
Analyzing the evolution of
Technical Debt together with

DevOps metrics

A quantitative case study using Natural
Language Processing

Daniel Skryseth

Thesis submitted for the degree of
Master in Informatics: Programming and System

Architecture
60 credits

Department of Informatics
Faculty of mathematics and natural sciences

UNIVERSITY OF OSLO

Spring 2022

Analyzing the evolution of
Technical Debt together

with DevOps metrics

A quantitative case study using
Natural Language Processing

Daniel Skryseth

© 2022 Daniel Skryseth

Analyzing the evolution of Technical Debt together with DevOps metrics

http://www.duo.uio.no/

Printed: Reprosentralen, University of Oslo

http://www.duo.uio.no/

Abstract
Background: Technical Debt (TD) is a metaphor for sub-optimal solutions
that are assumed to affect the velocity of software development. It is there-
fore important to understand how it is possible to estimate TD accurately
and then track it, as well as look at how it evolves and is prioritized.

Objective: This thesis aims to quantify TD issues from the sentiment of
developer discussions, which will then be compared with DevOps metrics
to observe how TD correlates with velocity. It will also be looked into how
this approach may make it possible to track technical debt issues over time,
such as how TD issues are prioritized and ultimately resolved.

Method: A quantitative case study has been conducted for this thesis.
Data from Github and Jira were collected from five different open source
projects. Issues from the data are classified based on a sentiment analy-
sis using machine learning for Natural Language Processing (NLP), which
are then related to their corresponding code and followed over time. The
DevOps metrics are also measured from the same data and used together
with the quantified TD in a correlation analysis.

Results: The results show that it is possible to use NLP to classify TD is-
sues from developer discussions. Issues may then also be made relational
so that they can be connected to their corresponding code and discussions
across Jira and Github. The classifier in this thesis outperformed other
similar studies and estimated that TD issues accounted for %10.3 - %17.06
of the issues in the projects. Comparison of open TD issues with velocity
DevOps metrics over time showed meaningful correlations between deploy-
ment frequency and open TD issues, as well as some mixed correlations
between lead time for changes and open TD issues. TD management also
appeared to occur in short-term bursts of high frequencies.

Conclusion: As other studies suggest, quantifying TD issues using NLP
to classify developer discussions can help identify TD issues that may oth-
erwise be difficult to detect with static code analysis. It may also be useful
for keeping track of TD issues in large projects to see how they evolve, be
used for TD prioritization, as well as related to relevant code. However, one
important drawback is that the TD issues are only detected when develop-
ers start discussing them. Lastly, the findings from the correlation analysis
seemed to indicate that open TD issues can have implications for the veloc-
ity of software development if they are not actively managed.

I

Acknowledgements
Writing this master’s thesis has been a challenging and incredibly reward-
ing process. Not only has it made me grow professionally, but also as a
person. I could not have been without the excellent guidance of my super-
visor Antonio Martini, for whom I am immensely grateful. His continuous
support, compassion, patience, and extraordinary expertise are something
that has truly impressed me.

I would also like to extend a special thank you to Doctoral Research Fel-
low Karthik Shivashankar, who has taken the time to help me with guid-
ance. I must also thank fellow master’s student Arsalan Khalid who took
the time to help me verify sample data for the thesis.

Finally, I must express my profound gratitude to my girlfriend Elisabeth
for all her support, patience, encouragement, and love.

Daniel Skryseth
May, 2022

II

Contents

1 Introduction 1

2 Background 4
2.1 Software development life cycle 4
2.2 Open source software . 5
2.3 Technical debt . 6
2.4 DevOps metrics . 8
2.5 Natural language processing 9

2.5.1 Machine learning . 9
2.5.2 Artificial neural networks 10

3 Methodology 11
3.1 Research process . 11
3.2 Data collection . 13

3.2.1 Finding projects . 15
3.2.2 Data extraction . 17

3.3 Detecting TD discussions . 20
3.3.1 Dataset for supervised learning 21
3.3.2 Data cleaning . 27
3.3.3 Multinomial Naı̈ve Bayes 30
3.3.4 Term frequency–inverse document frequency 32
3.3.5 Logistic Regression . 33
3.3.6 Recurrent neural network 34

3.4 Measuring TD and DevOps metrics 38
3.4.1 Calculating issue size . 38
3.4.2 Lead time for changes 42
3.4.3 Deployment frequency 45
3.4.4 Measuring technical debt 47

4 Results 48
4.1 Collected data . 48
4.2 RQ1 quantifying how TD evolves from developer discussions . 51

4.2.1 Using the initial dataset 53
4.2.2 Improving the dataset 54
4.2.3 Machine learning models 56
4.2.4 Recurrent neural network 59

4.3 RQ2 using quantified TD with DevOps metrics to obtain insight 61
4.3.1 Lead time for changes 61

III

4.3.2 Deployment frequency 63
4.3.3 Project size . 64
4.3.4 Deployment frequency line charts 66
4.3.5 Lead time for changes line charts 69
4.3.6 Deployment frequency scatter plots 72
4.3.7 Lead time for changes scatter plots 75

5 Discussion 78
5.1 RQ1 quantifying how TD evolves from developer discussions . 78
5.2 RQ2 using quantified TD with DevOps metrics to obtain insight 81

5.2.1 Lead time for changes correlated with TD 83
5.2.2 Deployment frequency correlated with TD 85
5.2.3 Project size . 86

5.3 Implications for practice . 87
5.4 Implications for research . 88
5.5 Limitations . 89

6 Conclusion 90
6.1 Future work . 91

References 92

A External materials 96

IV

List of Tables

3.1 Open source projects . 16
3.2 New dataset with manually marked issues 26
3.3 Section of issues with raw data 27
3.4 Section of issues with cleaned data 28
3.5 An example of calculating issue size. The “sum size” column

has summarized the S̄ size for the issues found in the “issue”
column. 40

3.6 Snippet of columns from a monthly distribution. 44
3.7 Snippet of columns from a monthly distribution. 46
3.8 Snippet of month with TD issues 47

4.1 Collected data . 48
4.2 Final amount of issues from the OSS projects. 50
4.3 Logistic regression classifications with upsampled initial dataset 53
4.4 Weighted performance metrics from Ozkaya et al. [37]. 54
4.5 Predictions from the logistic regression classification model

using the initial dataset. 54
4.6 Logistic regression classifications with the new dataset. 56
4.7 Naı̈ve Bayes classifications with the new dataset. 56
4.8 Predictions from the logistic regression classification model. . 58
4.9 Top 30 words with highest TF-IDF score. 58
4.10 Classification report for the RNN classification model. 59
4.11 Predictions from the RNN classification model. 60
4.12 Top 30 words from RNN model. 60
4.13 Correlation for lead time for changes. 62
4.14 Correlation for deployment frequency. 63
4.15 Repository size correlated with lead time for changes over time. 65
4.16 Repository size correlated with deployment frequency over

time. 65
4.17 Repository size correlated with technical debt over time. . . . 65

V

List of Figures

3.1 Diagram for the research process 12
3.2 Activity diagram of data extraction process. 17
3.3 Process for creating the dataset used for supervised learning. 21
3.4 Reprinted rubric from Bellomo et al. [8] on how to identify

and classify TD discussions in a system. 22
3.5 Length of text per issue in the initial dataset 25
3.6 Length of text per issue in the final dataset has been in-

creased compared to the initial dataset. 26
3.7 Simple artificial neural network 36
3.8 Simple recurrent neural network 37
3.9 Process for calculating the individual issue sizes based on PRs. 39
3.10 Correlation for the “files changed” variable 41
3.11 Illustration of monthly distribution mi. Issue beginnings Bi

will start at the beginning of a month, but issue endings Ei

(resolved date) doesn’t have to end at the same month. 44

4.1 Multiple PRs for a single Jira issue 49
4.2 Closed PR for a Jira issue that has been marked as fixed . . . 50
4.3 ROC curves for Naı̈ve Bayes and logistic regression 57
4.4 ROC curve for the RNN . 59
4.5 Line chart of deployment frequency and technical debt on a

monthly basis for Beam. N.B., there are two different y-axes. . 66
4.6 Line chart of deployment frequency and technical debt on a

monthly basis for Flink. N.B., there are two different y-axes. . 67
4.7 Line chart of deployment frequency and technical debt on a

monthly basis for Sakai. N.B., there are two different y-axes. . 67
4.8 Line chart of deployment frequency and technical debt on a

monthly basis for Wildfly. N.B., there are two different y-axes. 68
4.9 Line chart of deployment frequency and technical debt on a

monthly basis for Wiredtiger. N.B., there are two different
y-axes. 68

4.10 Line chart of lead time for changes and technical debt on a
monthly basis for Beam. N.B., there are two different y-axes. . 69

4.11 Line chart of lead time for changes and technical debt on a
monthly basis for Flink. N.B., there are two different y-axes. . 70

4.12 Line chart of lead time for changes and technical debt on a
monthly basis for Sakai. N.B., there are two different y-axes. . 70

4.13 Line chart of lead time for changes and technical debt on a
monthly basis for Wildfly. N.B., there are two different y-axes. 71

VI

4.14 Line chart of lead time for changes and technical debt on a
monthly basis for Wiredtiger. N.B., there are two different
y-axes. 71

4.15 Scatter plot of deployment frequency and technical debt on a
monthly basis for Beam. 72

4.16 Scatter plot of deployment frequency and technical debt on a
monthly basis for Flink. 73

4.17 Scatter plot of deployment frequency and technical debt on a
monthly basis for Sakai. 73

4.18 Scatter plot of deployment frequency and technical debt on a
monthly basis for Wildfly. 74

4.19 Scatter plot of deployment frequency and technical debt on a
monthly basis for WiredTiger. 74

4.20 Scatter plot of lead time for changes and technical debt on a
monthly basis for Beam. 75

4.21 Scatter plot of lead time for changes and technical debt on a
monthly basis for Flink. 76

4.22 Scatter plot of lead time for changes and technical debt on a
monthly basis for Sakai. 76

4.23 Scatter plot of lead time for changes and technical debt on a
monthly basis for Wildfly. 77

4.24 Scatter plot of lead time for changes and technical debt on a
monthly basis for WiredTiger. 77

VII

Chapter 1

Introduction

Software quality reflects the quality of software based on how it is designed
to meet structural and functional requirements [12]. Producing software is
often a continuous effort, as software developers usually aim to maintain
their software and facilitate the continuous delivery of new software fea-
tures [46]. Developers who help meet these requirements will typically use
tools such as issue tracking systems and version control systems to support
the various processes involved.

These tools are then commonly used to systematically coordinate the
priorities for the software, which makes them convenient to use for dis-
cussions related to the production and maintenance of software. Previous
studies have found that one of the things discussed within such tools is
Technical Debt (TD) [7, 9, 37]. This addresses software quality directly and
serves as a metaphor for sub-optimal solutions that may benefit developers
in the short term, but at the expense of long-term quality [23].

The causes of TD are underlying problems that are introduced either
deliberately or inadvertently through simple and quick solutions, instead
of choosing optimal approaches [50]. For example, ad-hoc architectural de-
sign, code quality concerns, or other poor design choices. If TD is not fixed
by reworking the software, it is expected to affect the velocity of the soft-
ware development. This includes making it harder or even impossible to
add new features, as well as more difficult to fix the TD in the future [4].

Attempts have been made to measure TD for different scenarios, to ex-
amine how it can be prioritized and managed, and to look at possible conse-
quences that may arise from it [6]. However, previous studies have shown
that research on TD is lacking in certain areas, for example in prioritizing
it [26, 35]. The latter is something that, in terms of needs including fixing
bugs and developing new features, addresses the concern about whether
and when TD should be addressed in a software project.

1

Software practitioners may use other specific tools to help their efforts
improve the quality of their software, and thus make decisions related to
TD prioritization. One of the most widely used tools for prioritizing TD has
been SonarQube, which has been adopted by more than 100,000 organiza-
tions 1. The way a tool like SonarQube works is that it inspects code quality
and security through a statistic analysis, doing so by checking whether the
code complies with a set of known rules.

However, this does not take into account the overall effect that TD may
have, since tools such as SonarQube can only provide a preliminary overview
of the TD through static analysis. There is therefore a greater need to un-
derstand TD further, which includes how it will be possible to more accu-
rately estimate and follow TD issues over time [28]. In this way, it will be
possible to look at how one can relate to the TD in a project, what effects it
has, how it is prioritized, and the resolution of it.

Some studies have looked into additional methods that can be used to
estimate TD more precisely. Lenarduzzi et al. [28] attempted to use a
data-driven approach for estimating TD interest, comparing its relation-
ship with the lead time from resolving Jira issues. The results from this in-
dicated that there is a further need to explore such an approach, by seeing
how data-driven approaches can be used for TD prioritization. Additionally,
this may then also be used as an approach to see how TD correlates with
other aspects of software development such as the velocity.

In another study by Ozkaya et. al [37], Natural Language Processing
(NLP) was used with Machine Learning (ML) to detect TD issues from de-
veloper discussions. In their study, they stated that the approach could
potentially be useful for either understanding or defining TD, such as iden-
tifying TD issues that could otherwise be hard to uncover with static code
analysis alone. However, they went on to conclude that there was a need to
further refine the method, which includes increasing its accuracy so that it
could be used to more accurately quantify TD using NLP.

This thesis aims to explore these limitations further. In this case, by fur-
ther exploring the connection TD has to developer discussions inside issue
tracking systems and version control systems. These discussions may then
be quantified as TD issues using a sentiment analysis with ML for NLP.
Additionally, the issues may also be made relational across the different
systems so that the TD issues can be tracked over time, which may lead to
insight into how TD evolves from developer discussions, as well as provide
an understanding of how it is prioritized and fixed.

1https://www.sonarqube.org/about/

2

After the TD issues have been quantified, they can be analyzed together
with the performance of software development. This thesis will specifically
look at how TD correlates with the velocity of software development, which
has been measured by DevOps metrics [13, 15]. Both the quantified TD
and DevOps metrics will be able to capture the evolutionary processes of a
software project. Studying them together may then reveal insight into how
TD can affect the velocity of software development over time.

The research questions (RQs) for this thesis are defined as the following:

RQ1: How can natural language processing be applied to developer discus-
sions to quantify the evolution of TD?

Rationale: This RQ will try to improve the method from Ozkaya et. al [37].
Particularly by further exploring how natural language processing can be
used to quantify TD from discussions, so that this new measure may be
used with data-driven approaches for TD prioritizations.

RQ2: How can the evolution of TD discussions be analyzed by being corre-
lated with DevOps metrics to provide insight into projects?

Rationale: By using the quantified TD as a data-driven approach with
DevOps metrics, it may give insights into how TD correlates with the per-
formance of software development, such as the velocity.

3

Chapter 2

Background

This chapter presents both the relevant theoretical context and previous
findings, which aims to further explain the objective of this thesis. Firstly,
an introduction to software development life cycles will be given, as this will
affect how software practitioners relate to software development. Secondly,
open source software will be briefly explained, since this is where data from
this thesis will come from. Lastly, an introduction to both technical debt
and natural language processing is presented, as these will be relevant for
the research context of this thesis.

2.1 Software development life cycle
A Software Development Life Cycle (SDLC) is a process used for the produc-
tion and maintenance of high-quality software. Breaking down a software
project into different parts will limit and define descriptive work phases for
a project. This could, for example, include something like a deployment- or
evaluation phase. The final goal of an SDLC is to produce, maintain and
modify software that satisfies customer expectations.

While an SDLC can be unique and adapted for a specific project. It
is most commonly split into phases that can be seen in a whole range of
frequently used models [43]. Each one of these models may be completely
different from the next but, based on the type of project it is used for, capa-
ble of guiding software practitioners and organizations with their projects.
The phases found in any such models usually cover a phase for some sort
of planning and requirements gathering. Then, one phase for designing,
software development, and testing respectively. Finally, one for the deploy-
ment, operations, and maintenance.

Although an SDLC, along with its different phases, may not summarize
a project perfectly. It may serve as a conceptual framework, which can help
visualize how it is possible to tackle problems, allocate workload and re-
sources, as well as prioritize and manage the life cycle of a software project.
There are a plethora of such SDLC models, where each may describe differ-
ent project management methodologies. However, common models include

4

such as the waterfall, spiral, unified process, extreme programming, v, in-
crementing, and agile models [44].

In recent years, agile methodologies, such as Scrum and Kanban, have
become some of the most popular to use [24]. In agile methodologies, even
though they may differ from each other, the development of a project is
feedback-driven and executed in stages (often called iterations). This makes
it possible to deliver software with continuous improvement, which may
sustain a sort of evolutionary development. Making it so that project con-
tributions can be continuously added in different iterations. For example,
by adding new or updating previous features, fixing bugs, and so forth.

This is different from the traditional ones such as the waterfall model,
which will instead have a sequential flow that is completely linear, where
each phase is separated from the other and carried out one after another.
For example, by separating and differentiating between the development
and testing so that one phase may only be started after the first one has
been fully completed.

2.2 Open source software
For this thesis, an SDLC will be a reference to open-source software devel-
opment (OSSD). OSSD is the process of both developing and maintaining
projects that are open-source [47] which may, based on their licenses, also
be referred to as free/open source software (F/OSS). These are projects that
are often based on some sort of agile methodology, and that has made either
part or all of their entire source code freely available.

The latter is usually done by publishing source code and other content
that are related to the F/OSS, so that it can be used, modified, or redis-
tributed. This makes it so that contributors to OSS projects can be part of
an SDLC with an evolutionary development life cycle. Particularly for this
thesis, it will be looked into OSS projects that have made both their issue
tracking system and code repositories available. These two concepts are
further explained in the methodology of this thesis.

5

2.3 Technical debt
As briefly described in the introduction of this thesis, Technical Debt (TD)
is a metaphor for sub-optimal solutions [5]. The definition for TD is “a col-
lection of design or implementation constructs that are expedient in the
short term, but set up a technical context that can make future changes
more costly or impossible” [4, 35]. Similarly to financial debt, it implies
that there is a debt that must be paid. The cost of not repaying the debt
in a system is associated with an interest. For as long as the debt is not
repaid, the interest is expected to grow over time [3].

Reworking technical solutions and repaying the debt is often referred
to as code refactoring, which as implied, is a reference to the process of re-
structuring code. The cost that comes from refactoring is regarded as the
principal [34]. This reflects the cost of refactoring TD based on a certain
amount of issues. For example, components that are tightly coupled, little
to no documentation, or a proper test suite is lacking. Failing to refactor
the TD will have implications for the software in the long term. This in-
cludes, for instance, difficulties when adding new features, and making it
more costly to refactor in the future.

As it was described by its definition, TD can over some short period
provide benefits for software development teams [30]. For example, if a
software team chooses to implement solutions that aren’t optimal to have
a faster time to market. I.e., a development team may find it favorable to
take some TD so that they can deliver a business value faster. Although, as
it also was explained, TD is seen as harmful when taking the medium- to
long-term perspective into consideration. This has made developers believe
that TD has to be actively managed [42].

Some software practitioners may not be aware of TD in their projects,
and hence have no overview of it. Others may be aware of TD and therefore
make notes about it (e.g. comments), which will then make it Self-Admitted
Technical Debt (SATD) [42]. In any case, studies have shown that develop-
ers tend to discuss TD issues regardless of whether it is mentioned explic-
itly or not [37]. Occurrences, where developers may mention TD directly,
can be through phrases such as “technical debt” or alike. Indirectly, devel-
opers may discuss TD without consistently mentioning any related terms.

Typical examples of TD can be found by inspecting code using different
tools [27, 34, 45]. These tools, as was previously explained in the introduc-
tion of this thesis, will then analyze code for a set of known rules. Includ-
ing such as code smells, the complexity of the code (cyclomatic complexity),
coding standards, and more. For example, a tool might crawl a codebase,
analyze the code and offer a complete report on the findings. However, de-
spite a big selection of available tools that uses a wide variety of different
approaches, existing techniques for estimating TD aren’t necessarily ade-
quate to consider the overarching impact of it yet [29].

6

In this thesis, the estimation of TD is quantified by SATD expressed in
developer discussions. To be more precise, discussions from OSS projects.
I.e., there aren’t any tools that are being used to estimate TD in the projects
by looking directly at the code itself. Although, there does already exist a
TD dataset for OSS projects that has analyzed a variety of OSS projects
using SonarQube [25]. Instead, Natural Language Processing (NLP) is
applied to developer discussions, so that discussions can be classified as
having either TD references or not. Regardless of whether that is a direct
reference to TD, or if the discussions don’t seem to mention TD directly.

To be exact, developer discussions that are found in OSS projects on the
platforms Jira and Github. The two will then be linked together through
issue keys related to their issue tracking system, which includes all the dis-
cussions across both platforms. This also makes it so that the discussions
and their relevant code can be related to specific parts of the project.

Exploring and quantifying this relationship between developers’ discus-
sions and TD issues may give rise to new ways of looking at TD prioritiza-
tion. As Ozkaya et. al [37] concluded in their study, NLP can be useful for
both further defining and understanding TD. In their study, NLP was used
with Machine Learning (ML) to estimate the number of TD discussions
from the Chromium OSS project 1. Their work suggested that tracking TD
through developers’ discussions based on issue trackers, such as Jira and
Github, can provide both an effective strategy for monitoring TD in large
projects and TD prioritization. However, their results fell short of forming
a basis of an oracle for this approach, concluding that there was a need for
further refining the method. Including improving the accuracy for classi-
fying TD issues, and improving the feature engineering. The latter is ex-
plained in the section for machine learning in the background of this thesis.

Furthermore, being able to quantify TD in this manner, may then give
information that can provide to be an invaluable method for TD prioriti-
zation. As it may guide decision-making related to allocating resources,
including decisions related to both the development of new features and
refactoring of TD. Considering that the developer discussions may give a
different view of TD in a project, by identifying design concerns that would
otherwise be difficult to pin down. As opposed to code inspection, which
simply inspects the quality of the code itself.

This could, for example, include discussions about architectural design
concerns, suboptimal development choices that have been perceived as ad-
hoc, and awareness of up-front solutions that are below par. In addition to
any discussion about other concerns that are related to TD issues, which
will then have the potential to accumulate interest in the project over time.
Ultimately making it so that problems that could be hard to identify and
track with code inspection alone, may be discovered.

1https://www.chromium.org/chromium-projects/

7

2.4 DevOps metrics
DevOps, also known as development and operations, addresses the relation-
ship between software development (Dev) and operations (Ops). The intent
behind it is to support a collaboration between the two so that continuous
delivery of evolving software with high quality can be produced. Measur-
ing DevOps processes, and hence the software delivery performance can be
achieved with DevOps metrics. These are data points that are related to
the development, delivery, and operations of the software.

Industry-standard has been to use the Four Key Metrics (FKM) to mea-
sure software delivery performance, as well as differentiate between soft-
ware practitioners and organizations [16]. These metrics are identified by
Google’s DevOps Research and Assessment (DORA) 2 as:

• Deployment frequency

• Lead time for changes

• Change failure rate

• Time to restore service

While each metric will describe its aspect of producing and maintaining
software. They can at a high level be split into two groups, one for velocity
and the other for stability. The first two metrics, namely the deployment
frequency and lead time for changes, belong to the first group. The last two,
which are the change failure rate and time to restore service metrics, are
placed in the stability group. In this thesis, the focus will be on the velocity
metrics as these will measure the velocity of software development.

DORA has identified these metrics as good indicators for the perfor-
mance of software development teams [16]. When they are used as indica-
tors, development teams are placed into different performance tiers. These
include the tiers: elite, high, medium, and low, where the elite performance
tier is ranked as best and the low tier as the worst. This would then mean
that they can be used to get insights into projects. Although not necessar-
ily using the same ranking system entirely, but rather that the metrics are
used with the OSS projects and their software delivery performance.

In this thesis, the metrics will be used in correlation with quantified
TD issues that are classified based on SATD expressed in developer dis-
cussions. The purpose of this is to see if they can be used in an analysis,
specifically as a way to get insight into how velocity correlates with TD.
The basis of this is to further explore ideas from the study of Lenarduzzi
et al. [28], which tried to use lead times as an estimate for the impact of
TD. Coupled with how TD is known to affect performance measures, such
as making it harder to add features and more costly to refactor.

2https://cloud.google.com/devops/state-of-devops

8

2.5 Natural language processing
For this thesis, Natural Language Processing (NLP) is used to quantify TD.
This is a branch of Artificial Intelligence (AI) and linguistics, that concerns
itself with trying to make computers understand human language [11]. As
briefly explained in the past sections, the aim is to be able to use NLP on
developer discussions to classify whether they are TD issues or not. To
achieve this, NLP is combined with machine learning and an artificial neu-
ral network. Both of which are subfields of AI that will be explained in this
section, as well as in the forthcoming parts of the thesis.

Quantifying the TD from developer discussions found in the OSS projects
would mean that a large amount of data would have to be evaluated. It is
because of this that NLP has been subsequently combined with machine
learning as a classification method. As using traditional algorithms to clas-
sify the stochasticity of discussions could prove to be difficult. Considering
that it may be difficult to predict the sentiment of a discussion, without the
generalization that NLP and ML can provide in such cases.

Other studies, such as Maldonado et al. [48] and Zhongxin et al. [32]
have shown that it is possible to detect SATD using NLP and ML. In the
former, SATD comments from source code comments were detected using
an NLP model from ten different OSS projects. This model would then an-
alyze source code comments and decide if they expressed SATD or not. The
latter on the other hand proposed a tool built on an NLP model that could
be used for both text-mining and classifying SATD. Doing so by analyzing
source code and flagging comments that contained SATD. They would then
conclude in the latter study, that the method could be used to make devel-
opers aware of SATD comments in their source code.

Although both studies used NLP to detect SATD, they focused on source
code comments. This is different from what Ozkaya et. al [37] did, as well
as what this thesis tries to achieve. As source code comments may have a
simple text format, whereas developer discussions may include more com-
plicated problems to classify. Such as code snippets, comments from hu-
mans and bots, timestamps, and more. Furthermore, after the discussions
have been classified they can be linked to their respective issues. Thus
making it possible to quantify it as both TD issues and non-TD issues. The
quantified TD can then be used together with performance metrics, which
is in this case DevOps metrics, to see if it can bring insights into how TD is
prioritized and fixed in projects.

2.5.1 Machine learning
To facilitate the language used for the Machine Learning (ML) for the forth-
coming sections, this section will give the theoretical context for it. ML
deals with getting computers to learn and improve through experience.
This is achieved by building ML models on algorithms through a speci-

9

fied paradigm. After having been trained, an ML model will be capable of
making decisions or predictions on its own. This makes ML a great tool for
automating tasks that could otherwise be hard to define with traditional
algorithms such as in the case of this thesis, where large amounts of dis-
cussions will be classified based on their sentiment.

The algorithms that ultimately make an ML model, will have to be
trained using sensible input that is also known as training data. This
data is chosen as a direct result of the paradigm that has been selected
for the model, which can conventionally be divided into three categories.
The first one is reinforcement learning, which is focused on rewarding the
ML model if it gives the desired output, and vice versa. The second one
is unsupervised learning, this paradigm tries to uncover hidden patterns
on its own and subsequently gives an output without having humans in-
terventing with the learning process. Lastly, there is supervised learning.
This works by feeding the model with data that has already been marked so
that the model can learn from this and apply what it has learned to unseen
data. This thesis is concerned with the latter, as it will be used to train both
ML models and an artificial neural networks for this thesis.

Further, another subject matter that is important for ML and NLP is the
process of featuring engineering. This is concerned with trying to find rele-
vant variables to use from the raw data (which has been collected from the
OSS projects). More precisely, it involves using domain knowledge to sys-
tematically select useful features (e.g., attributes, properties, and so forth)
directly from the raw data. As a result, the raw data can be turned into
more useful data that can efficiently be used with supervised learning.

2.5.2 Artificial neural networks
While Artificial Neural Networks (ANN) is a subfield of ML, this thesis has
decided to separate it from the other ML models, so as to not create any
confusion. In contrast to more traditional ML algorithms, a neural net-
work will try to mimic a human brain. In the case of this thesis, this has
been achieved using deep learning and word embeddings. Both of which
are explained thoroughly in the methodology chapter of this thesis.

The basic idea of a neural network is to mimic or simulate an artificial
human brain, which it does through so-called neurons. These will make
up a structure with multiple layers called a neural net. Making the neu-
ral network capable of taking input, doing calculations with the input, and
then producing some output. Likewise to the other ML models, the ANN
that is used for this thesis will be trained with supervised learning.

However, as opposed to classical ML models, the ANN will use deep
learning to train. More specifically, supervised deep learning. This will
together with the word embeddings, be able to leverage and automate the
feature extraction from the dataset used for supervised learning. Thus, use
the word embeddings to further learn without human supervision.

10

Chapter 3

Methodology

The purpose of this chapter is to describe and assess the systematic ap-
proach used to answer the research questions for this thesis. The first sec-
tion summarizes the research process that has been followed. This process
provides an overview of the research strategy and describes the practical
steps that have been carried out. The next section describes the data col-
lection process, which is used to extract data for both RQ1 and RQ2.

Lastly, there is one section for RQ1 and one for RQ2. These two sections
present the methodology used for answering the RQs respectively. The re-
sults from this, as well as the analysis, are given in the results chapter and
further discussed in the forthcoming sections. The raw data, scripts that
were created and the final data have been made available for replication
purposes and can be seen in appendix A.

3.1 Research process
The research process that has been adopted for this thesis is quantitative
research. This is a deductive strategy that involves collecting and analyzing
quantifiable data, so that the data may be used for empirical investigations.
This includes mathematical models, statistical techniques and numerical
analysis [18]. Applications for quantitative research involve testing for ca-
sual relationships, making predictions, finding patterns, and generalizing
the findings to a wider population.

As this thesis aims to answer questions that can be quantified and an-
alyzed in a numerical form, where such data is available from the OSS
project, it was a natural choice to choose a quantitative research strategy.
The approach is subsequently combined with a multiple-case study of the
selected OSS projects, which can collectively give a greater understanding
of the questions asked in the RQs. This is in contrast to single-case studies,
which are more focused on depth whereas a multiple-case study is rather
orientated towards breadth and diversity [20].

11

Figure 3.1: Diagram for the research process

The practical steps for the research process can be seen in the diagram
in Fig. 3.1. The boxes represent the overall steps of the thesis and the ar-
rows are the result of them. The steps that are performed to answer the
research questions have their own marker.

Data collection: This step is explained in section 3.2 and addresses how rel-
evant data is collected. Including the context for the data, how OSS projects
are found, and ultimately how the data have been extracted.

Data preparation: As raw data from the data collection will contain a lot
of unnecessary information, it will have to be cleaned, properly formatted,
and prepared for use. The process for this is partly given in section 3.3.2
for the ML and neural network, and partly in 3.4 for the DevOps metrics.
The results is summarized in section 4.1 of the results chapter.

Data pre-processing: Data pre-processing is an important process for the
classification models. This will prepare the data specifically for NLP so
that it will be correctly formatted and ready to be used with the ML models
and neural network. The details for this is given in section 3.3.2.

Building classification models: This step presents how the ML models and
the neural network have been built and used to classify issues. This can be
seen in section 3.3.3, section 3.3.4, section 3.3.5 and section 3.3.6.

12

Comparison and evaluation of classification models: This step is performed
to answer RQ1 and can be seen in section 4.2. In this step, the classification
models will be evaluated based on their performance and results.

Calculating TD: This step involves calculating both the size of the classified
TD issues and quantifying the TD for each project. The result of this will be
a more precise measure that takes the size of the issues into account, thus
resulting in better construct validity. The calculation for issue sizes can
be seen in section 3.4.1 and calculation for TD in section 3.4.4. Calculating
the TD will involve quantifying TD issues with their size as a final measure.

Measuring DevOps metrics: Measuring the velocity DevOps metrics in-
cludes calculating the lead time for changes seen in section 3.4.2, and de-
ployment frequency seen in section 3.4.3. The size of the issues used for the
calculations will also be considered, this can be seen in section 3.4.1.

Correlation analysis: This step answers RQ2 by correlating the quantified
TD issues with DevOps metrics for insight into projects. As the correlation
analysis will look at how TD can impact performance, the DevOps metrics
will be correlated with open TD issues as they both evolve over time. The
results from this can be seen in section 4.3.

3.2 Data collection
This section of the thesis addresses how data for RQ1 and RQ2 was col-
lected from OSS projects. First, the context for how the data was collected
is given. Secondly, the process for finding OSS projects is described. Lastly,
the method for extracting data is presented. The results from the data col-
lection have been summarized in the results chapter.

Collecting data from open source projects can be challenging. While
there does exist a plethora of projects to choose from, each one may be sig-
nificantly different from the next. For example, one project may use Jira
for issue tracking, the other Bugzilla 1, and the third an entirely custom
system. Some codebases may be available on Github, others may be hosted
somewhere else. Even if two or more projects have chosen the same sys-
tems, they may have different layouts. For example, differences in how
they define issue tracking types, categories used for prioritization, and so
forth. The same goes for the SDLC that has been applied to each project, or
in other words, the processes for how work is completed in the projects.

As it was described in the introduction of this thesis, the platforms Jira
and Github have been chosen as sources for data. The reason for this is
to simplify the data collection process so that it is possible to get a good
overview of the projects. These are also platforms that are commonly used
for OSS projects, which makes it straightforward to find projects that use
them. The collected data will therefore include all the information that can

1https://www.bugzilla.org/

13

be collected from issues in Jira. For Github, all the associated pull requests
(PRs) connected to the issues will be collected. This will make it possible to
relate issues directly to relevant code and be used for the DevOps metrics.

For Github, it can be pointed out that some projects may require that a
standardized template is filled out for PRs, before any merging into their
codebase, also known as a repository, can be accepted. This process is an
event that happens when developers want to merge code into a codebase
on so-called branches, which in short, will represent a contained line of de-
velopment that is independent of the main repository. The latter is usually
called the “Main” branch. Other branches may be used for specific reasons,
for example, testing different versions of a software product.

Moreover, in the open source community it is common practice to per-
form a pull request, then test and review it before changes to a branch are
accepted [49]. As a result of this, contributors can do a so-called fork of
the branch from a project they want to make changes to, which will take a
copy of the original branch. From there, the contributors can safely make
changes to the forked copy and ultimately a pull request (PR). After the PR
is created, it will most likely have to pass two steps. The first one is some
sort of automatic testing, which will test the code in the PR to see if it is
compliant with the rest of the code in that branch. The second step is usu-
ally that a reviewer will review the code as a form of quality assurance (QA).

As briefly mentioned, some OSS projects may practice a formal proce-
dure for accepting PRs. Others may practice a less formal and more flexible
method for accepting merges. Whatever is the case, the PRs will usually
be linked to their respective issue tracking. This makes it so that the code
and conversations are linked and don’t have to be tracked separately. For
example, given any Jira issue, which is usually in the format of a unique
key like “KEY-1234”, all associated PRs may be related to the issue based
on the key. Thus, making the data relational on basis of the key.

This is something that had to be taken into consideration when data
from OSS projects were collected so that the whole perspective of an issue
could be considered. Only parts of a conversation may be located in a Jira
issue, while the rest of the conversation may be found in the comments of a
PR along with its code. In addition to this, being able to track the code will
also make it possible to collect quantitative data that is specifically related
to software delivery performance. E.g., the size of the code in the PR, when
the code was merged, which branch it was merged into, and so forth.

Furthermore, when it comes to selecting the OSS projects, certain re-
quirements have been given. First of all, the projects must be of a signif-
icant size both in terms of their codebase and management system. Sec-
ondly, the open source projects must span several years and have been rea-
sonably active across that period. Lastly, the projects must have an open
codebase and management system. All in all, making it so that there’s a
possibility that technical debt may have been accumulated in the project.

14

Moreover, when it comes to the actual data collection, creating a tool
for this may be difficult, considering that there are likely to be differences
between the projects. However, there will usually be certain standards and
attributes that overlap between the different systems, such as textual data-
exchange file formats that are both readable for humans and machines.
For example, a platform like Jira will support the extraction of labeled
data from issues in a comma-separated values (CSV), RSS, or XML format.
Github on the other hand has a REST API that can be interacted with. This
makes it so that API requests that return data formatted as Javascript ob-
ject notation (JSON) can be created.

Having these standards makes it possible to extract both quantitative-
and qualitative data from the different open source projects. For example,
commit sizes from Github and conversations out from comments on Jira
issues respectively. Even if the information is spread across different tools
and systems, such as Jira and Github, it will be possible to join the data
based on common data points (i.e. the issue keys).

This is in contrast to something like having to use very customized web
scraping to obtain useful information. This may be the case for custom
management systems, as well as systems that purposely make it hard to
scrape data from them. For the latter, everything would have to be spec-
ified, for example through a plethora of different scripts, where any small
difference has to be facilitated, which could be a time-consuming task.

3.2.1 Finding projects
Different online searches for “open source projects” revealed a great number
of projects that all met the requirements. Many had been active for years,
consisted of codebases with millions of Lines Of Code (LOC), and had issue
tracking systems with thousands of issues. However, to limit the number
of projects, they were selected based on structural similarities and whether
they had any SATD. The structural similarities ended up with them all fol-
lowing an equal issue key system, where issues would be relationally based
on the key. Thus making it possible to track the individual issues to PRs.

The SATD that was identified was found to be 320 Jira issues that
had been explicitly marked as TD. They were spread across the different
projects, where the developers themselves had marked the small subset of
issues with TD as the issue type. Although this is a small number compared
to the total amount of issues, it could later be used to train the classification
models with supervised learning. Beyond simply the structural similari-
ties, the projects were selected based on both technical- and organizational
variety. This is in consideration of the external validity of the thesis, as
the projects would then represent a broad range of diversity. Including dif-
ferent SDLCs, programming languages, frameworks, size of codebases, and
amount of contributors, as well as different purposes for the projects.

15

This made it possible to narrow it down to five different projects, which
seemed to be based almost exclusively on Github and Jira. Thus collecting
data for each project would also be consistent and not require drastically
different methods, such as customized web scraping. Table 3.1 has summa-
rized all of the OSS projects that were selected in this thesis.

Name LOC Pull-requests Jira issues Contributors
Beam 1,062,474 16,137 13,436 850
Flink 1,837,364 18,031 25,225 979
Sakai 1,234,162 9,684 43,306 213
Wildfly 817,550 14,897 12,947 334
WiredTiger 196,364 6,284 8,282 57
Sum 5,147,914 65,033 103,147 2,433

Table 3.1: Open source projects

Wildfly is a Java-based application server that is formerly known as
JBoss. It is cross-platform and implements a set of specifications that ex-
tends the Java platform with enterprise features 2. Beam, also known as
Apache Beam, is on the other handwritten primarily in the programming
languages Go, Python and Java. It is software that is made for both defin-
ing and executing data processing pipelines, which in short, will enable au-
tomated processes used to assist developers with compiling, building, and
deploying their software products 3.

Flink, also known as Apache Flink, is a framework written primarily in
Java and Scala. It is a processing engine that is built for stateful computa-
tions and data streams for both unbounded and bounded data. In essence,
this means that Flink can process huge amounts of data fast and reliably in
real-time 4. Sakai is an extensive educational software platform that has a
wide variety of features and is primarily written in Java 5. Lastly, there is
WiredTiger, which is a NoSQL data management platform that is primarily
written in the C programming language 6.

These projects are wide-ranging and feature different technical and or-
ganizational varieties. Including such as different SDLCs, a great vary in
different sizes, having been written in different programming languages
and serving different purposes. For example, the WiredTiger project is
very different and rather small compared to Flink. Whereas the former
is around 196,000 LOC, has had 57 contributors, is written in C, and is
meant to serve as a NoSQL data management platform. The latter on the
other hand is a Java-based framework that has almost 10 times the amount
of LOC and is closer to 1,000 contributors than 100.

2https://www.wildfly.org/
3https://beam.apache.org/
4https://flink.apache.org/
5https://www.sakailms.org/
6https://www.mongodb.com/docs/manual/core/wiredtiger/

16

3.2.2 Data extraction
Extracting data from both Jira and Github was done in multiple steps. An
activity diagram in Fig. 3.2 describes the process. The final result from the
data collection can be seen in the results chapter.

Figure 3.2: Activity diagram of data extraction process.

17

The exporting of all Jira issues from the different projects was completed
using the Jira Query Language (JQL) 7, then downloading and storing the
data as either CSV or XML (depending on what the project allowed). For
Github, the data from the associated PRs was fetched using API requests to
the Github REST API 8, which was completed using the Python program-
ming language and PyGitHub library 9. Lastly, the processing and merging
of data were completed using Python and the Pandas library 10.

The JQL made it possible to formulate query strings that were used to
customize advanced searches in Jira. Each search would then allow for
adding filters and specifying attributes for the different issues, which were
then later exported. However, due to performance concerns in regards to
such as memory exceptions, Jira would by default limit each export to the
first 1,000 issues only. Unless the administrators of the project had explic-
itly changed the configuration themselves, which most had not.

This caused a limitation that had to be circumvented for all the issues
to be exported, wherewith the use of JQL it was possible to add a start-
and end parameter to the index values of each search. This made it so that
all the issues could be exported in chunks of 1,000 issues, rather than the
first 1,000 only. However, this was not the only problem with extracting
data from Jira. Some projects would also limit the alternatives for export
formats, making it not possible to select CSV. In that case, other formats
were chosen, such as XML, and then later converted into CSV. Thus all the
Jira data would end up being homogeneous and therefore easier to process.

The PR data from each project’s Github repository was retrieved by
sending GET requests to the Github REST API. This was achieved by writ-
ing a Python script that used the PyGitHub library, making it straightfor-
ward to make the requests, specify its parameters, and retrieve data for
each PR. The possible parameters could then include everything from PR
creation- and closed timestamps, the state of the PR, commit details, and
so on. It was therefore easy to select specific values and ignore irrelevant
details about all the PRs that are associated with each project.

However, one challenge with Github was that its API had a rate limit,
which only allowed 60 requests per hour for unauthenticated requests. This
was not sufficient for collecting all the project’s PRs. To increase the limit,
the API requests had to be authenticated with basic authentication or OAuth.
Using a basic authentication, it was possible to make 5,000 requests per
hour for each repository. With a Github Enterprise Cloud account, it was
possible to make up to 15,000 requests per hour.

7https://www.atlassian.com/blog/jira-software/jql-the-most-flexible-way-to-search-jira-14
8https://docs.github.com/en/rest
9https://github.com/PyGithub/PyGithub

10https://pandas.pydata.org/

18

The next step after that was to process all the data and then finally
merge it. In this process relevant fields would be kept, dates and times-
tamps had to be converted into coordinated universal time (UTC), and re-
dundant data excluded. The processing was completed using Python and
the Pandas library, where the Github data would be parsed from JSON
and Jira from CSV formats into Pandas data frames. This data type is a
two-dimensional data structure that is size mutable, making it easy to both
manipulate and reshape data on structured sets like CSV and JSON [36].

Merging the pull requests with Jira data was done by comparing their
respective key labels with each other. With a regular expression (regex),
one could match the key field on a pull request with the key in a Jira is-
sue to determine whether they belonged together or not. For example, if a
Jira issue had the key “SAK-45531” and a Github pull request had the very
same, the Jira and Github data would then be merged based on the relation
the key established. The result, seen as records, would then be:

{

0: [

{

"title": "[BEAM-5759] ConcurrentMo...checkpoint finalization",

"description": "When reading from a JmsI...ception will be thrown.",

"key": "BEAM-5759",

"type": "bug",

"status": "Resolved",

"resolution": "Fixed",

"created": "Tue, 16 Oct 2018 10:53:35 +0000",

"resolved": "Wed, 17 Oct 2018 13:51:53 +0000",

"comment_0": "FAO jbonofre - the corre...sue (as well as a fix).",

"comment_1": "Thanks for catching. I'm reviewing the PR.",

...

"github_number": 6702,

"github_state": "Closed",

"github_title": "[BEAM-5759] Ensuring Jms...sed and modified safely",

"github_body": "As described in [BEAM-57... | --- | ---",

"github_base_ref": "master",

"github_created_at": "Tuesday Oct 16, 2018 at 11:15 UTC",

"github_updated_at": "Wednesday Oct 17, 2018 at 13:51 UTC",

"github_closed_at": "Wednesday Oct 17, 2018 at 13:51 UTC",

"github_merged_at": "Wednesday Oct 17, 2018 at 13:51 UTC"

}

],

1: [

{

...

}

],

...

}

19

3.3 Detecting TD discussions
This section deals with how TD can be quantified by being detected in de-
veloper discussions. As briefly explained in the introduction of this thesis,
the OSS project discussions are taken from both Github and Jira. Further,
classifying the discussions as either TD- or non-TD discussions has been
completed using NLP. This has been achieved with supervised learning for
Machine Learning (ML) and a neural network. To be more precise, an Ar-
tificial Neural Network (ANN) and two other ML models.

In order to train all three classification models, a dataset for supervised
learning had to be separately collected and structured with both labeled
training- and testing data. After training the models using the dataset
with supervised training, the classification models were able to make clas-
sifications on the unseen data from the OSS projects.

The two different ML models that have been used are the multinomial
Naı̈ve Bayes and logistic regression. The ANN is a Recurrent Neural Net-
work (RNN), which is one type of ANN. All of them are used for sentiment
analysis on the text found in the data that was previously collected from the
projects. The training- and testing data, as well as the data from the OSS
projects, had to go through a data cleaning process in order for the models
to make classifications. This process, along with how both the training- and
testing data have been constructed, is explained in this chapter.

Results from the ML models and RNN can be seen in the results chap-
ter of this thesis. This chapter includes the classification reports for each of
the models, details that influenced the classifications, as well as the results
from the predictions. It is based on this information that a classification
model is chosen to classify issues as either TD or non-TD from the OSS
projects data, thus quantifying TD issues from the developer discussions.
The predictions from the classification model are then subsequently used
with the DevOps metrics for RQ2.

20

3.3.1 Dataset for supervised learning
This section describes how a final dataset, which is used for supervised
learning, has been constructed based on three steps. An activity diagram
that summarizes the steps can be seen in Fig. 3.3. In the first two steps,
the data is entirely collected from external sources. These two steps are
referred to as the initial dataset. Data from the third step has been based
on manually labeled data from the OSS projects for this thesis. The data
from all three steps added together is referred to as the final dataset.

Figure 3.3: Process for creating the dataset used for supervised learning.

The reason for distinguishing between the different steps is that both
the initial- and final dataset has been tested separately. In the initial
dataset, as just briefly mentioned, the data has been collected from two
separate and external sources. In other words, this dataset isn’t affected
by the subjective judgment from this thesis, but rather by the sources it
originates from. The third step, however, is based on data that has been
manually labeled specifically for this thesis.

Using the initial dataset simply on its own, didn’t seem to give suffi-
cient results for the classification models. It was therefore decided that the
initial dataset had to be extended with more manually labeled issues from
the OSS projects. This process, including both how the initial- and final
dataset has been constructed, will be thoroughly explained in this section.
The results from using both the initial- and final datasets, can be seen in
the results chapter of this thesis.

21

The initial dataset that was used for training- and testing data was
built up using a study from Ozkaya et al. [37]. In this study, a total of
1,934 TD references had been manually labeled from the Chromium open
source project. The labels, which were published as a list along with the
study, were selected by expert raters that had used a rubric from Bellomo
et al. [8], seen in Fig. 3.4. This recognizes TD in project discussions, where
they have not been explicitly highlighted. For example, by not having been
mentioned with words such as “technical debt”, but may instead have been
characterized by how the developers have expressed concerns related to TD.

Figure 3.4: Reprinted rubric from Bellomo et al. [8] on how to identify and
classify TD discussions in a system.

22

As seen in Fig. 3.4, the rubric is based on a decision tree that helps with
separating TD issues from other things like user stories, tasks, defects, and
new features. As issues themselves don’t have to be explicitly marked or
highlighted with any TD labels. The first question in the decision tree is
whether the issue contains enough information for a decision to be taken.
If not, then the issue isn’t seen as a TD issue. However, if there is enough
information, then the next question will ask whether it addresses an ex-
ecutable system artifact (e.g., code, scripts, tests, etc.), which is compared
to non-executable artifacts (documentation, policy issues, etc.), or if it is a
data problem (e.g., poorly designed database architecture).

If it does not, then it is not seen as a TD issue. However, if the answer
is yes, then the rubric will move on to the next question. Here, the question
will ask if the type is simply a defect or system improvement. At this point,
the tree will now split up into two parts based on the types. If the type is
a defect, the follow-up question will be whether it is an incorrect function-
ality or a design issue. Whereas the former is not seen as a TD issue, the
latter is seen as a TD issue only if the design issue has been accumulated.
In other words, if the design issue is causing work that is unintended, then
this may increase the time to deliver.

The last path in the decision tree is if the type is a system improvement.
Here, the follow-up questions will be about what type of improvement it is,
which can either be a design limitation or a generic new feature. The latter
is not seen as a TD issue. However, if the design limitation is an accumu-
lation, then it will be seen as a TD issue. In this case, an accumulation
could mean that something is hindering the ability to add new features in
a reasonable time. Another reason could be that the current state, due to
the design limitation, does not support improvements.

Further, as far as this thesis knows, Ozkaya et al. [37] did only publish
the labels for the TD references. It was therefore necessary to collect the
relevant data from the Chromium project based on the labels, so that this
may be used for the dataset and supervised learning. In this case, each
label that was manually classified by an expert rater would also be asso-
ciated with a unique number that was linked to a single Chromium issue.
Thus making it possible to connect the classification with the data, where
the data would then be associated with its corresponding rating. This made
it possible to use the labels and scrape the data from the Chromium project
website, although it was a time-consuming process.

The labels from the study had originally been classified probabilistically,
where they would fall in a range from 0 to 1. Distinguishing between dif-
ferent indications of TD found in the discussions. For example, a rating of
0.2 would mean that there are small hints, whereas 0.7 would mean that
there are substantial indications present. This is a slight deviation from
the rubric, which only encodes binary values, where 0 would mean “defi-
nitely not TD” and a 1 would mean “definitely included TD”. In this thesis,
however, as it is with the rubric, classifications will be either a 0 or 1. This
will make it so that 0 can be used to indicate “not TD” and 1 as “TD”.

23

The tool that was chosen for the web scraping task was Selenium Web-
Driver with Python. This is a tool from the open source project Selenium 11,
which is a popular tool for test automation for web applications [19] and for
web scraping [52]. The reason for its popularity is that it will drive a web
browser, just like any user would, natively. This makes it possible to control
the user agent, as well as both discover and manipulate DOM elements 12

inside the web content. In this case, that meant scraping Shadow DOM 13

elements that were loaded dynamically with Javascript.

The data that was ultimately scraped was based on feature engineering
carried out by Ozkaya et al. [37]. In their study, a whole range of differ-
ent types of features were both generated and tested for, although only a
few turned out to be useful. The features that gave the most information
gain turned out to be word vectors generated by free text, key phrases, and
counts associated with the issues. Rather than information such as meta-
data (e.g., the author’s email or issue status) from the Chromium issues.

This information helped with concluding what type of data would ulti-
mately be scraped from each Chromium issue, which ended up being the
issue fields: title, description, and all related comments. All of these fields
could then be merged as a singular free text, that could later be turned into
word vectors. The free text would exclude metadata and noise, such as the
names or dates related to the issue, symbols (e.g., newline or address signs),
and URLs. The reason for this is that noisy data is meaningless informa-
tion that is not likely to be useful [1].

Since the rubric from Bellomo et al. [8] was used, the number of issues
that had to be scraped was reduced. In that only classifications of either
0 and 1 were kept, and that anything between that range was discarded.
This decreased the number of TD references from 1,934 down to 1,487. Af-
ter writing a Selenium script that scraped each page for the issues on the
Chromium project, a total of 1477 issues were collected. The result from
the total issues was that 360 (24.37%) issues had a score of 1 (i.e., definitely
included a TD discussion), and 1117 labels (75.63%) issues had a score of 0
(i.e., definitely not a TD discussion).

In addition to the issues that were scraped from the Chromium project,
an additional amount of 320 TD references was also added to the initial
dataset. As briefly mentioned in the introduction of this section and the
data collection. These were issues that had been explicitly labeled by the
developers themselves. In this case, out of the 320 issues that were marked
as TD from the projects, only 162 issues were found to be useful. To be ex-
act, 84 were from WiredTiger and 78 from Flink.

11https://www.selenium.dev/
12https://developer.mozilla.org/en-US/docs/Web/API/Document Object Model
13https://developer.mozilla.org/en-US/docs/Web/Web Components/Using shadow DOM

24

The final result for the initial dataset was a total of 1,639 TD issues,
where 1,117 (68.15%) were non-TD references and 522 (31.85%) TD. The
average length (arithmetic mean) of a TD issue was roughly 973 characters,
and for non-TD issues it was 1,185. Fig. 3.5 represents the distribution.

Figure 3.5: Length of text per issue in the initial dataset

However, the initial dataset was found to be too limiting for the NLP.
As when the dataset was used for supervised learning with the two ML
models and neural network, the predictions didn’t seem to generalize ade-
quately. This means that the ML models and the neural network did not
adapt properly to data that haven’t been seen before. In this case, the pre-
diction results from running the models and neural network on the OSS
projects would give fluctuated results with big differences between all the
different projects. In which the classifications of TD issues would range
from as little as 11.96% to as much as 76.47%.

Although the ML models and neural network, after having been trained
with the initial dataset, were able to some extent learn and generalize.
The data from the initial dataset didn’t seem to be applicable when tak-
ing into account that the OSS projects are different from each other. Con-
sidering that they all differ in both technical- and organizational variety,
where some may differ significantly more than others. For example, the
Chromium project is primarily written in the C++ programming language,
Wildfly and Flink on the other hand, are written in Java.

In consideration of the above, new labels were marked and added to
the initial dataset. This way the dataset, used for both training and test-
ing the ML models and neural network, would not just contain data from
the Chromium project alone, but would also feature data from all the OSS
projects themselves. This would make up for the potential differences across
all the projects. The summarization of this can be seen in Table 3.2.

25

Project # of labels
Beam 150
Chromium 1,477
Flink 228 (78 by developers)
Sakai 150
Wildfly 150
WiredTiger 334 (84 by developers)
Sum 2,189

Table 3.2: New dataset with manually marked issues

As seen from Table 3.2, the new dataset that extends the initial dataset
ended up with a total of 2,189 issues. This includes the issues labeled by
developers and the data from the Chromium project, as well as the new is-
sues from the OSS projects themselves. The issues from the OSS projects
have been manually marked for this thesis using the rubric from Bellomo
et al. [8], which was previously explained in this section.

Fig. 3.6 represents the distribution of the final dataset. This dataset
gives a significant increase in the average length of a TD issue, with 4,261
characters compared to 973 for the initial one. For non-TD issues it is 7,540,
compared to 1,185 for the initial dataset. The increase is likely due to more
information (Jira and Github) being collected from the OSS projects.

Figure 3.6: Length of text per issue in the final dataset has been increased
compared to the initial dataset.

26

3.3.2 Data cleaning
Cleaning the dataset
Some of the necessary data cleaning for the dataset had been achieved dur-
ing the collection processes. When the Selenium script was used, it removed
HTML tags from the data. Although code snippets from the discussions
themselves were an exception to this, as they will be used for the sentiment
analysis. Further work would then include removing unnecessary symbols
and stop words from the English language. In addition to this, text normal-
ization will be applied to the data. Lastly, the data will have to be checked
and verified for any corruption or incorrect formatting.

The reason for cleaning the data, especially for NLP tasks, is to mini-
mize the clustering of words and maximize what one can obtain out of the
data. In that, the raw text in itself can be hard for machines to understand
completely on their own. Consequently, one would include the process of
data cleaning to assist the machines with “understanding” better. Further-
more, it can also be pointed out that NLP tasks can be very different from
one another. In this case, the task is to analyze development discussions,
which can be different from other typical NLP tasks like smart assistants
or email filters. The process of data cleaning may therefore also differ from
one task to another.

The data cleaning process was completed with Python using Pandas,
Numpy [51] and Natural Language Toolkit (NLTK) [33]. Here, Numpy and
Pandas were used for pre-processing of the data, specifically in regards to
data manipulating and modification. For example, such as removing miss-
ing values (e.g., NaN) in the data and merging data. NLTK’s corpus was
used for removing stopwords from the English language, in addition to text
normalization through stemming and lemmatization. A section of the raw
data from the dataset can be seen in Table 3.3.

issue text TD
367158 [’Issue 367158: Simplify EncryptedMediaIsTypeSupported* tests.’, ’Currently... 1
445880 [’Issue 445880: Parallelize test execution to speed up buildbot runs’, ’pbos@ h... 1
490895 [’Issue 490895: Huge animated GIFs can lead to scroll jank. UserAgent: Moz... 0

...

Table 3.3: Section of issues with raw data

The data cleaning process that has been used for the dataset is:

• Removal of redundant key tags from the issue.

• Removal of unnecessary symbols.

• Normalization through stemming and lemmatization.

• Lowercasing all text.

27

Removing unnecessary symbols (e.g., newline symbol \n) and redundant
key tags (e.g., a [’Issue 367158’] tag) from the text is fairly easy with the
use of regex functions in Python. It involves finding patterns that match
the symbol or key tag marks. When found, these can then be removed by
replacing them with nothing, which will ultimately clean up the text. For
example, a sentence like “[’Issue 367158: Hello! How are you?\n” will trans-
late into “Hello ! How are you ?”. Even though this may make it confusing
for humans, considering that certain symbols and tags may be needed for a
text to be properly understood. It may help classifiers as the raw text will
now be cleaned up and have the noise removed [21].

Text normalization, on the other hand, will in this case include the con-
cepts of stemming and lemmatizing the text. The purpose behind applying
these is to standardize the text, as well as decrease any randomness in the
text. In this case, the text normalization is achieved by stemming a word’s
lemma. This is done by using linguistic rules (achieved through regexes) to
try to find the root form of a word (lemmatization). Then, the words will be
derivationally reduced into their common base form (stemming).

For example, the stemming of the words “talks”, “talking” and “talked”
will simply derive into “talk”. Lemmatization is slightly more complicated,
as it addresses the process of using morphological analysis. Before it re-
moves the inflectional form of the word and transforms it into its root form.
This includes such as using the vocabulary, grammar relations, and struc-
ture of a word. For example, the words “is”, “are” and “am” may simply be
derived into “be”. The final word “be” will then be a so-called lemma.

A snippet of the final dataset, after having gone through the process of
data cleaning, can be seen in Table 3.4.

issue text TD
367158 simplify encryptedmediaistypesupported * test .. currently lot duplicate... 1
445880 parallelize test execution speed buildbot run . pbos @ excellent work... 1
490895 huge animated gifs lead scroll jank . useragent : mozilla/5.0... 0

...

Table 3.4: Section of issues with cleaned data

28

Cleaning data from the OSS projects
Likewise to the dataset, the data from the actual projects have to be cleaned
as well. That way the data from the projects can be correctly interpreted
by an ML model or neural network. Then, subsequently, be used to make
classifications on whether the issues from the projects are TD issues or not.
Cleaning the data will make the text from the projects match the same for-
mat as the dataset that was used for learning how to predict.

Considering that the process behind collecting the data was different, as
well as the data itself is different, the process of cleaning the data from the
projects will be slightly different compared to the dataset. Furthermore,
because some of the data from the projects were used for constructing the
dataset. Namely, the issues that were marked by the developers as “Tech-
nical Debt” issues. Then these will also have to be removed so that they
won’t affect any classification results from the ML models or neural net-
work, when they are trying to perform a prediction.

The data cleaning process that has been used for the projects are:

• Removal of issues marked as “Technical Debt” by developers.

• Merge and combine all comments related to an issue into a singular
issue, along with the issue title and description.

• Merge all the Jira and Github text data into a single column.

• Removal of redundant key tags from the issue.

• Removal of unnecessary symbols.

• Normalization through stemming and lemmatization.

• Lowercasing all text.

29

3.3.3 Multinomial Naı̈ve Bayes
There are lots of ML models that exist and that can be applied to NLP prob-
lems. However, as a baseline model, the multinomial Naı̈ve Bayes classifier
model has been selected. This is a model that is simple and probabilistic,
which considers each feature as both equal and independent. Although a
simple model, it has been shown to perform well on NLP problems [22].

The multinomial Naı̈ve Bayes classifier builds on Bayes’ theorem, which
is used to calculate conditional probabilities [10]. As seen from the Eq. 3.1,
the theorem calculates the probability of some event A occurring given that
B has already occurred. This is done by calculating the probability of B
occurring given that A has already occurred. Then, multiply that with the
probability of A occurring. Finally, the expression will be divided by the
probability of B occurring.

P (A|B) =
P (B|A) · P (A)

P (B)
(3.1)

This mathematical formula describes its conditional probability. I.e., the
probability of some event occurring will be conditionally dependent on an-
other event that has occurred. This makes it possible to find probabilities if
certain other probabilities are already known. Whether that is by evidence,
presumption, assertion, or assumption. Ultimately making it so that it can
be said that A will occur given that B happens.

There are three types of classifiers that are Naı̈ve Bayes, namely the
Bernoulli-, Gaussian- and Multinomial Naı̈ve Bayes classifiers. In this case,
the latter has been used because one of its main applications is document
classification. This classifier does so by generating a multinomial distri-
bution of the different events, which can be done by representing feature
vectors as the frequencies of the events.

Specifically, given that a class variable x represents a set of n features
as x = (x1, x2, x3, x4, ..., xn). Then the probability of P (y|x1, ..., xn) can be
calculated using the chain rule, as expressed in Eq. 3.2.

P (y|x1, ..., xn) =
P (x1|y)...P (xn|y) · P (y)

P (x1)...P (xn)
(3.2)

Furthermore, what makes this naı̈ve is assumed conditional indepen-
dence. Particularly, there are mutual independence for all the n features in
x. This will make the denominator remain static (i.e., it won’t change for
the entries). The distribution can be expressed as seen in Eq. 3.3, where
proportionality (denoted by ∝) is inserted and the denominator replaced.

30

P (y|x1, ..., xn) ∝ P (y)

n∏
i=1

P (xi|y) (3.3)

For example, given a very simplified dataset D, with a binary set of
classes yes and no, which indicates either a TD discussion (being yes) or
non-TD discussion (as no). Where D has three independent features (thus
being naı̈ve), which are f1, f2 and f3. The posterior probability of P (yes|x)
would be calculated as P (yes|x) = P (f1|yes) · P (f2|yes) · P (f3|yes), while for
the probability of P (no|x) it would be P (no|x) = P (f1|no)·P (f2|no)·P (f3|no).

This makes it possible to use the multinomial Naı̈ve Bayes classifier for
the classification of text problems, because of how each word in a sentence
can be represented as an independent feature. Making it so that each of
the single words in a sentence will be used, rather than the whole sentence
itself. The probability of a word occurring together with another will there-
fore be based on their individual probabilities.

Furthermore, in order to make this applicable to text problems. The text
has to be translated into something that can be understood by computers,
which is numerical values. One way of doing this is to assign a unique
number to each word in a sentence so that the number will represent the
word. The words can then be presented as a matrix with all the counts (also
known as a bag of words). An example can be seen in the pseudocode:

corpus = ['this needs an update',

'an update was postponed',

'this should require an update']

>>> X = vectorizer.fit_transform(corpus)

>>> print(X.toarray())

[[1 1 1 1 0 0 0 0]

[0 0 1 1 1 1 0 0]

[1 0 1 1 0 0 1 1]]

In this case, the pseudocode is based on the scikit-learn library [39].
From the pseudocode, it can be seen that a corpus with three sentences has
been fed to a text vectorizer. There, a method that learns the vocabulary
from the corpus and then returns the document-term matrix is used. I.e.,
each word is represented in the matrix as a feature and the dimensionality
is equal to the vocabulary. In such a way each unique word can be under-
stood as columns and the full text as the rows.

The scikit-learn library is also used for the implementation of a multi-
nomial Naı̈ve Bayes classifier in Python, where the foundation is built on
the same processes as explained here. This is then followed by the use of
the term frequency-inverse document frequency (TF-IDF), which is further
explained in this thesis. Finally, all of it is used for both model training and
testing. The latter is further explained in the results section of this thesis.

31

Making a prediction with the Naı̈ve Bayes classifier can be done using
the joint probability p(x, y) of the class and data, as expressed in Eq. 3.4.
This makes it a generative model, considering that it will need to model
how the data was generated before it can start making predictions. Par-
ticularly, it will have to learn the distribution of data before it is able to
generate data instances that are new.

argmaxP (x, y) = argmaxP (y) · P (x|y) (3.4)

As mentioned before, the implementation of the Naı̈ve Bayes classifier
was done using the scikit-learn library with Python. The results from using
the classifier can be seen in the results section of this thesis. Here, both the
training and test data from the manually labeled dataset, as well as the
data from the projects have been used with the classifier.

3.3.4 Term frequency–inverse document frequency
Term frequency-inverse document frequency (TF-IDF) is a statistical mea-
sure used to calculate the relevance of a term (word) in a corpus (collection
of texts). This can be achieved by multiplying the term frequency (TF) with
the inverse document frequency (IDF). The TF can be expressed as it is
seen in Eq. 3.5, and the IDF as seen in Eq. 3.6.

tf(t, d) =
number of occurences of t in d

number of total words in d
(3.5)

idf(t,D) = log

(
number of documents

number of documents with t

)
(3.6)

Here, D will represent the entire corpus, d a document inside the corpus,
and t the term. The TF metric will return a value based on the frequency
with which the term occurs in the document. The higher the value, the
more frequently the term appears in a document. The IDF on the other
hand will calculate a value that is based on how rare or common a term
is for the entire corpus. The logarithmic scale in IDF makes it so that the
proportionality of the frequency of a term does not grow with the relevance.

tfidf(t, d,D) = tf(t, d) · idf(t,D) (3.7)

The reason behind multiplying these two metrics together, as seen in
Eq. 3.7. Is that including only TF would not necessarily say much about
the relevance of a term (word) in a text. Considering that the terms which

32

are occurring the most in the text would also be those with the highest
term frequency. This could then for example include stopwords, hence why
they were removed in the data cleaning, as well as other casual words that
shouldn’t necessarily have any great importance.

Instead, the TF metric may be multiplied by the IDF. This will help
determine how important the terms are, rather than how frequently they
appear. The final result will then be a TF-IDF score, which is one way to
help determine the overall relevance of a term in relation to a corpus. The
higher the TF-IDF score, the more relevant the term would be.

This has then been applied to the data collected in this thesis. First, a
text vectorizer was used on a corpus so that the text can be transformed
into numerical values. In this case, the data was the actual corpus. Then,
the TF-IDF score was calculated and used together with the ML models.
For this thesis, the selected models were the Multinomial Naı̈ve Bayes and
a logistic regression model. The latter is further discussed in this chapter.

3.3.5 Logistic Regression
A logistic regression classifier is a discriminative model. This is in contrast
to Naı̈ve Bayes, which uses a generative approach. Instead, an logistic re-
gression model will learn the boundary between classes, rather than how
the data was distributed. Likewise to Naı̈ve Bayes, it has been found to be
effective on NLP problems [17].

Also known as a maximum entropy classifier (MaxEnt), an logistic re-
gression model will try to find the probability of a specific outcome based on
the relationship between all the features. Doing so by directly estimating
P (y = k|x), where k represents the class and x the feature vector. Rather
than the joint distribution, which was the case with Naı̈ve Bayes.

Logistic regression is similar to that of linear regression. However, in-
stead of fitting a line in order to predict a continuous value, such as size.
The logistic regression will predict if something is true or false, which it
does by fitting a logistic (sigmoid) function. This function, which is an “S”
shaped curve, can be expressed as seen in Eq. 3.8.

P (y = 1|x) = P (x) =
1

1 + e−(a+bx)
(3.8)

33

The way the function fits data is by converting a linear function P (x) =
a + bx into a range from 0 to 1. Writing the function in a more admissible
form makes it possible to express the function as seen in Eq. 3.9.

P (x) = log

(
p(x)

1− p(x)

)
= a+ bx (3.9)

From this function, probabilities can be calculated using the concept
of odds ratio. This is a concept that is based on calculating the ratio of
the odds of an event happening to not happening. The odds ratio, namely
p(x)/(1 − p(x)), can be seen inside the logarithmic expression of the func-
tion. The final calculated estimate will not only make it possible to predict
a true or false based on some scenario but, also make classifications of a
document as either a TD- or non-TD discussion.

Likewise to the Naı̈ve Bayes classifier, the implementation of an logis-
tic regression model has been achieved using the scikit-learn library with
Python. Furthermore, the same preprocessing and text vectorization steps
that was previously explained in this chapter has also been used. In addi-
tion to this, TF-IDF have also been applied to the data. The results from
using the classifier on both the manually labeled dataset, as well as the
data from the projects, can be seen in the results section.

3.3.6 Recurrent neural network
A recurrent neural network (RNN) is the third text classification method
that has been tested in this thesis. The RNN will together with the dataset
and word embeddings use deep learning to make predictions, which it does
through sentiment analysis. RNNs have been found to have great results
on sequential data, which is the case for textual data since the text is nat-
urally sequential. However, RNNs have also been found to not generalize
very well on limited training data [31]. In any case, using the dataset along
with the word embeddings may help the network make correct predictions.

Word embeddings are models for word representations [40]. These mod-
els will be able to represent words from a vocabulary as vectors of real num-
bers. I.e., a string such as “hello” may look something like [0.1384, 0.3775,
1.429]. The way word vectors are decided is by calculating semantics as a
mathematical distance. This makes it so that words similar to each other
have a short distance, and vice versa. For example, the words “dog” and
“puppy” will be mathematically closer than “train” and “bread”.

Another important aspect of word embeddings is how a model’s input
matrices are treated. In spite of how many unique words there are in a text
corpus, the columns of the input matrices will remain static. I.e., instead of
defining single words in a text, the relationship between each of the words
is defined. The relationship between the words can therefore be mapped

34

as distance (e.g., 3D space of real numbers [X, Y, Z]). Rather than individu-
ally representing words in a matrix, where the columns are the words (also
known as one-hot encoding).

For example, when applying one-hot encoded vectors for a sentence like
“this needs to be refactored”’ with 5 unique words. Vectors will be generated
in R5 and each word indicate a state in the vectors. I.e., “this” transforms
into [1, 0, 0, 0, 0], “needs” to [0, 1, 0, 0, 0], “to” to [0, 0, 1, 0, 0] and so forth. If
the same logic were to be applied to n unique words, it would create vectors
in Rn and grow exponentially. Thus, create space and computation prob-
lems. However, if instead word embeddings were to be used, it would fit the
text into a fixed dimension. For example, a 3-dimensional of the same sen-
tence could make “this” transform into [0.15, 0.21, 0.58], “needs” to [0.24,
0.28, 0.62], “to” to [0.18, 0.26, 0.67] and so forth.

For this thesis, word embeddings from the GloVe open source project
have been used 14. Specifically, word embeddings with a dimension of 300
and a vocabulary of 2.2 million words. GloVe is an open source project from
Stanford University that uses a Euclidean distance to measure the seman-
tic or linguistic similarity between words [41]. The position of the vectors
of real numbers is then not only learned from the text itself but also from
the words that surround it. Implementing and using the word embeddings
and RNN was completed with Python and the Keras library 15.

Likewise to the ML models, the text used for the RNN is preprocessed
in the same way. I.e., the same data cleaning steps is applied to the dataset
that will be used to train the network. It is also from this dataset that
a word embedding matrix is created together with the word embeddings,
which will make the input for the network. In this case, that input will
be a tensor input. The tensor input, which is a mathematical object that
holds data in n dimensions, is used to train a deep learning model. Then,
subsequently, make predictions on unseen OSS project data. The data from
the projects have also had the same data cleaning steps as the dataset.

The reason behind using an RNN to perform NLP tasks, compared to
a simple artificial neural network (ANN), is that RNNs are recurrent and
hence fit for sequence modeling. Sequences are an important part of lan-
guage, considering that the sequence of words helps to define their mean-
ing. For example, the sentence “how are you?” is different from “are you
how?”. Even though they have the same words in them, the latter does not
make sense. The reason for this is because of the sequence of the words.

In brief, a neural network is built on layers that are connected to each
other, much like a circuit that connects nodes. However, instead of a straight-
forward logic like the ones found in circuitries, the nodes in a neural net-
work try to mimick brain neurons. A simple neural network can be summa-
rized with three separate layers: one input layer, a set of hidden layers, and

14https://nlp.stanford.edu/projects/glove/
15https://keras.io/

35

an output layer. The input layer takes an input and passes the data to the
hidden layers. It is in this layer that mathematical functions are applied to
the data and where computations happen, such as automatic feature cre-
ation, data transformation, and so forth. Lastly, the output layer is the
layer that will end up storing the results. An illustration of a simple artifi-
cial neural network can be seen in Fig. 3.7.

Figure 3.7: Simple artificial neural network

The artificial neurons (nodes) in the network are loosely based on biolog-
ical neurons. They perform some processing based on input, and from that
produce some form of output. Activating or “firing up” any of the neurons is
done under a condition known as a threshold. This threshold is also what
differentiates one neuron from the next. An example of a neuron firing up
could be that a neuron takes three inputs x1, x2 and x3 (just like in Fig. 3.7),
for which it will produce some output y. In order to simplify the example,
there will only be a single neuron h1 in the hidden layer where this neuron
has a function f(x). This function is to add the two inputs together using
addition if the two are equal to or greater than 10. In this case, the thresh-
old can be summarized as seen in Eq. 3.10, where the threshold would have
been equal to 10 and the bias is the negative threshold. It can be noted that
all neurons in a layer share the same bias.

x1 + x2 + x3 − threshold > 0 ∧ x1 + x2 + x3 + bias > 0 (3.10)

36

Furthermore, another important thing with neurons is that they can
have weights. More specifically, the ability to add importance to certain
input. This makes it so that certain inputs can have different weights de-
pending on different parameters, where the weights will be able to repre-
sent the connection between the neurons. Making it so that one neuron
can have a much greater influence compared to another. Finally, there are
activation functions. This will in short dictate how computation inside the
ANN is completed, where the activation function is responsible for comput-
ing the biases and the weighted sum from inputs.

RNNs on the other hand, only differ from ANN in that they are recur-
rent. While a traditional ANN assumes that each input and output will
be independent of one another, an RNN will base its computation on a se-
quence’s prior elements. An illustration of an RNN can be seen in Fig. 3.8.

Figure 3.8: Simple recurrent neural network

The recurrent property makes it possible to temporarily store parts of
a series of sequential data so that the respective locations of the different
parts are considered. I.e., this makes it so that the relative words in the
developer discussions will be weighted based on their importance, which is
then in relation to the other words in the discussion.

As a result of this, an RNN is convenient for classifying text through
sentiment analysis. As it will not only be able to pick up any nuances in the
text that other models may not. Considering that the order in which words
appear is taken into consideration, but also be able to store words based on
their relative position and later use that in computations.

37

3.4 Measuring TD and DevOps metrics
This section presents how data points from the OSS projects have been
used to calculate the DevOps metrics, as well as how their TD has been
measured. Like it was described earlier in this thesis, the metrics are the
velocity metrics as defined by DORA. The measured TD, on the other hand,
will be the quantification of TD issues that are classified for each project.

Further, the size of the issues used to calculate the DevOps metrics and
measure the TD has also been calculated. The reason for this is to include
the weight of an issue, so that it may lead to more precise measures that
will be proxies for the concepts. These proxies will then be defined by the
operationalization process used for the measurements, where the proxies
will result in variables that serve in place for the concepts, thus also result-
ing in a better construct validity for the thesis.

After the DevOps metrics have been calculated, the measures from it
can be used in comparison with the measured TD issues. In this case, the
metrics are correlated with open TD issues on a monthly basis. This may
then give insight into how TD is prioritized and fixed, as well as how open
TD issues correlate with the performance of software development, which
is in this case velocity DevOps metrics. The results from both the calcula-
tions and the correlations are presented in the results chapter of this thesis.

3.4.1 Calculating issue size
Each of the issues in the OSS projects will have its own unique size, which
may then indicate the effort needed to resolve them and how much they
affect the projects. Some issues might be large, which will consequently
require a lot of effort and affect the project on a large scale. Some might
have a reasonable size, which may then take some effort and affect the
project moderately. Others may be small, thus require less effort, and have
a smaller influence. In any case, it is reasonable to assume that taking the
size of the issues into consideration, will more accurately assess the mea-
sures used in combination with the issues. This factor will then be used
with the DevOps metrics, in order to give more precise measures. In addi-
tion to the TD, where the size will give a TD issue its own weight.

For example, an issue that has taken a lot of effort to fix might have a
bigger size than issues that were fixed more easily. Likewise, issues that
are of greater size may in general have had a bigger impact on the project
than those that were smaller. As compared to just using the number of
issues, it will be possible to factor in effort and impact more easily with
size-weighted issues. One could then, for example, differentiate between a
big refactoring and a smaller update pushed to a project. As the big refac-
toring may have required a lot of code to be both written and deleted, whilst
the smaller update may have required a much less significant change.

38

Calculating the size of an issue is done by calculating all the individ-
ual PR sizes s in a project, seen in Eq. 3.11. In this case, the size s is
the amount of added and deleted lines in the PR. Furthermore, since the
issues to PRs is a one-to-many relationship, it will be necessary to sum-
marize all these s sizes together. An overall size S̄ of an issue, as seen in
Eq. 3.12, is therefore the product of all the PRs “additions” and “deletions”
taken from each PR request. Also, as seen from Eq. 3.11, an “deletion” is
only considered as half the effort of an “addition”. The reason for this is that
it requires less effort to make a line deletion, compared to adding new lines.

s = additions +
deletions

2
(3.11)

S̄ =

n∑
i=1

si (3.12)

An activity diagram of this process can be seen in Fig. 3.9. From the
diagram, it can be seen that calculating the size for an issue, means that
all the PR sizes for that one issue have to be combined together. This is
the one-to-many relationship, as an issue may have none, one, or multiple
PRs associated with it. If the issue has no PRs associated with it, then the
size of the issue is none. Further, if there is only one PR associated with
the issue, then the size of the issue is that PR, as can be seen in Eq. 3.11.
Lastly, if the issue has multiple PRs associated with it, then the size is the
total summarization of all the PR sizes, as seen in Eq. 3.11.

Figure 3.9: Process for calculating the individual issue sizes based on PRs.

39

An example of the calculation of issues can be seen in Table 3.5. In
this table, there are four separate issues from the Beam project, namely:
BEAM-10004, BEAM-10005, BEAM-10007, and BEAM-10009, as well as
six individual and different PRs associated with these issues. All issues ex-
cept from BEAM-10009 have a single PR associated with them. This means
that their overall size S̄ is simply s. However, for BEAM-10009 all the asso-
ciated PR sizes s are added together in order to calculate the S̄ for this issue.

Issue ... PRs Additions Deletions PR size Sum size ...
BEAM-10004 ... 12142 6 4 8.0 8.0 ...
BEAM-10005 ... 11855 139 2 140.0 140.0 ...
BEAM-10007 ... 11744 60 25 72.5 72.5 ...
BEAM-10009 ... 12764 478 35 495.5 848.0 ...
BEAM-10009 ... 12921 7 1 7.5 848.0 ...
BEAM-10009 ... 12573 339 12 345.0 848.0 ...
...

Table 3.5: An example of calculating issue size. The “sum size” column has
summarized the S̄ size for the issues found in the “issue” column.

The data for each variable, namely the variables “deletions” and “ad-
ditions”, are fetched from the Github API in the same way as previously
collected data has been described. Initially, it was possible to collect a third
variable “files changed” from the API too. However, this was found to have
a strong monotonic relationship with the other variables. The conclusion
was therefore that this was a proxy variable for “additions” and “deletions”,
which could be left out of the size calculation. I.e., the variable is not rel-
evant because it has a close relationship with the others. A correlation
analysis for this can be seen in Fig. 3.10. In it the Spearman’s rank corre-
lation coefficient ρ for the “files changed” variable across all the projects is
given. The p-value for each ranged from 1.628E − 55 to so low that it was
indistinguishable from zero in Python.

The reason why the added and deleted lines in the PRs are used to rep-
resent size is simply because of how Git, and therefore also subsequently
Github, seem to work. At the time of writing this thesis, it was not possi-
ble to use Github’s API in order to get a pure LOC measure for each PR.
However, Git describes the variables under the “git log” documentation as
“Output only the last line of the –stat format containing a total number
of modified files, as well as a number of added and deleted lines” 16. In
short, this means that if a PR has introduced 10 new lines and removed 15.
Then the final size of that PR will be a total of 25 lines changed. This also
applies to the modifications done to a line, where it will automatically be
interpreted by Git as either an “addition” or “deletion”.

16https://git-scm.com/docs/git-log

40

Figure 3.10: Correlation for the “files changed” variable

41

3.4.2 Lead time for changes
Lead time for changes is described by DORA as “the amount of time it takes
a commit to get into production”. Further specifying that “for the primary
application or service you work on, what is your lead time for changes (i.e.,
how long does it take to go from code commited to code successfully running
in production)?”. In relation to calculating the metric, DORA continues by
saying that calculating the lead time for changes is “done by using triggers
with an SHA mapping back to the commits” 17.

In this case, the “amount of time it takes a commit to get into produc-
tion” for each OSS project, is being interpreted as the time it takes for a PR
to go from being created to merged. Other studies have, for example, seen
the lead time for changes metric as simply the time it takes for an issue to
go from open to being resolved [28]. This is different from that, as it is the
commits in a PR, hence the code itself, that are being tracked, instead of
tracking the issues directly.

As the data from this thesis comes from OSS projects, the repository
commits and branches may in general differ compared to projects that aren’t
OSS. Considering that practices for committing code may be different in
closed projects. For OSS projects, however, as is the case with the projects
in this thesis, there will be a system for PR requests where repositories are
forked and PR requests made. When a PR is verified by any potential tests
and a reviewer in a QA, the PR can then be merged into the project.

This makes it so that the lead time for changes has to be calculated by
tracking the PRs instead of commits directly. A PR will then be able to rep-
resent one or more commits as a collection. This is slightly different from
what DORA has defined lead time for changes, as they suggest tracking
the commits individually. However, as this thesis associates issues to their
PRs, it is necessary to map the PRs and track them over some given time,
rather than the individual commits in a repository as DORA suggested.

In this case, the SHA mapping (also known as a hash) is a unique 40-
character long identifier that is given to each commit. This identifier can be
explained simply as a string of random characters generated by a crypto-
graphic hash function. The string or SHA, makes it possible to differentiate
one commit from others. Hence, why it is possible to map the commits by
their SHA and then reliably use the data from the mapping.

However, as just briefly mentioned, it is the PRs that are being mapped
in this thesis. This isn’t necessarily as definite as DORA has defined their
mapping to be. As there will be a possibility that some commits, without
having been linked to a PR beforehand, are created and pushed onto the
different branches of a project. However, for the OSS projects, it seems like
the observation is that pushing anything to the different branches without
a PR is only an exception.

17https://cloud.google.com/blog/products/devops-sre/using-the-four-keys-to-measure-your-
devops-performance

42

Calculating the lead time for changes for an issue can therefore be achieved
by calculating the lead times for all PRs associated with that issue. Then,
all of the lead times can be summed up as the overall lead time for a change
for that specific issue. Just like how the size for each issue was calculated
for all the issues. Further, in order to get a more precise measure, the met-
ric has also been converted into lead time per change.

This will then take into account the size of the issues, thus increasing
the construct validity. In contrast to just summarizing the number of lead
times to measure the lead time for changes, the lead time per change will
be able to factor in that it may take longer to make changes to larger issues,
and vice versa. Simply summarizing the lead times would not have taken
this into account and therefore resulted in a less reliable measure.

This conversion is achieved by dividing by the issue size, Eq. 3.13 de-
scribes this. Here, the lead time per change t is calculated by taking the
sum of lead time for all PRs associated with an issue, then dividing that
by the size S̄ of the PRs. The distance function d(xi, yi) describes the time
distance between the creation and merging of the PR. This takes two dates,
namely the creation- and merging date, and converts those into seconds.
Then, the difference |y − x| between the two is taken, which ultimately
ends up being the lead time. Finally, the result is returned as lead time per
change measured in seconds. This measure can then be interpreted as the
number of seconds it took to make a change.

t =

n∑
i=1

d(xi, yi)

S̄i
(3.13)

A specific example of this could be to take any specific issue out from
a project, for example, BEAM-10001 from the Beam project. Then, check
how many PRs are associated with the issue, in this case it’s just 1. When
inspecting the PR, the creation date is Friday May 15, 2020 at 13:39 UTC,
and merge date Friday May 15, 2020 at 20:32 UTC. As described by the dis-
tance function, these two dates has to be converted into seconds and then
the difference between those two has to be taken. For these two dates the
difference is 24,780 seconds. The difference is then divided by the size of
the PR (which happens to be 5.5) as 24780

5.5 , which is equal to roughly 4,505
seconds. This means it took about 4,505 seconds to make the change.

Further, when using the lead time per changes measure in comparison
with open TD issues, the projects were split up on a monthly basis. This
made it possible to correlate the values as they changed over time with the
number of open TD issues. Furthermore, both the first five and last five
months of a project are removed for a more realistic representation. The
reason for removing the first five is to exclude months that aren’t likely af-
fected by TD. The last five are removed because how the last few months

43

might have issues that are still open. Keeping these months may therefore
have affected the estimation negatively.

The overall lead time per change for a month will be the median of all
lead time per change for the issues within that month. This will then re-
turn the center value for each of the months in the OSS projects, so that
any outliers and skewed data will be accounted for and thus not affect the
central tendency. When splitting up projects on a monthly basis for the lead
time per change, the months were established by the creation date of all the
issues. Fig. 3.11 tries to illustrate this relationship.

Figure 3.11: Illustration of monthly distribution mi. Issue beginnings Bi

will start at the beginning of a month, but issue endings Ei (resolved date)
doesn’t have to end at the same month.

From the figure, it can be seen that each month mi has a fixed begin-
ning Bi for the issues that fit within that month (from the 1st of the month
till the last day of that month). However, the resolved date of the issues
does not have to end Ei in the same month. I.e., all the issues that are
created within one month, wouldn’t necessarily have to be resolved within
that month or the next. The reason for this is to look at how many changes
it took to implement a solution for the TD issues, which is in this case
achieved by looking at the data in retrospect. A specific example of this can
be seen in Table 3.6.

Issue ... Created Resolved ...
1 BEAM-502 ... 2016-08-01 18:36:46+00:00 2016-08-03 19:10:44+00:00 ...
2 BEAM-522 ... 2016-08-03 21:04:14+00:00 2016-08-15 19:20:48+00:00 ...
3 BEAM-523 ... 2016-08-03 23:43:58+00:00 2016-08-11 18:18:02+00:00 ...
4 BEAM-525 ... 2016-08-04 00:42:48+00:00 2017-02-07 02:17:25+00:00 ...
5 BEAM-528 ... 2016-08-04 01:32:49+00:00 2016-10-05 19:51:34+00:00 ...
6 BEAM-532 ... 2016-08-04 01:49:13+00:00 2016-08-15 04:01:53+00:00 ...
7

Table 3.6: Snippet of columns from a monthly distribution.

44

From the table, it can be seen that all the issues that have been included
are created within a fixed month. In this case, that is August 2016. How-
ever, not all the issues are resolved within the same month. For example,
rows 4 and 5 are all resolved in a different month. In fact, for row 4 the
resolved date for this issue is in another year completely.

3.4.3 Deployment frequency
DORA has defined deployment frequency as “how often an organization
successfully releases to production”. They then go on to say “for the pri-
mary application or service you work on, how often does your organization
deploy code to production or release it to end users?” 18. I.e., the deployment
frequency measures how rapidly deployments (updates, patches, features,
etc.) is pushed to the end-users.

When calculating the deployment frequency, DORA states that “deploy-
ment frequency is the easiest metric to collect, because it only needs one
table”. This can then simply be a table that summarizes the deployments
in a project. For this thesis, that will be the PRs (deployments) that have
been merged into the repositories for the different OSS projects. They fur-
ther specify that “it would be simple and straightforward to show daily de-
ployment volume or to grab the average number of deployments per week,
but the metric is deployment frequency, not volume” 19.

The deployment frequency is in this case measured over a monthly ba-
sis. Likewise to lead time for changes, the first and last five months from
each project have been removed. This has been done to achieve a more real-
istic representation. The deployments over that monthly basis, namely the
frequency, are calculated as the deployed value. This will take the issue size
into account, rather than treating every deployment equally. Thus making
it possible to differentiate between smaller and bigger deployments. As
compared to just counting the number of deployments, the deployed value
will then more accurately measure the deployment frequency.

For instance, treating a small and big issue equally for a given month
will simply equal two deployments. However, separating them as the de-
ployed value will instead be able to give a summarization of the value they
add. In this case, that deployed value will be the size-weighted issues that
are calculated based on their PRs. This would then make it possible to dif-
ferentiate between, for example, a month that has two large deployments
and a month that has one large and one small deployment.

Furthermore, when it comes to what constitutes a successful release,
then this has been selected as the deployments that are resolved on a
monthly basis. I.e., the deployments for a month will only include deploy-
ments marked as resolved within that month. This will exclude issues that

18https://cloud.google.com/blog/products/devops-sre/announcing-dora-2021-accelerate-state-
of-devops-report

19https://cloud.google.com/blog/products/devops-sre/using-the-four-keys-to-measure-your-
devops-performance

45

haven’t been resolved for that month, which is in contrast to the lead time
for a change, as it was calculated as the number of creations per month
(regardless of the resolved date). The deployment frequency will instead be
the number of resolves (successful deployments) per month.

The reason for selecting resolved issues as the successful deployments,
rather than other measures such as issue labels (e.g., “fixed” or “closed”). Is
that marking an issue as resolved is the final action that can be applied to
an issue, regardless of the resolution. Although this wouldn’t necessarily
mean that each resolved issue has deployed something directly, such as code
for a patch or feature. It can, however, be seen as an overview of the final
resolution. This simplifies the process of what a deployment is and is not,
which could otherwise be difficult to decide. The deployed value will also
take this into account for the deployment frequency, as resolved issues that
do not add value will not affect the deployment frequency for that month.

A specific example of this would be to say that there have been 20 suc-
cessful deployments (resolved issues) for a month. These 20 issues are then
summed up based on their issue sizes, just as the size of an issue was
previously explained in this chapter. I.e., the final sum for the month is
S̄1 + S̄2 + ...+ S̄20, which could also be interpreted as the deployed value for
that month. An example of this can be given with the snippet in Table 3.7.

Key ... Created Resolved ... Sum size
1 WT-2972 ... 2016-10-13 07:01:20+00:00 2017-05-25 14:51:12+00:00 ... 4938.0
2 WT-3158 ... 2017-01-30 00:08:21+00:00 2017-05-12 01:22:38+00:00 .. 920.5
3 WT-3248 ... 2017-03-31 15:36:40+00:00 2017-05-26 20:41:17+00:00 ... 33.0
4 WT-3258 ... 2017-04-04 19:44:15+00:00 2017-05-26 02:30:35+00:00 ... 366.5
5 WT-3264 ... 2017-04-05 18:57:45+00:00 2017-05-22 16:47:40+00:00 ... 241.5
6 WT-3303 ... 2017-05-01 00:02:32+00:00 2017-05-19 05:07:20+00:00 ... 53.0
7

Table 3.7: Snippet of columns from a monthly distribution.

First of all, as it can be seen from the table, the resolved date is fixed
for a specific month while the creation date is not. The latter is especially
noticeable with the first row, as the issue for this row has been created in
2016. Further, in order to calculate the deployment frequency for the snip-
pet of this month, the deployed value has to be summarized, which means
that the sum size S̄ has to be added together for the issues. In this case,
that would be 4938+ 920.5+ 33+ 366.5+ 241.5+ 53 which is equal to 6552.5.
The deployed value for that specific snippet is therefore 6552.5. The final
unit of measurement from this deployed value will then be a product of the
additions and deletions that were required to resolve the issues.

46

3.4.4 Measuring technical debt
Measuring the TD for each OSS project has been achieved by counting the
TD issue classifications. More specifically, the number of issues classified
as TD on a monthly basis. As a result of this, it is possible to compare the
TD issues with the DevOps metrics in a correlation to open TD issues. Thus
making it possible to gain insight into how TD is prioritized and fixed, as
well as how the DevOps metrics are affected by open TD issues.

The monthly distribution of issues is decided by which of the two De-
vOps metrics is measured. However, the measured TD that is correlated
with the metrics will be the number of TD issues that are opened on a
monthly basis, regardless of the date they are resolved. As seen in the
snippet from Table 3.8, issues are separated as either TD issues (signified
by a numeric value of 1) or non-TD issues (signified by 0).

Further, as the DevOps metrics were weighted based on their issue size,
TD items are being weighted too. In this case, the TD issues are multiplied
by their issue size. Eq 3.14 describes the relationship between weighted TD
issues and all the other issues. From the equation, it can be seen that an
issue, which has either a numerical value of either 1 (TD issue) or 0 (non-
TD issue), will be multiplied by its corresponding weight.

n∑
i=1

aiS̄i, a ∈ {0, 1} (3.14)

This makes it so that only issues marked as TD, namely given the nu-
merical value 1, are included in the calculation. When splitting TD issues
up on a monthly basis, this calculation will be the summarization of all the
TD issues multiplied by their weight for that month. A specific example of
this can be seen from the data in Table 3.8.

key created resolved sum size td
1 BEAM-502 2016-08-01 18:36:46+00:00 2016-08-03 19:10:44+00:00 21.5 0
2 BEAM-522 2016-08-03 21:04:14+00:00 2016-08-15 19:20:48+00:00 42.0 1
3 BEAM-523 2016-08-03 23:43:58+00:00 2016-08-11 18:18:02+00:00 4.5 0
4 BEAM-525 2016-08-04 00:42:48+00:00 2017-02-07 02:17:25+00:00 1.5 0
5 BEAM-528 2016-08-04 01:32:49+00:00 2016-10-05 19:51:34+00:00 422.0 1
6

Table 3.8: Snippet of month with TD issues

In this case, the monthly summarization will be 0 ·21.5+1 ·42.0+0 ·4.5+
0 · 1.5 + 1 · 422.0, which equals to 464. Following this sequence for the whole
month, it is possible to use the final result in correlation with the DevOps
metrics. Since the final result for all TD issues weighted per month will be
able to represent the open TD issues, as well as their importance of them.

47

Chapter 4

Results

In chapter 4, the results from the methodology are presented. Each section
in this chapter will first start out by briefly summarizing the processes re-
lated to the methodology, before moving on to analyzing and presenting the
final results. The collected data section gives an overview of the data from
the OSS projects after it has been extracted and processed. The results
from the collected and processed data are used for both RQ1 and RQ2.

4.1 Collected data
A summary of the extracted data from the OSS projects can be seen in Ta-
ble 4.1. This summarizes the preliminary data that was collected from both
Jira and Github. The data was further prepared and processed for the RQs
so that it could be used with the classification models and DevOps metrics.
The Jira issues field is the number of Jira issues that is unique, and that
have at least one PR associated with them. The number of PRs is all the
PRs that are associated with a specific Jira issue.

Name Jira issues Pull-requests Merges Resolves Comments
Beam 6,925 11,249 8,073 6,117 22,583
Flink 13,000 15,267 4,684 12,669 113,182
Sakai 6,615 7,424 6,921 6,433 21,672
Wildfly 6,673 8,194 6,373 6,597 15,612
WiredTiger 3,794 4,917 4,472 3770 34,636
Sum 37,007 47,051 30,523 35,586 207,685

Table 4.1: Collected data

48

As seen from table 4.1, there is a wide variation between the projects.
For example, the number of issues compared to PRs comments compared
to issues and PRs, as well as the ratio between merged PRs and resolved
Jira issues. This may be an indication of how each project may have dif-
ferent methodologies and ways of structuring its SDLC. For example, some
projects, such as Beam, Sakai, and WiredTiger, have a greater amount of
merged PRs compared to resolved Jira issues. While the other projects,
namely Flink and Wildfly, have the exact opposite of that.

There can be several reasons for this. For example, one reason why
there might be more merged PRs compared to resolved issues could be that
an issue has taken several PRs in order to fully resolve. An example of this
can be seen in Fig. 4.1, where an issue has been split up into three merged
PRs and one closed PR. In this case, the PRs are not only merged into the
Master branch 1 but also such as backports into previous releases. In short,
this means that the PRs are not only merged into the present release but
also into previous releases of the project.

Figure 4.1: Multiple PRs for a single Jira issue

Furthermore, a reason for why there might be more resolved Jira issues
compared to merged PRs. Might potentially be due to the processes behind
how issues are created, as well as how PRs are handled. One example of
this could be that unnecessary issues would not have needed a PR in order
to be resolved. Another example could be that the commits in a PR are not
merged with the PR itself but, that the contributions in the PR are instead
used in another commit for the codebase.

The latter can be observed in the PR seen in Fig. 4.2. This is a PR
that is linked to a Jira issue that has been resolved with a resolution set as
fixed. However, even though the Jira issue is resolved and the PR itself has
been approved, its status of it is closed and thus the PR is not merged. I.e.,
the contributions from the PR have not been introduced into the codebase
via merging that specific PR.

1https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/proposing-
changes-to-your-work-with-pull-requests/about-branches

49

Figure 4.2: Closed PR for a Jira issue that has been marked as fixed

Instead, the contributions from the PR were merged into the codebase
through another separate commit. The reviewer had then decided to make
a commit that was co-authored with the author of the PR, and then push
that directly onto the Master branch. This commit would then include con-
tributions from the original PR and resolve the issue. Furthermore, all
things considered, it seems like the data that has been extracted has a large
scope. In that, there are differences between the technical background of
each project, the methodologies, and so forth.

The results from further processing of the data have been summarized
in Table 4.2. This table is the result of the process of cleaning the OSS
projects, which is done just as it was explained in the methodology chapter
of this thesis. The data is based on unique Jira issues, which can have mul-
tiple PRs associated with it. E.g., For the Flink issue FLINK-24800 counts
as one issue, even though FLINK-24800 can have multiple PRs. As seen in
Fig. 4.1, the FLINK-24800 issue has four PRs that are associated with the
issue. This data is that which has been used for RQ1 and RQ2.

Beam Flink Sakai Wildfly WiredTiger
Total issues 5,786 10,729 6,465 5,353 3,452

Table 4.2: Final amount of issues from the OSS projects.

50

4.2 RQ1 quantifying how TD evolves
from developer discussions

Prioritizing TD is one of the most important undertakings for managing TD
in software projects. The process is used to help determine how resources
in a project are allocated, including such as decision-making on new fea-
tures or refactoring TD debt [26]. In order to perform a TD prioritization,
relevant information regarding the TD must be made available.

For this thesis, RQ1 looked into how NLP can be applied to OSS projects
as a method for quantifying TD. Specifically, how TD evolves out of devel-
oper discussions by generalizing NLP methods to a number of projects from
the open source community. The purpose of this was to try to further refine
the work carried out by Ozkaya et. al [37], which simply looked at a specific
case with the Chromium project. Their study used ML and NLP to detect
TD discussions from the project but fell short of creating an oracle for this
type of approach. Thus, RQ1 has been directed towards trying to improve
this. Not only did this include improving the accuracy for classifying TD is-
sues, but also improving feature engineering and seeing if the classification
models can be generalized for multiple projects.

To be more precise, the aim of RQ1 is therefore to see if developer dis-
cussions, that otherwise have design concerns that are hard to detect, can
be generalized and marked as TD issues. That is, discussions that may ex-
press concerns related to more than what code inspection alone can uncover.
For example, architectural design concerns, ad-hoc development choices, as
well as other factors that may accumulate interest over time. As Ozkaya
et. al [37] concluded in their study, this can be invaluable information for
keeping track of TD in large projects, as well as making decisions related
to TD prioritization. TD issues can then be related to their corresponding
discussions, as they said, and potentially be especially useful for making
decisions related to timely resolutions, decisions, and communication.

Furthermore, both the ML models and RNN for this thesis are mostly
evaluated on their f1-score, specifically on the f1-score related to classifying
TD issues rather than non-TD issues. The f1-score is a metric that better
accentuates the performance of a classifier, compared to other metrics such
as the accuracy score alone, which is simply the percentage of predictions
the models got right. The reason for using this metric is that it combines
both the precision and recall of the classifiers into a single score. Obtaining
these scores are achieved by testing the classifiers.

The precision metric is the ratio between the true positives and all the
positives in the classification. I.e., the precision can be measured as a per-
centage of correctly identified TD issues divided by all the TD issues. Re-
call, also known as sensitivity, is on the other hand slightly different. It
measures the proportion of correctly identified true positives.

51

Testing the classification models has been done by splitting the dataset
used for supervised learning, and then sharing the dataset for both training
and testing. Both the ML models have been tested with a straightforward
train/test split with a ratio of 80/20. 80% of the dataset has then been used
for supervised learning, and the remaining 20% used for testing. The RNN
has been tested in the same way but on a different premise. Instead of using
an 80/20 split, the dataset has been split up using k-fold cross-validation,
which is further explained in the RNN section of this chapter.

Furthermore, all the ML models have been optimized and tuned using
hyperparameter optimization. This form of model optimization involves
finding hyperparameters that are the most optimal for the model’s learn-
ing process, the parameters will thus be something that affects how the
model behaves. Finding the hyperparameters has been achieved using a
grid search approach. In short, a grid search technique deals with trying
different combinations, so that the most optimal hyperparameters can be
found by calculating the performance for each of the combinations.

The classification model that was ultimately selected was the logistic
regression model, which can be seen in Table 4.6. Compared to the other
models, it was this one that got the best results. This model was further
verified through manual inspection, where a sample of the predictions from
the model was reviewed. In order to avoid bias, the task was completed by
another master’s student from the University of Oslo in informatics, where
the person was given a hundred random issues and asked to manually clas-
sify them as either TD or non-TD issues. The results from this were then
matched with the predictions from the logistic regression model.

The student was not told why the classifications had to be manually
marked. The reason for withholding this information was to not introduce
any bias, as explaining the purpose behind the classifications might have
influenced the outcome. However, the student was given instructions based
on how to identify TD discussions, which was the rubric from Bellomo et al.
[8]. The outcome of the manual classification was that 72 of the 100 clas-
sifications matched the predictions of the logistic regression model. This
match seems to correspond with the performance scores that are achieved
with the logistic regression model, which can be seen in Table 4.6.

52

4.2.1 Using the initial dataset
The initial dataset used for the RNN and ML models, which was mostly
based on the study by Ozkaya et al. [37], achieved good classification re-
sults. However, this was only when the dataset was upsampled, especially
for the logistic regression model. The reason for upsampling the dataset,
compared to leaving it as it was, is that the class of non-TD issues was
overrepresented. Upsampling the dataset will make it so that both the TD
and non-TD classes are balanced. That is to say, represent TD issues and
non-TD issues as either the same or roughly the same quantity [38].

The technique used for upsampling the data was a back-translation
method [14]. This involves taking a random set from the underrepresented
class, namely the TD issues, and then translating them to another lan-
guage and back to the original. In this case, that meant translating a ran-
dom set of TD issues from the source language English to German, which
would then become the target language. After that, the target language
was translated back into back-translated TD issues. As a result of this, the
upsampled dataset could be used for both training and testing the classifier.
This process was achieved by writing a script that did the back-translation,
where both Python and Google Translate’s Googletrans library was used.

The results for the logistic regression classifier can be seen in Table 4.3.
In total, the upsampled dataset had 2,234 issues, where 1,787 issues were
used for training the classifier and 447 issues for testing. As it can be seen
from the table, the overall f1-score is 0.85, the AUROC is 0.84, precision is
0.82, recall is 0.88 and accuracy is 0.85. Of particular note is the results
from the classification of TD discussions. As it is of most interest to classify
the TD discussions correctly, compared to classifying issues that are not TD.
The f1-score for this is 0.85, the recall is 0.88 and the precision is slightly
lower than for non-TD issues with 0.82.

Precision Recall f1-score Support
Non-TD discussions 0.88 0.81 0.84 225
TD discussions 0.82 0.88 0.85 222

Accuracy 0.85 447
Macro avg 0.85 0.85 0.85 447
Weighted avg 0.85 0.85 0.85 447

Precision Recall f1-score AUROC
Overall 0.82 0.88 0.85 0.84

Table 4.3: Logistic regression classifications with upsampled initial dataset

53

These results are slightly lower than the AUROC- and accuracy scores
from Ozkaya et al. [37], which can be seen in Table 4.4. In total, they tested
three separate models, but their main model achieved an AUROC of 0.88
and an accuracy of 0.87. However, the performance for precision and recall
is significantly higher than their overall precision of 0.40 and recall of 0.62.

Performance metrics

Accuracy Precision Recall AUROC
No TD 0.90 NA 0.00 0.50
Keyphrase query 0.83 0.26 0.35 0.62
Main model 0.87 0.40 0.62 0.88

Table 4.4: Weighted performance metrics from Ozkaya et al. [37].

4.2.2 Improving the dataset
In spite of the good results from the initial dataset, which was based on the
Chromium project and a few SATD issues marked by developers from the
OSS project. The classification models did not seem to generalize appropri-
ately on unseen data. This was the case for the data from the OSS projects,
where classifications of TD could vary from as little as 11.96% to as much as
76.47% between the projects. The predictions from the classification when
using the initial dataset can be seen in Table 4.5.

As a consequence of this, it was decided that the initial dataset had to
be extended with sufficient data. Making it so that the classifiers could
learn to generalize properly on unseen data. In consideration that the OSS
projects are so varied in technical- and organizational variety, the decision
was to extend the dataset with data from the OSS projects.

Predictions from the logistic regression model using initial dataset

Project Total issues TD issues non-TD issues % of TD
Beam 5,786 876 4,910 15.14%
Flink 10,729 8,204 2,525 76.47%
Sakai 6,465 773 5,692 11.96%
Wildfly 5,353 1727 3,626 32.28%
WiredTiger 3,452 2606 846 75.5%

Table 4.5: Predictions from the logistic regression classification model using
the initial dataset.

54

As previously explained in the methodology chapter, the total amount
of issues was increased from 1,639 to 2,189 for the new dataset. Addition-
ally, the length of the text (characters) per issue was increased from 973 to
4,261 for TD issues. For non-TD issues, the number of characters increased
from 1,185 to 7,540. Furthermore, although both the number of issues and
length of text in the issues had increased with the new dataset, the TD
issues class was still being underrepresented. As a result of this, the new
dataset was balanced by undersampling the majority class, namely the TD
issues. The method for undersampling the new dataset was to remove ran-
domly selected TD issues. This would then result in a final dataset with a
total of 1,501 issues, where 756 were TD issues and 745 non-TD issues.

The final dataset would then contain a mix of the initial dataset and
new issues from the OSS projects. This dataset was then used for the Naı̈ve
Bayes and logistic regression ML classifiers. However, for the RNN both the
upsampled initial dataset with the new issues were used. The predictions
from the classifiers, for example, the logistic regression model, ranges from
10.3% - 17.06% issues being classified as TD, while the predictions from the
RNN range from 20.46% - 31.23% TD. When it comes to the classification
performance, the results from the Naı̈ve Bayes model can be seen in Table
4.7, logistic regression model in Table 4.6, and RNN in 4.10.

The numbers from the logistic regression model are close to what Ozkaya
et al. [37] predicted, which estimated 16.1% TD issues in the Chromium
project. The RNN has on the other hand made predictions that are well
above that. However, other studies have estimated that 2.4% - 31% of the
files in a project contain SATD [42]. This makes the prediction results from
the RNN seem reasonable, without going in-depth into them.

55

4.2.3 Machine learning models
As previously mentioned in the thesis, although the ML models using the
initial dataset achieved good results when tested. The ML models would
subsequently fail to generalize properly on unseen data if the initial dataset
alone was used for training and testing. Thus, a new dataset had to replace
the initial one, and then be used to train and test the classification models.
From this, the classification report for the logistic regression classifier can
be seen in Table 4.6. The report for the classifications made by the Naı̈ve
Bayes classifier can be seen in Table 4.7.

Logistic regression

Precision Recall f1-score Support
Non-TD discussions 0.73 0.76 0.74 146
TD discussions 0.76 0.73 0.75 155

Accuracy 0.74 301
Macro avg 0.74 0.74 0.74 301
Weighted avg 0.75 0.74 0.74 301

Precision Recall f1-score AUROC
Overall 0.76 0.73 0.74 0.74

Table 4.6: Logistic regression classifications with the new dataset.

Naı̈ve Bayes

Precision Recall f1-score Support
Non-TD discussions 0.65 0.92 0.76 146
TD discussions 0.88 0.52 0.66 155

Accuracy 0.72 301
Macro avg 0.76 0.72 0.71 301
Weighted avg 0.77 0.72 0.71 301

Precision Recall f1-score AUROC
Overall 0.88 0.52 0.65 0.72

Table 4.7: Naı̈ve Bayes classifications with the new dataset.

56

As seen from the tables, the logistic regression is able to make better
classifications compared to the Naı̈ve Bayes model. Although the overall
f1-score for non-TD discussions aren’t too different from each other, the
logistic regression classifier has better f1-scores for both the TD discussions
and overall. A diagram that compares the receiver operating characteristic
(ROC) curves for both of the classifiers can be seen in Fig. 4.3.

Figure 4.3: ROC curves for Naı̈ve Bayes and logistic regression

The ROC curves describe the classification thresholds for the models,
which are based on the two parameters true positive rates (TPR) and false-
positive rate (FPR). The plots seen in the diagram are the relationship be-
tween TPR vs. FPR, which is shown as a curve for each of the different
thresholds. In this case, the threshold for random chance is also included
as a contrast to the two models. The threshold itself is the given probability.
The TPR, also known as sensitivity or recall, describes the rate of positive
classes being correctly predicted. I.e., correctly predicted TD discussions.
FPR on the other hand describes the rate of positive classes being incor-
rectly predicted. I.e., an issue being predicted as TD when it isn’t.

Both the models have had a classification threshold set as P > 0.75. Nor-
mally for the Python scikit-learn library, which has been used to implement
the models, the threshold is set at 0.5. This means that a probability is con-
verted to a binary value based on the threshold. For example, a probability
of 0.55 or 0.95 would be converted to 1, which will classify it as TD. While
a probability of 0.43 or 0.13 will be converted to 0, classifying it as non-TD.
The reason for adjusting it to a higher threshold is that it is more impor-

57

tant to classify fewer TD discussions correctly with high certainty, rather
than the opposite. As there will be a big difference between a prediction
of 0.95 and 0.55, thus thresholds are something that is dependent on the
problem. It was therefore concluded that tuning the threshold from 0.5 to
0.75, would make more sense for the classifications.

Furthermore, because the logistic regression model outperformed the
Naı̈ve Bayes classifier, the logistic regression model has been chosen. The
model made especially more correct predictions when taking the classifica-
tion of TD into consideration. A Table 4.8 summarizes the predictions for
the unseen OSS data using the logistic regression model.

Predictions from the logistic regression model

Project Total issues TD issues non-TD issues % of TD
Beam 5,786 596 5,190 10.3%
Flink 10,729 1,722 9,007 16.05%
Sakai 6,465 754 5,711 11.66%
Wildfly 5,353 639 4,715 11.94%
WiredTiger 3,452 589 2,863 17.06%

Table 4.8: Predictions from the logistic regression classification model.

The top 30 words with the highest TF-IDF score from the classification
can be seen in Table 4.9. This is based on the new dataset during the train-
ing of the classifiers and is the same for both the Naı̈ve Bayes- and logistic
regression classifier. The weights are the TF-IDF score given to each word,
and this represents the importance of that word.

Word Weight # Word Weight # Word Weight
1 lastcompletedbuild 3.660 11 job 2.452 21 fix 1.946
2 beam 3.311 12 page 2.449 22 file 1.902
3 eviction 3.009 13 format 2.434 23 github 1.900
4 cursor 2.991 14 server 2.325 24 org 1.862
5 chrome 2.865 15 error 2.285 25 change 1.818
6 wiredtiger 2.763 16 branch 2.261 26 test 1.795
7 mongodb 2.753 17 java 2.177 27 the 1.775
8 memory 2.739 18 message 2.072 28 com 1.606
9 flink 2.697 19 build 2.055 29 issue 1.534
10 apache 2.553 20 add 1.959 30 http 1.381

Table 4.9: Top 30 words with highest TF-IDF score.

The word from the table are ranked after their importance. This makes
it so that the most important word has the most weight, and vice versa. In
this case, the most important word is “lastcompletedbuild” with a weight of
3.660. The least important word was “http” with a weight of 1.381. Fur-
thermore, it can be noted that word “eviction” seems to be solely related to
the Chromium project. The words “org”, “com” and “http” are likely part of
URLs that have been split up because of the data pre-processing.

58

4.2.4 Recurrent neural network
Likewise to the ML models, the threshold for the RNN classifier has also
been set to P > 0.75. The results from the prediction using the RNN on
the unseen data from the OSS projects can be seen in Table 4.10. It can be
noted that k-fold cross-validation has been used as a statistical method to
test the RNN. In this case, 10 folds (denoted as k=10) have been selected.

Recurrent neural network

Accuracy Precision Recall f1-score AUROC
Overall (k=10) 0.725 0.726 0.723 0.721 0.723

Table 4.10: Classification report for the RNN classification model.

Cross-validation is used as a resampling procedure to estimate the per-
formance of the RNN. By using the dataset with the k-fold cross-validation,
the results are less biased compared to the ML models, which were just
tested with a straightforward train and test split. The “k” refers to the
number of so-called groups that the dataset is split into. In this case, that
is 10-fold. For each group, the model will hold back one group and use the
rest to train. After training on the data, the model will evaluate the predic-
tions using the group that was held back as test data. The same process is
then repeated ten times. The ROC curve for the classification, which takes
the cross-validation into consideration, can be seen in Fig. 4.4.

Figure 4.4: ROC curve for the RNN

59

When the RNN model is run on unseen data from the OSS projects, the
most amount of TD predicted from the RNN is almost double that of the lo-
gistic regression model. A summary of the predictions can be seen in Table
4.11. From the table, it can be seen that the lowest amount of predicted TD
is 20.46% and the highest is 31.23%. The highest is Beam, which is three
times as much as the logistic regression model predicted with 10.3%.

Predictions from the RNN model

Project Total issues TD issues non-TD issues % of TD
Beam 5,786 1,807 3,979 31.23%
Flink 10,729 2,368 8,361 22.07%
Sakai 6,465 1,323 5,142 20.46%
Wildfly 5,353 1,188 4,165 22.19%
WiredTiger 3,452 851 2,601 24.65%

Table 4.11: Predictions from the RNN classification model.

The RNN’s most important words and their respective weights can be
seen in Table 4.12. Compared to the logistic regression model, the RNN
seems to have identified completely different words. Some, such as “con-
flictingexternalidexception”, “reuse” and “winxp” (possibly Windows XP),
seem to be relatable TD references. While other words such as “winter”,
“translator”, as well as numbers such as “459” seem to be more diffuse.

Word Weight # Word Weight
1 conflictingexternalidexception 2.638 16 relationship 2.083
2 winter 2.388 17 snuck 2.076
3 commit 2.388 18 compiler 2.055
4 implementing 2.290 19 rm 2.047
5 objectdefinproperty 2.272 20 translator 2.036
6 fa 2.271 21 clustering 2.029
7 blow 2.268 22 portalhanderexception 2.024
8 o 2.265 23 968 2.020
9 winxp 2.229 24 contain 2.020
10 reuse 2.217 25 committers 2.011
11 unstyled 2.196 26 addsqlfunctionmethod 2.011
12 seek 2.182 27 curtable 2.003
13 ported 2.155 28 drawer 2.003
14 owernship 2.113 29 lastcompletebuild 1.997
15 459 2.100 30 430886993 1.987

Table 4.12: Top 30 words from RNN model.

Furthermore, although the predictions are considerably different than
that of the logistic regression model. The numbers are still within the range
of what other studies have suggested. For example, Potdar et al. [42] es-
timated that between 2.4% - 31% of files in a project contained SATD. In
addition to this, it can be pointed out that the predictions doesn’t seem vary
to much in range, with that the TD predictions are distributed similarly.

60

The RNN may, therefore, along with the word embeddings, have found
different hidden patterns than what the other ML models have. Hence the
reason for why some of the top words may be diffuse can simply be that
they are related to code in the discussions. For example, the word “rm” may
be a reference to the rm command from Unix-like operating systems, which
is used as a command used to remove files on the operating system. This
is something that can also be the case for other top words, such as “addsql-
functionmethod”, which seem to be directly related to code.

If that happens to be true, then it may be logical that they are words
related to TD. As removing files can be linked to activities like refactoring,
and a word like “addsqlfunctionmethod” can possibly be related to concerns
regarding database architecture. Considering that the word seems to men-
tion SQL, which is a programming language for databases.

However, in spite of this and due to better scores from the logistic re-
gression model. It was ultimately decided that this model and its predic-
tions had to be chosen. Not only did it have a better overall f1-score than
the RNN, but most importantly, a better f1-score for prediction TD issues.
Further, the most important words for the logistic regression model also
seem to make more sense. As the words such as “lastcompletedbuild”, “’fix’,
“memory”, “change”, “error”, and so forth, seem to make more sense com-
pared to many of the top words from the RNN.

4.3 RQ2 using quantified TD with De-
vOps metrics to obtain insight

This section summarizes the correlation analysis for the DevOps metrics.
As previously mentioned in the methodology chapter, it is the two velocity
DevOps metrics, namely lead time for changes and deployment frequency,
that have been correlated with the quantified TD. In addition to this, both
the quantified TD and DevOps metrics have also been correlated with the
OSS projects’ Github repository size. This has been done because the re-
sults from the correlations might be influenced by the size of the project.

First, the tables for the correlations are presented. These will then in-
clude the correlations for the DevOps metrics correlated with the quantified
TD, as well as the metrics and TD correlated with size. Then, the charts
and plots for the respective correlations measured over time will be given.

4.3.1 Lead time for changes
The correlation between lead time for changes, which has for this thesis
been further specified as lead time per changes, and the quantified TD can
be seen in Table 4.13. As seen from this table, the Pearson’s correlation

61

coefficient r, which simply measures linear correlation, doesn’t seem to in-
dicate any linear correlation between the lead time for changes and TD.
Further indications of this can be seen when taking the p-values into con-
sideration, as the results from these are not significant.

The p-values describe the statistical significance of the correlation. These
are basically the probabilities that measure, given that the null hypothesis
is true, the likelihood of the observations from the correlation being found.
A small p-value of less than 0.05 (also known as the level of statistical sig-
nificance) would generally mean that the results from the correlation will
have significance. As a result, it will be able to clarify whether the results
from the correlation are due to chance or not [2].

Furthermore, Spearman’s rank correlation ρ, which has been highlighted
in the tables, measures the monotonic relationship for the correlation. The
monotonicity includes both the direction and strength of the variables. In
other words, when there is a change in one variable, it would normally
result in a specific change in the other variable. As seen from Table 4.13,
there does seem to be a strong monotonic relationship between the two vari-
ables in projects Flink, Sakai, and WiredTiger, as well as a weak positive
relationship for this with Wildfly. Although Beam seems to be a deviation
from this, where the result is a weak negative relationship between the two
variables. Based on the p-values, the results from Spearman’s rank corre-
lation also seem to be significant.

The Kendall’s rank correlation coefficient, denoted by τ , seems to also
result in notable correlations. This is a non-parametric measure that ranks
the correlation between the variables on an ordinal scale, including both
their direction and strength. Further, as it can be seen from Table 4.13,
the p-values for τ , excluding Beam, seem to be significant. Although the
results from the measure only range from very weak to moderate correla-
tions, compared to ρ which had a higher correlation degree.

Lead time for changes correlated with technical debt

Beam Flink Sakai Wildfly WiredTiger

Pearson
r -0.030 0.038 0.000 0.026 0.104

p-value 0.814 0.737 0.997 0.770 0.279

Spearman
ρ -0.259 0.685 0.690 0.245 0.602

p-value 0.045 2.285e-12 1.034e-26 0.005 4.099e-12

Kendall
τ -0.172 0.486 0.512 0.164 0.460

p-value 0.052 1.975e-10 3.891e-19 0.006 2.114e-10

Table 4.13: Correlation for lead time for changes.

62

4.3.2 Deployment frequency
When it comes to the deployment frequency metrics, which are measured
as the deployed value. Then the results for this can be seen in Table 4.14.
This table summarizes the correlation between the metric and TD, where
unlike the lead time for changes, there does seem to exist a linear corre-
lation between the OSS projects as seen with r. The r correlation degree
ranges from a positive to very weak to strong correlation between the two.
In the case of Flink, Sakai, and Wildfly the p-values also seem to be signifi-
cant for the correlations for all the OSS projects.

Furthermore, both Kendall’s τ coefficient and Spearman’s ρ coefficient
seem to not only give high correlations but also correlation results that are
significant. This can be seen by their corresponding p-values in Table 4.14.
Of particular note for the correlation analysis for deployment frequency is
the ρ values for the OSS projects, which seem to range from moderate to
very strong positive correlations between the projects.

Deployment frequency correlated with technical debt

Beam Flink Sakai Wildfly WiredTiger

Pearson
r 0.154 0.467 0.450 0.610 0.119

p-value 0.238 1.257e-05 2.511e-10 2.622e-14 0.217

Spearman
ρ 0.543 0.729 0.917 0.716 0.661

p-value 7.363e-06 1.688e-14 1.347e-72 2.867e-21 5.069e-15

Kendall
τ 0.410 0.539 0.767 0.559 0.528

p-value 4.155e-06 1.524e-12 1.628e-37 3.598e-19 1.171e-12

Table 4.14: Correlation for deployment frequency.

63

4.3.3 Project size
As briefly mentioned in the introduction of this section, both the DevOps
metrics and the TD has also been correlated with the OSS project sizes.
The reason for correlating the project size with DevOps metrics, as well as
the TD, is to see if it has an influence on the measures. As both the quanti-
fied TD and metrics may be influenced by the project as it grows over time.
For example, it may be that the larger the project gets, the more TD is accu-
mulated. Likewise, the larger the project becomes, the harder it might be to
deliver software frequently. This makes it an important factor to consider.

In this case, each project size is interpreted as the size of its correspond-
ing Github repository as it grows over time. More specifically, as it grows
over time on a monthly basis, measured in a total amount of line- deletions
and additions. The latter is the same measure as explained in the method-
ology for measuring DevOps metrics. I.e., the sum total of the number of
lines that have been added and deleted in the project.

Getting the repository size for each OSS project was achieved by writ-
ing a Python script with the Github API. This has been done in the same
way as other forms of data from Github were collected, and described in
the methodology chapter. The size variable was obtained by summarizing
the number of line additions and deletions for each commits in a month.
Further, as explained in the measuring DevOps metrics section, this total
amount doesn’t necessarily translate into LOC. Considering that Git inter-
prets an addition or deletion as something that is purely based on a line
addition or deletion, which also includes any modifications to a line.

The correlation for lead time with repository size can be seen in Table
4.15, deployment frequency correlated with repository size can be seen in
Table 4.16, and TD correlated with repository size seen in 4.16. From the
tables, it can be seen that the repository size seems to have some sort of
impact on the TD and DevOps metrics. For example, for Sakai and lead
time for changes correlated with size, where the ρ is as high as 0.690. The
same applies to Flink’s deployment frequency and TD correlated with size,
where the results are ρ is 0.691 and 0.531 respectively.

However, contrary to the other correlations, it seems like there is a big-
ger variation in results when correlating with size. As when the quanti-
fied TD was simply correlated with the DevOps metrics, most of the OSS
projects seemed to follow the same trend. However, this doesn’t seem to be
the case when size is considered for the DevOps metrics and quantified TD.
The only exception to this seems to be the lead time for changes correlated
with repository size, which can be seen in Table 4.15.

64

Lead time for changes correlated with repository size

Beam Flink Sakai Wildfly WiredTiger

Pearson
r -0.204 0.029 -0.025 -0.123 -0.086

p-value 0.116 0.794 0.731 0.166 0.370

Spearman
ρ -0.212 0.300 -0.245 -0.364 -0.527

p-value 0.103 0.006 0.000 2.486e-05 3.873e-09

Kendall
τ -0.151 0.204 -0.171 -0.248 -0.351

p-value 0.087 0.007 0.001 3.668 1.230e-07

Table 4.15: Repository size correlated with lead time for changes over time.

Deployment frequency correlated with repository size

Beam Flink Sakai Wildfly WiredTiger

Pearson
r -0.025 0.358 0.051 0.268 0.118

p-value 0.845 0.001 0.489 0.002 0.217

Spearman
ρ 0.176 0.691 -0.042 0.089 -0.292

p-value 0.176 1.211e-12 0.572 0.315 0.002

Kendall
τ 0.115 0.493 -0.022 0.085 -0.156

p-value 0.193 9.609e-11 0.679 0.1619 0.019

Table 4.16: Repository size correlated with deployment frequency over time.

Technical debt correlated with repository size

Beam Flink Sakai Wildfly WiredTiger

Pearson
r 0.115 0.682 0.090 0.107 -0.030

p-value 0.377 2.990e-12 0.226 0.227 0.751

Spearman
ρ 0.244 0.531 -0.120 -0.115 -0.315

p-value 0.059 4.010e-07 0.107 0.194 0.000

Kendall
τ 0.166 0.384 -0.086 -0.080 -0.216

p-value 0.061 4.547e-07 0.115 0.192 0.002

Table 4.17: Repository size correlated with technical debt over time.

65

4.3.4 Deployment frequency line charts
Line charts for the deployment frequency for each of the OSS projects can be
seen in this section. The charts feature deployment frequency compared to
the technical debt over time on a monthly basis. The monthly distribution
can be seen from the dates on the x-axis that is formatted with a date order
of YY/MM/DD. Both the deployment frequency and TD can be seen on the
y-axes in the charts. The TD is on the left y-axis and deployment frequency
is on the right. It should be noted that the y-axes may have different values.

For example, the line chart for Flink, seen in Fig. 4.6, has two y-axes
with different values expressed in scientific notation (seen in the top cor-
ners), where the y-axis for deployment frequency is twice the size of the
y-axis for weighted TD. The other OSS projects can be seen in Fig. 4.5 for
Beam, Fig. 4.7 for Sakai, Fig. 4.8 for Wildfly and Fig. 4.9 for WiredTiger.

In the charts, the deployment frequency is the deployed value for a
month over the project’s lifespan. I.e., just as it was explained in the chap-
ter for measuring DevOps metrics, the deployment frequency takes the is-
sue sizes into account as the deployed value. The y-axis for open TD issues
that are weighted, represents the number of TD issues that are opened per
month and their size. Furthermore, certain OSS projects have earlier ac-
tivity than what can be seen in some of the charts. The reason for excluding
this from the charts (not the correlation analysis) was that this activity was
minimal. Thus, excluding it made the charts more representable. A little
arrow in the chart will indicate that the project had earlier activity.

Figure 4.5: Line chart of deployment frequency and technical debt on a
monthly basis for Beam. N.B., there are two different y-axes.

66

Figure 4.6: Line chart of deployment frequency and technical debt on a
monthly basis for Flink. N.B., there are two different y-axes.

Figure 4.7: Line chart of deployment frequency and technical debt on a
monthly basis for Sakai. N.B., there are two different y-axes.

67

Figure 4.8: Line chart of deployment frequency and technical debt on a
monthly basis for Wildfly. N.B., there are two different y-axes.

Figure 4.9: Line chart of deployment frequency and technical debt on a
monthly basis for Wiredtiger. N.B., there are two different y-axes.

68

4.3.5 Lead time for changes line charts
Line charts for the lead time for changes for each of the OSS projects can
be seen in this section. The charts feature lead time for changes compared
to the technical debt over time on a monthly basis. Likewise to the deploy-
ment frequency, the monthly distribution can be seen from the dates on the
x-axis that is formatted with a date order of YY/MM/DD.

Furthermore, just as it was with the deployment frequency, the y-axes
for the lead time for changes and TD can be different. The y-axis for the
opened TD issues can be seen on the left y-axis, and the lead time for
changes (lead time per change) on the right. Chart seen in Fig. 4.10 is
for Beam, Fig. 4.11 is for Flink, Fig. 4.12 is for Sakai, Fig. 4.13 is for Wild-
fly and the chart in Fig. 4.14 for WiredTiger.

The opened TD issues weighted represents the amount of TD that has
been opened per month, weighted by their size. The lead for changes or
lead time per change is the total amount of lead time for changes for a
whole month. I.e., the sum of all lead time per change for a specific month.

As it was with the line charts for the deployment frequency, some of the
earliest activity in certain OSS projects is excluded. The reason for exclud-
ing this from the charts is also that it excludes minimal activity from the
projects, which makes it easier to represent the charts. A little arrow in the
chart will indicate that the project had earlier activity.

Figure 4.10: Line chart of lead time for changes and technical debt on a
monthly basis for Beam. N.B., there are two different y-axes.

69

Figure 4.11: Line chart of lead time for changes and technical debt on a
monthly basis for Flink. N.B., there are two different y-axes.

Figure 4.12: Line chart of lead time for changes and technical debt on a
monthly basis for Sakai. N.B., there are two different y-axes.

70

Figure 4.13: Line chart of lead time for changes and technical debt on a
monthly basis for Wildfly. N.B., there are two different y-axes.

Figure 4.14: Line chart of lead time for changes and technical debt on a
monthly basis for Wiredtiger. N.B., there are two different y-axes.

71

4.3.6 Deployment frequency scatter plots
The scatter plots for the comparison between deployment frequency and
open TD issues are presented in this section. Just like it was with the line
charts, the comparison is based on a monthly distribution. In order to make
the data more presentable, the log transformation of both TD and deploy-
ment frequency has been taken. Distributing the data using a log transform
will represent the data as a more normally distributed form. Correlations
from Spearman’s ρ and Kendall’s τ are invariant for transformations that
are monotone and are thus not affected.

In addition to the scatter plot, fitted lines has been applied to the plots
to represent the relationship between the variables. The fitted lines, which
can be seen in the plots as an order of either 1, 2 or 3, includes lines for lin-
ear regression, an quadratic function and cubic function of the data. Scatter
plot for Beam can be seen in Fig. 4.15, Flink in 4.16, Sakai in 4.17, Wildfly
in 4.18 and Wiredtiger in 4.19.

Figure 4.15: Scatter plot of deployment frequency and technical debt on a
monthly basis for Beam.

72

Figure 4.16: Scatter plot of deployment frequency and technical debt on a
monthly basis for Flink.

Figure 4.17: Scatter plot of deployment frequency and technical debt on a
monthly basis for Sakai.

73

Figure 4.18: Scatter plot of deployment frequency and technical debt on a
monthly basis for Wildfly.

Figure 4.19: Scatter plot of deployment frequency and technical debt on a
monthly basis for WiredTiger.

74

4.3.7 Lead time for changes scatter plots
This section presents the scatter plots for lead time for changes, also seen
as lead time per change. Likewise to the plots for deployment frequency,
the lead times for changes and open TD issues weighted are distributed on
a monthly basis. The log transform of the variables has been calculated as
a way to transform the data to a more normally distributed form.

As is the case for the previous scatter plots, fitted lines has been applied
to the scatter plots for lead time for changes. The fitted lines can be seen
in an order of either 1, 2 or 3. The scatter plot for Beam can be seen in Fig.
4.20, Flink in 4.21, Sakai in 4.22, Wildfly in 4.23 and WiredTiger in 4.24.

Figure 4.20: Scatter plot of lead time for changes and technical debt on a
monthly basis for Beam.

75

Figure 4.21: Scatter plot of lead time for changes and technical debt on a
monthly basis for Flink.

Figure 4.22: Scatter plot of lead time for changes and technical debt on a
monthly basis for Sakai.

76

Figure 4.23: Scatter plot of lead time for changes and technical debt on a
monthly basis for Wildfly.

Figure 4.24: Scatter plot of lead time for changes and technical debt on a
monthly basis for WiredTiger.

77

Chapter 5

Discussion

This chapter summarizes the key findings and interprets the results from
the research questions. Both research questions are divided into separate
sections, which follow the same structure as in the results chapter. First,
for every section, the research questions will be restarted. Then, the key
findings and the subsequent interpretation of the results are given. Lastly,
the limitations of the study, threats to its validity, implications, and recom-
mendations for future work will be presented.

5.1 RQ1 quantifying how TD evolves
from developer discussions

The first research question, namely RQ1, asks about how NLP could be
used to quantify TD issues from developer discussions, which included iden-
tifying how it evolves out of them. This is something that would further re-
fine work carried out by a study from Ozkaya et. al [37]. In their study, they
used NLP and ML to identify TD issues from discussions in the Chromium
project. However, as they stated in their study, their work fell short of cre-
ating an oracle for this type of approach, where they concluded that there
was a greater need for looking into improvements, such as increasing the
accuracy of the classifications and bettering the feature engineering.

Asking this question thus meant that the limitations of this study had to
be addressed. When doing so, the research question also tried to see if this
approach could be extended to a larger scale. This would then mean that
the classification method had to be generalized so that it could be applied
to projects with differences in both technical and organizational varieties.
In this case, five different OSS projects featuring a diverse variety of char-
acteristics were selected and used. These can be seen in Table 3.1.

Data from these projects were then collected from Jira and Github. Be-
fore being prepared for data pre-processing, it would be possible to use NLP
with ML models to classify the developer discussions from the data. This

78

would then make it so that discussions would be classified as either TD- or
non-TD issues, and subsequently, be linked to their respective discussions
in Jira and code in Github. The ML models that were tested for classifying
the data, had to be trained using supervised learning with a dataset that
was separately built up. Relying completely on a dataset based on labels
from Ozkaya et. al [37], failed to generalize for the technical and organiza-
tional varieties in the OSS projects.

Choosing to combine NLP with ML for detecting TD, has been proven to
give good results from other studies. This was explained in the background
of this thesis, where it was mentioned that studies such as Maldonado et
al. [48] and Zhongxin et al. [32], have previously looked into how SATD
could be detected from source code comments. Although this is different
from what this thesis tries to answer. The findings from studies such as
these, as well as Ozkaya et. al [37], seem to point toward NLP and ML is a
good option for answering a question like RQ1.

Further, as the results chapter has outlined, the classification model
that was ultimately chosen was the logistic regression classifier. The clas-
sification results from this can be seen in Table 4.6. Not only did this clas-
sifier achieve the best f1-score in comparison to the other models that were
tested, but when analyzing the words with the top TF-IDF score, seen in
Table 4.9, the words from this model seemed to make more sense than the
other type of model that was tested. With the latter being the RNN model,
which had been trained using deep learning, and word embeddings, as well
as the dataset that had been separately built up.

In total, there have been three different ML models tested for RQ1.
These include an RNN-, multinomial Naı̈ve Bayes- and logistic regression
classifier. The Naı̈ve Bayes got a overall f1-score of 0.65, seen in Table 4.7.
The RNN a 0.72, seen in 4.10, and the logistic regression classifier a score of
0.74. Both the Naı̈ve Bayes- and logistic regression classifier have been con-
structed using TF-IDF, and thus shared the same scores for the top words.
The RNN on the other hand used deep learning and word embeddings, and
would therefore give different weighings to the words in the data. This re-
sulted in top words that were significantly different than the other models,
as can be seen in Table 4.12.

When inspecting the top words from the RNN, it happens to highlight
some unexpected findings and interesting results. For example, among the
top words, there were more diffuse words such as “rm”, “portalhanderex-
ception”, “fa”, and “addsqlfunctionmethod”, as well as numbers including
“459”, “968” and “430886993”. This is compared to the TF-IDF top words,
such as “job”, “page”, “issue”, “memory”, “fix” and “beam”, seemed to be
much more oriented towards code. Thus suggesting that the RNN may
have put more emphasis on code snippets inside the developer discussions,
while the TF-IDF may have instead been more inclined to make predictions
based on the actual conversations between the developers.

79

After using the logistic regression classifier on unseen data with a thresh-
old of P > 0.75, it would make TD predictions that ranged from 10.3-17.06%.
As can be seen in Table 4.8. These numbers are within what other studies
suggest for SATD, such as Potdar et al. [42] that estimated between 2.4%
- 31%. And Ozkaya et. al [37], that estimated roughly 16.1%. In addition
to this, as a measure to further verify the predictions from the classifier. A
sample of one hundred issues of the predictions from the model would be
manually inspected and classified by another informatics master’s student
from the University of Oslo. Using the rubric from Bellomo et al. [8], the
student matched 72 of the 100 predictions by performing a manual classi-
fication. This seems to correspond well with the scores one would estimate
could come from the logistic regression model.

Furthermore, when it comes to answering RQ1 based on the results from
the classifications and predictions, where the latter can be seen in Table
4.8. Then, the data from this suggests that identifying and quantifying TD
from developer discussions can be completed using a combination of NLP
and ML. This thesis achieved this by training the logistic regression clas-
sifier using an extensive dataset, which seemed to benefit from featuring a
wide variety of organizational and technical differences.

Although the overall f1-score of this model was only 0.74, leaving room
for more improvements. It was still able to not only obtain better perfor-
mance scores compared to the one from Ozkaya et. al [37], but also gener-
alize the classifications across five different OSS projects. As seen in Table
4.4, their model had a precision of 0.40 and a recall of 0.62 while the logistic
regression classifier used for this thesis managed to achieve a precision of
0.76 and a recall of 0.73. This can be seen in Table 4.6. Thus, the logis-
tic regression model is significantly better at identifying and subsequently
quantifying TD issues from developer discussions.

In addition to this, when it comes to the method and processes used
for collecting and preparing data. Then this made it so that both Jira and
Github data would be linked together, where their relationship would be
based on issue keys from Jira. Making it so that it would be possible to see
how TD issues evolve. As both the methodology chapter and results section
for the collected data explains, the TD issues will be associated with times-
tamps and other data. Thus, both the former and latter could be used for
other purposes, such as looking at how TD evolves from these discussions
and links to other data, as well as how the TD- and non-TD issues compare
with the projects as a whole.

However, as was just pointed out by the results from the logistic regres-
sion model. There is room for improvement. Including further increasing
the accuracy of the classifications, looking even more into feature engineer-
ing, and possibly also increasing the size of the dataset used for supervised
learning. Considering that the dataset was relatively small, containing
only 1,501 issues. Increasing the dataset could then potentially have a sig-
nificant impact on training a classification model. Furthermore, when it
comes to featuring engineering and increasing the accuracy of the classifi-

80

cations. It may also be interesting to further address what the RNN model
has called attention to, which is to look more into how code snippets within
the developer discussions can affect the classification.

Having this systematic method for quantifying TD, which includes be-
ing able to see how they evolve from developer discussions, could potentially
be an invaluable measure for decision-making related to TD prioritization.
When looking at TD this way, compared to more frequently used methods
like code inspection with tools such as SonarQube. As it might be used as a
new way for both monitoring and dealing with TD issues in large projects,
as well as identify TD issues that would otherwise be hard to uncover with
code inspection. Including architectural design concerns, suboptimal de-
velopment choices, and awareness of up-front solutions that are below par,
where it would also be possible to track individual issues and follow how
they evolve, both in relation to the discussion and the associated code.

5.2 RQ2 using quantified TD with De-
vOps metrics to obtain insight

The second research question asks about how the evolution of the quanti-
fied TD, which is a result of RQ1, can be used together with the DevOps
metrics to give insight into projects. That is, RQ2 tries to see how these
two compare through correlation analysis before the eventual results from
this can be used as insight. These results have also then been subsequently
visualized. Further, since this thesis has quantified TD from five different
OSS projects, seen in Table 3.1, where each features its own technical and
organizational varieties. The insight that comes from correlating the TD
with the metrics, will be related to each project respectively.

The specific DevOps metrics that have been measured are the ones for
velocity. To be more precise, the lead time for changes and deployment fre-
quency. These metrics stand in contrast to the stability metrics, namely
the change failure rate and time to restore service. Further, to justify any
confounding factors that size may have on the projects, both the metrics
and quantified TD have also been correlated with the size of each project.
This was selected as the OSS project’s Github repository size. I.e., the size
measurement is the total number of lines for the repository, including the
line additions, deletions, and modifications.

The basis of RQ2 is to see how TD correlates with the velocity of software
development, as well as further add to work carried out by Lenarduzzi et
al. [28]. They proposed a data-driven approach for TD prioritization, where
they suggested that this may relate TD to its interest. In their study, they
compared TD from numerous projects with their lead time. The TD from
these projects came from the Technical Debt Dataset [25]. As mentioned in
the background of this thesis, this dataset has used SonarQube to analyze
projects as a way to quantify TD. I.e., code inspection has determined the

81

amount of TD in the projects. The lead time, on the other hand, was mea-
sured as the time it took to resolve Jira issues.

This is different from what this thesis tries to answer. Although RQ2
explores a data-driven approach for analyzing TD with the performance of
software development, in this case, the velocity. Both the quantified TD
and metrics are different, as described in Eq 3.14 the quantified TD is a
product of both the number and size of the TD issues. More specifically for
the correlation analysis, the quantified TD was selected as the number of
open TD issues that have been weighted on a monthly basis. This relation-
ship is described in Eq 3.14. Thus, the quantified TD is different from how
TD has traditionally been quantified with code inspection [6, 26]. Choosing
specifically to correlate with the number of open TD issues, has been done
to see how open TD issues can affect the project in terms of the metrics.

Further, the metric here for lead time for changes is also different. As
compared to their study, this thesis has used mapped PRs to calculate the
lead time for changes. This was also then further specified by converting
it into lead time per change, as this would additionally describe the metric.
Measuring this lead time for changes has thus been achieved by calculating
all the lead times per change for each PR, which would then be associated
with their respective Jira issues. This relationship is summarized with Eq.
3.13. Moreover, when it comes to the measurement for the second DevOps
metric, namely the deployment frequency, then this was measured as the
deployed value over a specific period. This results in a frequency of de-
ployed value, where the deployed value would be equal to the size of the
successful deployments as described in Section 3.4.3.

The specific period that was selected was on a monthly basis. This pe-
riod was also used for all of the analysis for RQ2, as well as its correlations.
Including the deployment frequency, lead time for changes, quantified TD,
and size correlations. The same applies to the visualization, where the
line charts and scatter plots have also been distributed on a monthly basis.
However, there is one exception to this which is that the first five and last
five months of each project have been excluded from both the correlation
analysis and visualization. As explained in the methodology chapter, ex-
cluding the first five will try to ensure that the projects are mature. Hence,
may have had the chance to accumulate TD [42]. The last five are removed
because it is likely that open TD issues might be still open. Hence, keeping
them will not give a good estimation.

From the correlation analysis results, it can be seen that there are some
mixed results, some unexpected findings, and interesting insights. This,
along with how they may potentially bring insight into how TD is priori-
tized and fixed, will be further discussed in this section of the thesis. How-
ever, since the analysis is rather extensive, each part of the discussion for
the correlation analysis has been split up into its respective sections.

82

Having a method such as this for a data-driven approach when dealing
with TD, may have the potential to lead to significant changes in how TD
is ultimately prioritized. As Lenarduzzi et al. [28] points out, such an ap-
proach may be used for estimating the interest of the TD, by establishing
an association with the TD and how it influences performance.

5.2.1 Lead time for changes correlated with TD
The lead time for changes correlated with open TD issues can be seen in Ta-
ble 4.13. While the Pearson’s correlation coefficient r seems to not indicate
any meaningful correlation between these two. Both the correlations for
Spearman’s rank correlation ρ and Kendall’s rank correlation coefficient
τ seem to give meaningful correlations. As seen from ρ, there seems to
be a monotonic relationship being present. The projects Flink, Sakai, and
WiredTiger had a strong positive relationship with a correlation degree of
0.685, 0.690, and 0.602 respectively. Wildfly got a weak positive relation-
ship with 0.245. However, Beam seems to result in almost the exact oppo-
site of the latter, as the correlation is a weak negative relationship of -0.259,
thus being a deviation from the rest of the projects.

Section 4.3.5 visualizes this relationship in the form of line charts, where
the variables can be seen distributed over the individual months of every
project. From the charts, it is also possible to see the monotonic relationship
for each of the projects. With Flink, Sakai, and WiredTiger it is especially
noticeable that periods with a high amount of lead time per change (lead
time for changes), seem to result in more open TD issues. This data may
suggest that a period where it takes a long time to deliver code, will result
in more open TD issues later on. It could also mean that when something
doesn’t work, developers start discussing TD issues and then fix them.

For instance, with Flink seen in Fig. 4.11, the period that spans from
the middle of the year 2018 and early 2020, seems to indicate that there is
a high lead time per change for this duration. I.e., it takes a long time for
code to be pushed into production. Furthermore, as the monotonic relation-
ship suggests, this is shortly followed by a period with an increased amount
of open TD issues. As seen from Fig. 4.11, there seem to be a lot of new TD
issues being opened in the timespan of late 2020 to late 2021.

The same applies to the projects Sakai, WiredTiger, and partly also
Wildfly. As these projects also result in a positive monotonic correlation
degree. However, as mentioned, Beam was a deviation from the rest of
the projects, as its correlation happen to result in a negative relationship.
From its line chart, seen in Fig. 4.10, it can be seen that it has the opposite
happening compared to the other projects. This may almost suggest that
a period with a great number of open TD issues, which would later be re-
solved, will result in a subsequent period with a high lead time for changes.

However, interpreting the correlation degrees purely on its own may
not give the full picture. As it is important to note that the quantified TD is

83

open TD issues that are based on developer discussions. The TD will there-
fore represent developers who have expressed TD based on the sentiment
of the discussions on the issues. This can, as explained in RQ1, be either
directly or indirectly expressed. Further, the charts also interestingly show
the periods with high amounts of resolved TD issues are not the same peri-
ods where there is a high lead time for changes. As seen from Section 4.3.5,
the latter is the case for all five of the different projects.

This unexpected finding may suggest those periods where developers
experience it as slow to push to production. In other words, when there is
a high lead time for changes, may result in developers shifting their focus
from pushing code, perhaps because it takes longer, and then over to start
discussing TD issues more frequently. After the developers have either di-
rectly or indirectly become aware of the accumulated TD and subsequently
resolved the issues, then the lead time for changes seems to decrease. This
suggests that the result of this will give a better production capacity, where
the developers are faster at delivering non-TD (e.g., updates, features, and
so forth) issues to the projects.

The same reasoning may potentially also be applied to Beam, seen in
Fig. 4.10. Although the chart for this project seems to indicate the opposite
of this, where resolving TD issues results in a high lead time for changes.
The same period with high lead time seems to somewhat decline after some
time has passed from when the TD issues have been resolved. This could
suggest that fixing the TD issues has caused a dispersion in the project,
where there would be a lingering effect on the lead time for changes. The
same phenomena can also be observed in Wildfly, seen in Fig. 4.13. In that
TD issues are frequently discussed before a shorter period of high lead time
for changes is followed, and then subsequently followed with what seems to
be a decline in lead time for changes.

Further, for both Beam and Wildfly, it can be pointed out that it seems
to be more uncertainty around what could have prompted developers to
suddenly discuss TD issues in such high numbers. Compared to the other
projects, namely Flink, Sakai, and WiredTiger, where the periods with a
high lead time for changes can be interpreted as the reason why TD issues
are suddenly being discussed in large numbers.

All in all, this may suggest that the projects have other things in com-
mon than what the correlation degrees represent. The same also goes for
their scatter plots seen in Section 4.3.7, where the relationship between
the lead time for changes and open TD issues doesn’t seem to be so clear.
In that case, this will be further supported by what Lenarduzzi et al. [28]
discovered in their study, which was that they couldn’t find any meaningful
correlations between their way of quantifying TD and lead time. Although
the ρ correlations initially gave significant results for most of the projects.
All the trends from the projects, when they were spread across a timeline
with the line charts, seem to indicate that there could be a more compli-
cated relationship between the variables.

84

This correlation analysis may therefore be limiting, in that there doesn’t
seem to be any conclusive answer about the findings for all five OSS projects.
However, the correlations and the analysis of the data seem to reveal some
significant results and interesting findings. Any future work could there-
fore be to look into what this thesis has highlighted. Including, for example,
a further assessment of why certain projects resulted in a high positive ρ
correlation, while a project like Beam did not.

5.2.2 Deployment frequency correlated with TD
Contrary to lead time for changes, the deployment frequency correlated
with open TD issues seems to result in linear correlations. As seen in
Table 4.14, the Pearson’s correlation coefficient r ranges from a positive
very weak correlation to a strong one for the different OSS projects. Where
Beam, Flink, Sakai, Wildfly, and WiredTiger got 0.154, 0.467, 0.450, 0.610,
and 0.119 respectively. The p-values for Flink, Sakai, and Wildfly are also
significant. This may then initially suggest that there does exist a linear
correlation between the deployed frequency and open TD issues.

Further, as seen with both the correlations for Spearman’s rank cor-
relation ρ and Kendall’s rank correlation coefficient τ , these two seem to
also give strong correlations. For ρ specifically, the degrees range from a
strong to a very strong correlation where Beam, Flink, Sakai, Wildfly, and
WiredTiger resulted in 0.543, 0.729, 0.917, 0.716, and 0.661 respectively.
Based on p-values for all the projects, the monotonic relationship in the
projects also seems to be very significant.

The monotonic relationship for the OSS projects can be seen in the scat-
ter plots in Section 4.3.6. However, this very same relationship seems to be
more unclear when looking at the correlations from a timeline perspective,
where the line charts seen in Section 4.3.4 represents this. Although, from
these line charts, the relationship between the deployment frequency and
TD issues seems to point to some interesting insights.

For example, periods with a high amount of deployment frequency. I.e.,
periods where there is plenty of value delivered to the projects, seem to
overlap with periods that have a lot of opened TD issues. This can for in-
stance be seen in the line chart for Wildfly with Fig. 4.8, where it is visible
that periods with a high deployment frequency, such as late 2019 to the
middle of 2021, also have a lot of opened TD issues in the same duration.
The same can be said for Flink, seen in Fig. 4.6, where the period of late
2020 to late 2021 seems to have a high amount of deployment frequency,
which is overlapping with a great amount of opened TD issues.

One could then, if the correlation is taken literally, assume that it would
mean that the more TD there is in a project, the more value is being deliv-
ered. On the other hand, it could also mean that the faster developers
deliver value, the more TD is accumulated. However, as pointed out for the
correlations between lead time for changes and open TD, this relationship

85

shouldn’t necessarily be interpreted literally. The quantified TD or in other
words, the open TD issues, will in this case be based on the sentiment from
developer discussions. It is therefore the developers themselves that have
expressed some form of concern for TD, either directly or indirectly.

This can then ultimately suggest that when the developers become aware
of their accumulated TD, hence the high amount of TD issues being opened,
that this would also seem to be the time when developers happen to deliver
a lot of deployed value. Thus, the result of this is that there is an overlap
between the open TD issues and the deployment frequency. Further, if that
happens to be true, then it may be fitting to assume that making develop-
ers aware of any TD that have incurred in the project, could potentially also
lead to more value being deployed to the project.

Nonetheless, there will still be some uncertainty surrounding a possi-
ble conclusion here. As this thesis looks at it from the perspective of a
multiple-case study, rather than going into more detail about what might
be happening here. Further works may then be to look more closely at what
is happening here, possibly by going more in-depth.

5.2.3 Project size
This part of the discussion covers how the project size may have affected
the various variables. To systematically summarize the key findings and
the subsequent interpretation, the variables have been divided into sepa-
rate sections.

Lead time for changes correlated with size
The results from correlating project size with a lead time for changes can be
seen in Table 4.15. From the table, it is visible that there is a negative very
weak linear relationship between the two variables. This can be seen with
the Pearson’s correlation coefficient r, which measures linear correlations
that seems to indicate very weak correlations for most of the OSS projects.

Further, both Spearman’s rank correlation ρ and Kendall’s rank corre-
lation coefficient τ seem to result in negative weak to negative moderate
correlations. Only the Flink project is an exception to this. For ρ, then p-
values seem to be significant. Intriguingly, this may then suggest that as
the project gets bigger, the smaller the lead time for changes becomes. Sim-
ilarly, the smaller a project becomes, the higher the lead time for changes
becomes. This can then initially be interpreted as that it is easier to make
changes to a smaller project. I.e., the bigger a project gets, the harder there
is to make changes to it, which then results in less lead time for changes.
However, how this would correspond with the results from lead time for
changes being correlated with TD is uncertain.

86

Deployment frequency correlated with size
From Table 4.16 the results from correlating deployment frequency with
size can be seen. As seen from the table, there are mixed results from all
correlation tests. For example, Flink got a ρ strong positive correlation of
0.691, but WiredTiger resulted in a negative moderate correlation of -0.292.
Further, Beam got a ρ of 0.176 whilst Wildfly resulted in 0.089. Thus in-
terpreting the results and relating them to the deployment frequency is
difficult. As the results seem to indicate that the OSS projects are very dif-
ferent from each other.

Technical debt correlated with size
Likewise to the deployment frequency correlated with size, the technical
debt correlated with size also gave mixed results. Table 4.17 summarizes
this. In the table, it can be seen that there seems to be some linear cor-
relation r between the OSS projects, except WiredTiger which got a very
low correlation degree. However, based on the p-values, only Flink seems
to have significant results.

Further, as seen with Spearman’s rank correlation ρ and Kendall’s rank
correlation coefficient τ , these seem to also give mixed results, where three
projects, namely Sakai, Wildfly, and WiredTiger, seem to result in a nega-
tive correlation. Whilst the projects Beam and Flink seem to have a posi-
tive one. Interpreting these results may therefore be difficult from this data
alone, as the projects don’t seem to have many similarities.

Moreover, this may then suggest that project size is not a substantial
confounding factor. In that, the variables when they were correlated with
the size, did not seem to indicate any meaningful correlations.

5.3 Implications for practice
This section provides future recommendations for practitioners, which are
based on the overall findings from the thesis. Some of the more specific de-
tails for each of the RQs can be found in their respective discussions.

First of all, it looks like NLP and ML can be used for classifying TD
issues based on the sentiment from their associated discussions on a large
scale. This approach also seems to some extent generalize to projects with
technical and organizational varieties. Using the quantified TD obtained
from this approach can then further be combined with other data-driven
approaches for insight. Including studying the relationship between the
quantified TD and DevOps metrics, as it was done in this thesis.

The findings from this approach for quantifying TD may therefore be
used as an alternative and proactive measure for decision-making related

87

to TD prioritization. In addition, the approach may also be used for keeping
track of issues in large projects, where it would be possible to identify is-
sues that could otherwise be hard to do with code inspection. This can then
be such as architectural design concerns, awareness of up-front solutions
that are below par, and suboptimal development choices. Additionally, the
quantified TD may also be used together with other metrics, where the re-
lationship between the TD and metrics can be further investigated.

Further, correlating and visualizing TD with DevOps metrics may also
prove to be useful. As it can be used to see trends in the software project
management related to TD prioritization. Relating performance metrics,
such as the DevOps metrics, to TD issues may also specifically give insight
into the relationship between TD and performance.

5.4 Implications for research
The final model that quantified TD with NLP and ML for this thesis was
supported by work carried out by Ozkaya et. al [37]. Firstly, this thesis
found that their approach could be used for detecting TD issues based on
developer discussions at a large scale, just as they concluded. Secondly,
as they expressed, the model was found to be useful for identifying fea-
tures from discussions that seemed to be strongly associated with TD is-
sues. Lastly, as they point out in their study, these features were found to
be useful for further understanding how TD can be used and investigated.

However, relying completely on the sample data from their single-case
study did not seem to generalize for the multiple-case study that was con-
ducted for this thesis. To increase the classification accuracy of TD issues,
this thesis had to further refine the sample dataset, the feature engineer-
ing, and the model. With this in mind, this thesis may therefore serve as a
foundation for the modification of their theory and work.

Further, the background for investigating the relationship between TD
and how it relates to performance measures has been partially supported
by Lenarduzzi et al. [28]. Coupled with theories from other studies, which
have shown that TD seems to have velocity implications for software in the
long term, such as making it harder to add new features [4, 34]. In this
thesis, it was specifically looked into how TD correlates with the velocity
of software development performance, which would then be correlated with
the velocity DevOps metrics defined by DORA 1.

Likewise to Lenarduzzi et al. [28], the findings from correlating open
TD issues with a lead time for changes did not result in a definitive conclu-
sion. However, interesting findings were made from analyzing the results
of this thesis. Moreover, when it comes to correlating open TD issues with
the deployment frequency, then this resulted in what other studies have

1https://cloud.google.com/devops/state-of-devops

88

concluded when it comes to TD having an impact on software performance.
As the results from this indicate that the deployment frequency is affected
positively by refactoring TD issues. In the case of this thesis, identifying
open TD issues and then subsequently refactoring them, seemed to result
in more deployed value being added to the projects.

5.5 Limitations
Manually labeling: Issues that have been manually labeled and selected
for the dataset used in RQ1, have been based on a rubric from Bellomo et
al. [8]. This exposes the manual labeling for a subjective judgment that can
have significantly affected the outcome.

Construct validity: This thesis has for RQ1 relied on testing and evaluating
the models with standard practices for ML, including k-fold cross-validation
and train-test split. The classifications from the final model have also been
further verified, by manually labeling and matching a random sample of
one hundred issues. To avoid confirmation bias, another informatics mas-
ter’s student at the University of Oslo was tasked with this and used a
rubric from Bellomo et al. [8].

The DevOps metrics measured for RQ2 relied on concepts from DORA 2

and were further defined as precise metrics that were proxies for the con-
cepts. However, a threat to the construct validity is that the proxies might
not fully represent the construct. For example, there is still uncertainty
about the precision of measuring TD issues from developer discussions.

Internal validity: Issues manually labeled for the dataset used for training
the models, have been made vulnerable to subjective judgment. Further,
there have been made measures to mitigate threats of confounding factors
in the correlation analysis. Both the quantified TD and DevOps metrics
have been normalized based on issue size, as well as correlated with project
size. However, a threat to the internal validity is that there could be other
factors that have not been controlled for with these measures.

External validity: To increase the external validity of this thesis, a multiple-
case study of five OSS projects was selected. Although the projects featured
different technical and organizational varieties, it is still difficult to tell how
the results may generalize to other contexts, such as projects that are not
open source and that feature different technical varieties.

Reliability: To increase the reliability of this thesis, all the data for this
thesis has been made available as supplemental materials. This may then
be used so that the same results can be replicated. This includes raw data,
the scripts, and the final data.

2https://cloud.google.com/devops/state-of-devops

89

Chapter 6

Conclusion

The first research question asked about how NLP can be applied to devel-
oper discussions to quantify the evolution of TD. This thesis found that NLP
can be used with ML to classify TD issues based on the sentiment of devel-
oper discussions. Then, as the issues would be linked together based on
relational data from Github and Jira, this thesis was able to relate the TD
issues to timestamps and other data including code. This made it possible
to quantify the evolution of TD issues, normalize the TD issues based on
their size, and subsequently use it as a measure.

Such measures may be used to identify TD issues that could otherwise
be difficult to detect with more common tools like code inspection. Also,
the measure may be used for decision-making related to TD prioritization
and other data-driven approaches. Additionally, it may also be used as a
proactive measure to both track and monitor TD issues in large projects.
However, one important drawback of this approach is that the TD issues
are only detected when developers start discussing them. As opposed to
static code analysis, where TD can be detected regardless of whether devel-
opers are aware of the TD or not.

The final model used for classifying issues further refined work carried
out by Ozkaya et. al [37], which had previously used NLP and ML to detect
TD from developer discussions in a single-case study. In this case, the final
model for this thesis was able to both outperform theirs, as well as general-
ize for the five different OSS projects. As compared to their model precision
of 0.40 and recall of 0.62, the final model for this thesis was able to achieve
a precision of 0.76 and recall of 0.73.

The second research question aimed to correlate the quantified TD to-
gether with the DevOps metrics, so that this may be used to get insight into
how TD correlates with velocity. This thesis did find some meaningful cor-
relations between the TD and lead time for changes, but the results from
this were uncertain. While most projects resulted in strong positive corre-
lations, there was one project that diverged from this and got a weak neg-
ative correlation. The result of the correlation analysis may then suggest
that there is a more complicated relationship between the two variables.

90

However, the findings from the correlation analysis did result in some
interesting findings. Firstly, TD management seemed to occur as short-
term bursts with high frequencies. Secondly, the TD management periods
with the most amount of resolved TD issues did not seem to overlap with
periods where there is a high lead time for changes. This may suggest that
developers, when they experience it as slow to push to production, shift
their focus to discussing, opening, and resolving TD issues. In that case, it
will be consistent with how TD is perceived to have implications for soft-
ware in the long term. As the observation from these periods may then
ultimately suggest that if TD is not being actively managed, it will make it
difficult to add new features and make it more costly to refactor.

Finally, correlating the TD with deployment frequency resulted in strong
correlations for both linear and monotonic relationships. On one hand, the
findings from analyzing the relationships seemed to suggest that develop-
ers benefit from acknowledging TD, as when developers started to discuss
and open TD issues, the deployment frequency increased. On the other
hand, it could also be that developers seem to prioritize TD issues after
they have been identified and discussed, and as a result, TD issues are
solved faster than other things such as adding features.

6.1 Future work
Several interesting findings have led to topics that can be further researched.

Firstly, the final model used to classify TD issues may serve as a ref-
erence point for future work. Despite being a significant improvement to
previous work, there are still opportunities for further enhancements. This
includes increasing the accuracy of correctly classifying the sentiment of
developer discussions, so that it may provide an even more reliable way of
quantifying the TD issues. Further, as observed from the RNN classifica-
tion results, it may also be interesting to look into how code snippets within
the developer discussions affect the classification. Additionally, it may be
looked into how it is possible to differentiate between various types of TD.

Secondly, it might be interesting to see how the quantified TD can be
used to further study the relationship between the DevOps velocity met-
rics. For instance, by going more in-depth with the observations that have
been made in this thesis, such as what appears to be a more complicated
relationship between the lead time for changes and open TD issues.

Lastly, it will be possible to use the quantified TD to further study how
it can be used as a proactive measure, how it can impact TD management,
and how it relates to other data-driven approaches that could be useful for
timely resolutions, decisions, and communication.

91

References

[1] Khetam Al Sharou, Zhenhao Li, and Lucia Specia. “Towards a Better
Understanding of Noise in Natural Language Processing”. In: Pro-
ceedings of the International Conference on Recent Advances in Natu-
ral Language Processing (RANLP 2021). 2021, pp. 53–62.

[2] Douglas G Altman and J Martin Bland. “How to obtain the P value
from a confidence interval”. In: Bmj 343 (2011).

[3] Areti Ampatzoglou et al. “The financial aspect of managing technical
debt: A systematic literature review”. In: Information and Software
Technology 64 (2015), pp. 52–73.

[4] Paris Avgeriou et al. “Managing Technical Debt in Software Engi-
neering (Dagstuhl Seminar 16162)”. In: Dagstuhl Reports 6 (Jan. 2016).
DOI: 10.4230/DagRep.6.4.110.

[5] Paris Avgeriou et al. “Managing technical debt in software engineer-
ing (dagstuhl seminar 16162)”. In: Dagstuhl Reports. Vol. 6. 4. Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik. 2016.

[6] Paris C Avgeriou et al. “An overview and comparison of technical debt
measurement tools”. In: IEEE Software (2020).

[7] Gabriele Bavota and Barbara Russo. “A large-scale empirical study
on self-admitted technical debt”. In: Proceedings of the 13th interna-
tional conference on mining software repositories. 2016, pp. 315–326.

[8] Stephany Bellomo et al. “Got Technical Debt? Surfacing Elusive Tech-
nical Debt in Issue Trackers”. In: 2016 IEEE/ACM 13th Working
Conference on Mining Software Repositories (MSR). 2016, pp. 327–
338.

[9] Stephany Bellomo et al. “Got technical debt? surfacing elusive tech-
nical debt in issue trackers”. In: 2016 IEEE/ACM 13th Working Con-
ference on Mining Software Repositories (MSR). IEEE. 2016, pp. 327–
338.

[10] Daniel Berrar. “Bayes’ theorem and naive Bayes classifier”. In: Ency-
clopedia of Bioinformatics and Computational Biology: ABC of Bioin-
formatics 403 (2018).

[11] KR1442 Chowdhary. “Natural language processing”. In: Fundamen-
tals of artificial intelligence (2020), pp. 603–649.

[12] Peter J Denning. “What is software quality?” In: Communications of
the ACM 35.1 (1992), pp. 13–15.

92

https://doi.org/10.4230/DagRep.6.4.110

[13] Christof Ebert et al. “DevOps”. In: IEEE Software 33.3 (2016), pp. 94–
100.

[14] Sergey Edunov et al. “Understanding back-translation at scale”. In:
arXiv preprint arXiv:1808.09381 (2018).

[15] Nicole Forsgren and Mik Kersten. “DevOps metrics”. In: Communi-
cations of the ACM 61.4 (2018), pp. 44–48.

[16] Nicole Forsgren et al. “2019 accelerate state of devops report”. In:
(2019).

[17] Kavita Ganesan and Michael Subotin. “A general supervised approach
to segmentation of clinical texts”. In: 2014 IEEE International Con-
ference on Big Data (Big Data). IEEE. 2014, pp. 33–40.

[18] Melissa J Goertzen. “Introduction to quantitative research and data”.
In: Library Technology Reports 53.4 (2017), pp. 12–18.

[19] Satish Gojare, Rahul Joshi, and Dhanashree Gaigaware. “Analysis
and design of selenium webdriver automation testing framework”.
In: Procedia Computer Science 50 (2015), pp. 341–346.

[20] Johanna Gustafsson. Single case studies vs. multiple case studies: A
comparative study. 2017.

[21] Christine Howes et al. “Proceedings of the Probability and Meaning
Conference (PaM 2020)”. In: Proceedings of the Probability and Mean-
ing Conference (PaM 2020). 2020.

[22] Sang-Bum Kim et al. “Some effective techniques for naive bayes text
classification”. In: IEEE transactions on knowledge and data engi-
neering 18.11 (2006), pp. 1457–1466.

[23] Philippe Kruchten, Robert L Nord, and Ipek Ozkaya. “Technical debt:
From metaphor to theory and practice”. In: IEEE Software 29.6 (2012),
pp. 18–21.

[24] Yu Beng Leau et al. “Software development life cycle AGILE vs tradi-
tional approaches”. In: International Conference on Information and
Network Technology. Vol. 37. 1. 2012, pp. 162–167.

[25] Valentina Lenarduzzi, Nyyti Saarimäki, and Davide Taibi. “The Tech-
nical Debt Dataset”. In: 15th Conference on Predictive Models and
Data Analytics in Software Engineering. Jan. 2019.

[26] Valentina Lenarduzzi et al. “A systematic literature review on tech-
nical debt prioritization: strategies, processes, factors, and tools”. In:
(Apr. 2019).

[27] Valentina Lenarduzzi et al. On the Fault Proneness of SonarQube
Technical Debt Violations: A comparison of eight Machine Learning
Techniques. June 2019.

[28] Valentina Lenarduzzi et al. “Technical Debt Impacting Lead-Times:
An Exploratory Study”. In: 2021 47th Euromicro Conference on Soft-
ware Engineering and Advanced Applications (SEAA). IEEE. 2021,
pp. 188–195.

93

[29] Valentina Lenarduzzi et al. “Towards Surgically-Precise Technical
Debt Estimation: Early Results and Research Roadmap”. In: Aug.
2019. ISBN: 978-1-4503-6855-1. DOI: 10.1145/3340482.3342747.

[30] Zengyang Li, Paris Avgeriou, and Peng Liang. “A Systematic Map-
ping Study on Technical Debt and Its Management”. In: Journal of
Systems and Software (Dec. 2014). DOI: 10.1016/j.jss.2014.12.
027.

[31] Pengfei Liu, Xipeng Qiu, and Xuanjing Huang. “Recurrent neural
network for text classification with multi-task learning”. In: arXiv
preprint arXiv:1605.05101 (2016).

[32] Zhongxin Liu et al. “Satd detector: A text-mining-based self-admitted
technical debt detection tool”. In: Proceedings of the 40th Interna-
tional Conference on Software Engineering: Companion Proceeedings.
2018, pp. 9–12.

[33] Edward Loper and Steven Bird. “Nltk: The natural language toolkit”.
In: arXiv preprint cs/0205028 (2002).

[34] Antonio Martini. “Anacondebt: a tool to assess and track technical
debt”. In: 2018 IEEE/ACM International Conference on Technical
Debt (TechDebt). IEEE. 2018, pp. 55–56.

[35] Antonio Martini, Viktoria Stray, and Nils Brede Moe. “Technical-
, social-and process debt in large-scale agile: an exploratory case-
study”. In: International Conference on Agile Software Development.
Springer. 2019, pp. 112–119.

[36] Wes McKinney et al. “pandas: a foundational Python library for data
analysis and statistics”. In: Python for high performance and scientific
computing 14.9 (2011), pp. 1–9.

[37] Ipek Ozkaya, RL Nord Z Kurtz, and RS Sangwan. Automatically De-
tecting Technical Debt Discussions. Tech. rep. Technical Report. Carnegie
Mellon University: Software Engineering Institute, 2019.

[38] Cristian Padurariu and Mihaela Elena Breaban. “Dealing with data
imbalance in text classification”. In: Procedia Computer Science 159
(2019), pp. 736–745.

[39] Fabian Pedregosa et al. “Scikit-learn: Machine learning in Python”.
In: the Journal of machine Learning research 12 (2011), pp. 2825–
2830.

[40] Maria Pelevina et al. “Making sense of word embeddings”. In: arXiv
preprint arXiv:1708.03390 (2017).

[41] Jeffrey Pennington, Richard Socher, and Christopher D Manning.
“Glove: Global vectors for word representation”. In: Proceedings of the
2014 conference on empirical methods in natural language processing
(EMNLP). 2014, pp. 1532–1543.

[42] Aniket Potdar and Emad Shihab. “An Exploratory Study on Self-
Admitted Technical Debt”. In: 2014 IEEE International Conference
on Software Maintenance and Evolution. 2014, pp. 91–100. DOI: 10.
1109/ICSME.2014.31.

94

https://doi.org/10.1145/3340482.3342747
https://doi.org/10.1016/j.jss.2014.12.027
https://doi.org/10.1016/j.jss.2014.12.027
https://doi.org/10.1109/ICSME.2014.31
https://doi.org/10.1109/ICSME.2014.31

[43] Vanshika Rastogi. “Software development life cycle models-comparison,
consequences”. In: International Journal of Computer Science and In-
formation Technologies 6.1 (2015), pp. 168–172.

[44] Nayan B. Ruparelia. “Software Development Lifecycle Models”. In:
SIGSOFT Softw. Eng. Notes 35.3 (May 2010), pp. 8–13. ISSN: 0163-
5948. DOI: 10.1145/1764810.1764814. URL: https://doi.org/
10.1145/1764810.1764814.

[45] Nyyti Saarimaki et al. “On the accuracy of sonarqube technical debt
remediation time”. In: 2019 45th Euromicro Conference on Software
Engineering and Advanced Applications (SEAA). IEEE. 2019, pp. 317–
324.

[46] Mary Sánchez-Gordón and Ricardo Colomo-Palacios. “Characterizing
DevOps culture: a systematic literature review”. In: International
Conference on Software Process Improvement and Capability Deter-
mination. Springer. 2018, pp. 3–15.

[47] Walt Scacchi et al. Understanding free/open source software develop-
ment processes. 2006.

[48] Everton da Silva Maldonado, Emad Shihab, and Nikolaos Tsantalis.
“Using natural language processing to automatically detect self-admitted
technical debt”. In: IEEE Transactions on Software Engineering 43.11
(2017), pp. 1044–1062.

[49] Daricélio Moreira Soares et al. “Acceptance factors of pull requests in
open-source projects”. In: Proceedings of the 30th Annual ACM Sym-
posium on Applied Computing. 2015, pp. 1541–1546.

[50] Edith Tom, Aybüke Aurum, and Richard Vidgen. “An exploration of
technical debt”. In: Journal of Systems and Software 86.6 (2013),
pp. 1498–1516.

[51] Stefan Van Der Walt, S Chris Colbert, and Gael Varoquaux. “The
NumPy array: a structure for efficient numerical computation”. In:
Computing in science & engineering 13.2 (2011), pp. 22–30.

[52] Bo Zhao. “Web scraping”. In: Encyclopedia of big data (2017), pp. 1–3.

95

https://doi.org/10.1145/1764810.1764814
https://doi.org/10.1145/1764810.1764814
https://doi.org/10.1145/1764810.1764814

Appendix A

External materials

The raw data, scripts that have been used, and final data from this thesis
have been published in a Github repository for replication purposes. This
can be viewed on the URL:

https://github.com/Danielskry/IN5960-Master-Thesis.

96

https://github.com/Danielskry/IN5960-Master-Thesis

	Introduction
	Background
	Software development life cycle
	Open source software
	Technical debt
	DevOps metrics
	Natural language processing
	Machine learning
	Artificial neural networks

	Methodology
	Research process
	Data collection
	Finding projects
	Data extraction

	Detecting TD discussions
	Dataset for supervised learning
	Data cleaning
	Multinomial Naïve Bayes
	Term frequency–inverse document frequency
	Logistic Regression
	Recurrent neural network

	Measuring TD and DevOps metrics
	Calculating issue size
	Lead time for changes
	Deployment frequency
	Measuring technical debt

	Results
	Collected data
	RQ1 quantifying how TD evolves from developer discussions
	Using the initial dataset
	Improving the dataset
	Machine learning models
	Recurrent neural network

	RQ2 using quantified TD with DevOps metrics to obtain insight
	Lead time for changes
	Deployment frequency
	Project size
	Deployment frequency line charts
	Lead time for changes line charts
	Deployment frequency scatter plots
	Lead time for changes scatter plots

	Discussion
	RQ1 quantifying how TD evolves from developer discussions
	RQ2 using quantified TD with DevOps metrics to obtain insight
	Lead time for changes correlated with TD
	Deployment frequency correlated with TD
	Project size

	Implications for practice
	Implications for research
	Limitations

	Conclusion
	Future work

	References
	External materials

