
Development of an Interface for
Extending a Machine Learning

Platform

A Design Science Research Study

Oskar Lund & Jørgen Skimmeland

Thesis submitted for the degree of
Master in Informatics: Programming and system

architecture
60 credits

Institute for Informatics
Faculty of Mathematics and Natural Sciences

UNIVERSITY OF OSLO

Autumn 2023

Development of an Interface for
Extending a Machine Learning

Platform

A Design Science Research Study

Oskar Lund & Jørgen Skimmeland

© 2023 Oskar Lund & Jørgen Skimmeland

Development of an Interface for Extending a Machine Learning
Platform

http://www.duo.uio.no/

Printed: Reprosentralen, University of Oslo

http://www.duo.uio.no/

Abstract

Background

Extensibility is an important aspect of software platforms, as it allows for
integrating external tools and packages. This is particularly relevant in the
field of bioinformatics, where the analysis of large datasets often requires
the use of specialized tools. The immuneML platform, an open-source
platform for analyzing adaptive immune receptor repertoires, currently
relies on contributions to its source code via its GitHub repository.

Method

In this thesis, we follow the Design Science Research methodology,
developing an interface that enables the integration of external tools with
the immuneML platform. We conducted a literature review and designed
evaluations that followed established scientific practices. We evaluated the
interface’s design through a focus group, a semi-structured interview, a
quasi-experiment, and a survey with tasks.

Result

The results of our research show that an interface can improve the
extensibility of a machine-learning platform. We demonstrate how the
interface enables the extension of the platform without the need to work
directly with the source code. Additionally, the interface facilitates the
integration of external tools and enables the use of tools written in different
programming languages.

Conclusion

Our research contributes to the field of software engineering by presenting
an interface that increases the extensibility of the immuneML platform,
allowing for the integration of external tools. Through two evaluations, we
demonstrated the usability and effectiveness of the interface in facilitating
external tool integration. Our findings highlight the potential benefits of
using our interface in a machine-learning platform used within the field of
bioinformatics and suggestions for further work.

i

Acknowledgements

I want to express my gratitude to our supervisors, Antonio Martini
and Karthik Shivashankar, for their guidance, support, and valuable
insights throughout the thesis project. Their encouragement, expertise,
and commitment have been invaluable to completing this work. I am also
grateful to the immuneML team for their cooperation. Special thanks to
Jørgen for the good collaboration.

Finally, I want to thank my friends and family for their support and
encouragement throughout writing this thesis.

Oskar Lund

University of Oslo

May 2023

First and foremost, I would like to express my sincere gratitude to our
supervisors, Antonio Martini and Karthik Shivashankar, for their academic
guidance, encouragement, and support.

To my family I want to express my deepest gratitude to my parents,
Rita and Lars, and my sisters, Hanna and Sunniva, for their support,
encouragement, and belief in me throughout my six years of studies.
Additionally, I would like to thank all my friends for their encouragement
and motivation.

At last, I would like to thank Oskar for being such a great working partner,
making the experience of writing this thesis a good experience.

Jørgen Skimmeland

University of Oslo

May 2023

ii

Contents

1 Introduction 1
1.1 Structure . 3

2 Background 4
2.1 Context . 4

2.1.1 immuneML . 4
2.2 Software architecture . 5

2.2.1 Quality Attributes . 6
2.2.2 Interface . 7

2.3 Extensibility . 7
2.3.1 Extensibility mechanisms 7

2.4 Diversity of programming languages in Bioinformatics . . . 8
2.5 Machine learning . 9
2.6 Technologies . 9

2.6.1 Inter-Process Communication 9
2.6.2 ZeroMQ . 10
2.6.3 Software for use cases 10

3 Methodology 11
3.1 Design Science Research . 11
3.2 Process description . 11
3.3 Problem identification and motivation 13
3.4 Objectives of solution . 13
3.5 Design and development . 13
3.6 Demonstration . 13
3.7 Evaluation . 14

3.7.1 Framework for evaluation design 14
3.7.2 Selecting evaluation strategy and method 16

3.8 Communication . 17
3.9 Data collection . 17

3.9.1 Literature review . 17
3.9.2 Focus group . 18
3.9.3 Quasi-Experiment . 18
3.9.4 Survey with tasks . 21
3.9.5 Survey . 23
3.9.6 Semi-structured interview 25

iii

3.10 Data analysis . 26
3.10.1 Thematic analysis . 26
3.10.2 Descriptive analysis 27

4 Iteration 1 28
4.1 Identify problem and motivation 28
4.2 Objectives . 30
4.3 Design and development . 31

4.3.1 Import classes outside the core 31
4.3.2 Implement ML frameworks following the current

process . 32
4.3.3 ToolParser and YAML file 32
4.3.4 Design sketches . 33

4.4 Evaluation results . 35
4.4.1 Demonstration . 35
4.4.2 Prioritization of objectives 36
4.4.3 YAML file . 36
4.4.4 Design sketches . 36
4.4.5 Use cases . 37

5 Iteration 2 38
5.1 Objectives . 38
5.2 Design and development . 39

5.2.1 Process changes . 40
5.2.2 Design decisions . 41
5.2.3 Use Case 1: Absolut 46
5.2.4 Use Case 2: DeepRC 48

5.3 Evaluation results . 49
5.3.1 Data collection 1: Quasi-experiment 49
5.3.2 Data collection 2: Survey with tasks 56
5.3.3 Data collection 3: Semi-structured interview 60

6 Final artifact 62
6.1 General solution . 63

6.1.1 Changes to the platform 64
6.2 Interface package . 65

6.2.1 Tool components . 65
6.2.2 Tool table . 66
6.2.3 Interface controller . 66

6.3 Tool parser . 68
6.4 Communication . 69

6.4.1 Data types . 70
6.4.2 Messaging library - ZeroMQ 70

7 Discussion 71
7.1 RQ1: How can extending a machine learning platform be

improved through an interface? 71

iv

7.1.1 RQ1.1: How can extending a machine learning
platform be simplified through an interface? 72

7.1.2 RQ1.2: How can an interface facilitate the integration
of tools written in additional programming languages? 72

7.2 Contributions . 73
7.3 Implications . 73

7.3.1 Implications for research 73
7.3.2 Implications for practice 74

7.4 The impact of ML in shaping the artifact 74
7.5 Related work . 75
7.6 Quality of our research . 76

7.6.1 Validity . 76
7.6.2 Construct validity . 76
7.6.3 Internal validity . 77
7.6.4 External validity . 77
7.6.5 Conclusion validity . 78
7.6.6 Reliability . 78

7.7 Research guidelines . 79
7.8 Limitations . 81

7.8.1 Participants . 81
7.8.2 Analysis . 81
7.8.3 Size of quasi-experiment 81

7.9 Final thoughts . 81
7.10 Future work . 82

8 Conclusion 83

A Github repository 90

B Consent form 91

C Quasi-experiment Survey Task A 93

D Quasi-experiment Survey Task B 102

E Absolut Survey 113

F Interview guide 124

G Communication solution - notes 126

H YAML file structure 129

I Blueprints 130

v

List of Figures

3.1 Our DSR process model adapted from Brocke, Hevner and
Maedche [9] . 12

3.2 Strategy selection adapted from Venable, Pries-Heje and
Baskerville [48]. The figure shows the essential points
extracted from the framework model that we used for our
decision-making . 15

4.1 Descriptive BPMN process model for extending immuneML. 30
4.2 Importing ML methods outside into the core 31
4.3 Example of YAML specification for a tool 33
4.4 Design sketch of a solution using an interface 34
4.5 Design sketch of a solution using Docker 35

5.1 Prescriptive BPMN process model for extending immuneML 40
5.2 Prescriptive BPMN process model for using immuneML

with tools . 41
5.3 Example of YAML specification for a tool 45
5.4 Dataset from immuneML in TSV format before prepro-

cessing with Absolut . 47
5.5 Dataset from immuneML in tabular format after prepro-

cessing using Absolut . 48
5.6 Participants’ self-assessment of experience. Scale: No exper-

ience (1), beginner (2), some experience (3), intermediate (4),
advanced (5) . 50

5.7 Charts of the participants’ understanding of the tasks per-
formed. The percentage represents aggregated disagree-
ment, neutrality, and agreement. 51

5.8 Charts of the participants’ experience in adding function-
ality. The percentage represents aggregated disagreement,
neutrality, and agreement. 52

5.9 Charts of the participants’ experience in running immun-
eML with new functionality. The percentage represents ag-
gregated disagreement, neutrality, and agreement. 53

5.10 Charts of the participants’ general experience of the devel-
opment process. The percentage represents aggregated dis-
agreement, neutrality, and agreement. 53

vi

5.11 Charts of the participants’ experience of using the YAML
file. The percentage represents aggregated disagreement,
neutrality, and agreement. 54

5.12 Participants’ self-assessment of experience. Scale: No exper-
ience (1), beginner (2), some experience (3), intermediate (4),
advanced (5) . 57

5.13 Charts of the participants’ understanding of the tasks per-
formed. The percentage represents aggregated disagree-
ment, neutrality, and agreement. 57

5.14 Charts of the participants’ experience in the process of
using immuneML with a tool. The percentage represents
aggregated disagreement, neutrality, and agreement. 58

5.15 Charts of the participants’ experience of using the YAML
file. The percentage represents aggregated disagreement,
neutrality, and agreement. 59

6.1 High-level model of the general solution. 63
6.2 UML diagram showing packages and classes changed in

artifact . 64
6.3 UML diagram showing Interface package 65
6.4 UML sequence diagram of running function in tool 66
6.5 UML activity diagram showing flow of the ToolParser 68
6.6 UML sequence diagram of initializing tool and communication 69

H.1 The overall structure of the YAML specification from im-
muneML documentation [56]. 129

vii

List of Tables

3.1 Table of participants in the quasi-experiment 19
3.2 Post-task questionnaire for quasi-experiment 20
3.3 Table of participants in the survey with tasks 22
3.4 Post-task questionnaire for survey with tasks 22

5.1 Requirements for the artifact and connected quality attributes 39

G.1 Notes from the process of selecting communication solution 128

viii

Chapter 1

Introduction

Extensibility is an essential aspect of software development, allowing soft-
ware to adapt to constantly changing needs and allowing new technologies
to be adapted. According to Henttonen et al. [18], extensibility involves
extending software with new components and features without comprom-
ising functionality or requirements. This property is essential for enabling
software evolution and significant software reuse [57] and is considered a
key quality of software development, especially in open-source software
[18].

Extending software platforms can bring challenges, especially in cases
where developers must work directly with source code to make contri-
butions. This approach can limit the number of developers that are will-
ing and able to contribute to such a platform. In the case of immuneML,
a machine-learning platform used in bioinformatics, the current state of
extensibility requires developers to add code directly into the platform’s
source code, making the process challenging. This thesis addresses this
problem by proposing a novel approach to improving the extensibility of
immuneML. This is done by developing an interface that enables tools to
be developed and run outside of the immuneML’s software core with the
aim of keeping the process simple to reduce the barrier for developers to
extend the platform with new tools. This formulates our overall research
question:

RQ1: How can extending a machine learning platform be improved through
an interface?

Improvement is an abstract concept. While creating a new way of extend-
ing immuneML itself by introducing an interface can bring improvements,
this alone does not specify what this improvement is. Therefore, we in-
troduce the concept of simplicity. Following a more technical description
in the context of software development, simplicity can be defined as “The
degree to which a system component has a design and implementation that is
straightforward and easy to understand” [21]. Applying this definition to the

1

interface, which acts as a mediator between immuneML and external tools,
examining its simplicity can provide insights into whether the interface has
improved the platform’s extensibility. Consequently, we pose a new sub-
research question:

RQ1.1: How can extending a machine learning platform be simplified
through an interface?

The field of bioinformatics includes numerous tools written in various
programming languages. Currently, immuneML is restricted to utilizing
only Python code for extending its platform, with no support for other
programming languages. Although the addition of an interface enabling
external tools to operate outside the platform’s software core is a step in
expanding the platform’s extensibility, limitations persist. Therefore, as
another improvement area of extensibility, our study aims to enable the
use of tools in other programming languages to overcome this limitation.
This brings us to the last research question:

RQ1.2: How can an interface facilitate the integration of tools written in
additional programming languages?

Our study follows the Design Science Research methodology, a problem-
solving paradigm to enhance design knowledge by creating innovative ar-
tifacts [9]. In this study, an artifact was designed and developed to improve
the extensibility of the immuneML platform. The developed artifact encap-
sulates the complexity of immuneML, enabling developers to add external
code and extend the platform’s functionality. Furthermore, the artifact in-
troduces a previously nonexistent functionality where developers can ex-
tend immuneML with tools written in other programming languages, en-
hancing the platform’s interoperability.

2

1.1 Structure

Chapter 2: Background

In the background chapter, we introduce the concept of software extens-
ibility and integration. We give a context into the platform of immuneML
and present relevant research.

Chapter 3: Methodology

In the methodology chapter, we present the research methodology design
science research. We give an overview of the different research strategies
and methods used.

Chapter 4: Iteration 1

We start this chapter by introducing the identification and motivation for
the project. Following this, we present the work done for each activity in
the first iteration.

Chapter 5: Iteration 2

This chapter presents the work done for each activity belonging to the
second iteration, resulting in the final artifact.

Chapter 6: Final Artifact

In this chapter, we present the final artifact. The general solution,
architecture, and functionality are explained in detail.

Chapter 7: Discussion

The discussion chapter offers reflections on the research and our findings.
We discuss the research’s contributions, limitations, research quality, prac-
tical and theoretical implications, and suggestions for further work.

Chapter 8: Conclusion

In our final chapter, we conclude our work and present recommendations
for future research.

3

Chapter 2

Background

In this chapter, we provide an overview of the relevant concepts for
our thesis, to give the readers a contextual foundation for understanding
our project. We first introduce the immuneML platform and provide an
overall context of our project. Next, we present the concept of software
architecture and extensibility, which underpins the development of our
project. We briefly introduce the diversity of programming languages
in bioinformatics. Finally, we briefly introduce machine learning, the
technologies used in the thesis, and the software used for our use
cases.

2.1 Context

2.1.1 immuneML

In this section, we provide context for immuneML, an open-source
platform for research on the immune system in bioinformatics [34]. The
platform is specifically designed for analyzing adaptive immune receptor
repertoires (AIIR) using machine learning (ML).

The platform implements all steps of the AIRR ML process, from prepro-
cessing to model training and interpretation [34]. It is designed to be user-
friendly and accessible to researchers who may not have knowledge in pro-
gramming or ML. The platform can be used locally, using a command-line
interface, and online, through a web interface. In this project, we focus on
running the platform locally on a computer, where the user defines which
analysis should be performed by a specification file, YAML. The structure
of the YAML file can be seen in Appendix H.

Briefly listed, the immuneML platform can be used for [51]:

• training ML models to predict diseases and antigen bindings

• exploratory analysis of datasets

4

• stimulating immune events into synthetic or experimental repertoire
datasets

• applying trained ML models to datasets that has unknown class
labels

Extensibility

immuneML’s extensibility is a key feature that enables users to adapt
the platform to their research needs [34]. The platform’s source code is
available on GitHub, and the platform developers encourage contributions
from the community. immuneML has a modular architecture that can be
extended through glass-box extensibility mechanisms, defined in Section
2.3.1. These mechanisms allow users to implement new functionalities,
such as preprocessing, encodings, and ML methods, by using abstract
classes. Abstract classes enable users to extend immuneML’s functionalities
while ensuring that the new code integrates with the existing framework.
However, this solution faces certain challenges: Contributors must work
directly with the source code to extend it, and the size of the platform
increases with each contribution.

Conceptualizing immuneML as a Platform

As Reuver, Sørensen and Basole [38] states, digital platforms are a chal-
lenging research object due to their distributed nature and intertwinement
with technologies, markets, and institutions. The definition of a platform
depends on the perspective of the different fields, highlighting the import-
ance of specifying the definition for the context.

When referring to immuneML as a platform in this thesis, we follow the
description by Ghazawneh and Henfridsson [15]; a digital platform is an
extensible codebase of a software-based system that provides shared core
functionality for the different modules that interoperate with it. These
modules communicate with each other through interfaces provided by
the platform. We follow this description based on immuneML being
an open-source codebase available on GitHub that allows for external
contributions.

2.2 Software architecture

In this section, we introduce software architecture, quality attributes, and
define the concept of an interface.

The software architecture of a system can be defined as “the set of structures
needed to reason about the system. These structures comprise software elements,
relations among them, and properties of both” [4]. The architecture is an
abstraction of the system, and only the structures that support reasoning
about the system and its properties should be described [4].

5

The software architecture should be abstract to a level where non-technical
stakeholders can understand it to a necessary extent and, at the same
time, maintain an abstraction that can be refined into a sufficient level
of technical specification that can be used to guide implementation,
integration, testing, and deployment [4]. The architecture should, in
other words, provide a common language between the technical and non-
technical stakeholders.

2.2.1 Quality Attributes

Bass, Clements and Kazman [4] defines a quality attribute as "a measurable
or testable property of a system that is used to indicate how well the system satisfies
the needs of its stakeholders beyond the basic function of the system." There are
several quality attributes. However, we chose three that we found most
fit to focus on for the design and development of the artifact: usability,
maintainability, and interoperability.

Usability

Usability refers to how easy it is for a user to accomplish a desired task
and what kind of user support the system provides [4]. It comprises areas
such as using a system efficiently, learning system features, minimizing the
impact of user errors, and increasing confidence and satisfaction.

The reason why we chose usability as a quality attribute is that we wanted
to make an interface simple to use, facilitating a simplified process of
extending immuneML.

Maintainability

Maintainability can bed defined as "The ease with which a software system
or component can be modified to correct faults, improve performance or other
attributes, or adapt to a changed environment" [21].

Maintainability was focused on making sure the interface would be easy to
modify and that it could accommodate future changes in the immuneML
platform.

Interoperability

Interoperability refers to the degree to which systems can usefully ex-
change meaningful information. [5] For the information to be meaningful
for the systems, they must have the ability to exchange the data (syntactic
interoperability) and also be able to interpret the data correctly (semantic
interoperability) [5].

The artifact’s importance lies in its ability to facilitate communication
between immuneML and external tools. Thus, we looked at interoperabil-
ity as one of the key attributes in the design and development.

6

2.2.2 Interface

Bass, Clements and Kazman [4] defines an interface as "... boundary across
which elements meet and interact, communicate, and coordinate." The interface
for a software element controls which internal functionality and properties
are available for the outside.

Interfaces are responsible for establishing a contractual specification,
allowing elements to collaborate and exchange information [4]. One of
the motivations for creating and using interfaces is how they encapsulate
software [4]. The encapsulation makes software free to evolve without
impacting the elements that use the interface. In other words, only
the changes to the interface impact these elements and not the software
itself.

2.3 Extensibility

Extensibility refers to extending software with new components and
features without losing functionality or qualities specified as requirements
[18]. The requirement for a software/system to be considered extensible
is that it can adapt to possible unanticipated changes in the software
specification [57]. Extensibility boosts the reuse of software significantly
and is an essential property for enabling the evolution of software
[57].

Henttonen et al. [18] writes that some of the most important qualities of
software development are integrability and extensibility. In open-source
software, the importance of integrability and extensibility is paramount.
By integrability, we refer to an ability to make components of a system
separately developed to work correctly together [18].

2.3.1 Extensibility mechanisms

Software extensibility can be explained in different forms. Zenger [57]
proposes a classification of extensibility mechanisms based on what
artifacts are changed and in what way these artifacts are changed.
These are broadly separated into white-box, gray-box, and black-box
extensibility.

White-Box Extensibility refers to what ways software systems can be
extended by directly modifying or adding to the source code [57]. This
extensibility mechanism is further divided into open-box and glass-box
extensibility.

Open-box extensibility refers to extensible systems where changes
are inserted directly into the source code [57]. Prerequisites are that
the source code must be available; the process of changing the source
code is considered an error-prone and tedious activity and does not
preserve backward compatibility.

7

Glass-box extensibility, on the other hand, refers to how software
systems with source code available can be extended without directly
modifying it [57]. The developers can view the source code, but to
extend it, they have to separate their code to not affect the original
system. In projects using object-oriented programming languages,
like Python, this can be achieved by inheriting from base classes.

Black-Box Extensibility refers to how software can be extended without
having internal details about its architecture and implementation [57]. This
enables the encapsulation of the software; if wanted, it can hide the source
code from others. Black-box extensibility is often more limited than white-
box; however, the important point is that they generally are easier to
extend because they require less knowledge of a system’s internal structure
Zenger.

Gray-Box Extensibility refers to an approach for extending software
without having to rely on the availability of the source code [57]. It is
considered a compromise between white- and black-box extensibility in the
sense that it does not depend on total exposure to the source code but, at
the same time, provides details about a system and how to extend it.

2.4 Diversity of programming languages in Bioin-
formatics

Bioinformatics is considered an interdisciplinary field involving biology
and genetics, mathematics, statistics, and computer science [10], and is in
modern biology one of the major areas of study [30]. The field addresses
data-intensive and large-scale biological problems from a computational
viewpoint.

Within the bioinformatics domain, there are thousands of applications
(software) used for anything from analyzing DNA sequences to optimizing
and predicting organism growth [11]. Similarly to the broader software
development field, software in bioinformatics is developed in a wide range
of programming languages. This is a result of programming language
design which is based on trade-offs such as convenience, strictness, and
performance [6].

In bioinformatics, the software is typically written in Java, C, C++, Python,
Perl, R, and Ruby, with Python and Perl being particularly popular [6]. As
Grimmer et al. [17] notes, there is no programming language that is best
for solving all kinds of problems. Java is an example of a general-purpose
programming language that can be used in many situations [42]. However,
it does not fit every job. When dealing with statistics, R is commonly
preferred, while in the context of speed and performance, C++ is more
appropriate.

The diversity of software written in programming languages introduces an
important discussion. Bonnal et al. [6] points out a question developers

8

have to make when faced with a functionality that is not currently in a
project but exists in a different programming language. The developers
must then ask themselves, should they rewrite the code, essentially
duplicating it, or create a bridge from one language to another, allowing
for the use of functionality without having to go through the effort of
rewriting?

While there is a wide range of programming languages, Bonnal et al. [6]
states that bioinformaticians cannot be expected to become sufficient in
every programming language, additionally, writing the same functionality
across several programming languages is inefficient.

2.5 Machine learning

Zhou [59], defines ML as "the technique that improves system performance by
learning from experience via computational methods." In computer systems, this
experience is represented by data, such as numeric tabular data or images.
The main task of machine learning is to develop learning algorithms that
build models from this data. This process is called training, and the result
of the training is a model that can be used to make predictions on new
observations.

2.6 Technologies

Throughout our DSR study, we have used technologies and software to
shape and develop the artifact. In this section, we briefly introduce these so
it will be easier to follow when reading about our design and development
of the artifact.

We also present the two programs (tools) Absolut and DeepRC, used in our
use cases to demonstrate the effectiveness of our artifact. These use cases
are introduced in Chapter 4, and presented in Chapter 5.

2.6.1 Inter-Process Communication

Interprocess communication (IPC) can be defined as a mechanism that
allows processes in an operating system to communicate with each other
[33]. Put in other words, IPC mechanisms are used for transferring data
between processes [50]. The processes can be either in the same system
or different systems. While IPC enables communication, it also involves
synchronization of the actions performed by processes and managing the
data-sharing activity [33].

There are several types of IPC mechanisms, some of them being: pipes,
Message Queues, Semaphores, Shared Memory, and Sockets [33]. In
our artifact, sockets are essential to enable communication between
immuneML (one process) and the external tool (another process). Sockets
are described as a bi-directional communication mechanism [50].

9

2.6.2 ZeroMQ

ZeroMQ is a universal messaging library [58]. The messaging library is a
concurrency framework, providing sockets that can be used to carry atomic
messages through various transport mechanisms such as inter-process,
TCP and multicast [58]. One important aspect of the library is its focus
on facilitating code that is clean, modular, and easier to scale [14]. Low-
level details of socket types, routing, and connection handling framing can
be complicated, and this is what ZeroMQ attempts to solve [16].

ZeroMQ hides complexity in applications by providing a layer of abstrac-
tion on top of the traditional socket API [16]. More technically explained, as
opposed to being stream (TCP) or datagram (UDP) oriented, the commu-
nication in ZeroMQ is message-oriented. This means that we do not have to
implement any explicit buffering or framing. As a result of ZeroMQ hand-
ling all framing and buffering, the client and server applications become
both simpler, more secure, and easier to write [16].

Besides the technical description of ZeroMQ, another important aspect of
ZeroMQ is its support for popular programming languages such as C,
C++, Java, Python, and Go. The messaging library facilitates a relatively
easy pattern for implementation no matter what language you use (that
the library supports). It also runs on most operating systems, leading to
increased accessibility.

2.6.3 Software for use cases

Absolut!

Absolut!, developed by Greifflab, is a software used for generating
unconstrained lattice antibody-antigen bindings [2]. It consists of a
database and a user interface written in the programming language C++,
enabling the custom generation of custom antibody-antigen structural
datasets that can be used for machine-learning training and testing
[1].

DeepRC

DeepRC is a machine learning method for immune repertoire classification
[53]. The method "...integrates transformer-like attention, or equivalently
modern Hopfield networks, into deep learning architectures for massive MIL."
[53] In our use case, we are using a Python project [31] that implements
the DeepRC method.

10

Chapter 3

Methodology

In the methodology chapter, we present an overview of the research
methodology Design Science Research (DSR). Firstly, we will introduce
the concept of DSR and explain the overall process we followed. For
each activity of the process, we will be giving a theoretical introduction
and explaining our approach to each one, with weight on the evaluation
activity. Furthermore, we will discuss the data collection methods we used
and explain how we conducted our data analysis, including both methods
for quantitative and qualitative analysis.

3.1 Design Science Research

Design Science Research (DSR) is a problem-solving paradigm to enhance
design knowledge by creating innovative artifacts [9]. The research method
aims to produce innovative solutions that solve real-world problems,
producing knowledge of how things can and/or should be designed,
which provides a fuller understanding and enhances human knowledge
[9]. Specifically, the desire is to improve environments by introducing new
and innovative artifacts and the process used to build them [19].

The artifacts can be represented by models, methods, constructs, and
instantiations [20]. We consider the final artifact developed in this project as
an instantiation. An instantiation artifact refers to a working system usable
in practice [25], which is a software component in our case.

3.2 Process description

There are several process models used for DSR projects. According to
Brocke, Hevner and Maedche [9], one of the most referenced models is the
DSR process model proposed by Peffers et al. [35]. By analyzing previous
research, the authors developed the DSR methodology model by building
upon the experiences of other researchers in the field [35]. They aimed to
establish a generally agreed-upon framework for research based on Design

11

Science principles. The methodology was designed using a consensus-
building approach, focusing on shared understanding rather than subtle
differences in views among researchers [35].

Figure 3.1: Our DSR process model adapted from Brocke, Hevner and
Maedche [9]

In our research, we adapted the process described by Brocke, Hevner and
Maedche [9]. Figure 3.1 depicts how the process was applied in our project,
where we performed two process iterations, as described in Chapter 4 and
Chapter 5. The figure shows five activities:

1. problem identification and motivation

2. defining the objectives for a solution

3. design and development

4. demonstration and evaluation

5. communication

The original model by Brocke, Hevner and Maedche [9] depicts demon-
stration and evaluation as two separate activities. However, these two are
tightly coupled, and these have been done simultaneously in our project.
In the model, activities 2, 3, and 4 describe one single iteration, beginning
with defining objectives and ending with demonstration and evaluation.
The original model by Brocke, Hevner and Maedche [9] also shows how to
choose whether the next iteration starts with defining objectives or design
and development. However, each of our iterations started with defining
our objectives for the iteration.

Additionally, the model describes entry points, which can be used to
identify which activity one should have as a starting point. Our project had
a problem-centered approach, which is the basis of the nominal sequence,
starting with activity 1. We followed this sequence because our idea for
the research resulted from an observation of the problem presented by the
immuneML team.

12

3.3 Problem identification and motivation

The first activity described in the process model is the problem identific-
ation and motivation activity. This activity involves defining the specific
research problem and why it is valuable to find a solution [9]. This serves
two purposes: 1. it inspires the researcher and the research audience to
seek a solution, and 2. it demonstrates the researcher’s understanding of
the problem.

To identify the problem and find motivation, we had an initial discussion
with the immuneML team early on in the project. They presented potential
areas for improvement in the immuneML platform that could be explored
from a software engineering perspective. Based on this discussion, we
conducted a literature review to explore literature related to the problem
area, which we presented in Chapter 2.

3.4 Objectives of solution

The second activity in the process model is defining the objectives for a
solution. The problem definition and knowledge of what is both possible
and feasible can be used to derive the objectives of a solution [35].

The objectives for the first iteration were established based on the
initial discussion with immuneML, as mentioned in Section 3.3, and our
understanding of the problem. In our second iteration, we refined the
objectives based on the evaluation result from the first iteration.

3.5 Design and development

In this activity, we design and develop the artifact. Essential parts of
this activity involve determining the artifact’s wanted functionality and its
architecture before creating the artifact [35].

In the first iteration, described in Chapter 4, we explored potential solutions
by creating prototypes and models. In the second iteration, described in
5, we developed the final artifact based on the models and prototypes
produced in the first iteration and feedback from the evaluation with the
immuneML developers.

3.6 Demonstration

In the demonstration activity, we demonstrate the use of the artifact for one
or more of the problems it was initially designed to solve [35]. As referred
to in Section 3.2, we merged the demonstration activity with the evaluation,
but we briefly summarize it in this section.

During the demonstration in the first iteration, we presented initial
prototypes and a proposed structure for our solution. We also showcased

13

several models illustrating what a possible solution could look like.

In the second iteration, the artifact was demonstrated through a quasi-
experiment and a survey with tasks where participants used it. Further-
more, models and a technical description of the solution were presented
during a semi-structured interview as part of the evaluation process.

3.7 Evaluation

As Venable, Pries-Heje and Baskerville [48] describes, there is no science in
Design Science Research without performing an evaluation. It is widely
recognized as a central and essential activity for conducting rigorous
Design Science Research [48].

According to Johannesson and Perjons, [25], the main goal of an evaluation
is to discover to what extent an artifact effectively solves the problem for
what it initially was designed. In addition, Johannesson and Perjons [25]
explains that the goals of performing an evaluation can also be:

• investigating the knowledge about the artifact

• comparing the artifact to other already existing artifacts

• investigating the potential side effects of using an artifact

Our goal for performing artifact evaluation was to discover how well
the developed artifact solved the problem it was designed for. In other
words, we followed the primary goal of DSR evaluation as described by
Johannesson and Perjons [25].

As an activity in the DSR process model, the evaluation involves com-
paring the objectives of an artifact to the observed results gathered from
using the artifact in the demonstration activity [35]. This way, we can
provide evidence on whether a designed artifact fulfills its intended pur-
pose [48].

3.7.1 Framework for evaluation design

Designing the evaluation activity of a DSR project can be challenging due
to a lack of guidance, with few specific guidelines available beyond sugges-
tions of evaluation methods [48]. However, Venable, Pries-Heje and Bask-
erville [48] propose a DSR evaluation framework that extends a previous
framework proposed by Pries-Heje, Baskerville and Venable [37].

The extended framework presents clear guidance on designing and per-
forming evaluations in DSR projects and aims to help identify one or sev-
eral DSR evaluation strategies [48]. Additionally, it aims to assist in choos-
ing the appropriate evaluation method(s) for one or several evaluation
strategies. To design the evaluation, we followed this framework, which
will be described in Section 3.7.2.

14

Figure 3.2: Strategy selection adapted from Venable, Pries-Heje and
Baskerville [48]. The figure shows the essential points extracted from the
framework model that we used for our decision-making

Figure 3.2 shows an adapted version of the framework, presenting a model
of four concepts used for the classification and characterization of different
evaluation strategies [25]. These are ex ante vs. ex post evaluations and
naturalistic vs. artificial evaluations.

Ex ante evaluations evaluate artifacts before they are designed, implemen-
ted, or constructed [49].

Ex post evaluation requires an artifact to be fully developed to be evaluated
[25].

Naturalistic evaluations are conducted in the real world, where the
artifact is used to solve real problems by real users [25]. Naturalistic
evaluation allows a researcher to explore how a technology works in a real
environment [47].

Artificial evaluations refer to an evaluation of an artifact in an unreal,
artificial manner that does not reflect scenarios found in the real world [47].
It is conducted in an artificial setting, such as a laboratory [25].

In addition to the four dimensions, another often-used distinction is
between formative and summative evaluations. Evaluating an artifact
formatively refers to evaluating it while it is still under design [25]. The
goal is to obtain information on how it can be improved during design
activities. In contrast, a summative evaluation is conducted once an artifact
has been designed and developed [25]. While the formative evaluation

15

results are meant to feed back into the design process, the summative
evaluation does not. Instead, the goal is to obtain a final assessment of
the artifact’s utility [25].

Selecting an evaluation strategy impacts the selection of the evaluation
method used to evaluate an artifact. By using the framework, we can
use the strategies to identify appropriate evaluation methods proposed by
Venable, Pries-Heje and Baskerville [48].

3.7.2 Selecting evaluation strategy and method

The first step of using the extended framework is understanding the DSR
evaluation context [48]. Using the model in Figure 3.2, we map the
understanding to the criteria and select the strategies based on relevance.
The second step is to use the selected strategy to identify the appropriate
method(s). We will describe the details of these methods in Section
3.9.

Iteration 1: Strategy

Firstly, we had to identify what we wanted to achieve by performing
the evaluation. In our first iteration, we did not have an implemented
artifact, meaning that our evaluation had to be classified as an ex ante
formative evaluation. Further, we had to decide between naturalistic
and artificial evaluation. To create a proper discussion with inputs from
different sides, we wanted to include both our supervisors and members
of the immuneML team. This would be considered an evaluation in a
naturalistic setting.

Iteration 1: Method

For the identified strategy, the framework presents focus groups as a
suggested method. Focus groups effectively generate new ideas and
encourage open and creative discussions among participants [25]. We
found this method to be appropriate for this iteration because we wanted
to explore a broader range of ideas.

Iteration 2: Strategy

In our second and final iteration, we developed a fully functional
artifact, and our evaluation fell under the category of ex-post summative
evaluation. To evaluate the use of the artifact, we intended to involve
developers and users in testing our solution. However, we could not
evaluate the entire development process using our artifact due to resource
constraints, which meant that the evaluation had to be conducted in an
artificial setting. Thus, this strategy would fall under the summative ex-
post artificial evaluation strategy.

We also wanted to include the members of the immuneML team, where our
idea was to present the artifact and get feedback on our solution. As this

16

includes using real stakeholders, the real problem, and the finished artifact,
this approach aligns with a naturalistic evaluation strategy.

In summary, we would follow two summative ex-post evaluation
strategies: an artificial and a naturalistic evaluation.

Iteration 2: Method

Based on the artificial evaluation strategy, we saw that performing a quasi-
experiment and a survey with tasks would be fitting methods for collecting
data. By conducting a quasi-experiment, we can assess the impact of
the final artifact on the user experience of the development process by
comparing it to the previous solution. While not specifically listed as its
own type of data collection method, we also saw it fitting to combine a
task followed by a survey to evaluate how users experienced using our
solution.

In our first iteration, we hosted a focus group to generate new ideas and
discuss the artifact’s design openly. In our summative evaluation, we
wanted more specific data on our fully implemented artifact. We, therefore,
saw it more fitting to conduct a semi-structured interview allowing both
an open discussion and, at the same time, ensuring that specific data were
collected.

3.8 Communication

The communication activity is the final step of the design science research
process model. In this activity, essential information is communicated
to relevant stakeholders. This includes discussing the problem and its
importance, the artifact’s functionality and originality, the thoroughness
of its design, and its overall effectiveness [35]. The results of our conducted
design science research are communicated through the presentation of this
thesis.

3.9 Data collection

To gather data for our study, we used various data collection methods.
Initially, we performed a literature review, which is outlined in Chapter 2.
We hosted a focus group during our first iteration as part of our evaluation
activity. We used a quasi-experiment, a survey with tasks, and a semi-
structured interview during our final evaluation. In this section, we will
explain how we used the methods for collecting data.

3.9.1 Literature review

Literature reviews are a way of gaining vital insight into scholarly
topics, gathering published research on specific topics, surveying different
research sources, and examining them critically [24].

17

Our literature review followed a less systematic and rigorous approach,
meaning that we conducted a review that would be considered closer to
a narrative literature review. Narrative literature reviews are discussions
of important topics from a theoretical point of view and follow a less
formal and rigorous approach than, for instance, a systematic approach
[24]. The review does not involve reporting on methodology, search terms,
and exclusion and inclusion criteria.

Our project began with a broad problem area focused on improving the
immuneML platform from a software engineering perspective. Given
the scope and complexity of this concept, we realized that a flexible and
open-ended approach to our literature review would be most appropriate.
Therefore, we opted for a narrative literature review. As we engaged
in preliminary discussions with the immuneML team and conducted the
literature review, we identified extensibility as our main focus. The content
from our literature review is presented in Chapter 2.

3.9.2 Focus group

A focus group is considered a type of interview consisting of several
respondents participating in the discussion of a topic [25]. The aim of
a focus group is to facilitate a discussion and use that to interpret and
understand the topic from the participants’ perspective. It allows for
interactions between the participants, which according to Johannesson and
Perjons [25], enables a greater depth into the topic addressed compared to
one-to-one interviews.

Our focus group was conducted in the first iteration as part of our
evaluation activity. The participants consisted of us, our supervisors, and
two members of the immuneML team. Beginning the focus group, we
presented our work in the design and development activity. Following
this, we used presented ideas and showed models to facilitate an open
discussion regarding essential topics. The overall goal of the focus group
was to reflect on what we had done thus far, create a discussion and
generate new ideas to set the objectives for our second iteration.

3.9.3 Quasi-Experiment

A quasi-experiments is an empirical enquiry [55]. While experiments are
based on randomization, the assignment of treatments to the subjects can
not be based on randomization in a quasi-experiment [55]. Instead, the
assignments emerge from the characteristics of objects or subjects. Quasi-
experiments are, in other words, experiments where participants are not
randomly assigned to experimental groups [28].

Goal

The quasi-experiment was the first evaluation method used in our second
iteration of the final artifact and was the most extensive data collection for

18

this project. The main goal of the quasi-experiment was to determine the
effectiveness of the artifact in solving the proposed problem. This goal
was directly related to the research questions, specifically RQ1 and RQ1.1,
which focused on improving and simplifying extending a platform through
an interface.

To evaluate the effectiveness of the artifact, we designed a quasi-
experiment in which participants were divided into two groups, one using
the old solution (Task A) and one using the new solution with the artifact
(Task B). Both groups were given a task with the goal of extending immun-
eML and were asked to provide feedback on their experience. The old solu-
tion was used as a baseline for comparison with the new solution.

The objective of the quasi-experiment was to evaluate the artifact’s
usability by examining participants’ user experience with the process of
extending immuneML. Specifically, we assessed if they found the process
understandable, easy to use, and satisfactory. By comparing the feedback
of the two groups, we could assess whether the new solution improved and
simplified the process of extending immuneML.

Participants

Background Number of participants
PhD students 3
MSc and BSc students 4
Developers 3

Table 3.1: Table of participants in the quasi-experiment

Ten participants with different backgrounds took part in the quasi-
experiment, as shown in Table 3.1. First, we collected data from PhD
students from a craftsmanship session hosted at the Biomedical Institute
at the University of Oslo. Secondly, we invited bachelor’s and master’s
students to participate in our quasi-experiment. At last, we contacted
developers with several years in the industry to participate.

The participants were split into two groups to perform Task A and Task
B. We used assumptions about the participants’ knowledge level to decide
which task they should do as part of the experiment. The reasoning was
to reduce the risk of having a low number of participants with a high
imbalance in skill level. In the craftmanship session, this assumption was
made by the meeting host, who already had knowledge of the participant’s
skill level. For the students, we assumed their skill level based on
their progression in their studies, and for the developers, their years of
experience.

19

Content of quasi-experiment

To gather data and feedback from participants, we designed a survey that
presented the task and asked for their feedback. The details of this survey
will be described in Section 3.9.5. The content of the quasi-experiment
consisted of:

1. a questionnaire to identify the knowledge skills of the participants

2. a task description for the participants to perform

3. a questionnaire where the participants were asked how they inter-
preted the process of extending immuneML after performing the
task.

Two different tasks were created for the quasi-experiment:

• Task A: using the old solution of extending immuneML

• Task B: using the new solution of extending the immuneML,
containing our developed artifact

In both tasks, we provided participants with a step-by-step guide on how to
extend immuneML by implementing a Logistic Regression, a classification
model commonly used for linear and binary classification problems [43].
The survey for Task A is included in Appendix C, and the survey for Task
B in Appendix D.

Question ID
Task description I understood the purpose of the task Q1

The task description was clear Q2
Development
process

It was easy to follow the step-by-step guide for the
task

Q3

I understood how to add the new machine-learning
method

Q4

It was easy to add the new machine-learning
method

Q5

I understood how to run the analysis Q6
It was easy to run the analysis Q7
The process of extending immuneML was uncom-
plicated

Q8

I am satisfied with the process of extending immun-
eML

Q9

YAML file I understood what the YAML file was used for Q10
I understood the structure of the YAML file Q11
I understood where to fill in the necessary fields in
the YAML file

Q12

The YAML file was uncomplicated Q13

Table 3.2: Post-task questionnaire for quasi-experiment

20

The post-task questionnaire, shown in Table 3.2, aimed to capture the parti-
cipants’ user experience of performing the task. Since our artifact changes
how third-party developers extend immuneML with new functionality and
run the platform, we wanted to see how the artifact affects the user experi-
ence of following the development process and using the YAML file. Tullis
and Albert [46] presents the topic of self-evaluation in post-task question-
naires. They give examples of how one can formulate questions. We used
this as inspiration to create questions that could be mapped to understand-
ability, ease of use, and satisfaction.

The lists below show the mapping of the questions to what we wanted to
measure:

Development process:

• Understandability: Q4, Q6

• Ease of use: Q3, Q5, Q7

• Satisfaction: Q9

YAML file:

• Understandability: Q10, Q11, Q12

• Ease of use: Q13

3.9.4 Survey with tasks

The research question RQ1.2 investigates ways to enable the integration
of tools written in other programming languages with immuneML. To
demonstrate this capability, we used the software Absolut (defined in
Section 2.6.3) as our primary use case and illustrated how it could be used
with immuneML through our artifact.

Goal

As a proof-of-concept, we did not have a baseline to compare with.
Comparing an old and new solution was not possible due to the absence of
this feature in the current immuneML version. To address this, we created
a task similar to the quasi-experiment and conducted a corresponding
survey, as described in Section 3.9.5. Instead of comparing two solutions,
we used this data collection to assess users’ experience in running an
external tool with immuneML by looking at if they found the process
understandable, easy to use, and satisfactory. The aim of this was to show
the effectiveness of the artifact from a user’s perspective.

21

Participants

Background Number of participants
MSc and BSc students 2
Developers 2

Table 3.3: Table of participants in the survey with tasks

As depicted in Table 3.3, there are a total of four people participating in the
data collection. These consisted of one master’s and one bachelor’s student
and two developers from different companies.

Content

The structure of the data collection was the same as the quasi-experiment.
The differences between the content of the quasi-experiment and this
data collection were a different task description and a different post-task
questionnaire, as shown in Section 3.9.5 and Appendix E. The content was
as follows:

• a questionnaire to identify the knowledge skills of the participants

• a task description for the participants to perform

• a questionnaire where the participants were asked how they inter-
preted the process of using an external tool with immuneML

Question ID
Task description I understood the purpose of the task Q1

The task description was clear Q2
Process It was easy to follow the step-by-step guide for the

task
Q3

It was easy to run immuneML with an external tool Q4
The process of running immuneML with an external
tool was uncomplicated

Q5

I am satisfied with the process of running immun-
eML with an external tool

Q6

YAML file I understood what the YAML file was used for Q7
I understood the structure of the YAML file Q8
I understood where to fill in the necessary fields in
the YAML file

Q9

The YAML file was uncomplicated Q10

Table 3.4: Post-task questionnaire for survey with tasks

The post-task questionnaire, shown in Table 3.4, aimed to capture the
participants’ user experience of performing the task. The questionnaire
was created following the same approach as in the quasi-experiment, as
described in Section 3.9.3.

22

The lists below show how we mapped the questions to what we wanted to
measure:

Process:

• Understandability: Q5

• Ease of use: Q3, Q4, Q5

• Satisfaction: Q6

YAML file:

• Understandability: Q5, Q6, Q7

• Ease of use: Q8

Task description

The overall task description consisted of asking the participants to simulate
the steps that a user would have to make to be able to run an external tool
with immuneML, in this case, Absolut. The steps were as follows:

1. Download a new version of Absolut. This was an updated version of
Absolut containing code inserted by us that made it possible to run
from immuneML

2. Locate a file inside Absolut and make it runnable by running a
makefile that is responsible for compiling the C++ code in Absolut

3. Download a partially filled-out YAML file

4. Fill in the YAML file following our documentation

5. Run immuneML with the YAML file

The full task description is shown in Appendix E.

3.9.5 Survey

A survey is a data collection method that gathers information from
individuals by asking them to respond to a series of questions [36]. We
used the same structure in our quasi-experiment and survey with tasks to
present tasks and gather data. The structure was as follows:

1. An information page about the survey

2. A pre-task questionnaire

3. A task description

4. A post-task questionnaire

Information page

The initial section of the survey consisted of an information page where the
motivation and purpose of the survey were presented.

23

Questionnaire

There are several ways of collecting data in a survey. One of the most
common ones is questionnaires [36]. A motivation for using questionnaires
is because of their efficiency. As Johannesson and Perjons [25] notes,
questionnaires can efficiently gather opinions and perceptions about an
artifact. An important downside, however, is that questions gathered
can often be superficial [25]. This potentially blocks us from getting a
deeper insight into the respondents’ views. Still, since the task was already
time-consuming, it would be more difficult to find participants willing to
both solve a task as well as participating in an interview. As a trade-off,
we included open-ended questions at the end of the questionnaire to get
qualitative data and insight into their experience not being captured by the
questions with the Likert scale.

In both the quasi-experiment and the survey with tasks, we used two
questionnaires: a pre-task questionnaire to be filled out before the task and
a post-task questionnaire to be filled out after completing the task.

Pre-task

The first questionnaire aimed to determine the participants’ skill levels by
asking them to assess their general programming skills, their proficiency
in Python, their experience with machine learning, and their familiarity
with immuneML. We included these questions because programming is
a vital aspect of working with immuneML, Python is the programming
language used in the platform, machine learning is essential to the context
of the platform, and experience with immuneML helps us determine if
participants have knowledge about the current process of extending the
platform. Overall, these questions were included to ensure that the groups
were comparable regarding experience when examining the data in our
analysis.

Post-task

In the last part of the survey, participants completed a post-task question-
naire to gather feedback on their experience using immuneML and execut-
ing the task. The content of the post-task questionnaires is described in
Section 3.9.3 for the quasi-experiment, and in Section 3.9.4 for the survey
with tasks.

Likert scale

Our questionnaires consisted largely of statements used for self-estimation.
To capture the self-reported data, we used rating scales, which according
to Tullis and Albert [46] is one of the most common ways to capture self-
reported data when studying user experience.

We used Likert Scales, which is one of several approaches that can be used.
We used a five-point scale with the options strongly disagree, disagree,

24

neither agree nor disagree, agree, and strongly agree. Several approaches to
this exist. We chose to use Likert Scales. According to Tullis and Albert [46],
using such a traditional Likert Scale with the options mentioned above
should provide a measure of usability in the context of asking participants
to rate the ease/difficulty of tasks.

Quality check of surveys

To quality check our survey, we did a pilot test. As Roopa and Rani [40]
mentions, pretesting of a questionnaire is done for several reasons:
to determine whether the questions are framed properly, whether the
wording of the questions will achieve the desired results we want if they
have been placed in the right order, that the questions are easily understood
if there is a lack of questions or some that should be removed, and at last to
determine if the instructions are satisfactory.

3.9.6 Semi-structured interview

An interview is a communication session between a respondent and a
researcher, where the latter has control of the agenda and asks questions
to the responder [25]. A semi-structured interview is a type of interview
where questions can be discussed in a more flexible order. Unlike
structured interviews, the questions can be open, allowing the respondents
to formulate themselves using their own words.

We decided on a semi-structured interview because we wanted specific
data on our fully implemented artifact. We, therefore, saw it fitting to
conduct a semi-structured interview allowing both an open discussion and,
at the same time, ensuring that specific data were collected. Alternatives
could have been performing a structured- or unstructured interview.
However, we saw that a structured interview would limit us too much
to specific questions and risk losing feedback that could be gained from
a discussion around the questions. On the other hand, an unstructured
interview could prevent data from being caught because the conversation
would be too open.

Before the interview, we created an interview guide, which is a list of
questions used during an interview to direct the conversation toward the
research topic [27]. The guide was used to establish an overall structure for
the interview, ensuring that all essential topics were covered to collect the
required data. The interview guide can be found in Appendix F.

We also prepared a consent form, see Appendix B, where we introduced
our research topic and why we conducted the interview. As a formality,
the consent form informed the participants that we would be taking notes
during the interview.

25

3.10 Data analysis

The data collected for this study consisted of both quantitative and qualit-
ative data. Our quantitative data was collected through a quasi-experiment
and a survey with tasks. Most of our qualitative data was collected through
the focus group and the semi-structured interview. However, we also
gathered some qualitative data from the quasi-experiment and the survey
with tasks through the post-task questionnaires, as presented in section
3.9.

To analyze the qualitative data from the focus group and interview, we
conducted a thematic analysis. The quantitative data were analyzed
through descriptive analysis.

3.10.1 Thematic analysis

Thematic analysis is a method for identifying, analyzing, and interpreting
patterns (themes) of meaning within qualitative data [12]. Minimally,
thematic analysis organizes and describes data in detail [8]. As Braun and
Clarke [7] describes, thematic analysis is used because of its accessibility
and flexibility. Our selection of this method is based on their description of
thematic analysis as a good entryway into qualitative research.

The thematic analysis separates between two different approaches: an
inductive and deductive approach. By following an inductive approach,
the data that is coded and analyzed is done through a bottom-up approach
driven by the content of the data [7]. This initially means the codes and
themes are derived from the data content. On the other hand, a deductive
approach follows a top-down approach for the data coding and analysis
[7]. This means that a series of concepts, ideas, or topics are brought to the
data used for coding and interpreting the data. In other words, codes and
themes derive more from what the researcher brings to the data [7].

Our thematic analysis followed a deductive approach as our codes and
themes were derived from our research questions and ideas. To conduct
the analysis, we followed an approach with six phases outlined by Braun
and Clarke [8].

1. We familiarized ourselves with our data by going through the notes
taken during our focus group and interview, reading and re-reading
the data

2. We generated codes using our research question and topics explored

3. We searched for themes based on our initial codes related to our
research questions as well as patterns in the data

4. We reviewed the themes, ensuring that they were relevant and
coherent with our data

5. We defined and named the themes in a way that reflected the
meaning and relevance of our research question

26

6. We reviewed and refined the themes

3.10.2 Descriptive analysis

To analyze our quantitative data, we conducted a descriptive analysis.
Descriptive analysis is a statistical method used for summarizing raw data
from a sample or population [29]. According to Fisher and Marshall [13],
descriptive analysis is one of the easiest types of statistical analysis to both
perform and interpret.

Our analysis involved using visualized data to summarize and describe
the key features of our data as the basis for interpreting the data. We
chose to use diverging stacked bar charts and box plots as our visualization
techniques, which according to Saffo, South and Worth [41], performs
well in presenting Likert scale data accurately. The box plot allowed us
to visualize the experience level of participants. The diverging stacked
bar chart allowed us to compare the distribution of positive and negative
responses across statements related to understandability, ease of use, and
satisfaction.

27

Chapter 4

Iteration 1

This chapter begins by introducing the first step in the DSR process,
which is identifying the problem and motivation. We then provide
a comprehensive overview of the first iteration in our DSR process,
outlining the work completed for each activity and the findings from the
evaluation.

4.1 Identify problem and motivation

To begin the problem identification and motivation activity, an informal
meeting was organized with members of the immuneML team early on in
the thesis project. The purpose of the meeting was to discuss potential areas
in immuneML that could have potential improvements and be explored
from a software engineering perspective.

The immuneML platform, currently being developed solely by the immun-
eML team, aims to enable third-party developers to create tools and extend
the platform. As a platform, it is essential for immuneML to be flexible and
extensible, allowing for the development of new features and functional-
ities that can build on top of the core. However, extending the platform
comes with several challenges, both for the team and external developers.
The immuneML team expressed an interest in improving the process and
creating best practices to develop the immuneML project further. This out-
lined the overall research question, RQ1, as well as RQ1.1.

Another point raised was that existing and new tools could be written in
programming languages other than Python. E.g., a tool could be written
in C for better performance. It would be very beneficial if the platform
supported using tools in any programming language. It would remove
the obstacle of only using tools written in Python, making it easier for
developers to reuse existing projects. This was used to derive the research
question RQ1.2.

Following this discussion, it was concluded that improving the extensib-
ility of immuneML and allowing the use of external tools was the most

28

appropriate problem to explore further, additionally allowing for them to
be written in different programming languages.

Exploring the topic

To further explore the problem area, we conducted a literature review with
a considerable focus on extensibility. We also looked into literature about
the versatility of programming languages used in software within the field
of bioinformatics and technologies that can be used to enable extensibility.
The results of the literature review are presented in Chapter 2.

Development process

To understand and identify areas for improvement in the development
process, we modeled the process, as depicted below in Figure 4.1. The
process for making contributions and extending the platform was extracted
from immuneML’s documentation [22]. This is a descriptive process model,
a representation showing the actual process [32].

Through this analysis, we identified various problems and improvement
areas:

• Extending the immuneML platform with new functionality requires
a development process that involves understanding and editing the
source code directly. Although the platform provides comprehensive
documentation on how to extend it, this process can be challenging
and time-consuming due to the platform’s relatively large codebase.
Moreover, each contribution to the platform increases the size of the
source code, which potentially, over time, can make it more complex
to maintain and manage.

• In order to make the new functionality available to other immuneML
users, a third-party developer must submit a pull request for review
by the immuneML team. The team then assesses and approves the
contribution based on certain standards. If revisions are needed,
the immuneML team provides feedback for necessary changes. This
process may involve multiple iterations until the contribution meets
the required standards and is approved. However, as the number of
contributors to the platform increases, this process can become time-
consuming for both the contributors and the immuneML team.

29

Figure 4.1: Descriptive BPMN process model for extending immuneML.

4.2 Objectives

In this section, the objectives for the first iteration will be outlined. These
objectives were created based on our initial meeting with the immuneML
team, our understanding of the problem, and our interest in exploring ideas
and possible solutions.

Our initial goal was to look at extensibility and how this could be improved
for the immuneML platform. Before looking at how we could improve it,
we first had to build a proper foundation. We, therefore, set the objectives

30

for this iteration to gain a practical understanding of immuneML and
extend it on a small scale. The work we did was split into two parts:

Firstly, the goal was to extend immuneML by integrating a machine learn-
ing framework not currently implemented in the platform. This object-
ive would be achieved by utilizing the current extensibility mechanism of
immuneML, which involves using its abstract classes in a glass-box ap-
proach.

Secondly, enable the use of Python classes outside the immuneML package.
The goal of this task was to discover how we could extend immuneML by
introducing code located outside of the immuneML software core.

The objective of this iteration is to use the tasks to produce models
and prototypes to build a foundation for further development. By
evaluating them, the feedback is used to build the objectives for the next
iteration.

4.3 Design and development

As the first iteration in our DSR process, the design and development
activity was influenced by the fact that we had to gain an understanding
of the platform. This required a thorough analysis of the platform source
code. Through analyzing the documentation, running simple examples,
and stepping through the process, we were able to get a good grasp of the
key concepts.

Our design and development process can be separated into three steps,
presented in Sections 4.3.1, 4.3.2, and 4.3.3.

4.3.1 Import classes outside the core

Figure 4.2: Importing ML methods outside into the core

The first step consisted of importing Python modules from outside the core.
This was achieved by adding functionality to import classes located outside
the core, using an already existing module in immuneML that handles
internal classes, as shown in Figure 4.2. Using the same abstract methods
and naming convention of files and folders already used by immuneML,

31

minimal changes to the logic of the process and source code were needed.
When running the program, the user would have to specify the location of
the external files as an argument to the command line interface.

The step produced a functional prototype that had several limitations.
Firstly, all external classes had to be in the same folder, and secondly, these
classes had to inherit from internal abstract classes within immuneML. This
meant developers would need to understand the platform’s internal data
structure to extend the platform. In summary, while this prototype allowed
for external code, it did not offer any other advantages for improving
platform extension.

4.3.2 Implement ML frameworks following the current pro-
cess

The second step involved integrating third-party ML frameworks into im-
muneML using the existing platform extension process. We gained insights
into how to extend the platform through the platform’s documentation
and abstract classes. The selected frameworks were PyTorch Tabular and
TensorFlow, which had not been previously utilized in immuneML. PyT-
orch Tabular is based on the PyTorch deep learning library and provides
a more accessible approach to using deep learning with tabular data [26].
TensorFlow is a complete machine learning platform [45], which was only
used for training an ML model.

4.3.3 ToolParser and YAML file

In the last step, we redesigned how the user would define external
code to use the YAML specification file instead of the command line
interface. This was motivated by the need for reproducibility in the
analysis process. Defining an analysis through the command line interface
was unnecessarily complicated and did not facilitate the same level of
reproducibility as using the YAML file.

Several solutions for specifying external code in the YAML specification file
were investigated. One solution would be to define the external code where
it is to be used in the definitions and instructions. However, we interpreted
that this would add more complexity. Therefore, we decided to introduce
an entirely new section in the YAML file specifically for specifying external
code, named specifying "tools." Our idea behind this was that it could show
a more clear separation between what already exists inside of immuneML
and what is run outside of immuneML.

32

tools:
my_tool:

path: /path/to/folder
language: Python
type: MLMethod
name: my_method

(a) One type

tools:
my_tool:

path: /path/to/folder
language: Python
types:

- type: Preprocessor
name: my_preprocessor

- type: MLMethod
name: my_method

(b) Two types

Figure 4.3: Example of YAML specification for a tool

Our proposed changes to the structure of the YAML file, including a tool
section, are shown in 4.3. It shows two versions. Figure 4.3a displays
defining a tool with one type, while Figure 4.3b shows how a tool can define
multiple types. For each tool, there are four parameters:

• path: path to the folder where the tool is located

• language: the programming language that the tool is written in. It
was not used but included to demonstrate how the user could specify
the language for the tool in future versions.

• type: the type of tool is determined by this parameter, which is based
on its intended purpose. Our use cases involved training ML models
and preprocessing datasets, so the parameter was set accordingly. We
provide examples in the figures that demonstrate how a tool can be
defined for both training ML models and preprocessing.

• name: the name of the tool type, used as an identifier for the use of
the tool in the definitions and instructions sections.

4.3.4 Design sketches

This section will describe the models and ideas that we created in the
design and development activity. These models were used in the following
evaluation activity to get feedback for further development.

33

Figure 4.4: Design sketch of a solution using an interface

As described in Section 4.3 our prototype has several limitations, e.g. high
coupling. We, therefore, saw the need to separate the core and the external
code completely by introducing an interface. A sketch of this is shown in
Figure 4.4.

The platform package will include the interface that facilitates communic-
ation between the tool and the platform core. The interface serves as a
mediator that enables immuneML to send requests and receive responses
by external tools through the interface. Because of the request and response
structure, the question of whether or not these should be synchronous or
asynchronous therefore arised.

34

Figure 4.5: Design sketch of a solution using Docker

One idea we investigated was the use of container technology. We con-
sidered using container technology, specifically Docker because it provides
a way to package applications and dependencies into containers. By con-
tainers in Docker, we refer to a unit commonly used for packaging code and
its dependencies, enabling applications to run efficiently and dependably
across different computing environments [52]. The user would not have to
set up a virtual environment and install the required dependencies when
running immuneML and tools written in Python.

Figure 4.5 shows a sketch of a possible solution using Docker. The
immuneML platform and tools would run in separate containers and
communicate using the virtual network in Docker. The shared volume in
Docker could be used if large files were to be transferred, like a trained ML
model. The data has to be readable and writable for both programming
languages. This could be solved using a common data structure like JSON,
CSV, or TSV files.

4.4 Evaluation results

This section will describe the demonstration and evaluation carried out
during the first iteration through a focus group. These activities aimed
to gather feedback and thoughts about our current work and ideas from
members of the immuneML team. First, we present our demonstration,
followed by the results from our thematic analysis of the data gathered
from the focus group.

4.4.1 Demonstration

During the demonstration, we presented the tasks, consisting of incorpor-
ating code from outside the immuneML source code. We presented the
prototypes and models described in Section 4.3. We also presented a pro-
posed structure of the YAML file that we saw fit for our solution, as de-
scribed in Section 4.3.3. We provided a walkthrough of the YAML struc-

35

ture, highlighting the various components and how they fit into the overall
design. We explained our design decisions and how our proposed solution
addressed the identified problems.

Throughout the demonstration, we encouraged the team to ask questions
and provide feedback on our proposed solution. The feedback we received
was incorporated into the ex-ante formative evaluation, allowing us to
further refine our proposed solution. Overall, the demonstration allowed
us to showcase our progress and gather valuable feedback from the
immuneML team.

4.4.2 Prioritization of objectives

During the focus group session, we discussed the prioritization of object-
ives for the project. One important question was which stakeholder should
be the primary focus; should it be the developers of immuneML, the users,
or third-party developers? The immuneML team suggested that there
should be less focus on the immuneML developers and more on users and
third-party developers. One team member stated that the least important
is the immuneML developers, and continued with "... encouraging users and
third-party developers to join is more important".

Besides the prioritization of users, the team emphasized that enabling the
use of tools written in different programming languages would allow for
the most dramatic change and therefore proposed to be something to focus
on. They proposed that this was something that should be prioritized in
our next iteration.

4.4.3 YAML file

The response to our proposed YAML structure was that thought it looked
good from a logical perspective. However, they were unsure about how a
user would perceive the structure. The feedback on a separate section for
tools was "that seems intuitive". One specific improvement they mentioned
was the naming convention, which they found confusing.

4.4.4 Design sketches

We presented and discussed the design sketches, as depicted in section
4.3.4, and our ideas regarding solutions. We asked whether or not
our solution should be asynchronous or synchronous and received clear
feedback that we should stick to synchronous in our solution. They did
not believe creating a solution supporting asynchronous calls would be
necessary.

We also discussed the use of container technology, such as Docker.
immuneML encourages using Docker and are providing a Docker image
for the platform. While they looked at the proposed solution in a positive
way, they did not believe this would be a good fit for this project and its

36

users. Their concern was that setting up Docker would be too much for an
average user, such as bioinformaticians.

4.4.5 Use cases

During our initial discussion with the immuneML team prior, we explored
the use of Absolut as a potential use case for further work. We were
interested in understanding how Absolut, a program written in a different
programming language than immuneML, could be integrated into the
immuneML platform. The team suggested that we start by allowing
Absolut to be run by YAML, enabling the program to be used as a separate
outermost-level component. They also discussed how Absolut’s use in
immuneML is not tightly integrated with the rest of the core immuneML,
making it easier for users to install and use. The team mentioned that
Absolut is a tool that could be used to prepare a dataset for later use in
immuneML. They suggested that this use case could be a step towards
making the installation and use of different programs with immuneML
easier for users in the future. Based on this, we identified that our further
work with Absolut should be on preprocessing datasets.

Similar to our discussion regarding Absolut, we also discussed using
DeepRC with immuneML. While our discussion was less focused on this
during the focus group, our interpretation was that DeepRC is something
of interest to the immuneML team and, therefore, a use case appropriate for
showing how immuneML could run training of machine learning models
externally.

37

Chapter 5

Iteration 2

This chapter provides a detailed description of our second iteration,
outlining each activity. As the final iteration, this chapter presents the final
evaluation of our artifact.

5.1 Objectives

The overall objective for this iteration is to develop a fully working artifact
that explores our research questions. First, we present the feedback from
our first evaluation, presented in Section 4.4. We use this to specify what
should be improved and focused on when designing and developing the
final artifact in the second iteration. Last, we present an overview of what
the artifact should accomplish.

Focus and improvements based on first evaluation

• Prioritize users and third-party developers

• Allow the use of tools written in different programming languages

• Improving YAML structure

• Simplify naming conventions

Defining what the artifact should accomplish

Based on the first evaluation, we identified parts of our solution that should
be improved in the second iteration.

In addition to identifying focus improvement areas for this iteration, we
set requirements for what the artifact should accomplish to answer our
research questions. These are listed in Table 5.1. For each requirement, we
identified key quality attributes essential for achieving that requirement
and to help guide our decisions during the design and development
process. These quality attributes are extensibility, usability, interoperability,

38

and maintainability. The definition of these attributes is presented in
Chapter 2 under Section 2.2.1.

What would the artifact accomplish? Quality attributes
Encapsulation of complexity of tool integration Extensibility, usability
A design pattern with relatively low complexity Extensibility, usability
Enable the use of tools written in other programming
languages

Interoperability

Internal changes to the core will not directly affect the
tools

Maintainability

Table 5.1: Requirements for the artifact and connected quality attributes

5.2 Design and development

To improve how immuneML is extended, our proposed solution encapsu-
lates the immuneML core, inserting black-box extensibility as a new ex-
tensibility mechanism. In this section, we present models depicting the
new process for extending immuneML, our design decisions, and use cases
used to define the interface’s functionality and demonstrate how it serves
its purpose.

39

5.2.1 Process changes

Figure 5.1: Prescriptive BPMN process model for extending immuneML

The goal is to simplify the development process by encapsulating the core
with an interface for developers to integrate their tools, eliminating the
need to modify the ImmuneML source code and allowing developers to
focus on mastering the interface. The introduction of this interface would
streamline the development process.

A prescriptive process model of the changes introduced for extending
the platform for a third-party developer is illustrated in Figure 5.1. In
contrast to the descriptive process model, depicted in Figure 4.1, the
developer no longer depends on the immuneML team to make their
contribution available to other users. The developer must make their tool
available for users, e.g., publish it on GitHub. Additionally, the developers
of immuneML would no longer have to be involved in reviewing and
approving new contributions.

40

Figure 5.2: Prescriptive BPMN process model for using immuneML with
tools

The integration of external tools on the platform introduces additional
steps for users. The new process, depicted in Figure 5.2, involves
downloading the tool from a source such as GitHub or a webpage, locating
the tool’s path and connection point, and then defining the analysis using
the YAML file as usual.

5.2.2 Design decisions

During the phase of designing the solution, our focus was on the quality
attributes described in Table 5.1. For each design decision, we investigated
possible solutions and narrowed them down to what we believed was the
best solution based on the requirements. In this section, the process of the
design decisions will be described. The final artifact will be described in
Chapter 6.

The topics we present regarding our design decisions are as follows:

• Calling functions directly from the immuneML core: we explored

41

ways of calling functions outside of immuneML directly

• Running tools as a subprocess: we explored how tools could be run
as a subprocess of immuneML

• Establish communication with the tool: we looked at how commu-
nication with tools could look like

• Data sharing: we explore different mechanisms of how data between
immuneML and tools could be shared

• Use of task schedulers: we explored the use of having a task
scheduler as part of our solution

• Design of the architecture: we looked at different ways of designing
an architecture for the interface

• Structure and parsing of the YAML file: we looked at what type of
structure the YAML file should have

Call functions in tools directly from immuneML

Several libraries and packages facilitate the functionality to call functions
in other programming languages directly from Python [23]. This approach
could simplify the process for third-party developers since they only
need to create the functions defined by the interface with minimal
modifications. However, the drawback of this approach is that it
requires one implementation for each programming language. Multiple
implementations would be required to support numerous programming
languages, resulting in an extensive interface that would be difficult to
maintain. We concluded not to explore this option further.

A second approach is to use RPC, which can call functions in another
language over a network interface [6]. Through a web service API,
the function call gets translated into a language-independent format and
executed on the server, with the results being returned to the calling
program. [6]

One of the downsides of using RPC as a solution is that it requires third-
party developers to understand and implement RPC in their projects. This
would not only contribute to reducing usability and integrability, but it
would also not support the aim of our RQ1.1, which is about how extending
immuneML can be simplified. Given that immuneML and its tools will be
running locally on a computer, we concluded that the benefits of using RPC
are not significant enough to justify its implementation. Therefore, we did
not go further with this option.

Subprocess

To run tools on a local computer, we explored options for running
them as an external process from immuneML directly. We found that
the subprocess Python module provides a solution for launching and

42

managing processes while connecting to their pipes [44]. The module can
run executables or scripts by providing their path. The subprocess module
uses the underlying functionalities of the operating system to spawn
processes and automatically defaults to different system calls depending
on the operating system in use. In summary, we can use the module
to initialize tools in any programming language as an external process,
communicate through pipes, and it is supported on different operating
systems.

We tested different solutions by creating simple prototypes of a project
running external code as child processes. By investigating how the
solution could be used with our use cases, we saw that pipes had some
limitations. In the use case of DeepRC, an ML method, we want to
continue to use the same process in immuneML for training models and
performing hyperparameter optimization. The tool must be called multiple
times and run different functions to achieve this. This meant we needed
a way to communicate with our tool multiple times and at different
steps of the immuneML analysis process while running the process in
the background. The communication between the parent process and
subprocess in the Python subprocess module occurs only during process
start and termination, so we couldn’t solely depend on the module.

We saw that using the subprocess Python module was beneficial and de-
cided to use this as a foundation. However, it needed to be supplemented
with a solution for better communication.

Communication

Based on the limitation of using the Python subprocess module for
communication, we had to look into ways of establishing communication
between the processes. One way to communicate between processes is by
messaging libraries. This section presents our process of determining an
appropriate communication solution.

To implement the interface to connect tools to the platform, we compared
several messaging solutions to identify the most suitable option. Our
evaluation was based on two primary factors: interoperability and
usability. These quality attributes are defined in Section 2.2.1.

Interoperability was a key consideration for us, as we needed the
messaging library to work across multiple programming languages and
operating systems. We evaluated each library based on its ability to operate
with different message formats and protocols and its ease of integration
with other tools and systems.

Usability was also critical in our evaluation, as we wanted the messaging
library to be easy to use and intuitive. We assessed each library based on
its ease of setup and configuration and the quality of documentation.

To find an appropriate messaging library, we explored several resources,
such as documentation of libraries and developer communities like Stack

43

Overflow. Through this process, we created a table summarizing and
highlighting the strengths and weaknesses of the findings, which can be
seen in Appendix G.

Based on our exploration, we decided to use ZeroMQ, defined in Section
2.6.2. The library’s high level of interoperability allowed us to commu-
nicate seamlessly across programming languages and work on different
programming languages. We also found it easy to use, with minimal im-
plementation required to set up communication in various programming
languages. The library’s lightweight, low-latency messaging architecture
was another major factor in our decision, as it allowed us to achieve fast,
efficient communication between our components. One of the drawbacks,
however, is that it does not provide error handling when for instance, es-
tablishing connections. This is one of the trade-offs resulting from its focus
on simplicity. Overall, we determined that ZeroMQ was the best fit for our
project due to its strong performance, ease of use, and broad support for
multiple programming languages.

Data sharing

Initially, we used ZeroMQ and Pickle data, a serialized Python object,
to share data with the tool. However, while this approach proved
helpful for prototyping and developing solutions, it had limitations. Tool
developers would need to thoroughly understand immuneML’s internal
data structure, and the data was not interoperable with other programming
languages. We tried to address this issue by serializing the dataset into
JSON format. However, this approach still required the tool to deserialize
the data and depended on immuneML’s internal structure. Sending
large datasets and trained models over sockets could also result in poor
performance, making it problematic to use this approach.

We decided to use file sharing and immuneML’s built-in support for
exporting and saving datasets to files, explicitly using the standard data
format TSV. This solution made the data interoperable across several
programming languages, removing the dependency on immuneML’s
internal structure. Another advantage of TSV files is that they are human-
readable, making it easier for third-party developers to understand the data
they are working with.

The final solution for our data-sharing involved using sockets with
ZeroMQ to communicate with the tool. This allowed for efficient and
flexible communication between processes. The communication was
carried out using JSON format, which included instructions for the tool
and the path to the dataset in TSV format. Once the tool finished its task,
it could either return the path to the resulting data or save it directly into
the result folder for the analysis run. This solution provided us with the
necessary control and flexibility to execute our tools effectively.

44

Task schedulers

We explored options for running tools as subprocesses using task sched-
ulers to provide efficient resource allocation and enable us to manage and
monitor the execution of running tools. We looked into the task schedulers
Prefect, Celery, and Airflow. However, we discovered that this was not
something we wanted to use as part of our solution. The reason why was
that for the current design of the interface, using the subprocess module in
Python directly already provided us we the flexibility and control needed
to use our tools effectively. We also saw that introducing a task scheduler
could introduce more complexity for this purpose.

Architecture

When designing the architecture, our primary focus was on maintainab-
ility. We separated the main parts of the changes into a new and separate
package and created a single point of communication between the core and
this package through a component called controller. This controller acts as
the interface to the package and handles all requests.

We also made it easy for developers to expose new functionality for the
interface. With minor changes to the core, developers can add an abstract
class and then extend the interface with a new component. This makes
it possible to add new features without having to modify the existing
codebase extensively, which should help to ensure that the platform
remains maintainable over time. The architecture will be described in detail
in Chapter 6.

ToolParser and YAML file

tools:
my_method:

path: /path/to/folder
type: MLMethodTool

(a) One type

tools:
my_preprocessor:

path: /path/to/folder
type: PreprocessorTool

my_method:
path: /path/to/folder
type: MLMethodTool

(b) Two types

Figure 5.3: Example of YAML specification for a tool

As a result of the feedback from the immuneML team, we made several
changes to the YAML file and ToolParser. Firstly, we streamlined the
structure of the tool section by using only one name for each tool instead
of two. However, this change has the downside of requiring users
to specify the path multiple times if a tool is used for more than one
task. Secondly, we reduced the indentation when specifying multiple
types for a tool. This maintains the same structure for tool sections and
enhances readability. Thirdly, we eliminated the need to specify the tool’s

45

programming language, as the ToolParser will automatically handle this
information. Finally, we added validators to the ToolParser to ensure that
all keys in the YAML file were valid, all required keys were present, and the
tool type was valid. Figure 5.3 shows an example of the new solution.

5.2.3 Use Case 1: Absolut

Our thesis presents a use case in which Absolut, a bioinformatics tool
written in C++, was used to demonstrate the ability to run external tools
written in other programming languages with immuneML through our
developed interface. The use case aimed to showcase how immuneML
can utilize external tools to preprocess a dataset generated by immuneML,
which Absolut then extended by utilizing the information from the dataset
before importing it back into immuneML. We further collected data on how
users interpreted using Absolut with immuneML. The results from this
evaluation are presented in Section 5.3.2. The link to the source code for
this use case can be found in Appendix A. Our development process in this
use case followed four steps:

Step 1 - Run a program in a different language

The first step was to make immuneML run a program written in a different
programming language through the command line. This was done using
the Python subprocess module. To test this functionality, simple and
small programs were created to simulate preprocessing a dataset from
immuneML.

We first created a Python script to demonstrate how immuneML can
interface with external programs. The script read the exported data in
tabular format, generated prime numbers up to the number of rows in
the table (subtracting the header), and then added the prime numbers as
a column, appending it to the dataset from immuneML. Finally, the script
returned the path to immuneML by printing it out in the terminal.

Step 2 - Implement programs in Java and C++

Following successfully implementing the Python program, the same
program was created in both Java and C++. This was done to see if the
interface could run programs in different programming languages. This
turned out to work because the Python subprocess module is able to run
any file as long as the file can be executed on the operating system.

Step 3 - Introducing ZeroMQ

In the third step of development, we encountered an issue with communic-
ating with subprocesses while running. The subprocess module in Python
only allows communication through pipes during process start and termin-
ation. However, we saw it more fit to have a solution where communication
is not so limited but rather available throughout the entire process. We also

46

saw that passing messages through pipes was relatively error-prone. As a
solution, we introduced ZeroMQ to enable a better way of communicating
between processes. Utilizing ZeroMQ, we created a script for each program
following the same structure for how to connect to immuneML, resulting in
blueprints for how to connect to immuneML, shown in appendix I.

Step 4 - Implementing for Absolut

The results from development step 3 were adapted to work with Absolut.
This step was considerably larger than the previous steps as a result of us
having to go through the Absolut source code and understand its structure.
We also had to learn the basics of C++ to be able to work with the Absolut
source code.

The result of this step was that we were able to use the same C++
blueprint used for implementing the small programs for adding primes
to the dataset. By using the blueprint, we extracted the necessary functions
from Absolut and added them into the section instructed by the blueprint,
resulting in a connection script. This was then turned into an executable to
make it runnable. This step resulted in a working implementation.

Resulting data

The data from immuneML and the results are illustrated in two figures. 5.4
shows the last four columns of a randomly generated immune receptor
dataset generated by immuneML. The content of this dataset is outside
of our understanding as we are not domain experts. However, the most
essential part here is that the content under the column "cdr3__aa" was
sent into Absolut, which in return created data that were converted into a
table in TSV format. This table was further merged together with the data
from immuneML, resulting in the table displayed in Figure 5.5.

Figure 5.4: Dataset from immuneML in TSV format before preprocessing
with Absolut

47

Figure 5.5: Dataset from immuneML in tabular format after preprocessing
using Absolut

Limitations

This use case served as a proof-of-concept, and it is important to
acknowledge its limitations in terms of usability. The focus of this use case
was to simulate the preprocessing of a dataset, where a dataset generated
by immuneML was exported in tabular format and then modified by
adding new data to it using Absolut. The resulting dataset was then
imported back into immuneML. However, it is important to note that
the added data cannot be used further in immuneML as there is no
functionality in immuneML using such data. Therefore, this use case was
strictly aimed at demonstrating the potential of our interface to enable the
use of tools written in different programming languages.

5.2.4 Use Case 2: DeepRC

The second use case was to extend immuneML with an ML method tool,
DeepRC. As described in Section 2.6.3, DeepRC is an ML method based
on deep learning architecture for immune repertoire classification. The
method was already implemented into immuneML as a package, using the
old solution of extending the platform. However, the integration uses an
older version of the package since the immuneML team has not had the
resources to update to the newest version of DeepRC. This is an example
of how the current mechanism for extending immuneML negatively affects
integrated code.

To connect DeepRC to immuneML, we had to create an interface for
the project. We used the project’s source code to construct an interface
that relied on DeepRC’s internal functionality, allowing us to connect
it to immuneML. This interface enabled us to run functions from the
immuneML model training process, such as fit and predict, in DeepRC
to train a model. By using this approach, we were able to demonstrate
the effectiveness of our solution for extending the platform with tools and
confirmed that the final artifact was operational. The link to the source code
for the implementation of this use case can be found in Appendix A.

48

5.3 Evaluation results

In this section, we will discuss the results obtained from the evaluation
of this iteration. To collect the data, we performed a quasi-experiment, a
survey with tasks, and a semi-structured interview. We will present the
data from these collections separately, along with our interpretations of the
results. Each section will contain a summary of the findings.

5.3.1 Data collection 1: Quasi-experiment

In the quasi-experiment, we conducted a comparison between the current
solution for extending immuneML and the new solution, which involved
using the artifact to extend immuneML. To evaluate how the new solution
was perceived, we divided the participants into two groups based on the
task they were assigned to perform.

• Task A: using the old solution of extending immuneML

• Task B: using the new solution of extending the immuneML,
containing our developed artifact

The content of the quasi-experiment and description of how we conducted
it is described in Chapter 3 under Section 3.9.3.

49

Experience of participants

(a) Programming (b) Python

(c) Machine learning (d) immuneML

Figure 5.6: Participants’ self-assessment of experience. Scale: No experi-
ence (1), beginner (2), some experience (3), intermediate (4), advanced (5)

First, we will provide a descriptive analysis of the box plots generated
from the Likert scale survey questions. The questions were related to
the participants’ experience with programming, Python, machine learning,
and immuneML. The charts provide an overview of the participants’
background and experience levels. The data indicates that the experience
levels of the participants are generally even across all groups. However,
there is a recurring trend for participants performing task B to have slightly
higher levels of experience.

We believe that the experience level with the most impact on task execution
is programming experience since they are performing a development
process. Machine learning and immuneML experience are less important
for the task but are relevant for understanding the context of what they
perform by doing this task. The distribution of experience levels is

50

relatively even across all groups, except for machine learning, where the
participants performing task B have a higher level of experience.

Understanding of tasks

Figure 5.7: Charts of the participants’ understanding of the tasks per-
formed. The percentage represents aggregated disagreement, neutrality,
and agreement.

To evaluate how well participants understood the task they were perform-
ing in the quasi-experiment, we included a section in the survey where the
participants self-evaluated their understanding of the tasks. The motiva-
tion for this was to identify if any differences in understanding might affect
the task execution and survey results. We wrote both task descriptions, and
it was important to assess whether they were at the same level.

Overall, the results suggest that participants in both groups generally
understood the purpose of the task. However, there were some differences
in the perceived clarity of the task descriptions between the two groups.
Specifically, participants in task B perceived the task description to be
slightly clearer than participants in task A.

Development process

When analyzing the data regarding the development process, the questions
were grouped together based on different aspects of the development
process:

• the first group, depicted in Figure 5.8, focuses on following the task
description to extend immuneML by adding a new machine learning
method

51

• the second group, depicted in Figure 5.9, following the task descrip-
tion to run immuneML with the new machine learning method

• the last group, depicted in Figure 5.10 focuses on the general
interpretation of the development process

Figure 5.8: Charts of the participants’ experience in adding functionality.
The percentage represents aggregated disagreement, neutrality, and agree-
ment.

Figure 5.8 depicts the results from how the participants experienced
following the task description and extending immuneML with a machine
learning method. The results show that the participants performing task
B found it easier to follow the guide compared to those performing
task A. Both groups understood how to add a machine-learning method.
However, there was a higher understandability in task B. On the other
hand, the understanding of adding a machine learning method was higher
in task A. The overall perception of the model shows that there were no
significant differences.

52

Figure 5.9: Charts of the participants’ experience in running immuneML
with new functionality. The percentage represents aggregated disagree-
ment, neutrality, and agreement.

Q6, as depicted in Figure 5.9, suggests that participants who performed
task A generally had a better understanding of how to run an analysis with
the new functionality. As for Q7, which asked about the ease of running
the analysis, the group performing task B had a slightly higher number of
participants who agreed that it was easy to run the analysis.

Figure 5.10: Charts of the participants’ general experience of the develop-
ment process. The percentage represents aggregated disagreement, neut-
rality, and agreement.

53

The results, shown in Figure 5.10, show how the participants found the
overall process of extending immuneML. In Q8, capturing the simplicity of
the process shows an even distribution. Similarly, responses to Q9 showing
the satisfaction of the process has an even perception.

To summarize the development process, the changes made in the devel-
opment process did not significantly affect the perception of the devel-
opment process. Our interpretation is that these results are positive be-
cause the process and steps involved in extending the platform in task B
are more comprehensive. Overall, the results are similar between the two
groups, and there was no significant difference in how the process was per-
ceived.

YAML file

Figure 5.11: Charts of the participants’ experience of using the YAML
file. The percentage represents aggregated disagreement, neutrality, and
agreement.

54

Based on the data collected from the questionnaire, it was observed that the
participants in Task B had a higher understanding of what the YAML file
was used for than those in Task A. Additionally, the structure of the YAML
file was also better understood by a majority (80%) of the participants in
task B as compared to only 20% in task A. Although both groups had a
good understanding of where to fill in the YAML file, it was slightly higher
in task B.

A noteworthy finding is that the YAML file was perceived as more complex
in Task A compared to Task B, even though a new section was added to the
YAML file in Task B. This is significant as it suggests that the participants
found it easier to comprehend and work with the YAML file in Task
B.

In summary, the results show that the understandability of the YAML file
was higher in task B. Furthermore, the complexity of the YAML file was
perceived to be lower when the participants had to define tools. Our
interpretation of the data suggests that increasing the number of steps
in the YAML file in task B did not make it more complex or reduce its
understandability. Overall, the new process introduced for task B was
perceived to be easier to work with and understand.

Response from open-ended questions in questionnaire

Question 1: Were there any parts of extending immuneML that was
confusing or difficult?

No significant insights were gained from the question, except for the
participants in both Task A and B found the use of immuneML somewhat
confusing since they had no prior experience with it.

Question 2: Were there any parts of working with the YAML specification
file that was confusing or difficult?

A common theme for both tasks was that the description of how to fill in
the YAML file made it relatively easy.

One participant performing task A gave feedback that the instructions
were explicit, making it easy to follow, but they felt that understanding
how to work with the YAML for other purposes would have posed a
challenge.

In Task B, one participant noted that it was "pretty clear", while another
mentioned that they were initially confused about where to specify the
tool name in the definition and instruction sections. They suggested that
there could have been more descriptions to help them with this particular
aspect.

55

Question 3: Do you have any other comments on how you interpreted the
process of extending immuneML?

Most participants had "No" as an answer to this question.

In Task A, one of the answers was that the extending immuneML was quite
straightforward, but highlighted that it "... would be costly if multiple ML
methods are integrated through this approach". Another participant also noted
that it was simple to make mistakes following this approach.

In Task B, one participant stated that the process of extending immuneML
was simple to follow but that they would have preferred to have a bit more
in detail in the task description.

Summary

The quasi-experiment found that participants in both groups generally
understood the purpose of the task. Still, there were some differences
in the perceived clarity of the task descriptions between the two groups.
The changes made to the development process did not significantly affect
the perception of the process. The understandability of the YAML file
was higher in task B, and the complexity of the YAML file was perceived
to be lower when participants had to define tools. Overall, the new
process introduced for task B was perceived to be easier to work with and
understand.

The summary of introducing the artifact in the process of extending the
platform for third-party developers is as follows:

• Understandability: The artifact did not have any significant impact
on the understandability.

• Ease of use: The development process is perceived the same while
filling out the YAML file was perceived as more simple.

• Satisfaction: The artifact did not have any significant impact on
satisfaction.

5.3.2 Data collection 2: Survey with tasks

In this section, we will present the findings of our data collection, which
involved users performing tasks and providing feedback via a survey
regarding their interpretation of the process. We have organized the
results into three distinct categories, similar to our quasi-experiment:
understanding of the task, the process, and the YAML file.

56

Experience of participants

Figure 5.12: Participants’ self-assessment of experience. Scale: No experi-
ence (1), beginner (2), some experience (3), intermediate (4), advanced (5)

Figure 5.12 shows the participants’ background experience. The majority of
participants reported proficiency in programming in general and in Python
specifically, as well as some proficiency in machine learning. None of the
participants had prior experience or knowledge of immuneML.

Understanding of the task

Figure 5.13: Charts of the participants’ understanding of the tasks per-
formed. The percentage represents aggregated disagreement, neutrality,
and agreement.

57

The participants had a good understanding of the purpose of the task, with
75% indicating that they understood it well. All of the participants found
the task description to be clear, resulting in 100% agreement.

Process

Figure 5.14: Charts of the participants’ experience in the process of
using immuneML with a tool. The percentage represents aggregated
disagreement, neutrality, and agreement.

The participants had a positive experience overall with the process of using
immuneML with tools. All participants found the step-by-step guide easy
to follow, and all of them found it easy to run immuneML with an external
tool. When asked about the complexity of the process, one participant
neither agreed nor disagreed, resulting in 75% finding it uncomplicated.
The participants’ satisfaction was high, with 100% indicating they were
satisfied with the process.

58

YAML

Figure 5.15: Charts of the participants’ experience of using the YAML
file. The percentage represents aggregated disagreement, neutrality, and
agreement.

Finally, in the YAML file section, the participants showed a good under-
standing of the YAML file, with a score of 75% agreement. Furthermore,
they had a very high understanding of the structure of the YAML file and
where to fill in the necessary fields, scoring 100% agreement. The majority
of participants found the YAML file to be uncomplicated, indicating that
the process was not unnecessarily complex.

Responses from open-ended questionnaire

We asked three open-ended questions in the post-task questionnaire:

• Question 1: Were there any parts of the process that was confusing
or difficult?

• Question 2: Were there any parts of working with the YAML
specification file that was confusing or difficult?

• Question 3: Do you have any other comments on how you
interpreted using an external tool with immuneML?

The only question that gave us any feedback was question 1. One
participant noted that they were not entirely sure why there was a "tools"

59

section defined in the YAML when they still had to reference it in both the
"definitions" and "instructions" sections of the YAML file.

Summary of results

In summary, the participants demonstrated a good understanding of the
task, found the process easy to follow, and had a positive overview of
the YAML file. Despite one participant’s uncertainty about the complexity
of the process, overall, the participants found it uncomplicated, and their
satisfaction with the process was high.

The summary of the effectiveness of using the artifact to run an external
tool written in a different programming language is as follows:

• Understandability: there was a high degree of understandability for
all participants

• Ease of use: all participants found it simple

• Satisfaction: all participants found the process satisfactory

5.3.3 Data collection 3: Semi-structured interview

In this section, we present the results from the semi-structured interview
with members of the immuneML team. We present the results in five
sections: feedback on the process, YAML file, architecture, our solution for
communication, and the use of data types. In our presentation of this data,
we refer to the final artifact presented in Chapter 6.

Process

Introducing the discussion of our proposed process for third-party de-
velopers, we presented both a descriptive model, shown in Figure 4.1, and
a prescriptive model, shown in Figure 5.1. The feedback was generally pos-
itive, with one participant expressing that the more people are not required
to go through the whole code, the better. However, they also noted that
while the prescriptive process model seemed reasonable, it might be more
complex than the figure depicts because the developer would still need to
investigate the interface documentation.

Additionally, we discussed the process of using external tools with
immuneML from a user perspective, as illustrated in Figure 5.2. Our
solution introduces a new step, where the user has to identify the path for
the connection script of the tool and add it to the YAML file. We, therefore,
asked if these steps were realistic for a user to do. They responded that it
sounded reasonable and that this should all be fine for them. They added
that from their perspective, users such as bioinformaticians are often used
to working with advanced setups and technical issues, making the process
changes easy to adopt.

60

YAML

The immuneML team provided positive feedback on the changes made
to the YAML file structure, with one participant stating, "I think it looks
very nice" and another agreeing that the fact that it’s shorter makes it seem
cleaner and easier to relate to. The importance of clear naming was also
emphasized. It was suggested that using a different name than "tools"
might make it clearer that the tools are running externally and not being
imported. However, they also acknowledged that as long as the concept is
well-explained to the user, using "tools" is sufficient.

Architecture

When discussing the artifact implementation of the final artifact, described
in Chapter 6, one of the participants questioned why we decided to use
a controller instead of directly calling tools from the classes in the core.
After further discussion, it was demonstrated that using the controller
enabled the reuse and encapsulation of the logic related to running tools.
The overall impression was that the participants were relatively neutral
towards the architecture, neither agreeing nor disagreeing on whether this
was a good solution.

Communication between immuneML and external tools

When describing how the logic of the communication in the artifact
worked, described in Section 6.4, one of the participants pointed out that
this was an interesting solution. However, they questioned if the use of
sockets would add some complexity and if it was not simpler to instead
rely on the command line. Similarly to the feedback on the architecture,
the participants were generally neutral to this solution.

Data types

They also mentioned that TSV files were a good solution, instead of Pickle
with the internal data structure in immuneML, as it was not a viable
solution for something outside the project. However, they mentioned that
TSV files could be too big. Overall, they believed that TSV files with
encoded data were a decent strategy.

Summary

In summary, the participants had a positive view of the new process
enabled by the artifact. Their opinion on the architecture and the
communication method between immuneML and external tools was
neutral. However, they were positive towards our decisions regarding data
types.

61

Chapter 6

Final artifact

This chapter will describe the artifact. First, the high-level concepts of
the artifact will be described. Secondly, we will describe the artifact’s im-
plementation in terms of its architecture and technical details. The arti-
fact developed is a functional prototype designed to meet the immuneML
team’s requirements and investigate extensibility solutions for ML plat-
forms. Throughout the design and development process, our primary fo-
cus was on quality attributes, specifically usability, maintainability, and in-
teroperability, to address the research questions.

62

6.1 General solution

Figure 6.1: High-level model of the general solution.

The interface acts as a boundary between the core (the immuneML source
code) and tools and handles all communication and coordination. The
high-level concept is illustrated in Figure 6.1. The interface is part of the
immuneML platform and is accessible from the core. When an analysis
is defined to use a tool, immuneML sends a request to the interface. The
interface logic handles the request and forwards it to the tool outside the
platform. The tool processes the request and returns the results to the
interface, which then sends it back to the immuneML process.

A tool is an executable or script that has implemented the required
functionality to connect to immuneML. The interface will manage and
execute the tool as a child process by using the Python subprocess module.
Communication between the platform and tools is achieved through
the ZeroMQ messaging library, which utilizes sockets for inter-process
communication.

63

6.1.1 Changes to the platform

Figure 6.2: UML diagram showing packages and classes changed in artifact

During the development of the artifact, our focus has been to minimize
any modifications made to the core. We achieved this by separating the
interface from the rest of the core and by using the abstract classes that
facilitate the platform’s existing extensibility mechanisms. This approach
ensures that any modifications made to the interface have minimal impact
on the core. Figure 6.2 illustrates the primary changes and additions to the
platform. The upcoming sections in this chapter will further explain these
changes and classes.

64

6.2 Interface package

Figure 6.3: UML diagram showing Interface package

The main logic of the tool interface is located in a designated package,
illustrated in Figure 6.3. This enforces a boundary between the interface
and the rest of immuneML, minimizing dependency and increasing
maintainability. The package consists of components for each tool type,
a ToolTable, and a controller to manage everything. In this section, we will
explain each class of the package.

6.2.1 Tool components

Each tool will have its instance of a tool component. The tool component
class contains all the necessary attributes and functions for running and
managing the tool and its subprocess. Attributes such as path, socket,
and port number, and functions for starting and stopping the subprocess.
By gathering all tool-related code in a single class, we are reusing and
encapsulating the functionality and data related to running and managing
tools.

The tool component is a base class, which each type of tool will inherit
to implement the functionality needed for that tool usage. E.g., the ML
method has a "fit" function, but the preprocessor does not. The current
types of tools supported in this artifact are ML methods (tools for training
ML models) and preprocessing (tools used for editing datasets).

65

6.2.2 Tool table

The ToolTable contains all instances of tool components used in an analysis
(parsed by the ToolParser). Each component is added with its identification
name as its key, which the controller will use to identify and access the
desired component. Gathering all tool instances also enables performing
multiple operations on all tools simultaneously, such as making sure that
all subprocesses for tools are stopped at the end of an analysis.

6.2.3 Interface controller

Figure 6.4: UML sequence diagram of running function in tool

The interface controller manages all tool components and communication
between the core and the tool. By the use of the ToolTable it is able to
store all tools in the same place so they are accessible when the controller
is called from the core. Since all tool components inherit from the base
class, the controller can treat them similarly, except for tool type-specific
functions. (Polymorphism)

The interface controller serves as the only interaction point for the core
to the tool interface. Whenever the core needs to access or communicate
with the tools, it will send requests to this controller. Figure 6.4 shows

66

an example of an interaction where the immuneML core makes a request
through the controller. The "run"-function is used to call tool type-specific
functions in tool components, identifying the function to be executed by its
name. This approach is adaptable as the functions in the tool components
differ depending on their type. Whenever a function in the tool is
called, the controller confirms that the tool component has an associated
subprocess running. If there is no subprocess, the controller will start a
subprocess and initiate communication. This will further be explained in
Section 6.4.

67

6.3 Tool parser

Figure 6.5: UML activity diagram showing flow of the ToolParser

The ToolParser class parses the tool section of the YAML file. It is built
similarly to the other parsers in immuneML, where each key that contains
one tool will go through the same process. First, we check if all keys present
are of a valid type. Second, we check that the required keys are present. If
these checks do not pass, the program will exit with an error message to
the user explaining what is incorrect and guiding them on what caused
the error. If all checks are approved, the interface controller will be called
to create a new component with the specified type. When creating a new
component, it will be based on the specified path set if it is an interpreter

68

or an executable.

6.4 Communication

The communication logic between immuneML and an external tool is
through Inter-Process Communication. While several mechanisms can
be used in IPC, we created communication through sockets. Sockets are
used for communication between processes running on the same machine
but can also be used on different machines over a network. Currently,
our artifact only supports usage on a local machine but facilitates further
development for usage on different machines. This can be advantageous,
e.g., if platform users train on large datasets and need more computational
power than their local machine can provide. However, this would require
a change to how data is shared as currently the data sharing is based on file
sharing.

Figure 6.6: UML sequence diagram of initializing tool and communication

To make sure the process for a developer to connect to immuneML is
simple, we provide connection blueprints in Python, Java, and C++. The
blueprint must be included in the tool to connect it to immuneML and
will serve as the interface for the tool for connection. We have named
this the connection point. New blueprints must be created if the interface
is extended to support additional programming languages. One of the
significant benefits of ZeroMQ is its extensive support of programming
languages. In other words, the same structure would be followed, and

69

the code itself would only have to be adapted to the functions and syntax
of that specific programming language. Examples of the blueprints can be
seen in Appendix I.

The process of starting a tool and opening communication is illustrated in
Figure 6.6. First, the tool component will find an available port to be used
for communication. The tool component will then spawn a child process
for the tool and provide the port number through a pipe established by
the subprocess Python module. The logic in the connection blueprint will
then open a socket using ZeroMQ and work as a service that replies to
requests. The tool component will try to connect to the tool and wait
until the connection is achieved and the tool returns an acknowledgment
message. immuneML and the interface can now send commands on what
to run. These messages use the JSON format.

6.4.1 Data types

The interface facilitates tools written in other programming languages
than Python by the use of standard data formats. JSON is used for
communication between the tool components and the tools. JSON is
widely supported, lightweight, and easy to parse. The messages contain
information for the tools on what they should run and where to find the
datasets by the path. Since this artifact is used to run locally on a computer,
we are sending paths to the datasets. The dataset files are in the TSV format.
By using standard and widely supported data formats, we are increasing
interoperability.

6.4.2 Messaging library - ZeroMQ

For managing communication between the core and tool, we use ZeroMQ,
described in Section 2.6.2. Using this messaging library enables the solution
to achieve a higher level of interoperability. The ZeroMQ’s socket API
provides multiple messaging patterns [14]. In our implementation, we
use the request-reply pattern, which relies on synchronous communication.
The immuneML acts as the client, while the tools act as services. To enable
this communication, we utilize two types of ZeroMQ sockets: REQ and
REP. With the REQ socket, immuneML can send requests to the tools and
receive replies, while the tools use the REP socket to receive requests and
send replies back to immuneML.

70

Chapter 7

Discussion

In this chapter, we will discuss our research questions and present our
key findings. We will then highlight the implications of our work for
research and practice, and discuss the role of machine learning in shaping
our proposed solution. We will also present related work and assess
the quality of our research by discussing the validity of our methods
and results. Furthermore, we will outline the Design Science Research
(DSR) guidelines we followed throughout our study, and discuss how we
followed these. We will then discuss the limitations of our study and
provide recommendations for future research that can build upon our
findings.

7.1 RQ1: How can extending a machine learning
platform be improved through an interface?

This study aimed to address the challenges of extending a machine learning
platform, specifically focusing on extensibility. Our primary contributions
include the design and development of an interface that simplifies the
process of extending immuneML, facilitates the integration of tools written
in additional programming languages, and enables third-party developers
to extend immuneML without requiring in-depth knowledge of the
platform. The main research question we aimed to answer in this thesis
is:

RQ1: How can extending a machine learning platform be improved through
an interface?

To improve the extensibility of immuneML, we explored solutions for how
a machine learning platform can be extended in a simple manner and
facilitate the external code to be in additional programming languages.
Therefore the focus of our work was also on usability and interoperability.
We changed the extensibility mechanism by encapsulating the core,

71

enabling third-party developers to extend the platform without being
dependent on the immuneML team. We proved the efficacy of our solution
by demonstrating that it provides a black-box extensibility mechanism and
is a working solution in our use cases.

7.1.1 RQ1.1: How can extending a machine learning platform be
simplified through an interface?

We investigated how extending a machine learning platform can be
simplified through an interface. Our approach focused on minimal setup
for developers to connect new and existing tools to immuneML. Through
the use of the messaging library ZeroMQ, we enabled what we believe
is a simple and efficient way of establishing communication between
immuneML and external tools. Instructions and data were sent in JSON
format, giving developers high freedom to use the data fitting their
needs.

Through the quasi-experiment, we measured the usability of the solution
by investigating how third-party developers perceived the changes in
the development process of extending the platform. The task performed
by the developers did not include coding and understanding the code
but rather following the steps in the development process using the
interface. The results, as discussed in Section 3.9.3, showed that the
artifact did not significantly impact the understandability and satisfaction
of the process. However, since the solution with the interface included
more comprehensive steps and managed to improve the extensibility, we
perceive this as a positive result. Additionally, the YAML file was found
easier to fill in, contributing to positive results of our solution. Overall,
all developers successfully extended immuneML using the interface,
indicating that it is an effective approach.

Furthermore, the comparison of the descriptive and prescriptive process
models for extending the platform for third-party developers, as depicted
in Figure 4.1 and Figure 5.1, indicates a reduction in the number of
steps required. The new process design simplifies the developer’s tasks,
resulting in a more efficient and streamlined approach. However, as
pointed out by one of the participants in the semi-structured interview
discussed in Section 5.3.3, while the third-party developer no longer needs
to understand the source code of the platform, they do need to comprehend
the interface. Nevertheless, the immuneML team also emphasized that
the more people who do not need to go through the source code, the
better.

7.1.2 RQ1.2: How can an interface facilitate the integration of
tools written in additional programming languages?

To facilitate the integration of tools written in other programming lan-
guages, we focused on creating an interface with a high level of interop-
erability. We accomplished this by using sockets and ZeroMQ, which have

72

bindings in most of the popular programming languages, such as C, C++,
Java, and Python. Additionally, to achieve syntactical interoperability, we
used common data types. The JSON format was used for passing messages
consisting of instructions and file paths, enabling the use of datasets files in
the TSV format.

Through our use case of Absolut, we demonstrated that our interface could
be used for running programs written in other programming languages,
in this case, C++. As a proof-of-concept, it demonstrated how our
artifact was able to improve the extensibility of immuneML by introducing
functionality that was not previously present, opening up a wider array
of tools that can be used with immuneML. We showed through the
demonstration of Absolut that the tool was able to connect to immuneML
by using a connection script based on the common blueprint.

We further showed through a combination of performing a task and
filling in a survey that users were successfully able to download and use
Absolut together with immuneML. This was used to simulate and measure
the process of using an external tool. The results, discussed in Section
5.3.2, showed that the participants found it understandable, simple, and
satisfactory.

7.2 Contributions

The following list summarizes the contributions of our artifact:

• An interface that introduces a new extensibility mechanism to
immuneML, going from glass-box to black-box - developers no
longer need insights into the source code

• An interface that improves the extensibility of immuneML by
simplifying the process

• An interface that improves the extensibility of immuneML by
enabling the use of external tools written in additional programming
languages

• An architecture that is designed to support immuneML developers in
further development of the interface’s functionality

7.3 Implications

7.3.1 Implications for research

• The findings of our study highlight the potential benefits of using our
developed interface for extending a machine-learning platform. Fu-
ture research can build on our results by investigating the effective-
ness of the interface in more complex use cases and data collections
with larger sample sizes.

73

• Our solution can serve as a starting point for further research on
solutions for extending machine learning platforms. Future research
could focus on optimizing the performance of our artifact, evaluating
its scalability, or comparing it with other approaches.

• While we found that using JSON for messages and TSV files for
datasets was a relatively simple and practical approach for our
purpose, future research could investigate the use of other data
formats and communication for different types of machine-learning
platforms.

• The development of our artifact was based on the implementation
of immuneML. Future research could investigate the generalizability
of our interface to other machine-learning platforms and evaluate its
effectiveness in different contexts.

7.3.2 Implications for practice

• Our solution can be used as a reference or basis for similar platforms
to enable the development of external tools without working directly
with the source code.

• The use of sockets, ZeroMQ, and common data types can be used to
increase interoperability. By adopting the same approach, a platform
can run tools in different programming languages.

• Introducing an interface can help transition from a glass-box mech-
anism to a black-box mechanism, thereby increasing the extensibility
of a system. This can be useful in practice to allow for a simplified
integration of external tools and technologies.

7.4 The impact of ML in shaping the artifact

We have worked with a platform in the context of an extensible codebase,
following the platform definition described in Section 2.1.1. Specifically,
we examined a platform that is extended via GitHub. In this section, we
explore how working with a machine-learning platform has influenced
our artifact and reflect on how the outcome might have differed if we
had worked with a non-machine-learning platform. It’s worth noting that
the variances between different types of platforms are significant, so our
observations are based on our speculations.

One major challenge is the large size of data files, data sets, and trained
models, which can make it difficult to transfer data over the network. Since
the platform is designed to run locally on a computer, data can be sent
through paths to files, which simplifies the process of handling large data.
If we were not working with machine learning and large files, we could
have relied on communication through the network.

Various tools employ different data structures; for example, the Scikit-learn

74

framework uses data stored as Numpy arrays, while PyTorch uses Tensors.
A step in preparing data for machine learning training is to convert it
from its original format, such as text files, into the type supported by
the framework. To address this issue, we are sending data as text files
in the TSV format, enabling tool developers to convert the data to their
specific needs. In contrast, non-machine learning platforms may have more
standardized data types, such as data stored in a database and transmitted
in JSON format.

The process of running an analysis from start to finish, step-by-step, is
another factor that shaped our solution, for instance, from preprocessing
and encoding to training. Since these processes are carried out sequentially,
we have developed a solution where the tool only needs to run when it
is used in each step. When a step starts, the tool initiates, and when it
completes, the tool stops because it is no longer necessary for that particular
analysis. Consequently, we are only running one tool at a time. In a non-
machine learning platform, we anticipate the need for multiple tools to
execute through the entire process, enabling the core to make requests to
them at any point.

7.5 Related work

Extensibility

In our literature review, we could not locate any specific studies focusing
on improving the extensibility of platforms. The closest literature we found
that was relevant to our study was the paper by Zenger [57], giving a
thorough introduction to different extensibility mechanisms that can be
used.

Cross-language interoperability

In the context of enabling the use of multiple programming languages
between different systems and programs, we found multiple studies
providing a more technical view on enabling cross-language interoperab-
ility. While the research papers are more distant from the focus of our re-
search questions, more specifically RQ 1.2, they provide interesting insights
into how cross-language interoperability can be achieved.

Bonnal et al. [6] compares several approaches to using software written in
different programming languages together, measuring the throughput of
the different approaches.

Aleksyuk and Itsykson [3] researched how to create a cross-language
integration method that facilitates the use of software components written
in different programming languages while minimizing the need for a
manual effort by developers.

Grimmer et al. [17] analyzes different approaches for enabling cross-
language interoperability by creating a virtual machine that can run dif-

75

ferent programming languages, composing them in a seamless way.

7.6 Quality of our research

This section will examine the quality of our design science research. Wohlin
et al. [55] presents several classification schemes of validity that have been
used for case studies and controlled experiments in software engineering.
In this section, we will discuss construct validity, internal validity, external
validity, conclusion validity, and reliability.

7.6.1 Validity

Validity in a study indicates the trustworthiness of the results [55]. It also
denotes to what extent the results are true and not biased by the subjective
point of view of the researcher. As a concept, it is subtler [39]. It refers to
how closely we think we measure matches what we want to measure.

7.6.2 Construct validity

According to Wieringa [54], construct validity is "... the degree to which an
application of constructs to phenomena is warranted with respect to the research
goals and questions". It is an aspect of validity that reflects to what extent the
studied operational measures represent what the researcher had in mind
and what is investigated according to the research questions [55]. It is
concerned with the connection between observation and theory.

Interview

A threat to construct validity is when constructs discussed in an interview
are not interpreted in the same way between the researcher and the
person(s) being interviewed [55]. To reduce this potential threat, we
explained the concepts and presented relevant models before asking the
interview questions. Furthermore, we actively encouraged the participants
to ask questions during our explanations to ensure their understanding of
the concepts.

Quasi-experiment and survey with task

One threat to construct validity in this context is that the entire simulation
may not accurately reflect the actual activities in the process. This can lead
to the results not necessarily presenting how a third-party developer thinks
of the development process because they did not code. To mitigate this
threat, we communicated to the participants that the task was to show the
process, and we reduced the threat further by having the same kind of tasks
and descriptions for both tasks.

Another threat to the construct validity of our results is the potential
for questions in the survey to be interpreted differently than what we

76

intended, leading to misunderstandings. To mitigate this threat, we based
our questions on examples provided by Tullis and Albert [46] that focused
on self-evaluation in post-task questionnaires related to user experience.
We also conducted a pilot test. The result of the pilot test helped us improve
unclear questions.

A potential threat to construct validity in our quasi-experiment is the
possibility that the concepts we aimed to capture may not have been
accurately represented in the questions we used. Our goal was to
evaluate the usability of the artifact by assessing participants’ user
experience with regard to factors such as understandability, ease of
use, and satisfaction. If our questions did not effectively capture these
underlying constructs, the results might not provide an accurate reflection
of participants’ actual perceptions and experiences. To mitigate this threat,
we connected the constructs to the questions using the examples by Tullis
and Albert [46]

7.6.3 Internal validity

Threats to internal validity look at issues that may indicate that there is
a causal relationship, but in reality, there is none [55]. In other words,
when observing a relationship between the treatment and outcome, it is
important to verify that a casual relationship exists and not a result of
uncontrollable or unmeasured factors [55].

A potential threat to the internal validity of our quasi-experiment was
the risk of uneven distribution of experience levels. This would make
it difficult to compare the results and give reliable results. To reduce
the risk of such an uneven distribution, we divided the participants into
two different groups based on assumptions of their skill levels. However,
this introduced selection bias, which according to Kampenes et al. [28], is
considered a threat to internal validity.

7.6.4 External validity

External validity concerns the concept of generalization [55]. Threats to
external validity refer to conditions that limit the ability of the results to be
generalized.

Kampenes et al. [28] states that external validity can suffer because of the
artificial setting of the quasi-experiment, which can be very different from
the real-life setting where the artifact is to be used. Thus, the artificial
setting of our quasi-experiment is a threat to external validity.

The external validity of our quasi-experiment is threatened by the small
sample size and limited scope of the population used, which may limit the
generalizability of our results. We addressed this threat by having a more
heterogenous group, meaning that we included participants with different
backgrounds, as described in Section 3.9.3.

77

We have only tested our artifact on one specific platform, immuneML,
which it was developed for. In other words, the artifact as a whole can
not be generalized to other platforms due to the unique internal structure
of immuneML.

Looking at smaller details of the artifact, the generalizability can be ad-
dressed differently. The platform currently employs a glass-box extensibil-
ity mechanism achieved through the use of abstract classes. Our solution
extends this approach by utilizing abstract classes to ensure that modifica-
tions to the system do not impact its overall functionality. Therefore, other
software systems that utilize a similar extensibility mechanism may find
our architectural solution to be useful. Additionally, similar platforms that
run locally on the computer may use the findings of how we initialize and
communicate with external tools.

7.6.5 Conclusion validity

Threats to conclusion validity refer to issues affecting the ability to draw the
correct conclusions about the relations between the treatment and outcome
of experiments [55].

While utilizing descriptive analysis, we recognized patterns based on our
interpretation. However, because of the small sample size, we cannot con-
duct statistical tests to confirm and conclude our findings. Consequently,
there is a greater probability of drawing inaccurate conclusions.

To reduce the threat to conclusion validity, we attempted to get a more
heterogenous group of participants, referring to the background of the
participants (i.e., Ph.D., students, and developers).

7.6.6 Reliability

The concept of reliability refers to the extent to which data and analysis
depend on a researcher [55]. If the same study were repeated by different
researchers, the results should hypothetically be the same. Reliability is
used for our qualitative data and is the counterpart to conclusion validity
that is used for quantitative data [55].

To ensure reliability, we collected data using different methods: a quasi-
experiment, a survey with tasks, a semi-structured interview, and a focus
group to evaluate the interface. Additionally, we used a consistent
methodology for collecting the data.

The reliability of qualitative data may be a concern when it relies solely on
the analysis and interpretation of the researchers. To reduce this threat, we
coded the data independently and then discussed our findings.

The reliability of the quantitative data may be reduced when the analysis
is solely based on our subjective interpretation. To mitigate this, we have
provided all the charts used to analyze the data, enabling other researchers
to interpret independently.

78

7.7 Research guidelines

Design Science Research is a problem-solving process [20]. According to
Hevner et al. [20], the fundamental principle of Design Science Research
is that the process of building and applying an artifact is the way
researchers acquire knowledge and understanding of a design problem
and its solution. Hevner et al. [20] presents seven guidelines derived
from this very fundamental principle to assist researchers and others in
better understanding the requirements for what would be considered to
be effective Design Science Research. While Hevner et al. [20] advises
against mandatory/rote use of the guidelines, they argue that each should
be addressed in some form for a Design Science Research to be considered
complete. This section will discuss how we followed these guidelines in
our research project.

Guideline 1: Design an Artifact

"Design-science research must produce a viable artifact in the form of a
construct, a model, a method, or an instantiation" [20].

The guideline for design as an artifact includes creating a novel and useful
artifact, which in our case, is an interface that allows the use of external
tools with the immuneML platform. The artifact’s novelty is that it makes
it possible to run tools in different programming languages previously
not possible in the immuneML platform. Its usefulness is demonstrated
through a focus group, a semi-structured interview, a quasi-experiment,
and a survey with tasks, which showed positive results regarding the
extensibility of the immuneML platform.

Guideline 2: Problem Relevance

"The objective of design-science research is to develop technology-based
solutions to important and relevant business problems" [20].

Our thesis addressed the limitations of extensibility in the immuneML
platform. By designing an interface that overcomes this limitation, we
demonstrated how it could run external code with immuneML and
increase the platform’s extensibility. This contribution has the potential
to benefit users of immuneML by enabling them to use immuneML with
a broader range of external tools and facilitating the integration of new
ones.

Guideline 3: Design Evaluation

"The utility, quality, and efficacy of a design artifact must be rigorously
demonstrated via well-executed evaluation methods" [20].

We utilized a focus group, an interview, a quasi-experiment, and a survey
with tasks to evaluate our interface’s usefulness in facilitating the use of
external tools with the immuneML platform. The results demonstrated that

79

the interface created a new platform extension process and enabled the use
of external tools written in different programming languages together with
immuneML.

Guideline 4: Research Contributions

"Effective design-science research must provide clear and verifiable con-
tributions in the areas of the design artifact, design foundations, and/or
design methodologies" [20].

We believe our thesis contributed to the field of software engineering by
demonstrating how an interface can be created to increase extensibility
and enable running external code with a platform that previously did
not support it. Furthermore, we demonstrated how our interface could
enable the use of external tools written in other programming languages,
potentially benefiting users by enabling the use of new tools with
immuneML that previously would not be possible.

Guideline 5: Research Rigor

"Design-science research relies upon the application of rigorous methods
in both the construction and evaluation of the design artifact" [20].

Following this guideline, we conducted a literature review and designed
evaluations following established scientific principles. To ensure the
reliability and consistency of our results, we conducted thematic and
descriptive analysis, which provided insight into our data. This allowed
us to draw conclusions from our findings and establish the validity of our
research contributions.

Guideline 6: Design as a Search Process

"The search for an effective artifact requires utilizing available means to
reach desired ends while satisfying laws in the problem environment"
[20].

We followed this guideline by iterating on the interface design based on
feedback from the focus group and incorporating new features to improve
its design and functionality.

Guideline 7: Communication of Research

"Design-science research must be presented effectively both to technology-
oriented as well as management-oriented audiences" [20].

Our thesis communicates our research findings through our presentation
of our artifact in this thesis.

80

7.8 Limitations

Our study has several limitations that should be acknowledged. In this
section, we explain the limitations in the context of participants, data
analysis, and the size of the conducted quasi-experiment.

7.8.1 Participants

One limitation of our study was the relatively small number of participants
we recruited for our summative naturalistic ex post evaluation. Due to the
resource-demanding nature of this evaluation strategy, we faced challenges
in reaching out to a sufficient number of potential participants.

7.8.2 Analysis

The reason for conducting a descriptive analysis was mainly based on
the size of our data points. As a result of few data points, meaning few
participants, we did not have enough data to conduct statistical analysis.
We attempted to identify any correlations between the results and the
participants’ experience but were unable to find any.

7.8.3 Size of quasi-experiment

Another limitation we encountered was the constrained nature of the
tasks in our quasi-experiment. We had to carefully consider the time and
resource constraints involved in designing our evaluation. Ideally, we
would have preferred to simulate the full development process by having
participants work with the connection script. However, this would have
been time-consuming and challenging to recruit participants. As a result,
we opted for a scaled-down quasi-experiment that did not include testing
the use of the connection script.

Summary of limitations

Overall, our study’s limitations should be considered when interpret-
ing the results and generalizing the findings. Future studies could ad-
dress these limitations by expanding the number of participants and tasks
included and exploring additional strategies for recruitment and evalu-
ation.

7.9 Final thoughts

By using the design science research method, we have gained a deeper
understanding of the research process, from defining the problem to
developing a working artifact. The iterative process allowed us to
refine our approach and adapt to challenges that emerged during the
project.

81

Throughout the research, we faced several obstacles, including time
constraints and limited resources. However, we produced a solution that
met our objectives by maintaining a systematic approach, following the
design science research methodology, and focusing on the key research
questions.

We acknowledge that our study has limitations and potential areas for
improvement. For instance, our quasi-experiment and survey with tasks
were conducted in a controlled environment, and future studies could
consider a more diverse sample to increase generalizability. Additionally,
the study could have included more rigorous evaluation methods to assess
the solution’s effectiveness.

Overall, the design science research method provided us with a framework
to approach our research question systematically and allowed us to
develop an artifact that addressed our research questions.

7.10 Future work

One of the main limitations of our study is that we did not examine how
external developers would experience following the pattern/blueprint for
creating the script necessary to connect the tool together with immuneML.
In other words, we did not examine the process to its full extent. To address
this limitation, future work should focus on conducting a more extensive
evaluation that includes a larger number of participants who are external
developers. This would provide a more comprehensive understanding of
how developers experience following the pattern/blueprint and how the
solution could be improved to better meet their needs.

Another area for further research could be to extend the type of participants
beyond just developers. In our quasi-experiment, we primarily focused
on participants who were responsible for copying code and filling in a
YAML file. While this approach was effective for our purposes, it may not
reflect the experiences of other potential users. Thus, future work should
investigate how the solution could be adapted to meet the needs of other
users, such as bioinformaticians.

Additionally, our research used Inter-Process Communication with the
messaging library ZeroMQ to connect external tools with immuneML.
While we experienced this as appropriate for our purposes, there is a
possibility that other technologies may be more suitable for this purpose
in different contexts. Therefore, future work could explore alternative
technologies and evaluate their usability and simplicity compared to our
solution.

Lastly, adaptations would have to be made for further work using the
solution with immuneML to increase its usability. This could include
addressing any technical issues that may arise during the use of the
interface, such as errors.

82

Chapter 8

Conclusion

Our research project aimed to develop an interface that allows external
tools to be used with the machine-learning platform immuneML. The
current immuneML platform does not have a solution to integrate external
tools without directly developing into its GitHub repository, which
limits the platform’s extensibility. Following the design science research
methodology, we created an alternative way of extending immuneML
without the need to work directly with the source code. Through this
interface, we enabled the use of external tools and tools written in different
programming languages.

To evaluate our interface, we conducted evaluations consisting of a focus
group, a quasi-experiment, a survey with tasks, and a semi-structured
interview. In the focus group, we gathered feedback from the platform
developers on the interface’s usability and potential use cases. We then
performed a quasi-experiment to evaluate the effectiveness of the interface.
Lastly, we interviewed members of the immuneML team to gain final
feedback on our developed solution.

Our research contribution demonstrates the value of creating an interface
to increase the extensibility of a platform. By creating this interface for
immuneML, we have shown an approach to improve extensibility through
a solution focusing on simplicity and interoperability. We believe this work
can potentially encourage further research in this area and contribute to the
development of more extensible platforms in the future.

83

Bibliography

[1] Absolut! en. July 2020. URL: https://greifflab.org/absolut/ (visited on
08/05/2023).

[2] Absolut! original-date: 2020-10-07T08:59:39Z. Mar. 2023. URL: https :
//github.com/csi-greifflab/Absolut (visited on 31/03/2023).

[3] Artyom Aleksyuk and Vladimir Itsykson. ‘Automated Cross-
Language Integration Based on Formal Model of Components’. en.
In: Frontiers in Software Engineering Education. Ed. by Jean-Michel
Bruel et al. Lecture Notes in Computer Science. Cham: Springer Inter-
national Publishing, 2020, pp. 357–370. ISBN: 978-3-030-57663-9. DOI:
10.1007/978-3-030-57663-9_23.

[4] Len Bass, Paul Clements and Rick Kazman. Software Architecture in
Practice, 4th Edition. en. 4th Edition. Addison-Wesley Professional,
Aug. 2021. ISBN: 978-0-13-688597-9. URL: https : / / learning . oreilly .
com/ library / view/ software - architecture - in / 9780136885979/ (visited
on 25/03/2023).

[5] Len Bass, Paul Clements and Rick Kazman. Software Architecture in
Practice, Third Edition. en. Third Edition. Addison-Wesley Profes-
sional, Sept. 2012. ISBN: 978-0-13-294279-9. URL: https : / / learning .
oreilly.com/library/view/software-architecture-in/9780132942799/ (vis-
ited on 12/05/2023).

[6] Raoul J. P. Bonnal et al. ‘Sharing Programming Resources Between
Bio* Projects’. In: Methods in molecular biology (Clifton, N.J.) 1910 (Jan.
2019), pp. 747–766. ISSN: 1064-3745. DOI: 10.1007/978-1-4939-9074-
0_25. URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7212028/
(visited on 12/02/2023).

[7] Virginia Braun and Victoria Clarke. ‘Thematic analysis’. In: APA hand-
book of research methods in psychology, Vol 2: Research designs: Quantit-
ative, qualitative, neuropsychological, and biological. APA handbooks in
psychology®. Washington, DC, US: American Psychological Associ-
ation, 2012, pp. 57–71. ISBN: 978-1-4338-1005-3. DOI: 10.1037/13620-
004.

[8] Virginia Braun and Victoria Clarke. ‘Using thematic analysis in
psychology’. In: Qualitative Research in Psychology 3.2 (Jan. 2006),
pp. 77–101. ISSN: 1478-0887. DOI: 10.1191/1478088706qp063oa. URL:

84

https://greifflab.org/absolut/
https://github.com/csi-greifflab/Absolut
https://github.com/csi-greifflab/Absolut
https://doi.org/10.1007/978-3-030-57663-9_23
https://learning.oreilly.com/library/view/software-architecture-in/9780136885979/
https://learning.oreilly.com/library/view/software-architecture-in/9780136885979/
https://learning.oreilly.com/library/view/software-architecture-in/9780132942799/
https://learning.oreilly.com/library/view/software-architecture-in/9780132942799/
https://doi.org/10.1007/978-1-4939-9074-0_25
https://doi.org/10.1007/978-1-4939-9074-0_25
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7212028/
https://doi.org/10.1037/13620-004
https://doi.org/10.1037/13620-004
https://doi.org/10.1191/1478088706qp063oa

https://www.tandfonline.com/doi/abs/10.1191/1478088706qp063oa
(visited on 14/05/2023).

[9] Jan vom Brocke, Alan Hevner and Alexander Maedche. ‘Introduction
to Design Science Research’. en. In: Design Science Research. Cases. Ed.
by Jan vom Brocke, Alan Hevner and Alexander Maedche. Progress
in IS. Cham: Springer International Publishing, 2020, pp. 1–13. ISBN:
978-3-030-46781-4. DOI: 10.1007/978-3-030-46781-4_1. URL: https:
//doi.org/10.1007/978-3-030-46781-4_1 (visited on 07/09/2022).

[10] Tolga Can. ‘Introduction to Bioinformatics’. en. In: miRNomics: Mi-
croRNA Biology and Computational Analysis. Ed. by Malik Yousef and
Jens Allmer. Methods in Molecular Biology. Totowa, NJ: Humana
Press, 2014, pp. 51–71. ISBN: 978-1-62703-748-8. DOI: 10 . 1007/978 -
1-62703-748-8_4. URL: https://doi.org/10.1007/978-1-62703-748-8_4
(visited on 31/03/2023).

[11] Mikaela Cashman et al. ‘Navigating the maze: the impact of con-
figurability in bioinformatics software’. In: Proceedings of the 33rd
ACM/IEEE International Conference on Automated Software Engineer-
ing. ASE ’18. New York, NY, USA: Association for Computing Ma-
chinery, Sept. 2018, pp. 757–767. ISBN: 978-1-4503-5937-5. DOI: 10 .
1145/3238147.3240466. URL: https://dl.acm.org/doi/10.1145/3238147.
3240466 (visited on 05/05/2023).

[12] Victoria Clarke and Virginia Braun. ‘Thematic analysis’. In: The
Journal of Positive Psychology 12.3 (May 2017). Publisher: Routledge
_eprint: https://doi.org/10.1080/17439760.2016.1262613, pp. 297–
298. ISSN: 1743-9760. DOI: 10.1080/17439760.2016.1262613. URL: https:
//doi.org/10.1080/17439760.2016.1262613 (visited on 24/04/2023).

[13] Murray J. Fisher and Andrea P. Marshall. ‘Understanding descriptive
statistics’. en. In: Australian Critical Care 22.2 (May 2009), pp. 93–97.
ISSN: 10367314. DOI: 10 . 1016 / j . aucc . 2008 . 11 . 003. URL: https : / /
linkinghub . elsevier . com/ retrieve / pii / S1036731408001732 (visited on
13/05/2023).

[14] Get started. URL: https : / / zeromq . org / get - started/ (visited on
05/04/2023).

[15] Ahmad Ghazawneh and Ola Henfridsson. ‘A Paradigmatic Analysis
of Digital Application Marketplaces’. en. In: Journal of Information
Technology 30.3 (Sept. 2015). Publisher: SAGE Publications Ltd,
pp. 198–208. ISSN: 0268-3962. DOI: 10.1057/jit .2015.16. URL: https :
//doi.org/10.1057/jit.2015.16 (visited on 04/05/2023).

[16] Ilya Grigorik. ZeroMQ: Modern & Fast Networking Stack - igvita.com.
en. Sept. 2010. URL: https://www.igvita.com/2010/09/03/zeromq-
modern-fast-networking-stack/ (visited on 06/04/2023).

85

https://www.tandfonline.com/doi/abs/10.1191/1478088706qp063oa
https://doi.org/10.1007/978-3-030-46781-4_1
https://doi.org/10.1007/978-3-030-46781-4_1
https://doi.org/10.1007/978-3-030-46781-4_1
https://doi.org/10.1007/978-1-62703-748-8_4
https://doi.org/10.1007/978-1-62703-748-8_4
https://doi.org/10.1007/978-1-62703-748-8_4
https://doi.org/10.1145/3238147.3240466
https://doi.org/10.1145/3238147.3240466
https://dl.acm.org/doi/10.1145/3238147.3240466
https://dl.acm.org/doi/10.1145/3238147.3240466
https://doi.org/10.1080/17439760.2016.1262613
https://doi.org/10.1080/17439760.2016.1262613
https://doi.org/10.1080/17439760.2016.1262613
https://doi.org/10.1016/j.aucc.2008.11.003
https://linkinghub.elsevier.com/retrieve/pii/S1036731408001732
https://linkinghub.elsevier.com/retrieve/pii/S1036731408001732
https://zeromq.org/get-started/
https://doi.org/10.1057/jit.2015.16
https://doi.org/10.1057/jit.2015.16
https://doi.org/10.1057/jit.2015.16
https://www.igvita.com/2010/09/03/zeromq-modern-fast-networking-stack/
https://www.igvita.com/2010/09/03/zeromq-modern-fast-networking-stack/

[17] Matthias Grimmer et al. ‘Cross-Language Interoperability in a Multi-
Language Runtime’. In: ACM Transactions on Programming Languages
and Systems 40.2 (2018), 8:1–8:43. ISSN: 0164-0925. DOI: 10 . 1145 /
3201898. URL: https://dl.acm.org/doi/10.1145/3201898 (visited on
04/05/2023).

[18] K. Henttonen et al. ‘Integrability and Extensibility Evaluation from
Software Architectural Models – A Case Study’. In: The Open Software
Engineering Journal 1.1 (Dec. 2007). ISSN: 1874-107X. DOI: 10 . 2174/
1874107X00701010001. URL: https://benthamopen.com/ABSTRACT/
TOSEJ-1-1 (visited on 03/05/2023).

[19] Alan Hevner. ‘A Three Cycle View of Design Science Research’. In:
Scandinavian Journal of Information Systems 19 (Jan. 2007).

[20] Alan Hevner et al. ‘Design Science in Information Systems Research’.
In: Management Information Systems Quarterly 28 (Mar. 2004), p. 75.

[21] ‘IEEE Standard Glossary of Software Engineering Terminology’. In:
IEEE Std 610.12-1990 (Dec. 1990). Conference Name: IEEE Std 610.12-
1990, pp. 1–84. DOI: 10.1109/IEEESTD.1990.101064.

[22] immuneML. Developer documentation — immuneML 2.2.4 documenta-
tion. URL: https://docs.immuneml.uio.no/latest/developer_docs.html
(visited on 17/04/2023).

[23] IntegratingPythonWithOtherLanguages - Python Wiki. URL: https://wiki.
python . org / moin / IntegratingPythonWithOtherLanguages (visited on
13/05/2023).

[24] Nusrat Jahan et al. ‘How to Conduct a Systematic Review: A Nar-
rative Literature Review’. en. In: Cureus 8.11 (Nov. 2016). Publisher:
Cureus. ISSN: 2168-8184. DOI: 10.7759/cureus.864. URL: https://www.
cureus . com/articles / 5127 - how - to - conduct - a - systematic - review - a -
narrative-literature-review (visited on 28/04/2023).

[25] Paul Johannesson and Erik Perjons. An Introduction to Design Science.
en. Cham: Springer International Publishing, 2014. ISBN: 978-3-319-
10631-1 978-3-319-10632-8. DOI: 10 .1007/978- 3 - 319- 10632- 8. URL:
http :// link . springer . com/10 .1007/978 - 3 - 319 - 10632 - 8 (visited on
12/01/2023).

[26] Manu Joseph. PyTorch Tabular: A Framework for Deep Learning with
Tabular Data. arXiv:2104.13638 [cs]. Apr. 2021. DOI: 10.48550/arXiv.
2104 . 13638. URL: http : / / arxiv . org / abs / 2104 . 13638 (visited on
21/03/2023).

[27] Hanna Kallio et al. ‘Systematic methodological review: devel-
oping a framework for a qualitative semi-structured interview
guide’. en. In: Journal of Advanced Nursing 72.12 (2016). _eprint: ht-
tps://onlinelibrary.wiley.com/doi/pdf/10.1111/jan.13031, pp. 2954–
2965. ISSN: 1365-2648. DOI: 10 . 1111 / jan . 13031. URL: https : / /
onlinelibrary . wiley . com / doi / abs / 10 . 1111 / jan . 13031 (visited on
19/04/2023).

86

https://doi.org/10.1145/3201898
https://doi.org/10.1145/3201898
https://dl.acm.org/doi/10.1145/3201898
https://doi.org/10.2174/1874107X00701010001
https://doi.org/10.2174/1874107X00701010001
https://benthamopen.com/ABSTRACT/TOSEJ-1-1
https://benthamopen.com/ABSTRACT/TOSEJ-1-1
https://doi.org/10.1109/IEEESTD.1990.101064
https://docs.immuneml.uio.no/latest/developer_docs.html
https://wiki.python.org/moin/IntegratingPythonWithOtherLanguages
https://wiki.python.org/moin/IntegratingPythonWithOtherLanguages
https://doi.org/10.7759/cureus.864
https://www.cureus.com/articles/5127-how-to-conduct-a-systematic-review-a-narrative-literature-review
https://www.cureus.com/articles/5127-how-to-conduct-a-systematic-review-a-narrative-literature-review
https://www.cureus.com/articles/5127-how-to-conduct-a-systematic-review-a-narrative-literature-review
https://doi.org/10.1007/978-3-319-10632-8
http://link.springer.com/10.1007/978-3-319-10632-8
https://doi.org/10.48550/arXiv.2104.13638
https://doi.org/10.48550/arXiv.2104.13638
http://arxiv.org/abs/2104.13638
https://doi.org/10.1111/jan.13031
https://onlinelibrary.wiley.com/doi/abs/10.1111/jan.13031
https://onlinelibrary.wiley.com/doi/abs/10.1111/jan.13031

[28] Vigdis By Kampenes et al. ‘A systematic review of quasi-experiments
in software engineering’. en. In: Information and Software Technology.
Special Section - Most Cited Articles in 2002 and Regular Research
Papers 51.1 (Jan. 2009), pp. 71–82. ISSN: 0950-5849. DOI: 10.1016/j .
infsof.2008.04.006. URL: https://www.sciencedirect.com/science/article/
pii/S0950584908000670 (visited on 12/04/2023).

[29] Parampreet Kaur, Jill Stoltzfus and Vikas Yellapu. ‘Descriptive
statistics’. en. In: International Journal of Academic Medicine 4.1 (2018),
p. 60. ISSN: 2455-5568. DOI: 10.4103/IJAM.IJAM_7_18. URL: http:
/ /www . ijam - web . org / text . asp ? 2018/4/1/60/230853 (visited on
13/05/2023).

[30] Felipe da Veiga Leprevost et al. ‘On best practices in the development
of bioinformatics software’. In: Frontiers in Genetics 5 (2014). ISSN:
1664-8021. URL: https://www.frontiersin.org/articles/10.3389/fgene.
2014.00199 (visited on 03/05/2023).

[31] ml-jku/DeepRC: DeepRC: Immune repertoire classification with attention-
based deep massive multiple instance learning. en. URL: https://github.
com/ml-jku/DeepRC (visited on 14/05/2023).

[32] Jürgen Münch et al. Software Process Definition and Management. The
Fraunhofer IESE Series on Software and Systems Engineering. Berlin,
Heidelberg: Springer, 2012. ISBN: 978-3-642-24290-8 978-3-642-24291-
5. DOI: 10.1007/978-3-642-24291-5. URL: http://link.springer.com/10.
1007/978-3-642-24291-5 (visited on 17/04/2023).

[33] Sri Manikanta Palakollu. ‘Interprocess Communication’. en. In:
Practical System Programming with C: Pragmatic Example Applications
in Linux and Unix-Based Operating Systems. Ed. by Sri Manikanta
Palakollu. Berkeley, CA: Apress, 2021, pp. 165–214. ISBN: 978-1-4842-
6321-1. DOI: 10.1007/978-1-4842-6321-1_6. URL: https://doi.org/10.
1007/978-1-4842-6321-1_6 (visited on 05/04/2023).

[34] Milena Pavlović et al. ‘The immuneML ecosystem for machine
learning analysis of adaptive immune receptor repertoires’. en. In:
Nature Machine Intelligence 3.11 (Nov. 2021). Number: 11 Publisher:
Nature Publishing Group, pp. 936–944. ISSN: 2522-5839. DOI: 10 .
1038/s42256- 021- 00413- z. URL: https ://www.nature .com/articles/
s42256-021-00413-z (visited on 09/05/2023).

[35] Ken Peffers et al. ‘A Design Science Research Methodology for
Information Systems Research’. In: Journal of Management In-
formation Systems 24.3 (Dec. 2007). Publisher: Routledge _eprint:
https://doi.org/10.2753/MIS0742-1222240302, pp. 45–77. ISSN: 0742-
1222. DOI: 10.2753/MIS0742- 1222240302. URL: https ://doi .org/10.
2753/MIS0742-1222240302 (visited on 13/05/2023).

[36] Julie Ponto. ‘Understanding and Evaluating Survey Research’. In:
Journal of the Advanced Practitioner in Oncology 6.2 (2015), pp. 168–171.
ISSN: 2150-0878. URL: https ://www.ncbi .nlm.nih.gov/pmc/articles/
PMC4601897/ (visited on 28/04/2023).

87

https://doi.org/10.1016/j.infsof.2008.04.006
https://doi.org/10.1016/j.infsof.2008.04.006
https://www.sciencedirect.com/science/article/pii/S0950584908000670
https://www.sciencedirect.com/science/article/pii/S0950584908000670
https://doi.org/10.4103/IJAM.IJAM_7_18
http://www.ijam-web.org/text.asp?2018/4/1/60/230853
http://www.ijam-web.org/text.asp?2018/4/1/60/230853
https://www.frontiersin.org/articles/10.3389/fgene.2014.00199
https://www.frontiersin.org/articles/10.3389/fgene.2014.00199
https://github.com/ml-jku/DeepRC
https://github.com/ml-jku/DeepRC
https://doi.org/10.1007/978-3-642-24291-5
http://link.springer.com/10.1007/978-3-642-24291-5
http://link.springer.com/10.1007/978-3-642-24291-5
https://doi.org/10.1007/978-1-4842-6321-1_6
https://doi.org/10.1007/978-1-4842-6321-1_6
https://doi.org/10.1007/978-1-4842-6321-1_6
https://doi.org/10.1038/s42256-021-00413-z
https://doi.org/10.1038/s42256-021-00413-z
https://www.nature.com/articles/s42256-021-00413-z
https://www.nature.com/articles/s42256-021-00413-z
https://doi.org/10.2753/MIS0742-1222240302
https://doi.org/10.2753/MIS0742-1222240302
https://doi.org/10.2753/MIS0742-1222240302
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4601897/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4601897/

[37] Jan Pries-Heje, Richard Baskerville and John Venable. ‘Strategies for
Design Science Research Evaluation’. In: ECIS 2008 Proceedings (Jan.
2008). URL: https://aisel.aisnet.org/ecis2008/87.

[38] Mark de Reuver, Carsten Sørensen and Rahul C. Basole. ‘The Digital
Platform: A Research Agenda’. In: Journal of Information Technology
33.2 (June 2018). Publisher: SAGE Publications Ltd, pp. 124–135. ISSN:
0268-3962. DOI: 10.1057/s41265-016-0033-3. URL: https://doi.org/10.
1057/s41265-016-0033-3 (visited on 04/05/2023).

[39] Paula Roberts and Helena Priest. ‘Reliability and validity in re-
search’. In: Nursing standard (Royal College of Nursing (Great Britain) :
1987) 20 (July 2006), pp. 41–5. DOI: 10.7748/ns2006.07.20.44.41.c6560.

[40] S Roopa and MS Rani. ‘Questionnaire Designing for a Survey’.
In: Journal of Indian Orthodontic Society 46.4_suppl1 (Oct. 2012).
Publisher: SAGE Publications India, pp. 273–277. ISSN: 0301-5742.
DOI: 10.5005/jp- journals-10021-1104. URL: https://journals.sagepub.
com/doi/abs/10.5005/jp-journals-10021-1104 (visited on 26/03/2023).

[41] David Saffo, Laura South and Amy Worth. ‘Evaluating Visualization
Styles for Likert Scale Data’. en-us. In: (Nov. 2020). Publisher: OSF.
DOI: 10.17605/OSF.IO/5R28V. URL: https://osf.io/5r28v (visited on
14/05/2023).

[42] Paul T. Shannon et al. ‘The Gaggle: An open-source software system
for integrating bioinformatics software and data sources’. In: BMC
Bioinformatics 7.1 (Mar. 2006), p. 176. ISSN: 1471-2105. DOI: 10.1186/
1471- 2105- 7- 176. URL: https ://doi .org/10.1186/1471- 2105- 7- 176
(visited on 03/05/2023).

[43] Abdulhamit Subasi. Chapter 3: Machine learning techniques. en.
ISBN: 978-0-12-821380-3. URL: https : / / learning . oreilly . com /
library / view / practical - machine - learning / 9780128213803 / xhtml /
B9780128213797000035.xhtml (visited on 14/04/2023).

[44] subprocess — Subprocess management. URL: https://docs.python.org/3/
library/subprocess.html (visited on 09/05/2023).

[45] TensorFlow. URL: https://www.tensorflow.org/ (visited on 21/03/2023).

[46] Tom Tullis and Bill Albert. Measuring the User Experience. English.
Interactive Technologies. https://doi.org/10.1016/C2011-0-00016-9.
Morgan Kaufmann, 2013. ISBN: 978-0-12-415781-1.

[47] John Venable. ‘A framework for design science research activities’.
In: Proceedings of the 2006 Information Resource Management Association
Conference (Jan. 2006), pp. 184–187.

[48] John Venable, Jan Pries-Heje and Richard Baskerville. ‘A Compre-
hensive Framework for Evaluation in Design Science Research’. en.
In: Design Science Research in Information Systems. Advances in The-
ory and Practice. Ed. by Ken Peffers, Marcus Rothenberger and Bill
Kuechler. Lecture Notes in Computer Science. Berlin, Heidelberg:
Springer, 2012, pp. 423–438. ISBN: 978-3-642-29863-9. DOI: 10.1007/
978-3-642-29863-9_31.

88

https://aisel.aisnet.org/ecis2008/87
https://doi.org/10.1057/s41265-016-0033-3
https://doi.org/10.1057/s41265-016-0033-3
https://doi.org/10.1057/s41265-016-0033-3
https://doi.org/10.7748/ns2006.07.20.44.41.c6560
https://doi.org/10.5005/jp-journals-10021-1104
https://journals.sagepub.com/doi/abs/10.5005/jp-journals-10021-1104
https://journals.sagepub.com/doi/abs/10.5005/jp-journals-10021-1104
https://doi.org/10.17605/OSF.IO/5R28V
https://osf.io/5r28v
https://doi.org/10.1186/1471-2105-7-176
https://doi.org/10.1186/1471-2105-7-176
https://doi.org/10.1186/1471-2105-7-176
https://learning.oreilly.com/library/view/practical-machine-learning/9780128213803/xhtml/B9780128213797000035.xhtml
https://learning.oreilly.com/library/view/practical-machine-learning/9780128213803/xhtml/B9780128213797000035.xhtml
https://learning.oreilly.com/library/view/practical-machine-learning/9780128213803/xhtml/B9780128213797000035.xhtml
https://docs.python.org/3/library/subprocess.html
https://docs.python.org/3/library/subprocess.html
https://www.tensorflow.org/
https://doi.org/10.1007/978-3-642-29863-9_31
https://doi.org/10.1007/978-3-642-29863-9_31

[49] John Venable, Jan Pries-Heje and Richard Baskerville. ‘FEDS: a
Framework for Evaluation in Design Science Research’. en. In:
European Journal of Information Systems 25.1 (Jan. 2016), pp. 77–89.
ISSN: 1476-9344. DOI: 10 . 1057/ejis . 2014 . 36. URL: https : //doi . org/
10.1057/ejis.2014.36 (visited on 06/01/2023).

[50] Aditya Venkataraman and Kishore Kumar Jagadeesha. ‘Evaluation
of Inter-Process Communication Mechanisms’. en. In: Architecture 86
(), p. 64. URL: https ://pages .cs .wisc .edu/~adityav/Evaluation_of_
Inter_Process_Communication_Mechanisms.pdf.

[51] Welcome to the immuneML documentation! — immuneML 2.2.4 docu-
mentation. URL: https : / / docs . immuneml . uio . no / latest / index . html
(visited on 12/05/2023).

[52] What is a Container? | Docker. en-US. Nov. 2021. URL: https://www.
docker.com/resources/what-container/ (visited on 09/05/2023).

[53] Michael Widrich et al. Modern Hopfield Networks and Attention for
Immune Repertoire Classification. arXiv:2007.13505 [cs, q-bio, stat]. July
2020. URL: http://arxiv.org/abs/2007.13505 (visited on 12/05/2023).

[54] Roel J. Wieringa. Design Science Methodology for Information Systems
and Software Engineering. en. Berlin, Heidelberg: Springer, 2014. ISBN:
978-3-662-43838-1 978-3-662-43839-8. DOI: 10.1007/978-3-662-43839-
8. URL: https://link.springer.com/10.1007/978-3-662-43839-8 (visited
on 14/05/2023).

[55] Claes Wohlin et al. Experimentation in Software Engineering. en. Berlin,
Heidelberg: Springer, 2012. ISBN: 978-3-642-29043-5 978-3-642-29044-
2. DOI: 10.1007/978-3-642-29044-2. URL: http://link.springer.com/10.
1007/978-3-642-29044-2 (visited on 06/04/2023).

[56] YAML specification — immuneML 2.2.4 documentation. URL: https :
/ / docs . immuneml . uio . no / latest / specification . html (visited on
12/05/2023).

[57] Matthias Zenger. ‘Programming language abstractions for extensible
software components’. eng. PhD thesis. Lausanne: EPFL, 2004. DOI:
10.5075/epfl-thesis-2930.

[58] ZeroMQ. URL: https://zeromq.org/ (visited on 05/04/2023).

[59] Zhi-Hua Zhou. Machine Learning. en. Singapore: Springer, 2021. ISBN:
9789811519666 9789811519673. DOI: 10.1007/978-981-15-1967-3. URL:
https :// link . springer .com/10.1007/978- 981- 15- 1967- 3 (visited on
06/05/2023).

89

https://doi.org/10.1057/ejis.2014.36
https://doi.org/10.1057/ejis.2014.36
https://doi.org/10.1057/ejis.2014.36
https://pages.cs.wisc.edu/~adityav/Evaluation_of_Inter_Process_Communication_Mechanisms.pdf
https://pages.cs.wisc.edu/~adityav/Evaluation_of_Inter_Process_Communication_Mechanisms.pdf
https://docs.immuneml.uio.no/latest/index.html
https://www.docker.com/resources/what-container/
https://www.docker.com/resources/what-container/
http://arxiv.org/abs/2007.13505
https://doi.org/10.1007/978-3-662-43839-8
https://doi.org/10.1007/978-3-662-43839-8
https://link.springer.com/10.1007/978-3-662-43839-8
https://doi.org/10.1007/978-3-642-29044-2
http://link.springer.com/10.1007/978-3-642-29044-2
http://link.springer.com/10.1007/978-3-642-29044-2
https://docs.immuneml.uio.no/latest/specification.html
https://docs.immuneml.uio.no/latest/specification.html
https://doi.org/10.5075/epfl-thesis-2930
https://zeromq.org/
https://doi.org/10.1007/978-981-15-1967-3
https://link.springer.com/10.1007/978-981-15-1967-3

Appendix A

Github repository

Repository for thesis project

https://github.com/osk10/immuneML

Repository for use case 1, Absolut

https://github.com/jskimmeland/Absolut

Repository for use case 2, DeepRC

https://github.com/osk10/DeepRC-usecase

90

https://github.com/osk10/immuneML
https://github.com/osk10/immuneML
https://github.com/jskimmeland/Absolut
https://github.com/jskimmeland/Absolut
https://github.com/osk10/DeepRC-usecase
https://github.com/osk10/DeepRC-usecase

Appendix B

Consent form

91

Consent form for an interview regarding
master thesis project

Contact information
Oskar Lund +47 944 81 537 oskarl@ifi.uio.no
Jørgen Skimmeland +47 900 92 090 jorgeski@ifi.uio.no

Description of the master thesis project
We are two students from the Institute for Informatics at the Faculty of Mathematics and
Natural Sciences, University of Oslo. Under the research group Software Engineering, we
are writing a master thesis about tool integration for the machine learning platform
immuneML. Our supervisors are Antonio Martini and Karthik Shivashankar.

Through the development of an artifact, the project aims to improve the extensibility of a
machine-learning platform.

We wish to invite you to participate in this interview. The goal of the interview is to present
our developed artifact and collect data based on your feedback.

Participation
Participation is voluntary, and you can at any time withdraw from the interview. For our data
collection, we wish to take notes of the interview. The notes will only be reviewed by us and
deleted by 01.06.2023. The participants will be referred to as members of the immuneML
team, not by names.

Consent
I have read and understood the information above, and I agree to participate in this interview

_____________ ____________________________

Place and date Signature

Appendix C

Quasi-experiment Survey Task
A

93

Nettskjema

The form should be anonymous. Show more

immuneML tasks
0 %

Mandatory fields are marked with a star *

Introduction
Our master’s thesis project involves improving the process of extending the immuneML platform, a platform used for
machine learning based analysis and classification of adaptive immune receptors and repertoires. As part of our re-
search, we would like to invite you to participate in performing a task and answer a survey. This will be used to eva-
luate how individuals experience the development process of extending the immuneML platform on a small scale.

This survey consists of three parts:

1. A questionnaire to gather some information about your experience with programming, immuneML, and machine
learning.

2. A task to extend the immuneML platform.
3. A questionnaire that asks about your experience in performing the task.

You should not spend more than 1 hour in total, and there is no requirement for you to have finished the task. We re-
commend you have 10 minutes to answer the final questionnaire.

Your participation in this survey is highly appreciated, and all responses will be kept strictly
confidential. The survey responses will be deleted by 1. June 2023.

Next page

Responsible for the form:
oskarl@uio.no

TERMS

Privacy and terms of service
Cookies
Accessibility statement (in Norwegian only)

NETTSKJEMA IS DEVELOPED AND DESIGNED BY

University of Oslo

Nettskjema

Nettskjema

The form should be anonymous. Show more

immuneML tasks
20 %

Mandatory fields are marked with a star *

Participant information
What is your task? *

Before this survey, you should have been informed of which task you will solve.

What is your experience in programming? *

What is your experience in Python? *

What is your experience in machine learning? *

Task A

Task B

No experience

Beginner

Some experience

Intermediate

Advanced

No experience

Beginner

Some experience

Intermediate

Advanced

No experience

Beginner

Some experience

Intermediate

Advanced

What is your experience with immuneML? *

Previous page Next page

Responsible for the form:
oskarl@uio.no

TERMS

Privacy and terms of service
Cookies
Accessibility statement (in Norwegian only)

NETTSKJEMA IS DEVELOPED AND DESIGNED BY

University of Oslo

No experience

Beginner

Some experience

Intermediate

Advanced

Nettskjema

Nettskjema

The form should be anonymous. Show more

immuneML tasks
40 %

Mandatory fields are marked with a star *

Installment
If you have not installed immuneML we ask you to follow these
instructions: https://docs.immuneml.uio.no/latest/developer_docs/install_for_development.html#set-up-immuneml-
for-development

Task preparation
Before you can start the task you will have to download some resources.

1. Download zip: https://drive.google.com/file/d/1vZ8AgV-T8uiq3drf32yjqOg6z1mtz2h7/view?usp=share_link
2. Unzip, and place the “task_resources” folder somewhere so you are easily able to find it later.

The folder contains:

dataset - a folder containing a metadata file and repertoires
specs.yaml - a YAML specification file
code_method.txt - file containing code that will be used in the task

Setup finished
The setup is now finished, and you can go ahead with the task. You will later be asked to estimate the time used on
the task, and should now start tracking your time.

Previous page Next page

Responsible for the form:
oskarl@uio.no

TERMS

Privacy and terms of service
Cookies

Nettskjema

Nettskjema

The form should be anonymous. Show more

immuneML tasks
60 %

Mandatory fields are marked with a star *

Task description
As a developer, you want to use a new machine learning method with immuneML. You already have an implementa-
tion of a logistic regression method and want to integrate it with immuneML. In this task, you will extend the immu-
neML platform by adding the new machine-learning method and run an analysis in immuneML using this method.

Instructions
Part 1 - add a new machine learning method to immuneML
1. Open the immuneML project in PyCharm (or any other code editor).
2. Add a new Python file called “NewLogisticRegression” to the package ml_methods.
3. From the downloaded resources folder: copy the content from the file “code_method.txt”.

This file contains the class NewLogisticRegression with an implemented logistic regression ml method using
the Scikit-learn framework.

4. Paste the content into the new file “NewLogisticRegression”.

You have now extended immuneML with a new ML method. In the next part, you will run an analysis using this
method.

Part 2 - run an analysis in immuneML with your new machine-learning method

Analyses in immuneML are specified through a YAML specification file with a fixed structure of nested key-value
pairs. Depending on the specification, immuneML can execute different tasks, such as training ML models. In the
resources folder, a partially filled YAML file is available, which needs to be edited to work with your new method.

1. From the downloaded resources folder: Open the file “specs.yaml” in a code editor.
2. The YAML file requires you to fill in both the definitions and instructions sections. Specify the new ML method by

editing the unfinished YAML file
1. In the “definitions”-section: define the method
2. In the “instructions”-section: add the method to the “my_training_instruction”

Documentation on how to fill in a YAML file: https://github.com/osk10/immuneML/blob/dev/YAML-instruc-
tions-taskA.md

3. Save the edited file and run the analysis using the following steps:
1. Through the command line, activate the virtual environment where immuneML is available.
2. Through the command line, navigate to the downloaded folder “task_resources” where ”specs.yaml" is

located.
3. Run this command: immune-ml specs.yaml ./analysis_results/

This command will run immuneML with the YAML specification file, and save the analysis results in a
folder generated by immuneML

4. You have successfully completed this task when the final output is “ImmuneML: finished analysis.”

You have now extended immuneML with a new machine-learning method. Please take note of your time and go to
the next page!

Nettskjema

The form should be anonymous. Show more

immuneML tasks
80 %

Mandatory fields are marked with a star *

Task questionnaire
Were you able to finish the task? *

Approximately how many minutes did you spend on preparation before starting the task? *

Approximately how many minutes did you spend on doing the task? *

Task description

Yes

No

I understood the purpose of the
task *

The task description was clear *

Strongly
disagree Disagree

Neither
agree nor
disagree
(neutral) Agree

Strongly
agree

Development process

This section is about how you experienced the process of extending immuneML with a new machine learning
method

YAML file

This section is about how you experienced filling in the YAML file.

Was there any parts of extending immuneML that was confusing or difficult? *

It was easy to follow the step-by-
step guide for the task *

I understood how to add the new
machine-learning method *

It was easy to add the new machi-
ne-learning method *

I understood how to run the analysis
 *

It was easy to run the analysis *

The process of extending immu-
neML was uncomplicated *

I am satisfied with the process of
extending immuneML *

I understood what the YAML file
was used for *

I understood the structure of the
YAML file *

I understood where to fill in the ne-
cessary fields in the YAML file *

The YAML file was uncomplicated *

Strongly
disagree Disagree

Neither
agree nor
disagree
(neutral) Agree

Strongly
agree

Strongly
disagree Disagree

Neither
agree nor
disagree
(neutral) Agree

Strongly
agree

Was there any parts of working with the YAML specification file that was confusing or difficult? *

Do you have any other comments on how you interpreted the process of extending
immuneML? *

Previous page Send

Responsible for the form:
oskarl@uio.no

TERMS

Privacy and terms of service
Cookies
Accessibility statement (in Norwegian only)

NETTSKJEMA IS DEVELOPED AND DESIGNED BY

University of Oslo

Nettskjema

Appendix D

Quasi-experiment Survey Task
B

102

Nettskjema

The form should be anonymous. Show more

immuneML tasks
0 %

Mandatory fields are marked with a star *

Introduction
Our master’s thesis project involves improving the process of extending the immuneML platform, a platform used for
machine learning based analysis and classification of adaptive immune receptors and repertoires. As part of our re-
search, we would like to invite you to participate in performing a task and answer a survey. This will be used to eva-
luate how individuals experience the development process of extending the immuneML platform on a small scale.

This survey consists of three parts:

1. A questionnaire to gather some information about your experience with programming, immuneML, and machine
learning.

2. A task to extend the immuneML platform.
3. A questionnaire that asks about your experience in performing the task.

You should not spend more than 1 hour in total, and there is no requirement for you to have finished the task. We re-
commend you have 10 minutes to answer the final questionnaire.

Your participation in this survey is highly appreciated, and all responses will be kept strictly
confidential. The survey responses will be deleted by 1. June 2023.

Next page

Responsible for the form:
oskarl@uio.no

TERMS

Privacy and terms of service
Cookies
Accessibility statement (in Norwegian only)

NETTSKJEMA IS DEVELOPED AND DESIGNED BY

University of Oslo

Nettskjema

Nettskjema

The form should be anonymous. Show more

immuneML tasks
20 %

Mandatory fields are marked with a star *

Participant information
What is your task? *

Before this survey, you should have been informed of which task you will solve.

What is your experience in programming? *

What is your experience in Python? *

What is your experience in machine learning? *

Task A

Task B

No experience

Beginner

Some experience

Intermediate

Advanced

No experience

Beginner

Some experience

Intermediate

Advanced

No experience

Beginner

Some experience

Intermediate

Advanced

What is your experience with immuneML? *

Previous page Next page

Responsible for the form:
oskarl@uio.no

TERMS

Privacy and terms of service
Cookies
Accessibility statement (in Norwegian only)

NETTSKJEMA IS DEVELOPED AND DESIGNED BY

University of Oslo

No experience

Beginner

Some experience

Intermediate

Advanced

Nettskjema

Nettskjema

The form should be anonymous. Show more

immuneML tasks
40 %

Mandatory fields are marked with a star *

Installment
You will be using a new version of immuneML, which you will have to install before starting the task.

Download
1. Download zip file of the project by clicking this link https://github.com/osk10/immuneML/tree/workshop
2. Unzip, and place the folder somewhere so you are easily able to find it later.

Installation

1. Create a new Python virtual environment and activate it.

Use your preferred solution for handling virtual environments. Below are resources for setting up virtual
environments.

2. Through the command line, navigate to the downloaded immuneML folder.

3. Install immuneML by running these commands:

pip install -r requirements.txt

pip install -e .

Virtual environments resources:

Venv

Documentation: https://docs.python.org/3.8/library/venv.html

Conda

Documentation: https://conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html

1. Create a new virtual environment for the project by running this command. (Replace <env_name> with an optio-
nal name)

conda create -n <env_name> python=3.8

2. Activate the virtual environment by running this command:

conda activate <env_name>

Task preparation

Before you can start the task you will have to download some resources.

1. Download zip: https://drive.google.com/file/d/1_QKR4IaPlpKbQHifvT168HFRD70uiQxX/view?usp=share_link
2. Unzip, and place the “task_resources” folder somewhere so you are easily able to find it later.

The folder contains:

dataset - a folder containing a metadata file and repertoires
specs.yaml - a YAML specification file
code_method.txt - file containing code that will be used in the task
code_connection.txt - file containing code that will be used in the task

Setup finished
The setup is now finished, and you can go ahead with the task. You will later be asked to estimate the time used on
the task, and should now start tracking your time.

Previous page Next page

Responsible for the form:
oskarl@uio.no

TERMS

Privacy and terms of service
Cookies
Accessibility statement (in Norwegian only)

NETTSKJEMA IS DEVELOPED AND DESIGNED BY

University of Oslo

Nettskjema

Nettskjema

The form should be anonymous. Show more

immuneML tasks
60 %

Mandatory fields are marked with a star *

Task description
As a developer, you want to use a new machine learning method with immuneML. You already have an implementa-
tion of a logistic regression method and want to use it with immuneML. The new version of immuneML has a pro-
gramming interface, that facilitates the integration of external tools. By using this programming interface, you will ex-
tend immuneML with the new machine learning method located outside the platform, and use it as part of an
analysis.

Instructions

Part 1 - extend the immuneML platform with a new method tool
1. Create a new folder / Python project that will contain your code
2. Open the folder in PyCharm (or any other code editor).
3. Create a new Python file in the folder/project named “MyMethod”
4. From the downloaded resources folder: Copy the content from the file “code_method.txt”.
5. Paste the content into “MyMethod”.

1. This file contains an implementation of the ML method logistic regression.
6. To connect your project to immuneML's interface, you have to add a new Python file that will serve as the con-

nection point to immuneML.
1. Create a new Python file in the folder/project named “main”
2. From the downloaded resources folder: Copy the content from the file “code_connection.txt”.

This file contains an implementation to communicate with the immuneML platform.
3. Paste the content into “main”

You have now created a ML method tool outside of immuneML with a file to connect with the immuneML platform. In
the next part, you will run an analysis with this tool.

Part 2 - run immuneML with your tool

Analyses in immuneML are specified through a YAML specification file with a fixed structure of nested key-value
pairs. Depending on the specification, immuneML can execute different tasks, such as training ML models. In the
resources folder, a partially filled YAML file is available, which needs to be edited to work with your tool.

1. From the downloaded resources folder: Open the file “specs.yaml” in a code editor.
2. The YAML file requires you to fill in the definitions, instructions and tools-sections. Specify the new ML method

by editing the unfinished YAML file
1. In the "tool"-section: define the tool
2. In the “definitions”-section: define the method
3. In the “instructions”-section: add the method to the “my_training_instruction”

Documentation on how to fill in a YAML file: https://github.com/osk10/immuneML/blob/dev/YAML-instruc-
tions-taskB.md

3. Save the edited file and run the analysis using the following steps:
1. Through the command line, activate the virtual environment where immuneML is available.
2. Through the command line, navigate to the downloaded folder “task_resources” where ”specs.yaml" is

located.
3. Run this command: immune-ml specs.yaml ./analysis_results/

This command will run immuneML with the YAML specification file, and save the analysis results in a
folder generated by immuneML

4. You have successfully completed this task when the final output is “ImmuneML: finished analysis.”

You have now extended immuneML with a new machine-learning method tool. Please take note of your time and go
to the next page!

Previous page Next page

Responsible for the form:
oskarl@uio.no

TERMS

Privacy and terms of service
Cookies

Nettskjema

Nettskjema

The form should be anonymous. Show more

immuneML tasks
80 %

Mandatory fields are marked with a star *

Task questionnaire
Were you able to finish the task? *

Approximately how many minutes did you spend on preparation before starting the task? *

Approximately how many minutes did you spend on doing the task? *

Task description

Yes

No

I understood the purpose of the
task *

The task description was clear *

Strongly
disagree Disagree

Neither
agree nor
disagree
(neutral) Agree

Strongly
agree

Development process

This section is about how you experienced the process of extending immuneML with a new machine learning
method

YAML file

This section is about how you experienced filling in the YAML file.

Was there any parts of extending immuneML that was confusing or difficult? *

It was easy to follow the step-by-
step guide for the task *

I understood how to add the new
machine-learning method *

It was easy to add the new machi-
ne-learning method *

I understood how to run the analysis
 *

It was easy to run the analysis *

The process of extending immu-
neML was uncomplicated *

I am satisfied with the process of
extending immuneML *

I understood what the YAML file
was used for *

I understood the structure of the
YAML file *

I understood where to fill in the ne-
cessary fields in the YAML file *

The YAML file was uncomplicated *

Strongly
disagree Disagree

Neither
agree nor
disagree
(neutral) Agree

Strongly
agree

Strongly
disagree Disagree

Neither
agree nor
disagree
(neutral) Agree

Strongly
agree

Was there any parts of working with the YAML specification file that was confusing or difficult? *

Do you have any other comments on how you interpreted the process of extending
immuneML? *

Previous page Send

Responsible for the form:
oskarl@uio.no

TERMS

Privacy and terms of service
Cookies
Accessibility statement (in Norwegian only)

NETTSKJEMA IS DEVELOPED AND DESIGNED BY

University of Oslo

Nettskjema

Appendix E

Absolut Survey

113

Nettskjema

The form should be anonymous. Show more

immuneML Absolut
0 %

Mandatory fields are marked with a star *

Introduction
Our master’s thesis project involves how extending the immuneML platform can be improved. immuneML is a plat-
form used for machine learning-based analysis and classification of adaptive immune receptors and repertoires. An
essential part of this project is to enable running tools written in different programming languages with immuneML.
As part of our research, we would like to invite you to participate in performing a task and answer a survey. This will
be used to evaluate how individuals experience using external tools with immuneML.

This survey consists of three parts:

1. A questionnaire to gather some information about your experience with programming, immuneML, and machine
learning.

2. A task to run immuneML with an external tool
3. A questionnaire that asks about your experience in performing the task.

You should not spend more than 1 hour in total, and there is no requirement for you to have finished the task. We re-
commend you have 10 minutes to answer the final questionnaire.

Your participation in this survey is highly appreciated, and all responses will be kept strictly
confidential. The survey responses will be deleted by 1. June 2023.

Next page

Responsible for the form:
jorgeski@uio.no

TERMS

Privacy and terms of service
Cookies
Accessibility statement (in Norwegian only)

NETTSKJEMA IS DEVELOPED AND DESIGNED BY

University of Oslo

Nettskjema

Nettskjema

The form should be anonymous. Show more

immuneML Absolut
20 %

Mandatory fields are marked with a star *

Participant information
What is your experience in programming? *

What is your experience in Python? *

What is your experience in machine learning? *

No experience

Beginner

Some experience

Intermediate

Advanced

No experience

Beginner

Some experience

Intermediate

Advanced

No experience

Beginner

Some experience

Intermediate

Advanced

What is your experience with immuneML? *

Previous page Next page

Responsible for the form:
jorgeski@uio.no

TERMS

Privacy and terms of service
Cookies
Accessibility statement (in Norwegian only)

NETTSKJEMA IS DEVELOPED AND DESIGNED BY

University of Oslo

No experience

Beginner

Some experience

Intermediate

Advanced

Nettskjema

Nettskjema

The form should be anonymous. Show more

immuneML Absolut
40 %

Mandatory fields are marked with a star *

Installment
In this task, you will be using a modified version of immuneML. This must be downloaded before you can continue
with the task.

Download
1. Download the zip file of the project by following this link https://github.com/osk10/immuneML/tree/preprocessing
2. Unzip and place the folder somewhere so you can easily find it later.

Installation

The version of immuneML you have downloaded is directed toward further development. As a result, you will have to
follow a few steps to prepare immuneML. To be able to run immuneML, it is required that you use Python version
3.8. immuneML also requires several dependencies to be downloaded. To make sure all of these requirements are
satisfied, you will set up a virtual environment following these steps:

1. Create a new Python virtual environment and activate it.

Use your preferred solution for handling virtual environments. Below are resources for setting up virtual
environments.

2. Through the command line, navigate to the downloaded immuneML folder.

3. Once inside the immuneML folder, install immuneML by running these commands:

pip install -r requirements.txt

pip install -e .

Virtual environments resources:

Venv

Documentation: https://docs.python.org/3.8/library/venv.html

Conda

Documentation: https://conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html

1. Create a new virtual environment for the project by running this command. (Replace <env_name> with an optio-
nal name)

conda create -n <env_name> python=3.8

2. Activate the virtual environment by running this command:

conda activate <env_name>

Setup finished
The setup is now finished, and you can go ahead with the task. You will later be asked to estimate the time used on
the task, and should now start tracking your time.

Previous page Next page

Responsible for the form:
jorgeski@uio.no

TERMS

Privacy and terms of service
Cookies
Accessibility statement (in Norwegian only)

NETTSKJEMA IS DEVELOPED AND DESIGNED BY

University of Oslo

Nettskjema

Nettskjema

The form should be anonymous. Show more

immuneML Absolut
60 %

Mandatory fields are marked with a star *

Task description
As a user, you want to use immuneML to generate a dataset, preprocess it and export it. To preprocess the dataset,
you want to use an external program called Absolut. To do this, you will be using a new version of immuneML with a
programming interface that facilitates the integration of external tools. More specifically:

1. You will use a dataset called "RandomSequenceDataset" which is a dataset generated by immuneML that consi-
sts of random sequences.

2. Preprocessing in immuneML consists of modifying a dataset before it is further used. You will be using Absolut
for this to add additional data to the dataset.

3. To perform these actions with immuneML, you will fill in a YAML specification file. These files are used to specify
what analysis immuneML should perform. In other words, they are used to specify what you will do in
immuneML

Part 1 - set up Absolut to run with immuneML

To use Absolut to preprocess a dataset, you will first have to download the software and then make it runnable. To
download and make Absolut runnable, you will have to follow these steps:

1. Download the zip file called "Absolut.zip" using this link: https://drive.google.com/drive/folders/1qoq0jsLoPgXxs-
EUvmP5--tU7wvGqwN9q

2. Unzip the downloaded file and locate it somewhere that is easy to find later
3. Open a terminal on your computer and navigate to where you have saved Absolut
4. To make Absolut runnable, navigate to the folder called "immuneML_interface. This folder contains a file that

must be turned into an executable. Follow the navigation below:
1. Absolut --> Absolut-main --> src --> immuneML_interface

5. Once inside the folder immuneML_interface, run the command "make" in your terminal
Absolut is written in C++, and when downloading it, Absolut has not been compiled yet. By running this
command, you will compile the source code and produce an executable. This executable is responsible for
communication with immuneML.

6. Once compiling is done, you will have an executable called "AbsolutNoLib". You will use the path to this file
when filling in a YAML file in part 3.

You have now downloaded Absolut and made it runnable.

Part 2 - download YAML specification file

Before running immuneML, you must create a YAML file to specify an analysis that immuneML will perform. You will
be downloading a partially filled-in YAML file based on the documentation. This will already contain the specification
for generating a dataset. To download it, follow these two steps:

1. Located in the same link you used to download Absolut, download the file called "specs.yaml"
2. Move the file to a location that you will easily find later

Part 3 - run immuneML with Absolut

You now want to generate a dataset in immuneML and use Absolut to preprocess it before exporting it. To do this,
you have to fill in the YAML specification file provided, where your main task will be to define the tool section. This is
necessary for immuneML to know what to do when running. To understand how the YAML file is specified, follow the
documentation: Link to documentation

1. Open the downloaded specs.yaml file in an editor (such as PyCharm or VScode)
2. The YAML file requires you to fill in the definitions, instructions, and tools sections:

1. In the "tools"-section: define the tool
1. When defining a tool, a path to the file used to communicate with immuneML is required. Make sure to

add the entire path to the executable located in Absolut that immuneML must communicate with.
2. Make sure to define the tooltype as "PreprocessorTool"
3. External tools can require certain parameters to be specified. In this case, Absolut requires you to de-

fine parameters under the "params" section. These are as follows:
option: repertoire
antigen: 1FBI
threads: 3

2. In the “definitions”-section: define the preprocessor
3. In the “instructions”-section: specify the preprocessing sequence you will be using

3. Save the YAML file. To run immuneML, you will now have to follow these steps:
1. Through the command line, activate the virtual environment where immuneML is available (the virtual en-

vironment that you created for immuneML)
2. Through the command line, navigate to the folder where you saved the YAML file you downloaded and filled

in
3. To run immuneML, you must run this command: immune-ml specs.yaml ./analysis_results/

By running the command, you run immuneML with the specified YAML file you created.
"./analysis_results/" is a folder immuneML creates at runtime to store the data it produces.

You have successfully generated a dataset in immuneML and preprocessed it with the software Absolut when the fi-
nal output is “ImmuneML: finished analysis.”

Previous page Next page

Responsible for the form:
jorgeski@uio.no

TERMS

Privacy and terms of service
Cookies
Accessibility statement (in Norwegian only)

NETTSKJEMA IS DEVELOPED AND DESIGNED BY

University of Oslo

Nettskjema

Nettskjema

The form should be anonymous. Show more

immuneML Absolut
80 %

Mandatory fields are marked with a star *

Task questionnaire
Were you able to finish the task? *

Approximately how many minutes did you spend on preparation before starting the task? *

Approximately how many minutes did you spend on doing the task? *

Task description

Yes

No

I understood the purpose of the
task *

The task description was clear *

Strongly
disagree Disagree

Neither
agree nor
disagree
(neutral) Agree

Strongly
agree

Process

This section is about how you experienced using an external tool to preprocess a dataset

YAML file

This section is about how you experienced filling in the YAML file.

Was there any parts of the process that was confusing or difficult? *

Was there any parts of working with the YAML specification file that was confusing or difficult? *

It was easy to follow the step-by-
step guide for the task *

It was easy to run immuneML with
an external tool *

The process of running immuneML
with an external tool was
uncomplicated

I am satisfied with the process of
running immuneML with an external
tool

I understood what the YAML file
was used for *

I understood the structure of the
YAML file *

I understood where to fill in the ne-
cessary fields in the YAML file *

The YAML file was uncomplicated *

Strongly
disagree Disagree

Neither
agree nor
disagree
(neutral) Agree

Strongly
agree

Strongly
disagree Disagree

Neither
agree nor
disagree
(neutral) Agree

Strongly
agree

Do you have any other comments on how you interpreted using an external tool with
immuneML? *

Previous page Send

Responsible for the form:
jorgeski@uio.no

TERMS

Privacy and terms of service
Cookies
Accessibility statement (in Norwegian only)

NETTSKJEMA IS DEVELOPED AND DESIGNED BY

University of Oslo

Nettskjema

Appendix F

Interview guide

124

Interview guide 1

Interview guide
Goal

This interview aims to get feedback on our artifact from the developers of immuneML.

1. Technical

a. Consent form

2. Project description

a. Context

b. Objectives

3. Process flows

a. Developers

b. Users

4. Architecture

a. General architecture description

b. Interface architecture

5. Communication

a. Connection script

b. Technology

c. Data types

6. YAML structure

a. Structure

b. Naming convention

7. Wrap-up

a. End the interview

Appendix G

Communication solution -
notes

Message
libraries

Benefits Drawbacks

ZeroMQ
• Universal: API’s for

“all” programming lan-
guages and operating
systems.

• Simple implementa-
tion, supports different
messaging patterns and
transports.

• Backed by a large and
active community.

• Dependent on third-
party tool.

RabbitMQ
• Provides more robust

features for reliable
messaging, such as
message acknowledg-
ments, persistence, and
guaranteed delivery.

• Active community with
a lot of resources avail-
able

• Relatively high com-
plexity - steep learning
curve for developers

• Can introduce per-
formance overhead
compared to more
lightweight messaging
technologies such as
ZeroMQ Can consume
a lot of memory and
CPU resources

• Steep learning curve for
developers

126

gPRC
• Universal: API’s for

“all” programming lan-
guages and operating
systems. Can use pro-
tocol buffers (serializ-
ing structured data -
like JSON but smal-
ler and faster and gen-
erates native language
bindings.

• Cross language com-
patible. Fast parsing)
Uses Interface Defini-
tion Language (IDL) to
describe the service in-
terface and the struc-
ture of the payload.

• Seems more complex to
implement and use.

• Must define how data
has to be structured,
Not ideal since we do
not know data structure
of all functions (e.g. ml
method may be differ-
ent based on method
type?)

AMP - Asyn-
chronous
Messaging
Protocol

• Implementation in a
number of program-
ming languages.

• Requests and responses
are collections of un-
ordered key/value
pairs. Keys are strings
and pairs can be Stand-
ard Data Types(integer,
boolean, text, etc.) that
is common in program-
ming languages (or
other serializations)

• Only Python imple-
mentation of tool seems
active and widely used.

127

Apache Thrift
• Universal: API’s for

“all” programming lan-
guages and operating
systems.

• Similar to gPRC - uses
a schema to define
interface and functions
that automatically
creates code in dif-
ferent programming
languages.

• We are able to provide
skeleton code for our
interface with correct
types and functions.
The developer must
only add the function-
ality for each function.

• Seems more complex to
implement and use.

Table G.1: Notes from the process of selecting communication solution

128

Appendix H

YAML file structure

Figure H.1: The overall structure of the YAML specification from immun-
eML documentation [56].

129

Appendix I

Blueprints

Python

import zmq
import sys

def main():
port_number = sys.argv[1]

Bind to ZeroMQ socket
context = zmq.Context()
socket = context.socket(zmq.REP)
socket.bind("tcp://*:" + port_number)

Wait for a message from immuneML
socket_recv_json()

Send an acknowledgment message back.
socket.send_json("{}")

program_parameters = socket.recv_json()

---------- Add functionality here ----------

--

Send final response
socket.send_json("{}")

if __name__ == "__main__":
main()

130

C++

#include <iostream>
#include <zmq.hpp>

int main() {

std::string port_number = argv[1];

zmq::context_t context{1};
zmq::socket_t socket{context, zmq::socket_type::rep};
port_number = "tcp://*:" + port_number;
socket.bind(port_number);

// Wait for message from immuneML
zmq::message_t message_1;
socket.recv(&message_1);

// Send an acknowledgement message back
zmq::message response_1;
socket.send(response_1);

// Receive the parameters
zmq::message message_2;
socket.recv(&message_2);

---------- Add functionality here ----------

--

zmq::message_t final_response;
socket.send(final_response);

return 0;
}

131

Java

import org.zeromq.SocketType;
import org.zeromq.ZContext;
import org.zeromq.ZMQ;
import org.zeromq.ZMQ.Socket;

public class Main {
public static void main(String[] args) {

String portNumber = args[0];

// Bind to ZeroMQ socket
ZContext context = new ZContext();
Socket socket = context.createSocket(SocketType.REP);
socket.bind("tcp://*:" + portNumber);

// Wait for a message from immuneML
socket.recvJson();

// Send an acknowledgment message back.
socket.sendJson("{}");

String programParameters = socket.recvJson();

// ---------- Add functionality here ----------

// --

// Send final response
socket.sendJson("{}");

// Clean up ZeroMQ resources
socket.close();
context.close();

}
}

132

	Introduction
	Structure

	Background
	Context
	immuneML

	Software architecture
	Quality Attributes
	Interface

	Extensibility
	Extensibility mechanisms

	Diversity of programming languages in Bioinformatics
	Machine learning
	Technologies
	Inter-Process Communication
	ZeroMQ
	Software for use cases

	Methodology
	Design Science Research
	Process description
	Problem identification and motivation
	Objectives of solution
	Design and development
	Demonstration
	Evaluation
	Framework for evaluation design
	Selecting evaluation strategy and method

	Communication
	Data collection
	Literature review
	Focus group
	Quasi-Experiment
	Survey with tasks
	Survey
	Semi-structured interview

	Data analysis
	Thematic analysis
	Descriptive analysis

	Iteration 1
	Identify problem and motivation
	Objectives
	Design and development
	Import classes outside the core
	Implement ML frameworks following the current process
	ToolParser and YAML file
	Design sketches

	Evaluation results
	Demonstration
	Prioritization of objectives
	YAML file
	Design sketches
	Use cases

	Iteration 2
	Objectives
	Design and development
	Process changes
	Design decisions
	Use Case 1: Absolut
	Use Case 2: DeepRC

	Evaluation results
	Data collection 1: Quasi-experiment
	Data collection 2: Survey with tasks
	Data collection 3: Semi-structured interview

	Final artifact
	General solution
	Changes to the platform

	Interface package
	Tool components
	Tool table
	Interface controller

	Tool parser
	Communication
	Data types
	Messaging library - ZeroMQ

	Discussion
	RQ1: How can extending a machine learning platform be improved through an interface?
	RQ1.1: How can extending a machine learning platform be simplified through an interface?
	RQ1.2: How can an interface facilitate the integration of tools written in additional programming languages?

	Contributions
	Implications
	Implications for research
	Implications for practice

	The impact of ML in shaping the artifact
	Related work
	Quality of our research
	Validity
	Construct validity
	Internal validity
	External validity
	Conclusion validity
	Reliability

	Research guidelines
	Limitations
	Participants
	Analysis
	Size of quasi-experiment

	Final thoughts
	Future work

	Conclusion
	Github repository
	Consent form
	Quasi-experiment Survey Task A
	Quasi-experiment Survey Task B
	Absolut Survey
	Interview guide
	Communication solution - notes
	YAML file structure
	Blueprints

