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Abstract

Subjective logic is a formalism for representing
and reasoning under uncertain probabilistic infor-
mation, with an explicit treatment of the uncer-
tainty about the probability distributions. We in-
troduce subjective networks as graph-based struc-
tures that generalize Bayesian networks to the the-
ory of subjective logic. We discuss the prospectives
of the subjective networks representation and the
challenges of reasoning with them.

1 Introduction

Subjective logic [Jgsang, 2001] is a formalism for represent-
ing and reasoning under uncertain probabilistic information.
The basic entities in subjective logic are subjective opinions
on random variables. A subjective opinion includes a be-
lief mass distribution over the states of the variable comple-
mented with an uncertainty mass, reflecting a current analy-
sis of the probability distribution of the variable by an expert,
based on a test, etc; and a base rate probability distribution of
the variable, reflecting a domain knowledge that is relevant
to the current analysis. A subjective opinion can always be
projected onto a single probability distribution, but this nec-
essarily removes information about the uncertainty mass.

While a probability distribution itself represents uncer-
tainty about the value of the variable, a subjective opinion
represents a second-order uncertainty, i.e. uncertainty about
the probability distribution. The latter is further formalized
by establishing a correspondence between subjective opin-
ions and Dirichlet probability density functions [Jgsang and
McAnally, 2004].

Conditional reasoning with subjective opinions has been
explored for the case of two variables, resulting in the defi-
nition of deduction and abduction operations for multinomial
variables [Jgsang, 2008]. An alternative approach to deduc-
tion based on the Dirichlet model is explored in [Kaplan et
al., 2013].

This paper attempts to address the conditional reasoning
with subjective opinions in general, introducing subjective
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networks as graph-based structures that generalize Bayesian
networks to the theory of subjective logic.

A Bayesian network [Pearl, 1988] is a compact representa-
tion of a joint probability distribution of a set of random vari-
ables in the form of directed acyclic graph and a set of con-
ditional probability distributions associated with each node.
The goal of inference in Bayesian networks is to derive the
conditional probability distribution of any set of (target) vari-
ables in the network, given that the values of any other set of
(evidence) variables have been observed. Bayesian networks
reasoning algorithms provide a way to propagate the proba-
bilistic information through the graph, from the evidence to
the target. Bayesian networks are a powerful tool for mod-
elling and inference of various situations involving proba-
bilistic information about a set of variables, and thus form
a base for developing tools with applications in many areas
like medical diagnostics, risk management, etc.

One serious limitation of the Bayesian networks reason-
ing algorithms is that all the input conditional probabilities
must be assigned precise values in order for the inference
algorithms to work and the model to be analysed. This is
problematic in situations where probabilities can not be reli-
ably elicited and one needs to do inference with uncertain or
incomplete probabilistic information, inferring the most ac-
curate conclusions possible. Subjective opinions can repre-
sent uncertain probabilistic information of any kind (minor
or major imprecision, and even total ignorance), by varying
the uncertainty mass between 0 and 1.

A straightforward generalization of Bayesian networks in
subjective logic retains the network structure and replaces
conditional probability distributions with conditional subjec-
tive opinions at every node of the network. We call this a
Bayesian subjective network and consider the reasoning in it
as a generalization of classical Bayesian reasoning, where the
goal is to obtain a subjective opinion on the target given the
evidence. The evidence in this case can be an instantiation
of values, but also a subjective opinion itself. In most of the
cases, the inference in subjective Bayesian networks remains
a challenge, since subjective opinions do not enjoy all the
nice properties of probability distributions and, in particular,
the notions of conditioning and joint opinion are not defined
in general in subjective logic. We also discuss representation
and inference with fused subjective networks, where the graph
follows the available input information as associated with the



arrows rather than the nodes, and where information coming
from multiple paths to the same node is combined by fusion
operation. We give an example of modelling with subjective
networks thorough the special case of the naive Bayes subjec-
tive network, which can be considered to belong to both the
Bayesian and the fused subjective networks type.

The paper is structured as follows: In Section 2 we first re-
view the necessary preliminaries from probability theory and
Bayesian networks. Then we introduce subjective opinions
on random variables, and their correspondence of with the
multinomial Dirichlet model. Section 3 introduces subjec-
tive networks representation. In Section 4 we introduce the
types of inference problems that can be distinguished in sub-
jective networks and discuss potential solutions. Section 5
presents an alternative approach to inference in subjective
networks that builds upon the Dirichlet representation of sub-
jective opinions. In Section 6 we conclude the paper.

2 Preliminaries

2.1 Bayesian Networks

We assume a simplified definition of random variable as a
variable that takes its values with certain probabilities. More
formally, let X be a variable with a domain (set of values,
states of the variable) X. A probability distribution p of X is
a function p : X — [0, 1], such that:

> p(z)=1. (1)

zeX

p(x) is the probability that the variable X takes the value x.
Let V = {Xj,..., X,} be the set of all random variables

that are of interest in a given context. A joint probability dis-

tribution of the variables V' is a probability distribution de-

fined on the Cartesian product of Xy, ..., X,:
S plan,an) =1 )
x1E€Xy Tn€Xy

In general we will talk about sets of variables, subsets of V,
identifying the variables themselves with the singleton sub-
sets. As standard in Bayesian networks literature, we use the
notation of a random variable for a set of variables, making
the obvious identifications (see [Pearl, 1988]).

Given a joint probability distribution p of the variables in
V', and a set of variables Y C V, the marginal probability
distribution of Y, p : Y — [0, 1] is given by:

ply)= Y

zeX, X=V\Y

p(y,x). (3)

Given two sets of variables X and Y, a conditional prob-
ability distribution of Y given that X takes the value z,
p(Y|x), is a function from Y to [0, 1] defined by:

p(y, x)
p(x)

pylr) = “

p(y|z) is the conditional probability that Y takes the value y,
given that the value of X is .

A set of variables X is conditionally independent of a set of
variables Y given the set of variables Z, written I(X,Y|2)
if the following holds:

p(zly, z) = p(x|z) whenever p(y, z) > 0, 5)

for every choice of assignments z, y, and z.

A Bayesian network [Pearl, 1988] with n variables is
a directed acyclic graph (DAG) with random variables
X1,...,X, asnodes, and a set of conditional probability dis-
tributions p(X;|Pa(X;)), associated with each node X, con-
taining one conditional probability distribution p(X;|pa(X;))
of X; for every assignment of values pa(X;) to its parent
nodes. If we assume that the Markov property holds: Ev-
ery node is conditionally independent on its non-descendants
given its parents,

I(Xi, ND(X;)|Pa(X;)), (6)

for the given DAG and the joint distribution p, then p is de-
termined by:

n

7xn) = Hp(xi‘pa(Xi))7 (7

i=1

p(z1,. ..

where pa(X;) is the instantiation of the parents of X; that
corresponds to the tuple (x1,...,Z,).

The general goal of inference in Bayesian networks is to
be able to derive the probability p(y|z), for every choice of
values of arbitrary sets of variables X and Y/, in an efficient
way compatible with the network’s topology.

2.2 Subjective Opinions

In this section we review the basic notions related to multino-
mial and hyper opinions on random variables.

Let X be a random variable. A multinomial subjective
opinion on X [Jgsang, 2008] is a tuple:

wx = (bx,ux,ax), ¥

where by : X — [0,1] is a belief mass distribution, ux €
[0,1] is an uncertainty mass, and ax : X — [0,1] is a
base rate distribution, satisfying the following additivity con-

straints:
ux + ) bx(@)=1, ©)
zeX
D ax(z)=1. (10)
zeX

The beliefs and the uncertainty mass reflect the results of
a current analysis of the random variable applying expert
knowledge, experiments, or a combination of the two. bx ()
is the belief that X takes the value = expressed as a degree in
[0, 1]. It represents the amount of experimental or analytical
evidence in favour of z. ux is a single value, representing
the degree of uncertainty about the distribution of X. It rep-
resents lack of evidence due to lack of knowledge or exper-
tise, or insufficient experimental analysis. The base rate a x is
simply a probability distribution of X that represents domain
knowledge relevant to the current analysis.

For example, a GP wants to determine whether a patient
suffers from depression through a series of different tests.



Based on the test results, the GP concludes that the collected
evidence is 10% inconclusive, but is still two times more in
support of the diagnosis that the patient suffers from depres-
sion than of the opposite one. As a result the GP assigns 0.6
belief mass to the diagnosis that the patient suffers from de-
pression and 0.3 belief mass to the opposite diagnosis, com-
plemented by 0.1 uncertainty mass. The probability that a
random person in the population suffers from depression is
5% and this fact determines the base rate distribution in the
GP’s subjective opinion on the condition of the patient.

In some cases of modelling, it is useful to be able to dis-
tribute belief mass to subsets of X as well. This leads to gen-
eralization of multinomial subjective opinions to hyper opin-
ions, which distribute the belief mass over the reduced power
set of X (hyperdomain of X), R(X) = P(X) \ {X, 0}:

bx : R(X) — [0,1], (11)
and ux is a value from [0, 1], such that the following holds:
ux + Y bx(z) =1 (12)
zeR(X)

ax is again a probability distribution of X, defined on X.!

bx (x) represents the belief that the value of X is (in the
set) z € R(X), and represents the amount of evidence that
supports exactly x.2

A subjective opinion in which ux = 0, i.e. an opinion
without uncertainty mass, is called a dogmatic opinion. Dog-
matic multinomial opinions correspond to probability distri-
butions. A dogmatic opinion for which bx(x) = 1, for
some x € X, is called an absolute opinion and denoted by
w%. Absolute multinomial opinions correspond to instanti-
ating values of variables. In contrast, an opinion for which
ux = 1, and consequently bx (z) = 0, for every z € R(X),
i.e. an opinion with complete uncertainty, is called a vacuous
opinion. Vacuous opinions correspond to complete ignorance
about the probability distribution of the variable.

A multinomial opinion wx is “projected” to a probability
distribution P, : X — [0, 1], defined in the following way:

Poy(z) =bx(x) + ax(x) ux . (13)

We call the function P, a projected probability distribution
of wx. According to Eq.(13), P, (z) is the belief mass in
support of z increased by the portion of the base rate of = that
is determined by wx. In that way, it gives an estimate of the
probability of x which varies from the base rate value, in the
case of complete ignorance, to the actual probability in the
case of zero uncertainty.

For hyper opinions, the definition of projected probability
distribution is generalized as follows:

Pu,(z) = Z ax(zlz") bx(2") + ax(z) ux , (14)
' €R(X)

'We abuse the notation by using the same type of letters for both
elements of X and elements of R(X).

2If we think of ux as of an amount of evidence assigned to the
whole domain X, then bx and ux correspond to a basic belief as-
signment [Shafer, 1976]. However, ux is a measure for lack of evi-
dence, not a belief, as will be further clarified in the next section.

for z € X, where ax (z|z’) is the conditional probability of x
given 2/, if ay is extended to P(X) additively.? If we denote
the sum in Eq.(14) by b'y:

by (z) = Z ax(zlx') bx(z) , (15)

' €R(X)

it is easy to check that by : X — [0, 1], together with
ux, satisfies the additivity property in Eq.(12), ie. Wy =
(b'y,ux,ax) is a multinomial opinion. From Eq.(14) and
Eq.(15) we obtain P,,, = P, . This means that every hy-
per opinion can be approximated with a multinomial opinion
which has the same projected probability distribution as the
initial hyper one.

2.3 Subjective Opinions as Dirichlet pdfs

In this section we describe the correspondence between
multinomial opinions and multinomial Dirichlet models.

Let p = (p1,...,px) be the probability distribution of the
variable X, where p; = p(z;). p is Dirichlet distributed if its
probability density function (pdf) has the following form:

r (Zf:l a,;) k
Jap) = —r———]]p" (16)
M) UL
where T is the k-dimensional (k = |X]|) gamma function and
a = (a1,...,q) are the parameters of the distribution. The
mean distribution is determined by m(x;) = «a;/ Zle 0.
The multinomial Dirichlet model [Gelman and others,
2004] assumes: i) a Dirichlet prior pdf for p with param-
eters o = Cax(z;), where ax is the mean distribution
and C' is a prior strength determining the amount of evi-
dence needed to overcome the prior; ii) multinomial sampling
(r(z;) |i=1,...,k), N = Zle r(xy), i.e. N observa-
tions where x; is observed r(z;) times. Then the posterior
pdf for p is also a Dirichlet pdf with the following parame-
ters:
a; =r(z;) + Cax(x;), )
and the following mean distribution:

_ r(xy) + Cax(x;)
m(x;) = NiC
The posterior Dirichlet pdf for p uniquely determines a
multinomial opinion wx = (bx,ux,ax ), where:

b ) = (i)
{2
N+C

(18)

By the transformation in Eq.(19), the projected probabil-
ity of the obtained wx is equal to the mean of the posterior
Dirichlet pdf as given in Eq.(18), which corresponds to the
fact tliat it represents an estimate for the actual distribution p
of X.

3For this conditional probability to be always defined, it is
enough to assume ax (x;) > 0, for every z; € X. This amounts to
assuming that everything we include in the domain has a non-zero
probability of occurrence.

*A dogmatic opinion (ux = 0) is obtained when the number of
observations converges to infinity. In that case the beliefs converge
to the actual p.



Conversely, a given opinion wx = (bx,ux,ax) and a
Dirichlet strength C' determine a Dirichlet pdf with parame-
ters v as given by Eq.(17), where:

r(z;) = Cbx (x:) (20)
ux

This means that expressing a subjective opinion wyxy =
(bx,ux,ax) is equivalent to expressing the subject’s knowl-
edge about the actual probability distribution of X by a multi-
nomial Dirichlet pdf. This correspondence gives a way of
eliciting the beliefs and uncertainty in subjective opinions
from experimental analysis. However, the base rate as well

as its strength C have to be chosen in advance.

3 Subjective Networks Representation

A subjective network Sy, of n random variables is a directed
acyclic graph and sets of subjective opinions associated with
it. First we introduce the concepts of joint and conditional
subjective opinion, then we introduce two different types of
subjective networks, Bayesian and fused subjective networks.

3.1 Conditional and Joint Subjective Opinions

A joint subjective opinion on variables X1, ..., X,,n > 21is

the tuple:

Wxp X, = (bX1 o X UX o X5 OX . X ) 2D

where bx,  x, : R(X; x...xX,) = [0,1]]and ux, . x, €
[0, 1] satisfy the condition from Eq.(12) and ax, .. x,, is ajoint
probability distribution of X1, ..., X,.

A marginal opinion on a set of variables Y, subset of
V = {Xy,...,X,}, is a joint opinion on the variables in
Y. The relation between a marginal opinion on the variables
Y and a joint opinion on the full set of variables V' can not be
modelled with an analogue of Eq.(3), but rather with what
is known as the product operation [Jgsang and McAnally,
20041, where a product of two multinomial opinions on inde-
pendent random variables is defined as a joint hyper opinion
on the Cartesian domain. The definition is generalizable to
an arbitrary number of variables and to opinions on sets of
variables, under the assumption that the input (sets of) opin-
ions are subjective opinions on probabilistically independent
variables.

Given two sets of random variables X and Y, a conditional
opinion on Y given that X takes the value z is a subjective
opinion on Y defined as a tuple:

Wy |z = (bY|m7uY\mvaY\m)v (22)

where by, : R(Y) — [0,1] and uy, € [0,1] satisfy the
condition in Eq.(12) and ay, : Y — [0,1] is a probabil-
ity distribution of Y. We use the notation wy| x for a set of
conditional opinions on Y, one for every value of X:

Wy |x = {wy‘z | x e X} 23)

There is no relation in subjective logic analogous to Eq.(4)
that defines conditional opinions through marginal opinions.

3.2 Bayesian Subjective Networks

A Bayesian subjective network of n random variables
Xi,...,X, is a directed acyclic graph with one node for
each variable and a set of conditional subjective opinions
Wx,|Pa(X;) associated with each node X, consisting of one
conditional opinion wx; pa(x;) On X;, for each instantiation
pa(X;) of its parent nodes Pa(X).

A Bayesian subjective network is basically a generaliza-
tion of a classical Bayesian network where instead of proba-
bility distributions associated with the nodes, we have subjec-
tive opinion about them. Conversely, every Bayesian subjec-
tive network projects to a classical one. Namely, every opin-
ion wx,|pa(x;) € Wx;|Pa(Xx;) Projects to a probability dis-
tribution P(X;|pa(X;)). The graph of the given subjective
network S,, together with the sets of projected distributions
P(X;|Pa(X;)),i=1,...,n, forms a classical Bayesian net-
work, which we denote by P(.S,,) and call a Bayesian network
projection of the network S,,.

The concepts of joint, marginal, and conditional opinions
do not enjoy the same relations as their probabilistic counter-
parts. Consequently, the joint opinion on X7, . .., X,, can not
be obtained from the given opinions in the network using the
Markov condition, i.e. by an analogue of Eq.(7). Neverthe-
less, the corresponding projected probabilities are related by
the equations in Section 2.1 and can be reasoned about within
the Bayesian network projection in the classical way.

The Bayesian subjective networks representation also pre-
sumes that Markov independences, hence all the conditional
independences embedded in the graph structure of the given
DAG (d-separations), hold for the uncertainties of the corre-
sponding opinions: If a set of variables X is conditionally
independent of a set of variables Y given the set of variables
Z,I(X,Y|Z) then:

u(Xyz) = u(X|2), (24)

for every choice of values y and z. This assumption can be
justified by the fact that the uncertainty mass of a subjective
opinion is a parameter that refers to the whole probability
distribution. In light of the Dirichlet pdf representation of
subjective opinions, a subjective network represents in some
sense an ensemble of possible Bayesian networks, where
the spread of the distributions is related to the uncertain-
ties. For each distribution in the ensemble, I(X,Y|Z) im-
plies p(X|yz) = p(X|z). Therefore, the spread of p(X|yz)
is the same as that of p(X|z).

A subjective network S, is a graphical representation
of uncertain information about probability distributions that
combines beliefs and uncertainty, as well as probabilistic in-
formation about the knowledge domain in the form of base
rate distributions. The base rate distributions in the condi-
tional opinions of a subjective network S,, can be set without
constraints and are not necessarily connected by the equa-
tions in Section 2.1, i.e. the subjective network may or may
not represent a joint probability distribution on the knowl-
edge domain. In the two-node case considered in [Jgsang,
2008] for example, it is assumed ay|y, = ay, for every
x; € X, i.e. that only the unconditional base rate distribu-
tions are available.
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Figure 1: A three node Naive Bayes subjective network.

Example: Naive Bayes Subjective Networks

A specific case which is often modelled in data mining and
machine learning is that of a set of variables X1, ..., X,, all
conditionally independent given another variable Y, so that
the joint distribution of the n+1 variables can be decomposed
as follows:

p(er, . y) = p) [ [ plily) -~ @9

The relations between the variables can be represented with
what is known as a naive Bayes network, where Y is the com-
mon root node with X,..., X, as children. Such a model
is amenable for its scarcity of parameters, compared to the
full joint distribution, and for the possibility of assessing each
p(X;|y) independently of the others, possibly from different
sources of information or at different times.

Having uncertain information about the probability distri-
butions p(X;|Y) and p(Y") in the form of subjective opinions,
we obtain a naive Bayes subjective network (Fig.1).

As an example, let us suppose we want to construct a sub-
jective network for detecting type 2 diabetes (T2D), which
will be the common root node, from four of its major risk
factors, which will be the children: obesity, old age, family
history of T2D, and past episodes of high blood glucose. In
this case, the choice of the naive Bayes network structure is
practical: information on T2D prevalence and on the proba-
bility distribution of the children nodes with and without dia-
betes is easy to gather from the appropriate medical sources,
whereas information on the joint distribution of the four vari-
ables would be much harder to get. Then, in constructing the
input opinions wx,|, = (bx, |y, Ux, |y, @x,|y)> the uncertainty
mass could be set higher on the conditional opinions when y
is true and lower when y is false, on the account of the much
larger amount of samples from which the latter probabili-
ties are probably estimated. Furthermore, uncertainty mass
could be set higher on the opinions on family history and past
episodes of high blood glucose than on the ones on age and
obesity, on the account of the latter two being more reliable to
assess precisely and not being based on the memory of past
events or on historical clinical records. In the lack of clear
evidence for T2D in a particular case, the opinion wy could
be set to vacuous, where the only relevant information we use
is the domain knowledge (statistics on T2D in the population,
for example) reflected in the base rate distribution ay .

3.3 Fused Subjective Networks

The initial ideas about subjective networks [Jgsang, 2008] as-
sume a DAG that follows the available input information and
a conditional opinion on a child node is provided for each
of its parents separately. This is very often more appropriate

Figure 2: A V-structure fused subjective network.

then a Bayesian subjective network for modelling opinions on
variables connected in a graph containing V-structures, like
the one given in Figure 2. In such cases, it is easier for the
analyst to provide the opinions wy|x, and wy|x, separately,
than the opinions wy|x, x, (Which is necessary if we want to
construct a Bayesian subjective network with the same DAG).

For example, an expert might have an opinion on the prob-
ability of military aggression over a country A from a country
B conditional on the troop movements in B, and opinion on
the probability of military aggression conditional on the po-
litical relations between the countries, but is not able to merge
these opinions in a single opinion about military aggression
conditional on both the factors considered together.

We call a fused subjective network a DAG with a set of con-
ditional subjective opinions wy|x associated with an arrow
from X to Y, for each arrow in the graph. In addition, the
fused subjective networks representation assumes that base
rates for the root nodes in the DAG are also available.

Unlike in the case of Bayesian subjective networks, the
projected probability distributions of the subjective opinions
in a fused subjective network do not necessarily form a
Bayesian network with the given DAG, which is the substan-
tial difference between the two representations.

Note that in naive Bayes networks and, in general, subjec-
tive networks with a DAG that is a single-rooted tree, every
node has at most one parent, hence, this type of subjective
networks is in the intersection of the fused and Bayesian ones.

4 Inference in Subjective Networks

The inference in classical Bayesian networks reduces to the
following: given that the values of some of the variables (ev-
idence variables F) are observed, to find the probability of
any other variable or set of variables in the network (target
variables 7'), which is to find the conditional probability of
the target given an instantiation of the evidence, p(T'|e). In
subjective networks, the evidence does not necessarily mean
an observation. Namely, an analogue to observing the value
of a variable, in the case of a subjective opinion is assigning
a belief 1 to that value of the variable (based on direct obser-
vation, or just a strong opinion), and that gives an evidence
in the form of an absolute opinion. In general, we could have
evidence in the form of a general type of subjective opinion
on F, wg, and would like to be able to account for it, i.e. to be
able to update the opinion on the target variables conditional
on this kind of evidence.

In subjective networks we can distinguish among three dif-
ferent types of subjective evidence:

e absolute evidence - evidence in the form of absolute
opinion, i.e. instantiation of the evidence variables,



e dogmatic evidence - evidence in the form of dogmatic
opinion on the evidence variables, and

e uncertain evidence - evidence in the form of a subjective
opinion with uncertainty greater than zero.

For the derived opinion on the target variable 7" we will use
the notation wr . in the case of absolute evidence, and wr || g
in the case of dogmatic or uncertain evidence.

Depending on whether F is a set of one or more variables,
we can further distinguish between:

e single evidence - evidence on one variable only, and

e multiple evidence - evidence on more than one variable.

4.1 Inference in a Two-node Network

In this section we briefly summarize the operations of de-
duction and abduction defined in [Jgsang, 2008; Jgsang and
Sambo, 2014] for conditional reasoning with two variables.
We assume we have a two-node subjective network, where X
is the parent and Y is the child node, and the subjective opin-
ions wy|x = {wy|, | * € X} are available, along with the
base rate distributions a x and ay.

Subjective Logic Deduction
Given the input opinions wy| x and a subjective evidence wx,
the goal is to deduce a subjective opinion on Y, wy | X

The projected probability distribution of Y in this case will
be determined by:

P(y|X) =) P()P(yl). (26)

zeX

For the belief masses of the deduced opinion on Y, we as-
sume the following: The unconditional beliefs of the deduced
opinion are at least as large as the minimum of the conditional
beliefs:

> mi 27
byjx = min{by|,}, @7

for every y € Y. This is a natural assumption, which can also
be found as a principle of plausible reasoning for example
in [Pearl, 1990]. Then we first determine the uncertainty mass
Uy % corresponding to a vacuous evidence opinion on X,
as the maximum possible uncertainty under the conditions in
Eq.(27) and Eq.(26). The uncertainty of the deduced opinion
from wx is then determined as a weighted average:

Uy||x = uXuYHX + Z bxuy|m. (28)
reX

Once we have the uncertainty mass of the deduced opinion,
the beliefs are easily derived using the projected probabilities
and Eq.(13).

Subjective Logic Abduction
Given the set of opinions wy|x and an opinion wy, the goal
is to abduce an opinion on X, denoted by w X\|Y6~

3This can be considered both a Bayesian subjective network with
no evidence, or a fused subjective network with a subjective evi-
dence on X.

SThis case can only be classified as fused subjective network with
a subjective evidence on Y.

The operation of abduction first “inverts” the given set of
conditional opinions wy |x into a set wx|y, and then ap-
plies deduction on wx|y and wy to derive the opinion w x|y
The projected probability distribution of the inverted opinion
wx|y is obtained as follows:

az; P(yilz;)

; .
21 @ P(yil2e)
Then its uncertainty mass u x|, is obtained by heuristic pro-
cedure which takes the maximum possible uncertainty value
compatible with Eq.(29) and adjusts it using the average un-
certainty of the input conditionals wy|x and the irrelevance
of X to the value ¥, for details see [Jgsang and Sambo, 2014].

The beliefs b, are again consequence of the projected prob-
abilities and the uncertainty.

P(z;ly) = (29)

4.2 Inference in Bayesian Subjective Networks

Let us assume that we are given a Bayesian subjective net-
work S;, and absolute evidence w§, on the set of variables
FE. Given the instantiation e of £/, we want to find the condi-
tional subjective opinion on a target T', wp| .. We assume the
following:

1. The projected probability of the derived opinion is de-
termined from the projected Bayesian network in a clas-
sical way, i.e. P(T|e) is determined in P(.S,,) using the
standard Bayesian networks reasoning methods.

2. All the conditional and marginal base rate distributions
in the subjective network are either given a priori, or
determined from the ones provided in the initial opinions
in the network by Bayesian reasoning.

3. The uncertainty and the beliefs of the derived opinion
satisfy certain constraints, like, for example, some of the
conditions given in Eq.(24) and Eq.(27).

The first assumption provides a way of determining the
projected probability of the derived opinion and is a starting
point in deriving the opinion wr).. Namely, having deter-
mined the projected probability of an opinion and considering
the second assumption above, we have obtained by Eq.(13) a
system of m linear equations with the beliefs and the uncer-
tainty mass of the derived opinion as variables, where m is
the cardinality of the target 7. We obtain one more equa-
tion over the same variables from the additivity property for
the beliefs and uncertainty of subjective opinions, given in
Eq.(12). This means that we have a system of m + 1 equation
with m+1 variables, which might seem to fully determine the
required opinion wy .. However, the projected probabilities
on the left-hand side of the equations in Eq.(13) also add up
to 1, which makes this system dependent. Hence, the system
has an infinite number of solutions, i.e. there are infinitely
many subjective opinions with the derived projected proba-
bility, and we have to apply additional constraints on beliefs
and the uncertainty mass (assumption 3.) to choose a single
one as a solution.

The above discussion implies the following: If we find a
suitable way of determining the uncertainty mass of the de-
rived opinion, the beliefs follow from Eq.(13) (the base rate is
either a priori given or determined from the given base rates),



and the opinion is fully derived. While this is successfully ap-
plied in the deduction for two variables described in the pre-
vious section, in general, it remains a challenge to provide a
meaningful way of propagating the given uncertainty masses
throughout the network in a way that would give reasonable
belief mass values (that satisfy the initially set constrains) as
a consequence. Also, there might not exist a unique way of
propagating the uncertainty, and how we decide to do it can
be context-dependent.

The above described inference procedure would operate
over multinomial opinions. It would be possible though to
provide input information in a form of hyper opinions, in
which case their multinomial approximations (described at
the end of Section 2.2) can be used in the inference proce-
dure, to derive a multinomial opinion on the target. This is an
advantage in some sense, since one usually has the input in-
formation in the more vague, hyper opinion form, and wants
to have the output as a multinomial opinion, i.e. have the dis-
tribution of beliefs over the values rather than set of values.

The inference from dogmatic or uncertain evidence re-
mains a challenge, for in that case we can not have the as-
sumption 1, namely: instantiating the evidence variables E in
a given subjective network S,, with a subjective opinion wg
that is not absolute, we simultaneously provide a new pro-
jected probability distribution of E, which, in general, differs
from the one that would be derived by Bayesian reasoning in
P(Sp).

4.3 Inference in Fused Subjective Networks

Let us assume we have a fused subjective network with
a singly-connected DAG (only one path between any two
nodes) and evidence given in the form of an (unconditional)
opinion on an arbitrary node in the network X. The goal
of the inference is to determine (unconditional) opinion on
Y based on the given evidence, namely wy | x. This can be
done by propagating the evidence through the path from X to
Y and performing a series of deduction/abduction operations
depending on the direction of the arrow at each step.

The inference from multiple evidence in the case we have a
subjective opinion on each of the sources (evidence variables)
separately, can be done by deriving one subjective opinion on
the target for each of the evidence variables, and then fusing
the resulting opinions. The operation of fusion [Jgsang and
Hankin, 2012] can be applied for this purpose and there is a
variety of existing fusion operators that take in account the
degree of independence of the sources of evidence.

In some cases, inference in a fused subjective network can
be done by first transforming it into a Bayesian one in the fol-
lowing way: for every V-structure with parents Xq,..., X,
and child Y, we invert the given set of conditionals opin-
ions wy|x,, # = 1,...,n into wx,|y as described in the
abduction operation in Section 4.1. This means that we in-
vert the V-structure into a naive Bayes network where Y is
a parent of X1,...,X,. Because of the conditional inde-
pendences in the naive Bayes, we can apply the product op-
eration from [Jgsang and McAnally, 2004] on the opinions
wx,|y» ¢ = 1,...,n to obtain the opinion wx, . x, |y, for ev-
ery y € Y, i.e. the set of opinions wx, .. x,,|y- At the end, we
invert again to obtain the set wy|x, .. x, -

S Inference through the Dirichlet
Representation

This section provides an alternative approach towards infer-
ence in subjective networks, based on the Dirichlet pdf repre-
sentation of subjective opinions introduced in Section ??.

In a subjective network, evidence has been collected to
form subjective opinions about the conditional probabili-
ties. In other words, each conditional probability distribu-
tion p(X;|pa(X;)) is represented as a k;-dimensional Dirich-
let distributed random variable, where k; = |X;|. Because
of the Markov property, these Dirichlet distributed random
variables are also statistically independent.

One important goal of inference from absolute evidence in
subjective networks is to derive an opinion wx, . for a given
instantiation e of evidence variables E, and a single target
node X; not in E. In terms of the Dirichlet representation,
determining wx, | is equivalent to determining the appropri-
ate Dirichlet pdf to represent the uncertainty about the prob-
ability distribution p(X;|e). According to Section 2.1, this
probability distribution is expressed through the input proba-
bility distributions in the graph in the following way:

ZXEV\EU{X} [Ti1 p(aklpa(Xy))
ile) = =5 2k SINEN
plaile) ZXJ-GV\E [Ti=1 P(zklpa(Xy)) G0

where pa(X}) is the instantiation of the parents of X}, that
corresponds to x; and e.

For a standard Bayesian network, the execution of Eq.(30)
can be accomplished as a series of variable elimination steps
[Zhang and Poole, 1994]. For subjective networks, the prob-
ability distributions involved in the right-hand side of Eq.(30)
are Dirichlet distributed random variables and exact infer-
ence becomes more challenging. The target probability dis-
tribution p(X;|e) is a k;-dimensional random variable charac-
terized through the independent Dirichlet distributed random
variables p(Xy|pa(Xy)). Through a change of variables pro-
cess, it is possible to determine the actual pdf for p(X;|e),
which in general is not a Dirichlet pdf.

In order to infer a subjective opinion on X; given e by
means of the transformation in Eq.(19), we need to approxi-
mate this pdf by a Dirichlet pdf. We choose to use a moment
matching approach to determine the best Dirichlet pdf to ap-
proximate the pdf of p(X;|e). First, the mean value of this
Dirichlet pdf, m(X;|e), must equal the expectation of the ac-
tual pdf for p(X;|e). Then, the Dirichlet strength s is selected
so that the second order moments of the actual target distri-
bution matches that of the Dirichlet distribution as much as
possible in the mean squared sense. The matching of the sec-
ond order moments is perfect only for binary variables. The
moment matching method to determine the Dirichlet strength
has been implemented for partial observation updates and de-
duction in [Kaplan et al., 2015a] and [Kaplan et al., 2013],
respectively. In the general case where the evidence can come
from the descendants of X, a closed form solution for the
first and second order expectation of Eq.(30) does not exist
because of its fractional form, and one must resort to numeri-
cal integration over N Dirichlet distributed random variables,
where N is the number of input probability distributions in




the network. Such a moment matching method is only com-
putationally feasible for the smallest of networks.

Current research is looking at extending the sum-product
algorithm [Wainwright and Jordan, 2008]. Such an approach
develops a divide and conquer strategy that will provide
means to propagate one piece of evidence at a time. Then
the effects of an observation coming from the antecedents is
propagated forward via subjective logic deduction (as in [Ka-
plan et al., 2013]), and a backwards process will enable the
computation of the effect of an observation coming from a
descendant node. At each stage in the process, the stored
conditionals are approximated by Dirichlet distributions us-
ing the moment matching method. Finally, the inference of
the target opinion from combined evidence is accomplished
by normalizing the opinions conditional on evidence coming
from different directions. The first steps of this normalization
process has been studied in [Kaplan et al., 2015b] for the case
of a three-node chain of binary variables.

The evaluation of forward/backward propagation along
with normalization over chains is the next step. The inter-
mediate results will be stored as subjective opinions, which
means that the inference via normalization will only be an
approximation of moment matching of Eq.(30), which is not
making any Dirichlet approximation about the marginal dis-
tribution for the intermediate nodes between the evidence E
and X;. This is in contrast to the sum-product algorithm over
Bayesian networks, which provides exact inference. The plan
is to study computational efficiency and accuracy of imposing
the Dirichlet approximation as the effects of the observations
propagate over the “uncertain” probabilistic edges.

The development and evaluation of inference techniques
over subjective networks will consider increasing complexity
in various dimensions. One dimensions is the topology of the
network, where we will first study chains and then expand to
trees and eventually arbitrary DAGs where we will need to
modify the sum-product framework. Another dimension is
the complexity of the subjective opinions: We start with bi-
nary (k; = 2) and multinomial opinions (k; > 2), to finally
consider hyper opinions (2% — 2). The quality of the obser-
vations over F provides another complexity dimension to ex-
plore. Initially, we will only consider inference from absolute
opinions, which are equivalent to instantiation of variables,
but in future work we plan to consider inference from general
type of opinions.

6 Conclusions and Future Work

We introduced subjective networks as structures for con-
ditional reasoning with uncertain probabilistic information,
represented in the form of subjective opinions on random
variables. In this way both the input information and the in-
ferred conclusions in the modelled scenario incorporate a cur-
rent analysis of beliefs and domain knowledge, at the same
time taking the uncertainty about the probabilities explicitly
into account.

The discussed inference problems in subjective networks
lead to the following inference approaches to be studied in
future work: global uncertainty propagation in a Bayesian
subjective network, piece-wise inference in fused networks,

and a statistical moment matching approach.
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