all their monitoring, the indexes,
their scanners, etc. in order to get an idea of how "well" the system is.

A summary of the key points:

• Few respondents spoke of monitoring during the interviews.
• Respondent 18 explained that they calculate an overall severity score

of all their debt once a year. This score can be used to compare the

64

Results

yearly results in order to see if the severity is increasing or decreasing
compared to previous years.

• Respondent 21 explained that they have weekly check-ups for checking
how "well" the system is.

4.3.6 Communication

Communication is about to what extent the team talk about technical debt in-
ternally (level 2) and how much they talk about technical debt to the outside,
e.g. stakeholders (level 3). 7 respondents explicitly spoke of the importance
of talking to stakeholders when it comes to technical debt. Respondent 25
explained that

... we do also involve stakeholders in that [technical debt] process and
prioritization because it’s also, you know, it has a cost because it takes a lot of

resources. (25)

It is also mentioned by some respondents that they talk about technical debt
inside the team on a regular basis. Some have specific days during the week/month
where they have extra focus on technical debt while others have meetings ded-
icated to technical debt. During these meetings they might discuss, analyze,
and prioritize them.

Security debt is also something that is communicated both inside and outside
the team. This is something 8 respondents mention. Respondent 1 is one of
them and points out the importance of communicating the security debt to the
interested parties (e.g. stakeholders):

Well, I think they [security debt] need to be visualized or, not only visualized,
but they need to, everyone needs to be aware of them. Technical debt usually

it’s inside the team so and the team has an overview of them and these are not
something that are presented to stakeholders or because it’s sometimes is very
specific and they will not understand it. For security debt I think it should be
better presented outside of the team so to the ones interested like stakeholders
because a security debt has an impact on everyone, and I think it’s easier to

explain it and the need for it than the regular technical debt (1)

Security debt is also something that is discussed inside the team for example
when it is time for backlog prioritization.

65

Results

A summary of the key points:

• 7 respondents spoke of the importance of communicating the technical
debt to the stakeholders.

• Some respondents mentioned that technical debt is communicated in-
side the teams on a regular basis.

• 8 respondents mentioned the importance of communicating security debt,
not only inside the team but also outside the team (include the stake-
holders).

4.3.7 Planning

This section is connected to the analysis. Level 2 describes the planning of
technical debt repayment based on the priority field and level 3 says that the
repayment is based on the calculated severity score. 5 respondents specifically
said that for larger technical debts that cannot be repaid in a limited time
frame are added to their road map that usually span over 1 year. 5 other
respondents explicitly mentioned backlog grooming when planning the next
period of time. Respondent 16 said the following:

... when doing the backlog grooming together with the service owner we decide
to prioritize those with higher severity before those with low. (16)

Although only 5 respondents mentioned the term backlog grooming, said 18 of
the respondents (including the 5) that they have meetings where they discuss
the backlog prioritization. The prioritization of technical debt is according
to 22 of the respondent either based on the severity or the priority set for the
technical debt, meaning that some of the respondents are on level 2 and others
are on level 3. Respondent 22 on the other hand described the prioritization
of technical debt a bit differently:

we are considering the severity as being risk and it’s a product between
likelihood and impact. But not always you start with the most impactful one,
sometimes you just go in a greedy manner because you know that some things
are easy to fix and you construct a scaffold for fixing the others in time. (22)

Here it is shown that even tough most of the respondents follow the priori-
tization done during the backlog grooming, there are others that have other
ways of doing it.

66

Results

Just like for technical debt is security debt prioritized based on the priority
and the severity. Security debt is, as explained above, something that gets a
higher prioritization as a result of higher importance. Respondent 1 points
out that having security focused team members and a small team helps the
prioritization and repayment of security debt:

I do not know if it is all the teams, but being a smaller team and having a PO
[product owner] that is always focused on security and wants us to make sure

that we are good in that part, so we can just start when we see that there is
something burning, then we will not wait. This does not happen everywhere.

(1)

The prioritization of security debt is something I will be diving more into in
section 4.4.

A summary of the key points:

• Larger technical debt items that cannot be repaid within a reasonable
time frame is added to the road map.

• Technical debt is usually prioritized based on the given severity score or
the given priority according to 22 respondents.

• Security debt is found to be prioritized based on the given severity score
or the given priority field.

4.3.8 Repayment

The last section is repayment. Level 2 specifies that technical debt is suffi-
ciently repaid and level 3 says that the repayment of technical debt should be
reserved for a portion of the team’s capacity, where 20% capacity is the indus-
try standard. In this section there is also a fourth level, superorganized. This
level is for the teams that have a cap/threshold of maximum technical debt
that they can have. When this cap is reached or exceeded, 100% of the teams
capacity is used for repaying the technical debt.

Of the 18 people that mentioned that they have recurring meetings for the
backlog prioritization spoke only 4 respondents of percentages for technical
debt repayment, but they do not necessarily follow the percentage. In addition
to this mentioned three respondents that penalty points is a motivational

67

Results

factor for technical debt repayment. Respondent 6 said the following:

<company> is also having this <process> thing which is kind of forcing us to
fix technical debts, or basically that we are getting penalty points if we are not

fixing technical debts in kind of reasonable time. So that is also kind of
helping us prioritizing those technical debts. (6)

This explains that there are factors inside the company that contribute to
faster repayment of technical debt. From what the respondents have ex-
plained are most of them on level 2 as many of them continuously repay tech-
nical debt as part of the daily work. The team size can also have an impact
here as three respondents mentioned this. Respondent 2 said the following:

It boils down to how every team feels to do that. If you have a larger team
then you have a higher chance to repay them faster. If you have a small team

you have a chance of getting into those penalty issues and that’s what
happened in my case right now. (2)

Respondent 2 points out that having a larger team puts you in a better posi-
tion to repay technical debt and can therefore avoid getting too many penalty
points. A small number of respondents said that they do not repay technical
debt continuously. One of the respondents that said this pointed out that they
only choose to repay technical debt when it becomes a problem. As long as
it does not disturb, it will not be fixed. On the other hand, respondent 22
explained the importance of repaying technical debt before continuing adding
features etc.:

... you cannot put paint on, let’s say, broken walls. If you have a broken wall
then fix it first. You know that’s broken, your paint won’t cover the entire bad

internal structure. (22)

This example points out that it is hard to create a nice system that has a lot of
problems. Fixing and repaying technical debt and other issues must be done
before continuing adding functionalities etc..

None of the respondents mentioned that they currently use percentages when
repaying security debt but there is a general understanding that security is-
sues will be fixed first and this includes security debt. Respondent 11 did on
the other hand talk about dividing the work into percentages in the future so
that you can keep track of how much time you spend on different tasks:

68

Results

... of course you need some way to measure how much time you’re using for
each or just try and balance them in a certain way which is much harder of

course if you’re not measuring. But for the balance I think you could probably
go with 50% on paying off debt also including fixing old bugs and 50% of

developing new features including fixing bugs in those features immediately.
(11)

Respondent 11 is the only respondent that mentioned a specific percentage for
the security debt process. The percentage that this respondent mentioned is
not only for security debt but for debt in general. In the technical debt process,
the recommendation is using 20% of the team’s capacity for the repayment
of technical debt. The percentage mentioned by respondent 11 is then 30%
higher than what is recommended in the technical debt process (50%− 20% =

30%). The respondent explained that it is not a question of frequency of the
repayment of security debt but rather how much time is spent on it.

A summary of the key points:

• 4 respondents mentioned a specific percentage for technical debt repay-
ment but most of the respondents repay technical debt as part of their
daily work.

• Penalty points and team sized can have an affect on the technical debt
repayment.

• Only one respondent spoke of a percentage for the security debt process
(50% for the repayment of debt including bug fixes).

4.3.9 Additional observations - security self-assessment

In addition to the majority of the respondents thinking that the technical debt
process can be used for security debt, there are also a few people that think
that the security self-assessment in the company can be used (mostly for
the identification of security debt). This assessment looks at how the teams
work with security. Respondent 7 explains that

we are also doing this security self-assessment which basically is a lot of
questions that we have to answer, and in that we have to go over the

application to see if there are any known [security] issues, if there are other
stuff. (7)

69

Results

The security self-assessment contains a list of things the teams have to go
through, e.g. listing the attack surfaces, password storage, cryptography/
hashing algorithms, security logging, quality assurance and testing etc.. The
questions asked during the self-assessment aims to find out if the teams
have/do the needed security. Doing this security assessment highlights se-
curity issues in a way that the technical debt process do not. Respondent 21
points out the following:

Technical debt assessment is mostly focusing on the general process but since
security is prioritized normally higher than other technical debts then it’s

security self-assessment. (21)

When security debt is found during the security assessment it is ranked dif-
ferently when it comes to the penalty points. Respondent 2 said that the secu-
rity debt then have a higher percentage, meaning that they get more penalty
points on these issues depending on how long they have been left unassigned
or unattended. This is, as explained above, a factor that influence the re-
payment. Both processes (the technical debt process and the security assess-
ment) agree that it is important that security debt is prioritized. A few
respondents did not mention a specific process and one of these respondents
said that they are not in a position to make a security debt process.

4.4 Security debt prioritization (RQ2.1)

There is a need for prioritization in order to find out what work will be done
in the next period of time. Respondent 11 points out that there is a trade-off
as a result of limited amount of development resources. The prioritization of
the repayment of security debt is, according to almost all of the respondents,
done by setting priority and/or severity (this points to levels 2 and 3 in the
analysis section in the technical debt process). The use of severity and priority
was explained in subsection 4.3.4. Respondent 21 points out the following
regarding evaluation:

at least they [security debt] always get on the top of evaluating. They might
not always be on the top when it comes to the fixing but when it comes to

evaluating and prioritizing, they are always on the top. (21)

70

Results

After the evaluation of the security debt, it is prioritized. The security debt’s
level of importance ranges from "fix it now" to "fix it later" and this is some-
thing that can be seen with the prioritization it is given. Even though almost
all respondents mentioned using priority and/or severity to prioritize the se-
curity debt, mentioned 12 respondents the importance of prioritizing security
issues and 6 respondents said that security issues could disrupt the sprint.
Respondent 22 and 6 said the following:

I’m trying to do this priority: it’s security, then it’s technical debt, then bug,
then feature. ...of course I cannot do only NFR and the security, I have to

make features because I have to sell things but I’d rather postpone a feature
until I have a sane foundation then deliver it based on, let’s say, compromised

framework or something. (22)

Security issues are always prioritized at the top and basically security related
issues are the ones that are able to also ruin our sprint plan, so security issues
might appear in the middle of the sprint, and we need to get them prioritized,

which means that something else is down prioritized (6)

The respondents quoted above explain that security fixes goes before every-
thing else. Respondent 25 agree with this and explain that even with less
likelihood and impact it should be fixed:

... you shouldn’t have much security debt I will say. As I said it’s high priority
even if it’s less likelihood that it can happen and it can destroy, or it can affect

that someone is stealing your data then it’s very important. (25)

As shown above there is a general agreement that security issues are fixed
first, where these issues even have to ability disrupt sprints. Even security
debt with less likelihood is something that should be prioritized according to
respondent 25.

Cases/scenarios where security debt repayment is not prioritized
I asked the respondents whether or not they had any cases/scenarios where
the repayment of security debt is not prioritized because many of the respon-
dents said that security related issues was something that they choose to fix
fast. 11 respondents had examples where this was the case. Respondent 1
and 9 said the following:

71

Results

For us, production issues have higher priority. So if someone says that you
have a bug in production so that we are not able to update files then we fix

that. And then when it comes to features and security debt it is an even
distribution. (1)

Scenarios where security debt issues are not fixed:
1) If the severity is less, or if it’s not high and it’s a bigger job.

2) If there is a security solution that requires changes to the cooperating
system, and the third party is not willing to change (e.g. the bank only

supports this type of SSH key or this type of connection). (9)

In these cases security debt is something that did not get on the top of the
prioritization because of more pressing issues or that the available solution is
very hard to do. Respondent 5 is one of the respondents that mentioned that it
is important to keep the customers and their needs in mind. The respondent
explained that in some instances a super important security issue must be
put on hold because the customer wants a feature. The reason for this is
that if there are no customers because of a lack of features then there is no
point in fixing the security issues. This can also be viewed from the opposite
perspective; there is no point in having a service that has many nice features
if it is not secure.

Backlog prioritization
The primary responsible roles for the planning and the prioritization of tech-
nical debt repayment is the product owner/service owner (PO/SO) as they
communicate to the development team and the stakeholders. In order for the
backlog to be prioritized the PO/SO needs to know what is important from dif-
ferent perspectives. 12 respondent said that they have good communication
with the PO/SO and that they discuss the backlog prioritization with them.
Respondent 21, 16, and 18 said:

...it’s also good for us because when you have this routine [communication],
when you do something on a regular basis it also helps you to have a better

overview and of course talking to this service owner is also better
communication because the service owner can tell us what he sees from his

perspective because that’s also important, it’s a reflection of stakeholders, etc.
and that helps also him to understand how we see the things, it’s also

important (21)

72

Results

...we have a meeting every two weeks with me [architect] and the service
owner where we prioritize the backlog and based on that prioritization we
have another meeting with the entire team and discuss the tasks that were

prioritized. (16)

usually it it’s like there is a conversation in slack before creating a task and
during that we prioritize it usually together. (18)

As explained above, there is a continuous communication between, not only
the architects and the PO/SO, but also with the rest of the team. In addition,
respondent 18 explains that they also discuss the security debt items in the
team before they are created. This way everyone can give input and share
their knowledge.

Communication between team-members, the architect and the PO/SO is not
the only thing that contribute to the backlog prioritization. 12 of the respon-
dents said that the labelling of the security debt items also helps with the
prioritization. The most mentioned label was the "security" label. Respon-
dent 14 and 22 explained that the security label is the label that prevails and
shows importance as security issues typically takes precedence.

To summarize, the governing factors that helps the PO/SO prioritize the back-
log is:

• Communication between team-members, the architects, the PO/SO,
and the stakeholders

• The labels that are added to the Jira tickets
• The severity/priority score added to the Jira tickets

4.5 Security knowledge (RQ2.2)

I asked the respondents how they view the importance of having security
knowledge in order to handle security debt. There is a general consensus that
security knowledge is important and is described by the respondents as a
range from very important to something that is case dependent. A number of
the sections in the technical debt/security debt process have been mentioned
in connection to security knowledge and can be viewed in table 4.4.

73

Results

Process section Number of respondents
Prevention 11

Identification 24

Evaluation 2

Prioritization 5

Repayment 22

Table 4.4: Number of respondents who view security knowledge as important
per mentioned process activity.

Prevention
The first section of the technical debt/security debt process is having the abil-
ity to prevent them. 11 respondents mentioned the importance of having se-
curity knowledge in order to be able to prevent security debt. Respondents 2
and 14 said the following:

Of course, because first of all you avoid creating that issue in the first place if
you know how to avoid it and secondly you understand why it is needed when

it is reported to you. And if you don’t know it then you discuss it... (2)

... also designing to reduce risks. One example is in our service: do we need to
work with social security numbers? Well we have to, you know under GDPR,

we have to work with them in the sense that they’re part of a data set that
passes through our system... We do need some way of joining information
about individuals from different datasets. It turns out that social security

number is the one common factor. ...what we did instead [of storing the social
security numbers] was implement strong hashing using encryption and so
that what we store is an encrypted, salted version so that if for some reason
that data were to leak at least we wouldn’t leak that part. That reduces the

impact of a security incident. (14)

The example described by respondent 14 pointed out that thinking through
possible attacks helps them design and implement the system to reduce risks.
From earlier it was stated that 16 of the respondents said that they are part
of the bug bounty program and that this is a good source for being notified of
security issues, including security debt. Respondent 9 emphasizes that hav-
ing good security knowledge in order to prevent the accumulation of security
debt is reflected in the fact that they had very few reported security issues
during the bug bounty and that those weren’t even critical.

74

Results

Identification
The next section in the development process where the respondents found it
important with security knowledge is identification. 24 respondents stated
that having good security knowledge is important when it comes to being able
to identify security debt. Respondent 8 said the following:

You definitely needed for identifying. I mean if you don’t know what you’re
looking for... I mean something is missing right, or it can be done in a much

more elegant way that is how it’s supposed to be done according to the system
that you are using then you need to know about these things. If you don’t then

you don’t see a problem, right. (8)

Respondent 21 pointed out that it is not possible to look for something you
are do not know of. Earlier it was mentioned that some respondents use code
reviews in order to identify security debt. Respondent 13 and 14 are two of
them and explained that the team always goes through a code review and
that having good security knowledge is important in order to catch possible
security issues.

Evaluation
After the identification of security debt it is important to do correct evaluation
of the security debt so that it gets the proper attention. Respondent 18 is
one of the respondents that mentioned this and explains the following about
evaluation:

Without security knowledge you can’t evaluate correctly. ... First of all,
evaluation is affected. And yeah, security knowledge helps you fix it quicker,

better understanding overall for you to fix. (18)

This respondent explains that not only is the evaluation affected by security
knowledge but also the ability to understand that something needs to be re-
paid. This understanding affects how the prioritization is done.

Prioritization
5 respondents spoke about security knowledge as a means for being able to do
correct prioritizations. Respondents 3 and 21 pointed out that:

Knowledge is a tool-set to being able to recognize and prioritize the issues.
Without knowledge, the prioritization becomes guesstimations. (3)

75

Results

The better knowledge the better understanding the consequences, so the
critical issues will be fixed first while the minor can be postponed in favour of

other tasks. (21)

Both respondents highlight the need for security knowledge for doing correct
prioritizations because the most pressing issues should be fixed first. When
the issues have been prioritized it is time for repayment.

Repayment
22 respondents talked about security knowledge for the repayment of security
debt. This group of respondents can be divided in two; the ones that view
security knowledge as a must and the ones that think that it is dependent on
the issue at hand. Respondent 7 is from the first group and respondent 8 is
from the second group:

[Importance of having security knowledge] much because if they have an
understanding of what the problem is, not only makes it fixing it easier, but it

also makes them more aware of the problem and if they’re aware of the
problem it’s more motivation to get fixed. (7)

...of course you need to know something when you’re solving them but you can
always be told what to do. I mean if I follow the steps 1,2,3 and make sure of
this. So it depends on the case at hand and what you’re actually doing. Are

you implementing? I can write you what to do- follow these steps, do this. (8)

Both respondents view security knowledge as important but respondent 7
think of it as more important than respondent 8. Respondent 7 mentions
the motivational factor of wanting to repay the security debt because they
then understand the risk.

The sharing of security knowledge
In addition to having security knowledge for the prevention, identification,
evaluation, prioritization, and the repayment of security debt, it is also men-
tioned by 11 respondents that sharing this security knowledge is important.
Respondent 15 points out:

...it’s very helpful [sharing security knowledge] because you can start with
your idea and others see it from a different point of view and all of the sudden

you see a different light. (15)

76

Results

Having this culture of sharing knowledge can help non security people to bet-
ter understand how to create secure systems. Three respondents specifically
mentioned that having a security mindset helps the production of secure
systems. Respondent 4 explains the need for this security mindset:

...we often challenge security when we design things. Let’s call it a security
mindset, the developers kind of need to have it nowadays because you see we
have the pandemic and we work from home, and security is more and more

important as things are getting more and more online and automated. So you
need as a developer to have this mindset, and not just the developers but QA’s

as well, every role I would say. (4)

Several of the respondents have mentioned the importance of security knowl-
edge for more than one of the sections in the security debt process. Respon-
dent 2 for example is one of the respondents that point out the importance of
having security knowledge for all the sections mentioned above. All the re-
spondents that talked about security knowledge for the different section said
that it is important. The only exception is the repayment section, here there
are divided opinions. Some say that it is very important as you cannot repay
something you do not understand while others point out that it is possible to
tell someone what to do. This is related to the sharing of knowledge. If some-
one explains how to solve a problem then that knowledge has been imparted
to the person who previously did not know how to solve the problem at hand.
It can be argued that lacking the security knowledge for handling security
debt can be a cause for the accumulation of it. As pointed out by respondents
2 and 8, it is not possible to prevent something if they do not know what it
is and they cannot identify something when they do not know what they are
looking for. It is tricky knowing if the teams have the needed security knowl-
edge for handling security debt as there is no final answer that shows what
security debt is being accumulated.

It is mentioned by respondent 7 that if a person have the right security knowl-
edge then they are able to understand the risk of the solutions that are being
implemented. If these implementations are less then optimal then they can
notice this and prevent them. The understanding of the risk is a motivational
factor for repayment. Respondent 14 agree with respondent 7, where respon-
dent 14 point out that having security knowledge helps reduce risks because
they have the ability to be aware of them because of this knowledge.

77

Results

The importance of security knowledge can then, as a result of the respondents
that mentioned the different activities, be simply put:

• Prevention: security knowledge is important as it is difficult to prevent
something the team is not aware of. Having security knowledge also
helps the team design and implement the system to reduce risks.

• Identification: security knowledge is important as it is explained that
it is hard to identify something the team does not have any knowledge
of.

• Evaluation: security knowledge is important because the team is then
able to do correct evaluation and have the needed knowledge to under-
stand that an issue needs fixing.

• Prioritization: security knowledge is important because without it the
evaluation becomes guesstimations and a lack of security knowledge will
not provide the needed understanding of the consequences.

• Repayment: the need for security knowledge is case dependent. In cer-
tain situations it is enough to explain how an issue can be fixed while in
other instances having the needed security knowledge can be beneficial.

4.6 Relation between security debt and techni-
cal debt (RQ3)

This section is divided in three; 1) relation between technical debt, security
debt, and security vulnerabilities, 2) security debt and architectural technical
debt, and 3) the technical debt process for the different kinds of technical debt.

4.6.1 Technical debt, security debt, and security vulner-
abilities

During the interviews I got information on the relation between security debt
and technical debt.

Technical debt description
In the beginning of the interview I asked the respondents how they thought
of technical debt and if they had any examples. I did this so that I could get

78

Results

insight into how the respondents view technical debt and to make sure that
they were familiar with the term before continuing the interview. This type
of information is valuable as it can give an indication to how they think of
security debt, if there are any common areas. Their answers were divided
into four main groups: deliberate, not deliberate, due to change in technology,
and its effects on the maintainability of the system. These groups were cre-
ated as a result of either specific wording or how respondents did the overall
explanations (e.g. respondent 12 specifically mentioned that technical debt
cause maintainability issues). The number of respondents in each group can
be seen in table 4.5.

Group description Number of respondents
Deliberate technical debt 22

Not deliberate technical debt 15

Technical debt effect on maintainability 15

Technical debt due to change in technology 10

Table 4.5: Groups that explain how the respondents think of technical debt
and the number of respondents per group.

During the coding of the interviews I found that most of the respondents
thought of technical debt as being something deliberate, meaning that it was
an active choice they did during development. Not deliberate technical debt
and maintainability issues due to technical debt had the same number of
agreeing respondents. There was also a number of respondents that said that
technical debt absolutely could be deliberate but that was not something they
did anymore. It was something they did while starting out and wanted to get
the service up and running. The group with the least amount of respondents
is that technical debt is due to change in technology. Respondents 2, 23, 16,
and 5 explained the following about the four groups presented in table 4.5,
deliberate technical debt, not deliberate technical debt, technical debt effect
on maintainability, and technical debt due to change in technology:

I know I need to do something to improve what I did here because what I did
here was done under certain circumstances, either lack of time, pressure, I

have to deliver it, had to be done fast, or simply I realize I did it wrong, so I
feel an obligation of fixing this at some point in time. (2)

Nowadays it’s the first one [not deliberate technical debt], that we don’t know

79

Results

and we later discover that- oh there is actually something that we need to
handle. (23)

Any short cuts that you do in the code in order to release it [the system] faster
might be considered technical debt if that shortcut, I don’t know, introduces
some hax or the code base will not be easy to maintain from that moment on.

(16)

[technical debt] It’s not something you create, it’s something that happens
because assumptions change, environment change, everything changes. (5)

Security debt and technical debt relationship
The groups in the table show that there is a relation between technical debt
and security debt as three of the same groups were used to categorize secu-
rity debt (as explained in section 4.1). It is said by several respondents that
technical debt and security debt indeed are connected, where two of them are
respondents 5 and 1. Respondent 5 pointed out that security debt is a part
of the overall technical debt and respondent 1 explained the relation between
them as the following:

they [security debt] are connected to technical debt indeed. They are a debt in
a way. It’s still technical, just that they are also security. (1)

Group 3 from table 4.1 describe security debt as the need to do updates. I
asked the respondents if they had any examples of technical debt and 11 re-
spondents considered technical debt as having to do various updates, among
other things. There were common respondents between group 3 from table
4.1 and the technical debt examples. The ones that mentioned the TLS exam-
ple as a security debt also spoke of the TLS example as a technical debt. As
the same example is used for describing both security debt and technical debt
it can indicate that some respondents view some debts as both security debt
and technical debt. The update can be done to reach a higher security goal as
there exist a better solution.

Other respondents view the occurrence of technical debt and security debt
as different. Respondent 6 said that technical debt can be due to shortcuts
while they would never take shortcuts when it comes to security. Respondent
2 explain that even though security debt and technical debt exist in the same
pool of technical debt, security debt has a higher priority.

80

Results

Relation between security debt, security vulnerabilities, and techni-
cal debt
The relation between security debt and security vulnerabilities was discussed
in section 4.2. As there are several respondents that explain that there is
a relation between technical debt and security debt can the figures 4.1 be
expanded. Figure 4.3 shows the expanded figures that present the relation
between security debt, security vulnerabilities, and technical debt.

(a) (b)

Figure 4.3: Two visible representations of the relation between security debt,
security vulnerabilities, and technical debt. Figure (a): technical debt com-
pletely surround security debt and have the same shared area as security debt
and security vulnerabilities. Figure (b): technical debt completely surrounds
security debt and security debt completely surrounds security vulnerabilities.

The 4.3a figure shows that technical debt overlap with both security debt and
security vulnerabilities and is shown to contain all of the security debt. Figure
4.3b also show that technical debt contain all security debt. Technical debt is,
in this figure, the superset. Security debt is a subset of technical debt and
security vulnerabilities are a subset of security debt.

4.6.2 Security debt and architectural technical debt

I asked the respondents whether or not they had experienced having architec-
tural issues that impacted the security. There was a fairly even distribution of
yes and no and one said that they did not remember. Respondent 21 explained
that

81

Results

we are moving all our secrets from one location we had in our deployment
pipeline, it was stored in the Octopus libraries, and now we are moving to the

Azure key vault which gives better security, better protection... (21)

This is an example that was specific to that team while several respondents,
including respondent 6, mentioned the TLS example from earlier, where an
older protocol version can be used against them. They explained this as an
architectural decision that had a security impact. The effect that architec-
ture and security have on each other is described by the respondents from
"somewhat" to "a lot". Respondent 11 said the following:

That’s [architecture and security effect on each other] from somewhat to very
much, I mean you got the whole scale there. It depends on what you want to
do. We don’t expose much data that isn’t the customers’ own data so we don’t

need to take as much care as you would if you’re managing others’ data,
perhaps even on offline devices which could affect your architecture severely.
But for sure they both affect one another. If you have a broken architecture,
that could be used in an attack. If you want to be safe against attacks, you

need the architecture to reflect a secure design. So they both affect each other.
(11)

It is explained that the relation between architecture and security is depen-
dent on the needs of the system but that they affect each other because the
architecture needs to reflect a secure design.

Architectural technical debt and security debt
I added the debt perspective to the question and asked the respondents how
they thought architectural technical debt and security debt effected each other.
They had a few different descriptions of the relation between them. Most of
the respondents (9 respondents) that had a clear answer described the rela-
tion between architectural technical debt and security debt in the same way:
architectural technical debt could lead to security debt. This is explained by
respondent 14 and 15:

So if for some reason you chose the wrong architecture it can probably land
you in all kinds of you know security issues, particularly related to data flow

for instance. (14)

Yes because you can have an early architectural decision that will hit you up

82

Results

in time. ... it’s just you started that way, you haven’t thought enough. I think
it’s a minus of architecture that becomes a security debt. (15)

These explanations point out that a wrong or hasty architecture can result
in security issues. Respondent 17 is another respondent that think that ar-
chitectural technical debt can lead to security debt and pointed out that the
attack surface will increase when the architecture gets older and is not prop-
erly maintained. Respondent 1 mention changes in both the attack surface
and the data flow but does not necessarily see a causality between architec-
tural technical debt and security debt. The following was explained:

An architectural technical debt does not necessarily imply a security debt. But
the changes that are done to the system once that architectural debt is worked
on can have a security impact. Architectural changes coming from technical

debt usually trigger a change in the data flow diagram and the attack surface
of the system changes. Architectural changes can of course be triggered by a
security debt that requires a larger rewrite of a part of the system. So I don’t
think that all technical debt is also a security debt or the other way around.
You can have one without the other. But the changes done while working at

resolving the debt can lead to other security vulnerabilities. This is the reason
why, while doing architectural changes, teams need to threat model these

changes to make sure they don’t introduce security debt. (1)

Respondent 1 points out that there is a relation between security debt and
technical debt but that one can exist without the other. In addition to this
is it pointed out that changes in the architecture as a result of architectural
technical debt can trigger security issues and the repayment of larger security
debts can trigger architectural changes. Respondent 21 had an example that
showed this. It was explained that they needed to change their approach to
storing their secrets. This was found as a security debt because they needed to
improve the security by using a better solution and this improvement resulted
in changes in the architecture.

In addition to the explanation above there is a disagreement between respon-
dent 22 and 24. Respondent 24 pointed out that if they do not have a secure
system then they do not have a good architecture because "security is one of
the quality criteria of architecture". On the other hand respondent 22 said
that it is possible to have a secure system with bad architecture and a non-
secure system with nice architecture. While they think differently on this,

83

Results

both agree that in cases of trade-offs security should prevail. Respondent 22
mention that architectural technical debt and security debt go hand in hand
but that they are "not caused by the same causes".

A set of 7 respondents that was asked about the effect just like the other
respondents did not provide an answer in the context of debt but rather just
in the context of security and architecture.

From what has been described above, the main take-away points are:

• The effect that architecture and security have on each other is described
from "somewhat" to "a lot".

• There is evidence that there is a relation between architectural technical
debt and security debt but there is not necessarily a causality between
them.

• Architectural technical debt can lead to security debt.
• Changes in the architecture due to architectural technical debt can cause

security issues and the repayment of security debt can trigger architec-
tural changes.

• 7 respondents did not talk about architectural technical debt and secu-
rity debt together.

4.6.3 Technical debt processes for different types of tech-
nical debt

I asked the respondents whether or not they follow the same technical debt
process for all the different kinds of technical debt. The response was that
15 respondents agreed that the same technical debt process could be used
while 11 thought that there should be a difference between the handling of
for example code debt and architectural technical debt. The reason for this
was that they have different complexities and therefore should be handled a
bit differently. Respondent 3 said the following:

I would say that in code it is different because here we have these tools. But
architecture is like I would say finding a needle in a haystack. (3)

Group 5 from table 4.1 explained security debt as "security debt are security
cases that do not have straight forward fixes". Just like with architectural

84

Results

technical debt there is a complexity factor that should be taken into consid-
eration (8 respondents agree that complexity should be taken into consider-
ation when it comes to the management of the debt). Security debt is also
mentioned to having higher priority. It can be argued that if the technical
debt process can factor in the complexity of architectural technical debt then
it should also be able to factor in the complexity of security debt (as explained
by group 5) and the need for a higher priority.

85

Chapter 5

Discussion

In this chapter I will be discussing the findings presented in chapter 4 to-
gether with the background and related work from chapter 2. I will be follow-
ing the order of the research questions found in section 1.2

5.1 RQ1 How is security debt defined?

Security debt is a term that has been attracting an increasing amount of at-
tention by both practitioners and researchers. (Martinez et al., 2021). Some of
the publications that discuss security debt are Martinez et al., 2021; Rindell
et al., 2019; Rindell and Holvitie, 2019; Silva et al., 2016. This case study
provides new input on the area of security debt. Being able to avoid security
debt or being able to use it strategically is dependent on security debt being
properly defined and people having a common understanding of what it is.

The aim of the first research question is to discuss a definition of security debt.
Based on the inputs from the respondents, this study proposed the following
definition in the results chapter (section 4.1.1):

Security debt is a set of design or implementation solutions that
hinder or has the potential to hinder the achievement of a system’s

optimal/desired/required security goal.

Four publications that discussed security debt definitions are Martinez et al.,
2021; Rindell et al., 2019; Rindell and Holvitie, 2019 and Silva et al., 2016.

86

Discussion

For the security debt definition,

• Rindell et al., 2019 focused on the connection between technical debt and
security risks,

• Silva et al., 2016 described solutions that compromise the security, and
• Rindell and Holvitie, 2019 pointed out a two-fold for defining security

debt: (1) technical debt found through security verification or validation
methods, and (2) technical debt in a software component that is critical
to the security.

Both Rindell et al., 2019; Rindell and Holvitie, 2019 described security debt
to be in direct relation to technical debt while Silva et al., 2016 describes a
solution that is not optimal in regards to the system’s needed security. This is
in line with groups 6 and 7 from table 4.1:

• Group 6: Security debt is related to technical debt
• Group 7: Security debt is described as security levels

The three studies presented above were part of the data analysis entries that
Martinez et al., 2021 used when defining security debt. Their definition is as
follows: "security debt is incurred when limited approaches or solutions are
applied (intentionally or unintentionally) to reach the needed security levels
for the system in operation" (Martinez et al., 2021, p. 2).

The goal of this study was to achieve an independent security debt defini-
tion. However, the thesis definition ended up not being hugely different from
the definition produced by Martinez et al., 2021. Both definitions speak of
wanting to reach a specific security level/goal for the system. Not having the
needed security due to security debt makes the systems more susceptible to
malicious attacks (Martinez et al., 2021), meaning that security debt have a
negative impact on the system. It is therefore important to identify the en-
vironment in which the system will run so that the development team know
which security controls are needed (Maymi & Harris, 2019, p. 1084) to reach
the security goal. A key difference between the definitions is that Martinez
et al., 2021 mentioned that limited approaches for reaching the security level
is considered to be security debt. The definition presented in this thesis on the
other hand does not specifically mention this, as only one respondent spoke of
limited approaches (e.g. tooling and intrusion detection systems) as security
debt, it did not have a central part in the definition. Another difference is that

87

Discussion

the thesis definition points out that security debt does not necessarily hinder
the achievement of the system’s security goal but rather has the potential
to. This means that as soon as the postponed internal security issues are ex-
posed to environments where they can be misused, they become security debt
(the security issues did not pose any danger when they were internal). The
system is then more susceptible to malicious attacks because of the security
issues that have now become security debt.

The main take away points between the thesis security debt definition and
the latest literature definition by Martinez et al., 2021 is:

• Martinez et al., 2021 mentions that security debt is incurred when hav-
ing limited approaches to reach the security level.

• The thesis definition describe that security debt not only hinder but also
has the potential to hinder the achievement of the wanted security goal.

• Both definitions describe security debt to be detrimental as it makes the
systems more susceptible to malicious attacks.

5.2 RQ1.1 What is the difference between secu-
rity debt and security vulnerabilities?

The focus of the sub-research question, RQ1.1, is finding the difference be-
tween security debt and security vulnerabilities. The groups of explanations
presented in the results chapter is shown in table 4.2.

A vulnerability is explained as "a weakness in a system that allows a threat
source to compromise its security" (Maymi & Harris, 2019, p. 6). This defini-
tion of vulnerability focus directly on security compromise. Thus, it is fair to
argue that the definition presented by Maymi and Harris, 2019 also includes
security vulnerability. What is then the relation to the proposed definition of
security debt? This definition explains security debt as a set of design or
implementation solutions that hinder or has the potential to hinder
the achievement of a system’s optimal/desired/required security goal.

The definition of vulnerability (security vulnerability) and security debt pre-
sented above indicate a close link between the two as shown in figure 4.1.
This is supported by the key findings presented in the results. The security

88

Discussion

vulnerabilities with existing solutions can be considered as security debt be-
cause the development team can fix the weakness in the system and reach for
the system’s security goal. It follows from this discussion that if a security
vulnerability does not have an existing solution then it is not considered as
security debt by the proposed definition.

More specifically, a security vulnerability is considered as a security debt only
after it is merged and materialized in the code (see results 4.3). This can
be compared to defect debt. Defect debt is "the trade-off between the short-
term benefit of postponing bug fixing activities and long-term consequence of
delaying those activities" (Akbarinasaji et al., 2016, p. 1). This means that the
identified failures, defects, and bugs that are not fixes in the same release as
they are found are defect debt (Akbarinasaji et al., 2016). Not fixing (postpon-
ing) the security vulnerabilities might be a choice (which results in deliberate
security debt) while in other cases the team might not know about the secu-
rity vulnerabilities (in that case it is not deliberate security debt). Respondent
7 explained that depending on how fast the security debt is repaid it is either
a short-term debt or a long-term debt (depending on the prioritization). Even
though the security vulnerabilities are considered to be security debt during
a period of time after they have been materialized in the code, they are still
considered to be security vulnerabilities as well as security debt. Fixing one
of them will automatically fix the other as it is the same issue.

The proposed relations between security debt and security vulnera-
bilities
There are two proposed relations between security debt and security vulner-
abilities as shown by figure 4.1. Three sides to figure 4.1a was presented in
the results chapter. In the following, a fourth side is included:

1) Security vulnerabilities with existing solutions that are not fixed in the
same release as they were found (postponed) is security debt (this can
be compared to defect debt).

2) Security vulnerabilities that do not have existing solutions are not secu-
rity debt.

3) Other security issues that are not security vulnerabilities can be secu-
rity debt.

4) Security vulnerabilities with existing solutions that are fixed in the same
release as they were found does not become security debt because they

89

Discussion

are fixed before they are materialized in the code.

Both figures 4.1a and 4.1b show that security debt can be something
other than only security vulnerabilities but figure 4.1b show that all
security vulnerabilities are also security debt.

The first proposed relation between security debt and security vulnerabili-
ties (figure 4.1a) corresponds the most with the thesis definition of security
debt. This is due to security debt being explained as issues that have better
existing solutions than the ones currently implemented, meaning that if an
issue, e.g. a security vulnerability, does not have a solution then it cannot
be a security debt. This is shown by 4.1a; security vulnerabilities can exist
without being security debt. These security vulnerabilities then have no so-
lutions and therefore cannot be improved, which is in line with the security
debt definition proposed in this study.

It seems from the discussion that figure 4.1a shows the most descriptive re-
lation between security debt and security vulnerabilities due to the security
debt definition. This is supported by the fact that figure 4.1b does not take into
account the security vulnerabilities that do not have existing solutions (and
therefore cannot be security debt). Having several ways of understanding the
relation between security debt and security vulnerabilities can negatively im-
pact organizations. It is imperative that everyone understands concepts in
the same way to be able to work towards the common goal of security.

5.3 RQ2 How is security debt managed?

The aim of the second research question is to look into how security debt
should be managed. I asked the respondents how they would manage secu-
rity debt and the answer with the highest number of respondents was that
their already existing technical debt process would work for security debt.
The general consensus was that the difference between them is that security
debt have a higher priority than technical debt.

During the management of technical debt, a set of activities is performed. The
document I received from the company explaining the technical debt process
referred to prevention, identification, documentation, etc. as sections. In this

90

Discussion

discussion I will call them activities (as it is also explained in the literature).
The 8 activities (sections) in the company’s technical debt process corresponds
with the activities found by Li et al., 2015. The additional three activities
time-to-market analysis, scenario analysis, and visualization from Rios et al.,
2018 are not part of this process. Li et al., 2015 spoke of approaches that
are performed during the activities while Rios et al., 2018 called the guiding
of the activities’ execution strategies. In this thesis I am referring to both of
them as approaches.

As the process for technical debt can be used for security debt, the
same activities apply. An overview of the 8 security debt process activities
presented in the results chapter can be seen in table 4.3. There are three
additional approaches that were specifically mentioned in connection to the
security debt process. These are

• threat modelling,
• the use of a bug bounty program, and
• security testing performed by the company’s security team.

I will go through the activities and their maturity level 3 approaches in the
order they were presented in the results.

5.3.1 Prevention

Technical debt "prevention aims to prevent potential TD from being incurred"
(Li et al., 2015, p. 204). During the prevention of technical debt, the company
approaches are following coding standards and performing code reviews
for non-trivial changes. Some of the approaches for preventing technical debt
mentioned in three earlier publications are:

• human factors analysis (Li et al., 2015)
• adoption of good practices (Freire et al., 2020; Pérez et al., 2021)
• code evaluations/standardization, and training (code review/refactoring)

(Pérez et al., 2021)

The findings in this thesis agree that the approaches code standardization
and code reviews presented by Pérez et al., 2021 can be used for preventing
technical debt. Tom et al., 2013 explains that having code reviews makes the

91

Discussion

developers less likely to make decisions that increases the accumulation of
technical debt.

These same technical debt approaches are said to be used during the security
debt process, including threat modelling. Code reviews are described to be
essential for making sure that the software is of good quality (Maymi & Har-
ris, 2019, p. 1084). As both technical debt (Kruchten et al., 2012) and security
(ISO/IEC, 2011) is related to software quality, this can be helpful when pre-
venting security debt. Following coding standards can not only be used for
preventing technical debt but adopting secure coding standards (Maymi
& Harris, 2019, p. 1122) can help prevent security debt from accumulating
as well. Validating input, sanitizing data, keeping the code simple, etc. are
practices that can be used as part of the secure coding standard (Maymi &
Harris, 2019, p. 1122). Threat modelling is the last mentioned approach.
Threat modelling is "the process of describing feasible adverse effects on our
assets caused by threat sources" (Maymi & Harris, 2019, p. 97) and can help
prevent security debt. Having identified and described the effects the threat
sources can have on the assets can help understand how to develop effective
defenses (Maymi & Harris, 2019, p. 97) and prevent the accumulation of secu-
rity debt. Respondent 1 said that modelling the threats when doing changes
in the architecture is needed in order to make sure that security debt is not
introduced.

5.3.2 Identification

Technical debt "identification detects TD caused by intentional or uninten-
tional technical decisions in a software system through specific techniques,
such as static code analysis" (Li et al., 2015, p. 204). The company’s technical
debt process have three approaches that can be used for identifying technical
debt. These approaches include

• identifying technical debt during implementation and code reviews (ex-
plained above),

• by the means of static analysis tools, and
• as part of operational processes (e.g. incident reviews and problem man-

agement).

92

Discussion

Two mentioned approaches for identifying technical debt from the literature
are code analysis and check list (Li et al., 2015). The code analysis approach
matches both the first and the second approach from the company’s identifi-
cation activity. Source code analysis is done in order "to identify violations of
coding rules, lack of tests; calculate software metrics based on source code to
identify design or architecture issues" (Li et al., 2015, p. 206).

A number of tools for identifying technical debt have been found, such as
DebtFlag, FindBugs, Sonar TD plugin, CodeVizard, and SonarQube (Li et al.,
2015). The three most mentioned tools utilized in the researched company is
Coverity1, SonarQube2, and Snyk3. A few respondents also spoke of using
Linters4 for flagging different bugs, errors, etc..

These technical debt approaches are also said to be used for managing se-
curity debt. As explained above, performing code reviews is a means for
identifying and preventing security debt. Security debt can also be identi-
fied during implementation as the developers are then looking at code.
Two respondents mentioned that this is quite difficult. This is something I
will explain further in section 5.5. The main tools mentioned by the respon-
dents (SonarQube, Coverity, and Snyk) are also able to detect security issues
in the code. Having tools that can identify vulnerabilities is valuable as it has
also been explained that security vulnerabilities can be security debt. Part of
the operational processes are incident reviews and problem management.
After an attack has been mitigated, the remediation phase tries to makes sure
that that kind of attack is never successfully carried out again. The incident
is reviewed in the hopes of learning how to avoid those kinds of incidents and
to find out how to do better the next time (Maymi & Harris, 2019, pp. 1008–
1009). This can be a way of identifying security debt if similar security issues
have been reported in earlier incident reviews. In order for these incident re-
views to be beneficial is it important that the people doing the reviews have
the needed knowledge to spot the important issues. This can be compared to
the technical debt identification approach check list- "check against a list of
predefined scenarios where TD is incurred" (Li et al., 2015, p. 206).

1https://www.synopsys.com
2https://www.sonarqube.org
3https://snyk.io
4Linters "check the occurrence of textual or syntactical information on pre-defined code

rules" (Schreiber et al., 2021)

93

Discussion

The second to last approach for identifying security debt is the use of a bug
bounty program. Bug bounty programs allows ethical hackers to hack an
organization’s system so that issues the organization’s internal security peo-
ple was not able to find can be identified (Laszka et al., 2018). Some of the
issues that are identified during the bug bounties can be security debt. The
last approach is security testing by the company’s security team. Three of
the four respondents that mentioned security testing specifically mentioned
penetration testing. During this kind of testing, attacks are simulated in
order to try to get around a systems security controls and to measure the
resistance level of the organization (Maymi & Harris, 2019, pp. 873–875). An-
other kind of testing that can be performed is vulnerability testing. This
kind of testing only identifies vulnerabilities that potentially can be exploited,
while during penetration testing the vulnerabilities are exploited in order to
show that it is possible to gain access to the system (Maymi & Harris, 2019,
p. 878).

5.3.3 Documentation

Technical debt "representation/documentation provides a way to represent
and codify TD in a uniform manner addressing the concerns of particular
stakeholders" (Li et al., 2015, p. 205). Only one approach is listed for this
company activity, namely that the technical debt is to be documented just like
everything else: in the same backlog. When technical debt is documented,
a number of fields can be filled out, e.g. an ID, where the technical debt is
located, the person responsible for the repayment, what type of technical debt
it is, a brief description of the technical debt, etc. (Li et al., 2015). There are
several project management tools that can be used for documenting technical
debt, e.g. Hansoft, Jira, Redmine (Saraiva et al., 2021). The teams in the
company have access to the management tool Jira 5 for tracking their work,
but not all respondents said that they use this tool (25 out of 26 respondents
are using Jira).

Vathsavayi and Systä, 2016 found that the fixing of bugs, implementing new
features, and the refactoring of technical debt must be prioritized in the same
process. For this prioritization process to be a success, having the technical
debt in the same backlog as everything else can be helpful. The same goes for

5https://www.atlassian.com/software/jira

94

Discussion

security issues. Security work is often not prioritized as it is viewed as less
urgent or that it does not produce visible value (Rindell et al., 2019). Hav-
ing security debt in the same backlog as everything else can make it easier
to work with (as it is then not as easily forgotten). There are different ways
of labelling the technical debt when it is documented (Xavier et al., 2020).
Most of the respondents that mentioned labelling technical debt spoke of us-
ing the label "NFR" (non-functional requirement). Additionally, labels that
said where the technical debt was identified was also added. For security
debt it was mentioned that a "security" label was added, often together with
the "NFR" label. All tasks added to the backlog is the work that should be
done during the next period of time. The people adding the items to the back-
log and deciding the order of the items directs the development of the product
(Sedano et al., 2019).

5.3.4 Analysis

Technical debt "measurement quantifies the benefit and cost of known TD in
a software system through estimation techniques, or estimates the level of the
overall TD in a system" (Li et al., 2015, p. 204). During the analysis of tech-
nical debt in the company, the approach is that the technical debt is given
a severity score. This score is then added to the ticket in Jira. Risk is,
according to Maymi and Harris, 2019, p. 7, "the likelihood of a threat source
exploiting a vulnerability and the corresponding business impact". This is
also how the teams in the company is calculating the severity ("risk severity"
= "risk likelihood" * "risk impact"). Before calculating the severity, the teams
use scales that vary from 1-3 to 1-10 when giving the likelihood and impact a
value.

Several approaches for measuring the technical debt have been mentioned in
the literature. Rios et al., 2018 identified 17 approaches, where one of them is
cost-benefit analysis and Li et al., 2015 identified 6 approaches for measuring
technical debt, e.g. human estimation. A number of tools can also be used
during the measurement of the technical debt, e.g. Sonar TD plugin (Li et al.,
2015). The main tools used by the company (SonarQube, Coverity, and Snyk)
all give an estimate of the identified issues criticality.

During human estimation approach, the technical debt is estimated based

95

Discussion

on experience and expertise (Li et al., 2015). 18 respondents mentioned that
they calculate the severity based on their experience and 6 respondents
said that if the technical debt is reported by a tool, then they take the score
produced by the tool under consideration. The cost-benefit analysis can
also be used for analysing the technical debt. This cost-benefit approach pro-
vides an analysis of whether or not the repayment of the technical debt is
beneficial in regards to the expected interest (Seaman et al., 2012). When
calculating the risk, or in the company’s case "risk severity", there is always
uncertainties that exist, as likelihood is a measure of uncertainty (Aven &
Renn, 2009). Aven and Renn, 2009, p. 1 also explained that "risk refers to
uncertainty about and severity of the consequences (or outcomes) of an activ-
ity with respect to something that humans value". Calculating the severity
provides an indication to how much the technical/security debt will affect the
assets that the company value and should also indicate the level of uncer-
tainty. Just like with technical debt, a severity score can also be calculated
for the security debt tickets in Jira. When it comes to security debt, it is
particularly important with uncertainty awareness because of the potentially
large consequences directly related to the system’s security.

5.3.5 Monitoring

Technical debt "monitoring watches the changes of the cost and benefit of unre-
solved TD over time" (Li et al., 2015, p. 204). Monitoring the technical debt in
the company includes measuring the SonarQube metrics and the calculated
severity scores. Some of the approaches proposed in Li et al., 2015 include
planned checks, monitoring technical debt with a focus on quality attributes,
and threshold-based approach.

The monitoring that the company employ makes it possible to notice if the
amount and severity of the technical debt is increasing or decreasing. This
type of monitoring is similar to planned checks. During this approach, the
identified technical debt is measured regularly and the changes are tracked
(Li et al., 2015). Additionally, the company approach can be compared to
the proposed threshold-approach: getting notified if specific technical debt
quality metrics are not met (they do not reach the specified threshold) (Li et
al., 2015). This kind of monitoring of technical debt can also work for secu-
rity debt as there is a need to know if the teams have reached their wanted

96

Discussion

security goal (is the wanted threshold for security met?). The approach that
monitors technical debt with a focus on quality attributes can also be
looked at in connection to security debt. As security debt have been found
to have a connection to a system’s security level, it can be said that this ap-
proach can work here as well (monitor the change in the quality attribute
security) (Li et al., 2015). Information security continuous monitoring
is defined as "maintaining ongoing awareness of information security, vulner-
abilities, and threats to support organizational risk management decisions"
(Dempsey et al., 2011, p. 1). This is also in line with the arguments for uncer-
tainty awareness above. Security debt should be monitored just like technical
debt in order to see how things change, e.g. the environment (Kruchten et al.,
2012), (Maymi & Harris, 2019, p. 1086).

5.3.6 Communication

Technical debt "communication makes identified TD visible to stakeholders so
that it can be discussed and further managed" (Li et al., 2015, p. 205). The
company’s technical debt process has one listed approach for guiding this ac-
tivity; communicating the risks related to the technical debt to the
stakeholders. Communication is one of the activities that are continuously
carried out during the entire management of technical debt (Rios et al., 2018).
Approaches such as having a technical debt dashboard, backlog, and a list of
the technical debt can be used to communicate technical debt to the stake-
holders (Li et al., 2015). In the company process it is not specified how the
teams should communicate the technical debt risks, only that it is something
they should do. According to 7 respondents, communicating technical debt
to stakeholder is important and according to 8 respondents, communicating
security debt both inside and outside the team is essential. Respondent 1 ex-
plained that communicating security debt to the stakeholders is important as
it is something that impacts everyone.

Both technical debt and security debt is usually listed in Jira and is added
to the backlog when it is decided that the debt shall be repaid. Filtering on
the labels added by the respondents makes it possible to view the technical
debt and security debt that has been registered. This is in line with having a
technical/security debt list and/or dashboard that displays the debt and their
respective scores as explained by Li et al., 2015. Communication between the

97

Discussion

security experts in the team and stakeholders is a must when fixing security
issues (Thomas et al., 2018). As this is the case, the team’s security engi-
neer should communicate (e.g. through tools or verbally) the security debt to
stakeholders.

5.3.7 Prioritization

Technical debt "prioritization ranks identified TD according to certain pre-
defined rules to support deciding which TD items should be repaid first and
which TD items can be tolerated until later releases" (Li et al., 2015, p. 204).
During the planning of technical debt, the company approach is: prioritiza-
tion based on the given severity score, is done. Here the prioritization
of the technical debt items are set based on the severity. Just like with the
tool AnaConDebt (Martini & Bosch, 2017), the result from the calculation is
easy to understand, is comparable to other values, and indicates that techni-
cal debt should be repaid next. Lenarduzzi et al., 2021, p. 7 mentioned five
"themes illustrating different prioritization aspects":

1) internal software quality
2) the productivity of the software practitioners
3) the correctness of the software
4) cost-benefit analysis
5) a combination of approaches

Two additional approaches for prioritizing technical debt are the portfolio ap-
proach, and the analytic hierarchy process (Rios et al., 2018). Seaman et al.,
2012 mentioned a combination of these approaches (theme 5 - combination
of approaches) for prioritizing the technical debt. The portfolio approach (Guo
& Seaman, 2011) and analytic hierarchy process (Alves et al., 2016) both pro-
vide a way to rank the technical debt items according to what is the most
beneficial moving forward.

For security debt, comparing severity scores can be helpful during the priori-
tization. The reason for this is that it can be important to repay the security
debt items that is found to be the most severe. This is due to the fact that
having security debt makes the system more open to attacks because the sys-
tem has not reached the security goal due to the security debt. Izurieta et

98

Discussion

al., 2018 mentioned in their study that using the Common Weakness Scor-
ing System (CWSS) method can help with the prioritization of technical debt
items related to security. Additionally, using risk assessment for prioritizing
the security debt is also a possibility (Rindell et al., 2019; Rindell & Holvitie,
2019). Risk assessment "is a method of identifying vulnerabilities and threats
and assessing the possible impacts to determine where to implement security
controls" (Maymi & Harris, 2019, p. 101). Using this kind of approach for
prioritizing the security debt can impact the security debt’s viewed impor-
tance. This is in line with research on securitization understood as applying
a rhetoric of threat to issues in order to increase security priorities (Buzan
et al., 1998).

5.3.8 Repayment

Technical debt "repayment resolves or mitigates TD in a software system by
techniques such as reengineering and refactoring" (Li et al., 2015, p. 205). The
last activity is repayment. During this activity the company specified that
there should be reserved capacity (20%) for repaying technical debt.
Very few respondents spoke of a specific percentage for technical debt repay-
ment but most of the respondents repay technical debt as part of their daily
work (one of the respondents said that as long as the technical debt do not
disturb them they will not repay it). Codabux and Williams, 2013 found that
using 20% of the Potentially Shippable Increment (PSI) on repayment was an
effective way to manage the technical debt. On the other hand, Yli-Huumo
et al., 2016 studied how software development teams manage their technical
debt, where only two of the eight studied cases mentioned 20% as part of their
technical debt repayment. This might indicate that not all teams are working
with a given percentage as only a few respondents in this thesis mentioned
a percentage for technical debt repayment and only 2 out of 8 of the studied
cases by Yli-Huumo et al., 2016 mentioned percentages.

A number of ways to conduct the repayment of technical was found. Some of
them are refactoring, reengineering, repackaging, rewriting, and bug fixing
(Li et al., 2015). None of these technical debt repayment approaches were
specified in the company’s technical debt process which might indicate that
the teams can do the repayment how they see fit. Partial refactoring for
architectural technical debt is another approach for technical debt repay-

99

Discussion

ment (Rios et al., 2018). During this approach, the technical debt is partially
refactored, as complete refactoring is not possible and little to no refactoring
can result in a development crisis. Partial refactoring then leads to the most
amount of refactoring (Martini et al., 2015).

Respondent 11 was the only respondent that mentioned a specific percentage
for repaying security debt. It is a general understanding among the respon-
dents that security issues are fixed first and this include security debt.
How they choose to do the repayment is up to the teams. Group 5 from table
4.1 holds the respondents that think that security debt does not have straight
fixes, meaning that they are not easy to fix. An approach for this kind of secu-
rity debt can for example be partial refactoring as explained by Martini et al.,
2015.

5.3.9 Summing up of RQ2

Following the 8 mentioned activities can provide a structured way of manag-
ing the security debt. It can be interpreted from the discussion that having
specific security related approaches, or approaches where the security per-
spective can be added, will benefit the management of security debt. Adding
a security perspective to the discussed technical debt approaches focus atten-
tion on the security aspects of the debt. Rindell and Holvitie, 2019 explained
that "security debt can be directly integrated into existing technical debt man-
agement frameworks and tools with few technical adjustments". A strategy
for this is security risk management (Rindell & Holvitie, 2019), understood
as "the process of identifying and assessing risk, reducing it to an acceptable
level, and ensuring it remains at that level" (Maymi & Harris, 2019, p. 93).
It is also worth mentioning the security self-assessment mentioned by some
respondents, security self-assessment, mostly related to identification.

To summarize, the main points in this section are:

• Following the 8 mentioned activities from the technical debt process can
provide a structured way of managing security debt.

• The approaches used during the technical debt process can also be used
during the security debt process by adding a security perspective.

• Having a greater focus on security related approaches are required for

100

Discussion

the management of security debt.

5.4 RQ2.1 How is security debt prioritized com-
pared to other kinds of technical debt, fea-
ture development, bug fixing, etc.?

The focus of this sub-research question, RQ2.1, is finding out how security
debt is prioritized compared to other kinds of technical debt, feature develop-
ment, bug fixing, etc..

The process of prioritizing technical debt is about choosing what technical
debt will be repaid next and what technical debt will be postponed (Li et
al., 2015). Repaying all technical debt in a system at once is not possible
due to the limited amount of resources allocated to technical debt repayment
(Fernández-Sánchez et al., 2017). So, a prioritization takes place, where the
calculated severity score plays a significant role.

The prioritization of technical debt repayment and security work
12 respondents explained the importance of prioritizing the fixing of secu-
rity issues and 6 respondents mentioned that security issues could disrupt
sprints due to them needing fixing. On the other hand, security work is often
explained to be under-prioritized as it is viewed as less urgent or that it does
not provide any visible value (Rindell et al., 2019). This is also often the case
for technical debt. The repayment of technical debt is not usually something
that impacts the system’s external behaviour, but rather something that af-
fects the internal system quality (Fernández-Sánchez et al., 2017). Because
of this, teams rather use their resources on feature implementations and bug
fixes (Guo et al., 2016).

Prioritization of security debt
11 respondents provided examples of cases/scenarios where the repay-
ment of security debt was not prioritized. Respondent 1 spoke of pri-
oritizing production issues over security debt and respondent 9 mentioned
having security solutions that would require third-party changes (where the
third party is not willing to change), and situations where the security debt
have a lower severity score than other work in the backlog. Simply put, in

101

Discussion

these cases security debt is something that did not get on top of the prioriti-
zation because of more pressing issues or that the available solution is very
hard to do. Repaying the principle cost (the cost in order to refactor the sys-
tem to remove the debt (Avgeriou et al., 2016)) is then not worth it as the
interest (the additional cost due to the debts existence (Avgeriou et al., 2016))
generated by the debt is less than the repayment of the principle. Martini
and Bosch, 2016 provided a formula (CPrincipal/TInterest) for calculating
whether or not the repayment of the debt is convenient or not. This provides
evidence that security debt would follow a similar prioritization approach as
technical debt.

The respondents said, as explained earlier, that the severity score added to
the security debt tickets in Jira is a factor that plays a central part in the
backlog prioritization. Besker et al., 2019 pointed out that the refactoring
of technical debt often is not prioritized because there is such a large pressure
to produce customer value and keeping to the deadlines that feature imple-
mentation comes first. Several respondents explained that keeping the cus-
tomers in mind is important. The respondent 5 said that important security
fixes must sometimes be put on hold because a customer wants a feature. The
reason behind this is that it is no point in fixing the security issues if there
are no customers due to lack of functionality. Ribeiro et al., 2017 presented a
multiple decision strategy criteria model that not only factored in sever-
ity but also factored in the customer impact when prioritizing the debt. As
respondent 5 pointed out that security fixes sometimes must be postponed for
the benefit of other work, e.g. feature implementation, the multiple decision
model might be beneficial here as it factors in the impact on customers.

Lenarduzzi et al., 2021 found in their systematic literature review that even
though publications describe having a balance between feature implementa-
tion and technical debt repayment as important, none of the identified ap-
proaches in the literature review specifically address the prioritization be-
tween technical debt repayment and feature implementation. The prioritiza-
tion approaches only focus on which technical debt items will be repaid next.
Having that none of the studied prioritization approaches in Lenarduzzi et
al., 2021 specifically mentioned prioritizing other development work together
with technical debt repayment, the company’s severity/priority score can be
beneficial here. If software practitioners add a simple/quick scoring to the fea-
tures that should be implemented and the bugs that needs fixing then these

102

Discussion

can be compared to the technical debt items and together be prioritized in the
backlog.

Backlog prioritization
The PO/SO prioritizes the backlog (Sedano et al., 2019). 12 respondents said
that they have good communication with the PO/SO and that they together
discuss the prioritization of the backlog. Having this communication can, ac-
cording to respondent 21, provide different perspectives (e.g. the PO/SO is a
reflection of the stakeholders) when doing the prioritization. It is explained by
Sedano et al., 2019 that "the backlog facilitated communication between pro-
fessionals with different backgrounds: product designers, product managers,
and engineers" (Sedano et al., 2019, p. 207).

Vathsavayi and Systä, 2016 found that the implementation of new features,
the refactoring of technical debt, and the fixing of bugs must be prioritized in
the same process. Following that different development work mentioned by
Vathsavayi and Systä, 2016 should be prioritized in the same process, it can be
argued that security debt should also be a part of this process. In order to do
proper prioritizations, comparable values should be used for finding where in
the backlog the elements should be placed. There are a number of approaches
that can be used for the prioritization, e.g. AnaConDebt (Martini & Bosch,
2016), the multiple decision strategy criteria model (Ribeiro et al., 2017), and
as proposed by the studied company; severity/priority scores.

To summarize, the main points are:

• Security issues should be taken seriously as they can disrupt Sprints.
• Evidence that security debt would follow a similar prioritization ap-

proach as technical debt.
• Having customer value in mind is important and a model that can help

prioritize debt with customers factored in is the multiple decision strat-
egy criteria model.

• Adding severity/priority score to all development work, including fea-
ture implementation, bug fixing, technical debt, etc., can help with the
prioritization as they then have comparable values.

• Communication between teams and PO/SO provide different perspec-
tives that can be beneficial for a good backlog prioritization.

103

Discussion

5.5 RQ 2.2 What role does security knowledge
play in the different activities of security
debt management?

This sub-research question aim to find out to what extent having security
knowledge plays a role in how security debt is handled. As shown in table
3.2 there are a number of respondents that have the role of security engineer
as well as other roles. I did not find any clear indication that the respon-
dents with the security engineer role explained security debt and its manage-
ment any different than the respondents that do not have the this role. The
respondents mentioned security knowledge in relation to the security debt
management activities prevention, identification, evaluation, prioritization,
and repayment.

Knowledge is information in context, meaning that there is a connection be-
tween knowledge and information (Barnum & McGraw, 2005). The first two
activities mentioned by the respondents are prevention and identification. 11
respondents mentioned that security knowledge was needed for being able to
prevent security debt and 24 mentioned security knowledge for identifying
these issues. Assal and Chiasson, 2018 found a connection between security
knowledge and security integration. In instances with little security knowl-
edge, they expected that the security practices were lax. Having the needed
security knowledge in order to identify and prevent security debt due to lax
security practices (as explained by Assal and Chiasson, 2018) is therefore im-
portant.

Code review is an approach that is used during the prevention and identifi-
cation of security debt. According to respondents 13 and 14, code reviews are
conducted to catch security issues in the code. Having the required knowl-
edge is important in this approach. This is also explained by Freire et al.,
2020 with a technical debt view: lack of expertise in the team can hinder the
prevention of technical debt.

Respondent 4 mentioned security debt accumulated due to ignorance or not
knowing that there are problems in the system. Human factors analysis
(Li et al., 2015) can be used to prevent technical debt. This approach can also
be applied to security debt; having a team culture where the accumulation of

104

Discussion

security debt due to ignorance or indifference is reduced.

What then about evaluation? One respondent stated that evaluating the
security debt cannot be done correctly without security knowledge. This has
implications also for prioritization, prioritizing without knowledge of secu-
rity are just guesstimates. The last activity is repayment. 22 respondents
mentioned this activity, where the answers were divided in two; the ones that
view security knowledge as important in all cases and those who think secu-
rity knowledge is context dependent.

Several reasons for the importance of security knowledge have been presented.
Equally important for security debt management is awareness of lack of knowl-
edge.

Lack of security knowledge
There are two descriptions regarding lack of knowledge in the context of tech-
nical debt presented in chapter 2. Tamburri et al., 2013 describes a sub-
optimal community where they do not have the needed knowledge and there-
fore have to equalise the debt by for example reverse-engineering the lost
knowledge. The other approach is presented by Martini et al., 2015. They
found that having a lack of knowledge is a factor/cause for the accumulation
of architectural technical debt, a lack of knowledge is divided into four sub-
factors: inexperience, lack of domain knowledge, ignorance, and carelessness.
Ignorance was also mentioned by one of the respondents as a factor for the
buildup of security debt.

Not having the required security knowledge makes it difficult to manage se-
curity debt because the various security debt management activities rest on
a solid foundation of knowledge. It can also be argued that not being able to
execute these activities may result in an accumulation of security debt. Sec-
tion 5.3 discussed the use of the bug bounty program for identifying security
debt. It can be interpreted that teams who heavily rely on the bug bounty
program for identifying security debt might indicate that they lack security
knowledge.

Sharing security knowledge "can give a new software security practitioner
access to the knowledge and expertise of all the masters" (Barnum & McGraw,
2005, p. 74). 11 respondents said that knowledge sharing is important. Re-
spondent 15 explained that being able to discuss solutions together can make

105

Discussion

the developers see things from different perspectives. Sharing security knowl-
edge might also impact how the developers work with the overall security and
not just security debt. Maymi and Harris, 2019, p. 1083 explain that when
developing both functionality and security together at all phases of the devel-
opment life cycle, protection will be provided at all the needed layers of the
software. The security will then be woven into the core of the software.

In section 5.3 it was explained that communication is one of the activities that
are continuously carried out during the entire management of technical debt.
Therefore, sharing security knowledge is something that can be part of the
communication and therefore be continuous. Thus, it can be interpreted that
sharing "the knowledge and expertise of all the masters" (Barnum & McGraw,
2005, p. 74) can be a preventative action for security debt accumulation.

The main points from this section are:

• Having a lack of security knowledge have been described to negatively
impact the management activities prevention, identification, evaluation,
prioritization, and repayment.

• Having a lack of security knowledge can cause security debt to accumu-
late.

• Sharing security knowledge can be a preventative action for security
debt accumulation.

5.6 RQ3 What is the relation between security
debt and technical debt?

The aim of this final research question is to find the relation between secu-
rity debt and technical debt. I will be discussing security vulnerabilities and
architectural technical debt when taking a closer look at this relation.

106

Discussion

5.6.1 Technical debt, security debt, and security vulner-
abilities

Technical debt
How do he respondents think of technical debt? The respondents’ technical
debt descriptions were divided into four groups (shown in table 4.5). Two
of these groups, deliberate technical debt and not deliberate technical
debt, match the factors deliberate and inadvertent presented by Fowler, 2009
in his figure 2.1. Avgeriou et al., 2016 describe that technical debt primarily
affects the quality attributes maintainability and evolvability. This is also
something that can be seen from the respondents answers. A number of the
respondents think of maintainability when discussing technical debt. The
last of the four groups is in line with the explanation by (Kruchten et al., 2012)
that technical debt can due to change in technology. This change results
in a technology gap that is not due to a wrong choice but rather change in
context.

Security debt and technical debt
The description of security debt in group 6 in table 4.1 were divided in three:

• not deliberate security debt
• deliberate security debt
• security debt due to change in technology

This corresponds to three of the four groups created for describing technical
debt (table 4.5) as presented above. Just like for technical debt, the delib-
erate and not deliberate security debt is in line with the factors deliberate
and inadvertent described by Fowler, 2009. Additionally, the technical gap
is due to the evolution of context, meaning that it is not due to a wrong choice
(Kruchten et al., 2012). This can indicate a possible relation between security
debt and technical debt.

Furthermore, technical debt can also be understood as "a way to characterize
the gap between the current state of a software system and some hypothesized
“ideal” state in which the system is optimally successful in a particular envi-
ronment" (Brown et al., 2010, p. 48). The findings in this thesis agree that
this kind of explanation can also be applied when it comes to security debt.
Security debt has been described by group 7 from table 4.1 to be related to

107

Discussion

a system’s security level (its security goal). According to one respondent, the
gap between the "ideal" security level and the current security level is the
existing security debt.

Figures 4.3a and 4.3b are modifications of the already presented figures 4.1a
and 4.1b, and shows two possible relations between security debt, security
vulnerabilities, and technical debt. Siavvas et al., 2019 described that they
found a correlation between the vulnerability densities and the technical debt.
This relationship can be observed - an increase in technical debt can indicate
an increase in vulnerabilities and the other way around (Siavvas et al., 2019).
This relationship can be seen in both figures 4.3a and 4.3b. Figure 4.3a shows
an overlap between security vulnerabilities and technical debt in the same
section where security debt overlaps with security vulnerabilities. Addition-
ally, it is shown that technical debt completely surrounds security debt, just
like in figure 4.3b. As explained earlier, the key difference between figures
4.3a and 4.3b is that in figure 4.3b, technical debt is the superset, security
debt is a subset of technical debt, and security vulnerabilities are a subset of
security debt.

Because of the similarities in the respondents’ descriptions of security debt
and technical debt, it can be interpreted that security debt can be seen as a
type of technical debt and will therefore completely surround security debt as
shown in both figures 4.3a and 4.3b. Considering that figure 4.3a is an exten-
sion of figure 4.1a it if fair to argue that figure 4.3a best shows the relation
between security debt, security vulnerabilities, and technical debt.

5.6.2 Security debt and architectural technical debt

What is the relation between security and architecture? It is described that
"security is best if it is designed and built into the foundation of anything that
is build and not added as an afterthought" (Maymi & Harris, 2019, p. 252).
The effect that architecture and security have on each other is described by
the respondents from "somewhat" to "a lot". Almost half of the respondents
mentioned having architectural issues that impacted the security, e.g. moving
secrets from one location to another to increase the security/protection. This
might indicate a change in the context where different security measures were
needed. A respondent pointed out that the needed security is context depen-

108

Discussion

dent. Maymi and Harris, 2019 described both that a system’s needed security
is dependent on the environment in which it exists and that security con-
trols should be implemented accordingly. This brings us over to the relation
between security debt and architectural technical debt.

"Security breaches are a recurrent symptom of ATD. Due to the complexity
caused by the ATD present in a software-intensive system, inadvertent secu-
rity flaws can be introduced, leading to the unintentional disclosure of private
information to unauthorized parties" (Verdecchia et al., 2021, p. 14). Most
of the respondents that had a clear answer on the relationship between ar-
chitectural technical debt and security debt said the same thing, that archi-
tectural technical debt could lead to security debt. Respondent 17 ex-
plained that a systems attack surface will increase as the architecture gets
older and it is not properly maintained. Another cause/factor mentioned as a
source of architectural technical debt accumulation is the evolution of tech-
nology (Martini et al., 2015). Over time, technology becomes more and more
obsolete. Using legacy/old components, third-party components, etc. that re-
quire the use of old technology is sub-optimal and affects the system. Having
these legacy/old components might increase the attack surface and increase a
system’s vulnerability. Having an increased attack surface is not optimal as
this surface is modelled and analyzed for the purpose of narrowing the ways
a system can be attacked (Maymi & Harris, 2019, p. 1093). From this we can
see evidence that there is a relation between architectural technical debt and
security debt.

Respondent 24 said that if a system is not secure then that indicates a bad
architecture as one of the quality criteria of good architecture is security. Mar-
tini et al., 2015 explained that architectural technical debt "is regarded as im-
plemented solutions that are sub-optimal with respect to the quality attributes
(internal or external) defined in the desired architecture intended to meet the
companies’ business goals" (Martini et al., 2015, p. 237). If security is one
of the quality attributes that are important to the companies’ business goals
then not having the needed security (presence of security debt) can contribute
to the architectural technical debt. This points to there being a relation be-
tween architectural technical debt and security debt.

It can be interpreted from the explanations above that by combining the the-
sis security debt definition and Martini et al., 2015 there is initial evidence

109

Discussion

that architectural technical debt can cause security debt and vice versa. This
relation between the two types of debt require then more awareness during
development. It follows from this discussion that the lack of security knowl-
edge cause security debt and that the lack of security knowledge will therefore
effect the accumulation of architectural technical debt.

5.6.3 Differences in the technical debt process

Kruchten et al., 2012 found that architectural technical debt is one of the most
difficult types of technical debts to identify. It is fair to argue that the techni-
cal debt type in question may influence the way technical debt is managed.

Tools is one of the differences in how the types technical debt are handled.
The majority of the tools that are used for addressing technical debt are re-
lated to design, code, and/or architectural artifacts (Saraiva et al., 2021). This
means that tools for other kinds of technical debt such as documentation debt
do not have as many tools. Alfayez et al., 2020 on the other hand looked
at approaches for technical debt management and found that ≈ 71% of the
identified approaches for technical debt prioritization works for specific types
of technical debt while the rest can be used for any type of technical debt. In
addition found Freire et al., 2020 that different preventative approaches also
can be used for different types of technical debt. The preventative action "us-
ing the most appropriate technology version" is something that can be done
for preventing architectural technical debt, while code standardization is for
preventing code debt, and documentation debt has the preventative action
called "well-defined documentation".

11 respondents pointed out that there should be a difference in how they
handle for example architectural technical debt and code debt. Having ap-
proaches for specific types of technical debt might be helpful, e.g.
more security related approaches for the management of security debt. At
the same time, having approaches such as code review (used for making sure
that the software is of good quality (Maymi & Harris, 2019, p. 1084)) can con-
tribute to managing security debt as well as other types of technical debt, e.g.
code debt.

It seems from the discussion presented above that utilizing both specific ap-

110

Discussion

proaches for specific types of debt and approaches that can used for a number
of technical debts might be helpful, in particular to manage the individual
needs of the types of debt.

This section discussed the relation between security debt and technical debt.
To summarize, the main take away points are:

• Evidence that there is a relation between security debt, security vul-
nerabilities, and technical debt have been found. This is visualized by
figures 4.3a and 4.3b.

• Initial evidence have been found that shows that architectural technical
debt can cause security debt and vice versa.

• Different approaches can be used for the management of different types
of technical debt. Therefore, having security specific approaches for the
management of security debt might be helpful.

5.7 Contributions

The contributions of this thesis is the following:

• An initial definition of security debt have been provided from software
practitioner’s points of view.

• The relation between security debt and security vulnerabilities have
been discussed and two models have been provided.

• A concrete instance of a security debt process have been presented.

• This case study gives evidence to support the fact that security debt can
be considered as a type of technical debt.

• Evidence have been found that supports the need for security knowledge
in several of the activities of the security debt management and that a
lack of security knowledge can be a cause for the accumulation of secu-
rity debt.

• An initial look at the relation between security debt and architectural
technical debt is provided.

111

Discussion

Having a common understanding of security debt, just like for other phenom-
ena (e.g. technical debt), makes it easier to communicate. Trying to commu-
nicate when people have different definitions in mind makes it hard to be "on
the same page". A clear understanding of the relation between security debt
and security vulnerabilities can make it easier to understand them and man-
age them accordingly. This brings us to the security debt process. In order
to handle the security debt, a process should be employed in order to make
the security debt visible (it is documented, it exists in the backlog, it is prior-
itized together with the other work, etc.). There are several types of technical
debt (Li et al., 2015), having a common understanding of the different types of
technical debt, including security debt, can provide for better communication
(as technical debt is used as a communication device (Kruchten et al., 2012)).
Evidence that lack of knowledge can cause or be a factor in the accumulation
of security debt have been found. This can provide a deeper understanding of
the value/need for knowledge in different parts of the development. An initial
look at the relation between security debt and architectural technical debt is
provided. The reason for this is that the complexity in a system caused by ar-
chitectural technical debt can result unintentional security flaws (Verdecchia
et al., 2021).

5.7.1 Recommendations

This thesis provides a starting point for further discussion about security
debt. Underneath is the recommendations for practice and research pre-
sented.

Recommendations for practice
Based on the contributions I recommend that

• software practitioners in companies should have a common understand-
ing of what security debt is so that there is no misunderstandings about
what it is and the implications security debt create.

• companies take inspiration from the findings presented in this thesis
regarding the management of security debt. They can create their own
security debt process or take inspiration from the one presented (find
what fits their company).

112

Discussion

• companies have a focus on how architectural technical debt and security
debt is connected in order to reduce/avoid potential issues.

• software practitioners have an open channel of communication for shar-
ing security knowledge and experience, especially for security knowl-
edge.

Recommendations for research

• The results in this thesis have provided a security debt definition that
can be further studied for finding a formal security debt definition.

• I presented a concrete instance of a security debt process. Further re-
search should be done for finding more relevant activities and approaches
for the management of security debt.

• Further research on the management of security debt should be con-
duced for finding if the same management process can be applied in
other companies.

• Evidence that points to there being a connection between security debt
and architectural technical debt have been presented. Additional re-
search on this connection would be beneficial in order to find out their
specific relationship.

• It would be interesting to find the relation that security debt has to other
types of technical debt and not just architectural technical debt.

• The impact penalty points have on the repayment of security debt should
be studied for finding if these points positively or negatively impact the
repayment of security debt.

5.8 Validity

"The validity of a study denotes the trustworthiness of the results, to what ex-
tent the results are true and not biased by the researchers’ subjective point of
view" (Runeson & Höst, 2009, p. 153). The four aspects of validity mentioned
for case study research are construct validity, internal validity, external va-
lidity, and reliability (Runeson & Höst, 2009, pp. 153–154).

113

Discussion

Construct validity
This aspect of validity reflect to what extent the operational measures that are
studied really represent what the researcher have in mind and what is inves-
tigated according to the research questions" (Runeson & Höst, 2009, p. 153).

During the interviews it was important that me, as the interviewer, and the
interviewees understood the concepts we were referring to as the same. Be-
fore getting into the main part of the interview I asked the respondents how
they would describe technical debt. This gave me the ability to understand
how they thought of it and we could continue the interview with the same un-
derstanding of technical debt in mind. I also asked the respondents how they
would describe security debt, as that is one of the main parts of the thesis.

A threat to the construct validity was when I asked about architectural tech-
nical debt. I made an assumption that we understood it the same way. Instead
I should have asked how the respondents thought of architectural technical
debt, just like I did for technical debt and security debt. Thus, I updated the
research questions to take this into account.

Internal validity
"This aspect of validity is of concern when causal relations are examined"
(Runeson & Höst, 2009, p. 154).

The aim of this study is to provide a deeper understanding of security debt,
how it is defined, how it is managed, and its relation to technical debt. The
semi-structured interviews opened up for discussion between the respondents
and me where it was possible to reach some sort of a common understanding
of the topics. I also saw the need to ask more specific follow-up questions on
certain topics to mitigate the threat to the internal validity.

External validity
"This aspect of validity is concerned with to what extent it is possible to gener-
alize the findings, and to what extent the findings are of interest to other people
outside the investigated case" (Runeson & Höst, 2009, p. 154). Runeson and
Höst, 2009, p. 154 further describes that the intention for case studies "is to
enable analytical generalization where the results are extended to cases which
have common characteristics and hence for which the findings are relevant, i.e.
defining a theory".

114

Discussion

The security debt phenomenon has been studied from one company’s em-
ployees point of view. The findings in this thesis can be understood and ap-
plied/used by companies in similar contexts to the studied company (but not
other contexts). However, the threat to the external validity is that the dif-
ference in context makes it hard for companies in none-similar contexts to
apply/use the findings in this study. This is one of the draw-backs of doing
qualitative case study research, I only have one point of view, i.e. from one
company. On the other hand, this study have provided deep insights into this
particular case. Even though the potential of external validity is not high, the
company in question should find the findings relevant. However the potential
for analytical generalization is higher. Particularly related to the proposed se-
curity debt definition and the link between security debt and technical debt.
While, the security debt management process is likely to be more context de-
pendent.

Reliability
"This aspect is concerned with to what extent the data and the analysis are
dependent on the specific researchers" (Runeson & Höst, 2009, p. 154).

A general challenge to the reliability of qualitative research is the researchers
influence on the respondents and on the process. It was therefore important
for me to have regular discussions concerning my role as a interviewer and
how I could avoid influencing the interview setting. Especially concerning my
bias and possible influence on the respondents.

Additionally, I tried not to use leading questions during the interviews. But
during the transcriptions, I discovered some leading questions. Thus, I had
to go back and ask follow-up questions. The process of sending emails to the
respondents asking for additional information on questions that were already
asked during the interviews increased the reliability of this process. This is
due to the fact that these answers were not to the same degree affected by
possible bias.

115

Discussion

5.9 Limitations

The limitations in this study are as follows:

Time constraint
The interviews I conducted ranged from 45 minutes to 75 minutes. Two things
I chose not to dive into due to the time constraint were the use of penalty
points and the size of the development teams. Both these factors might have
an effect on what work will be prioritized and how much work the teams will
be able to finish during each iteration.

Knowledge of architectural technical debt
During the interviews I found that not all respondents seemed to be familiar
with architectural technical debt as some of the respondents only responded
in the context of architecture.

Data collection method
Due to the pandemic, all interviews were conducted via Zoom. If I had con-
ducted some of the interviews physically I might had gotten additional im-
pressions from the physical surroundings.

Types of technical debt
A number of technical debt types were mentioned in the background but not
all were relevant to this study and were therefore not included in the discus-
sion.

116

Chapter 6

Conclusion

In this thesis, a case study was performed for answering the following re-
search problem: What is security debt, how is it managed in practice,
and what is its relation to technical debt? To answer the research prob-
lem, three main research questions and three sub-research questions were
created.

RQ1 How is security debt defined?
This study has proposed the following security debt definition: security debt
is a set of design or implementation solutions that hinder or has the
potential to hinder the achievement of a system’s optimal/desired/
required security goal. This definition points to security debt being sub-
optimal solutions where better solutions exist and the system’s security can
therefore can be improved. As long as solution to security vulnerabilities exist
they are considered as security debt. Thus, these security issues contribute
to the hindering or the potential hindering of the achievement of a system’s
optimal/desired/required security goal.

RQ2 How is security debt managed?
Following the 8 technical debt management activities prevention, introduc-
tion, documentation, analysis, monitoring, communication, planning, and re-
payment provide a structured way of managing also security debt. Addition-
ally, the approaches executed during the security debt management process
should have a security perspective. The attention is then on the security as-
pects of the debt. For prioritizing security debt it was observed that the gov-
erning factors are communication, the use of labels, and the use of calculated

117

Conclusion

severity/priority scores. Adding these severity/priority scores to the develop-
ment work (e.g. feature implementation and bug fixing) can assist the prior-
itization as they then have comparable values. Lack of security knowledge
have been found to negatively affect several of the security debt management
activities and may thereby contribute to the accumulation of security debt.

RQ3 What is the relation between security debt and technical debt?
Evidence to support the fact that security debt is a part of the technical debt
landscape have been presented. Consequently, the security vulnerabilities
that are considered as security debt are then also technical debt. A relation
between security debt and architectural technical debt have been observed.
Initial evidence shows that architectural technical debt can cause security
debt and vice versa. It follows that a lack of security knowledge can then also
affect the accumulation of architectural technical debt. There are approaches
to the technical debt management that can be used for multiple types of tech-
nical debt, while other approaches are specific to one type of technical debt.
Therefore, having security specific approaches for the management of security
debt might be helpful.

The three main research questions answers the research problem from three
perspectives: the definition of security debt, how it can be managed, and how
it relates to technical debt. Our society, more specifically interconnected crit-
ical infrastructures and functions, is to an increasingly degree dependent on
the security of our software systems. Thus, the value of knowledge in the
management of security debt cannot be overestimated.

118

Bibliography

Akbarinasaji, S., Bener, A. B., & Erdem, A. (2016). Measuring the principal of
defect debt. Proceedings of the 5th International Workshop on Realizing
Artificial Intelligence Synergies in Software Engineering, 1–7.

Alfayez, R., Alwehaibi, W., Winn, R., Venson, E., & Boehm, B. (2020). A sys-
tematic literature review of technical debt prioritization. Proceedings
of the 3rd International Conference on Technical Debt, 1–10.

Alves, N. S., Mendes, T. S., de Mendonça, M. G., Spınola, R. O., Shull, F., &
Seaman, C. (2016). Identification and management of technical debt: A
systematic mapping study. Information and Software Technology, 70,
100–121.

Ampatzoglou, A., Ampatzoglou, A., Chatzigeorgiou, A., & Avgeriou, P. (2015).
The financial aspect of managing technical debt: A systematic litera-
ture review. Information and Software Technology, 64, 52–73.

Ardi, S., Byers, D., Meland, P. H., Tondel, I. A., & Shahmehri, N. (2007). How
can the developer benefit from security modeling? The Second Interna-
tional Conference on Availability, Reliability and Security (ARES’07),
1017–1025.

Assal, H., & Chiasson, S. (2018). Security in the software development life-
cycle. Fourteenth symposium on usable privacy and security (SOUPS
2018), 281–296.

Aven, T., & Renn, O. (2009). On risk defined as an event where the outcome is
uncertain. Journal of risk research, 12(1), 1–11.

Avgeriou, P., Kruchten, P., Ozkaya, I., & Seaman, C. (2016). Managing Techni-
cal Debt in Software Engineering (Dagstuhl Seminar 16162) (P. Avge-
riou, P. Kruchten, I. Ozkaya, & C. Seaman, Eds.). Dagstuhl Reports,
6(4), 110–138. https://doi.org/10.4230/DagRep.6.4.110
Keywords: coding tools and techniques, design tools and techniques,
management, metrics, software engineering

119

https://doi.org/10.4230/DagRep.6.4.110

BIBLIOGRAPHY

Barnum, S., & McGraw, G. (2005). Knowledge for software security. IEEE
Security & Privacy, 3(2), 74–78.

Besker, T., Martini, A., & Bosch, J. (2019). Technical debt triage in backlog
management. 2019 IEEE/ACM International Conference on Technical
Debt (TechDebt), 13–22.

Brown, N., Cai, Y., Guo, Y., Kazman, R., Kim, M., Kruchten, P., Lim, E., Mac-
Cormack, A., Nord, R., Ozkaya, I., et al. (2010). Managing technical
debt in software-reliant systems. Proceedings of the FSE/SDP work-
shop on Future of software engineering research, 47–52.

Buzan, B., Wæver, O., Wæver, O., De Wilde, J., et al. (1998). Security: A new
framework for analysis. Lynne Rienner Publishers.

Codabux, Z., & Williams, B. (2013). Managing technical debt: An industrial
case study. 2013 4th International Workshop on Managing Technical
Debt (MTD), 8–15.

Creswell, J. W., & Creswell, J. D. (2018). Research design: Qualitative, quan-
titative, and mixed methods approaches (5th ed.). SAGE Publications.

Cruzes, D. S., & Dyba, T. (2011). Recommended steps for thematic synthesis
in software engineering. 2011 international symposium on empirical
software engineering and measurement, 275–284.

Cunningham, W. (1992). The wycash portfolio management system. ACM SIG-
PLAN OOPS Messenger, 4(2), 29–30.

Dempsey, K., Chawla, N. S., Johnson, A., Johnston, R., Jones, A. C., Orebaugh,
A., Scholl, M., & Stine, K. (2011). Information security continuous mon-
itoring (iscm) for federal information systems and organizations. https:
//doi.org/10.6028/NIST.SP.800-137

Eisenberg, R. J. (2012). A threshold based approach to technical debt. ACM
SIGSOFT Software Engineering Notes, 37(2), 1–6.

Ernst, N. A., Bellomo, S., Ozkaya, I., Nord, R. L., & Gorton, I. (2015). Measure
it? manage it? ignore it? software practitioners and technical debt. Pro-
ceedings of the 2015 10th Joint Meeting on Foundations of Software
Engineering, 50–60.

Fernández-Sánchez, C., Garbajosa, J., Yagüe, A., & Perez, J. (2017). Identifi-
cation and analysis of the elements required to manage technical debt
by means of a systematic mapping study. Journal of Systems and Soft-
ware, 124, 22–38.

Fowler, M. (2009). Technical debt quadrant. https://martinfowler.com/bliki/
TechnicalDebtQuadrant.html

120

https://doi.org/10.6028/NIST.SP.800-137
https://doi.org/10.6028/NIST.SP.800-137
https://martinfowler.com/bliki/TechnicalDebtQuadrant.html
https://martinfowler.com/bliki/TechnicalDebtQuadrant.html

BIBLIOGRAPHY

Freire, S., Rios, N., Mendonça, M., Falessi, D., Seaman, C., Izurieta, C., &
Spınola, R. O. (2020). Actions and impediments for technical debt pre-
vention: Results from a global family of industrial surveys. Proceed-
ings of the 35th Annual ACM Symposium on Applied Computing, 1548–
1555.

Greenwood, D. J., & Levin, M. (2006). Introduction to action research: Social
research for social change. SAGE publications.

Grenness, T. (1997). Innføring i vitenskapsteori og metode. Tano Aschehoug.
Guo, Y., & Seaman, C. (2011). A portfolio approach to technical debt manage-

ment. Proceedings of the 2nd Workshop on Managing Technical Debt,
31–34.

Guo, Y., Spınola, R. O., & Seaman, C. (2016). Exploring the costs of techni-
cal debt management–a case study. Empirical Software Engineering,
21(1), 159–182.

Hanssen, G. K., Brataas, G., & Martini, A. (2019). Identifying scalability debt
in open systems. 2019 IEEE/ACM International Conference on Techni-
cal Debt (TechDebt), 48–52.

ISO/IEC. (2011). https://www.iso.org/obp/ui/#iso:std:iso-iec:25010:ed-1:v1:en
Izurieta, C., Kimball, K., Rice, D., & Valentien, T. (2018). A position study to

investigate technical debt associated with security weaknesses. 2018
IEEE/ACM International Conference on Technical Debt (TechDebt), 138–
142.

Izurieta, C., & Prouty, M. (2019). Leveraging secdevops to tackle the techni-
cal debt associated with cybersecurity attack tactics. 2019 IEEE/ACM
International Conference on Technical Debt (TechDebt), 33–37.

Kruchten, P., Nord, R. L., & Ozkaya, I. (2012). Technical debt: From metaphor
to theory and practice. Ieee software, 29(6), 18–21.

Kruchten, P., Nord, R. L., Ozkaya, I., & Falessi, D. (2013). Technical debt: To-
wards a crisper definition report on the 4th international workshop on
managing technical debt. ACM SIGSOFT Software Engineering Notes,
38(5), 51–54.

Laszka, A., Zhao, M., Malbari, A., & Grossklags, J. (2018). The rules of engage-
ment for bug bounty programs. International Conference on Financial
Cryptography and Data Security, 138–159.

Lenarduzzi, V., Besker, T., Taibi, D., Martini, A., & Fontana, F. A. (2021). A
systematic literature review on technical debt prioritization: Strate-

121

https://www.iso.org/obp/ui/#iso:std:iso-iec:25010:ed-1:v1:en

BIBLIOGRAPHY

gies, processes, factors, and tools. Journal of Systems and Software,
171, 110827.

Li, Z., Avgeriou, P., & Liang, P. (2015). A systematic mapping study on tech-
nical debt and its management. Journal of Systems and Software, 101,
193–220.

Lim, E., Taksande, N., & Seaman, C. (2012). A balancing act: What software
practitioners have to say about technical debt. IEEE software, 29(6),
22–27.

Lindgren, M., Wall, A., Land, R., & Norström, C. (2008). A method for balanc-
ing short-and long-term investments: Quality vs. features. 2008 34th
Euromicro Conference Software Engineering and Advanced Applica-
tions, 175–182.

Martinez, J., Quintano, N., Ruiz, A., Santamaria, I., de Soria, I. M., & Arias,
J. (2021). Security debt: Characteristics, product life-cycle integration
and items. 2021 IEEE/ACM International Conference on Technical Debt
(TechDebt), 1–5.

Martini, A., & Bosch, J. (2016). An empirically developed method to aid de-
cisions on architectural technical debt refactoring: Anacondebt. 2016
IEEE/ACM 38th International Conference on Software Engineering Com-
panion (ICSE-C), 31–40.

Martini, A., & Bosch, J. (2017). The magnificent seven: Towards a systematic
estimation of technical debt interest. Proceedings of the XP2017 Scien-
tific Workshops, 1–5.

Martini, A., Bosch, J., & Chaudron, M. (2015). Investigating architectural
technical debt accumulation and refactoring over time: A multiple-case
study. Information and Software Technology, 67, 237–253.

Maymi, F., & Harris, S. (2019). Cissp all-in-one exam guide, eighth edition
(8th ed.). McGraw-Hill Education.

McGraw, G. (2004). Software security. IEEE Security & Privacy, 2(2), 80–83.
Merriam-Webster. (n.d.). Metaphor [visited on 14-05-2022]. Merriam-webster.com

dictionary. https://www.merriam-webster.com/dictionary/metaphor
Miles, M. B., & Huberman, A. M. (1994). Qualitative data analysis: An ex-

panded sourcebook. sage.
Miles, M. B., Huberman, A. M., & Saldana, J. M. (2013). Qualitative data

analysis: A methods sourcebook (3rd ed.). SAGE Publications.
Nord, R. L., Ozkaya, I., Kruchten, P., & Gonzalez-Rojas, M. (2012). In search of

a metric for managing architectural technical debt. 2012 Joint Working

122

https://www.merriam-webster.com/dictionary/metaphor

BIBLIOGRAPHY

IEEE/IFIP Conference on Software Architecture and European Confer-
ence on Software Architecture, 91–100.

Pérez, B., Castellanos, C., Correal, D., Rios, N., Freire, S., Spınola, R., Sea-
man, C., & Izurieta, C. (2021). Technical debt payment and prevention
through the lenses of software architects. Information and Software
Technology, 140, 106692.

Ribeiro, L. F., Alves, N. S. R., Neto, M. G. D. M., & Spınola, R. O. (2017). A
strategy based on multiple decision criteria to support technical debt
management. 2017 43rd Euromicro Conference on Software Engineer-
ing and Advanced Applications (SEAA), 334–341.

Rindell, K., Bernsmed, K., & Jaatun, M. G. (2019). Managing security in soft-
ware: Or: How i learned to stop worrying and manage the security tech-
nical debt. Proceedings of the 14th International Conference on Avail-
ability, Reliability and Security, 1–8.

Rindell, K., & Holvitie, J. (2019). Security risk assessment and management
as technical debt. 2019 International Conference on Cyber Security and
Protection of Digital Services (Cyber Security), 1–8.

Rios, N., de Mendonça Neto, M. G., & Spınola, R. O. (2018). A tertiary study
on technical debt: Types, management strategies, research trends, and
base information for practitioners. Information and Software Technol-
ogy, 102, 117–145.

Robson, C. (2002). Real world research: A resource for social scientists and
practitioner-researchers. Wiley-Blackwell.

Runeson, P., Host, M., Rainer, A., & Regnell, B. (2012). Case study research in
software engineering: Guidelines and examples. John Wiley & Sons.

Runeson, P., & Höst, M. (2009). Guidelines for conducting and reporting case
study research in software engineering. Empirical software engineer-
ing, 14(2), 131–164.

Saraiva, D., Neto, J. G., Kulesza, U., Freitas, G., Reboucas, R., & Coelho, R.
(2021). Technical debt tools: A systematic mapping study. Proceedings
of the 23rd International Conference on Enterprise Information Sys-
tems, 88–98.

Schreiber, A., Sonnekalb, T., & von Kurnatowski, L. (2021). Towards visual
analytics dashboards for provenance-driven static application security
testing. 2021 IEEE Symposium on Visualization for Cyber Security (VizSec),
42–46.

123

BIBLIOGRAPHY

Scott, C., & Medaugh, M. (2017). Axial coding. The international encyclopedia
of communication research methods, 10, 9781118901731.

Seaman, C., Guo, Y., Zazworka, N., Shull, F., Izurieta, C., Cai, Y., & Vetrò, A.
(2012). Using technical debt data in decision making: Potential decision
approaches. 2012 Third International Workshop on Managing Techni-
cal Debt (MTD), 45–48.

Sedano, T., Ralph, P., & Péraire, C. (2019). The product backlog. 2019 IEEE/ACM
41st International Conference on Software Engineering (ICSE), 200–
211.

Siavvas, M., Tsoukalas, D., Jankovic, M., Kehagias, D., Chatzigeorgiou, A.,
Tzovaras, D., Anicic, N., & Gelenbe, E. (2019). An empirical evaluation
of the relationship between technical debt and software security. 9th In-
ternational Conference on Information society and technology (ICIST),
2019.

Siavvas, M., Tsoukalas, D., Jankovic, M., Kehagias, D., & Tzovaras, D. (2020).
Technical debt as an indicator of software security risk: A machine
learning approach for software development enterprises. Enterprise In-
formation Systems, 1–43.

Silva, M. C. O., Valente, M. T., & Terra, R. (2016). Does technical debt lead to
the rejection of pull requests? arXiv preprint arXiv:1604.01450.

Sneed, H. M. (2014). Dealing with technical debt in agile development projects.
International Conference on Software Quality, 48–62.

Tamburri, D. A., Kruchten, P., Lago, P., & van Vliet, H. (2013). What is social
debt in software engineering? 2013 6th International Workshop on Co-
operative and Human Aspects of Software Engineering (CHASE), 93–
96.

Thomas, T. W., Tabassum, M., Chu, B., & Lipford, H. (2018). Security during
application development: An application security expert perspective.
Proceedings of the 2018 CHI Conference on Human Factors in Comput-
ing Systems, 1–12.

Tom, E., Aurum, A., & Vidgen, R. (2013). An exploration of technical debt.
Journal of Systems and Software, 86(6), 1498–1516.

Vathsavayi, S. H., & Systä, K. (2016). Technical debt management with ge-
netic algorithms. 2016 42th Euromicro Conference on Software Engi-
neering and Advanced Applications (SEAA), 50–53.

124

Appendix

Verdecchia, R., Kruchten, P., & Lago, P. (2020). Architectural technical debt: A
grounded theory. European Conference on Software Architecture, 202–
219.

Verdecchia, R., Kruchten, P., Lago, P., & Malavolta, I. (2021). Building and
evaluating a theory of architectural technical debt in software-intensive
systems. Journal of Systems and Software, 176, 110925.

Wohlin, C., Runeson, P., Höst, M., Ohlsson, M. C., Regnell, B., & Wesslén, A.
(2012). Experimentation in software engineering. Springer.

Xavier, L., Ferreira, F., Brito, R., & Valente, M. T. (2020). Beyond the code:
Mining self-admitted technical debt in issue tracker systems. Proceed-
ings of the 17th International Conference on Mining Software Reposito-
ries, 137–146.

Yli-Huumo, J., Maglyas, A., & Smolander, K. (2016). How do software devel-
opment teams manage technical debt?–an empirical study. Journal of
Systems and Software, 120, 195–218.

125

Appendix A

Interview guide

126

APPENDIX A. INTERVIEW GUIDE

127

	Abstract
	Acknowledgements
	Introduction
	Research problem
	Research questions
	Structure

	Background
	Security in software
	Vulnerabilities and risk management
	Attack surface, threat modelling, and incident management
	Security controls
	Security knowledge

	Debt as a metaphor
	Technical debt
	Security debt

	Technical debt process
	Prevention
	Identification
	Representation/Documentation
	Measurement
	Monitoring
	Communication
	Prioritization
	Repayment
	Differences in the technical debt process

	Methodology
	Company context
	Research design
	Qualitative research design and data collection method
	Research approach
	Methods for data collection
	Literature review
	Interviews

	Data analysis
	Research ethics

	Results
	Security debt definition (RQ1)
	Definition

	Difference between security debt and security vulnerabilities (RQ1.1)
	Security debt process (RQ2)
	Prevention
	Identification
	Documentation
	Analysis
	Monitoring
	Communication
	Planning
	Repayment
	Additional observations - security self-assessment

	Security debt prioritization (RQ2.1)
	Security knowledge (RQ2.2)
	Relation between security debt and technical debt (RQ3)
	Technical debt, security debt, and security vulnerabilities
	Security debt and architectural technical debt
	Technical debt processes for different types of technical debt

	Discussion
	RQ1 How is security debt defined?
	RQ1.1 What is the difference between security debt and security vulnerabilities?
	RQ2 How is security debt managed?
	Prevention
	Identification
	Documentation
	Analysis
	Monitoring
	Communication
	Prioritization
	Repayment
	Summing up of RQ2

	RQ2.1 How is security debt prioritized compared to other kinds of technical debt, feature development, bug fixing, etc.?
	RQ 2.2 What role does security knowledge play in the different activities of security debt management?
	RQ3 What is the relation between security debt and technical debt?
	Technical debt, security debt, and security vulnerabilities
	Security debt and architectural technical debt
	Differences in the technical debt process

	Contributions
	Recommendations

	Validity
	Limitations

	Conclusion
	Bibliography
	Interview guide

