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Abstract— The noninformative prior weight W of a Dirichlet
PDF (Probability Density Function) determines the balance
between the prior probability and the influence of new obser-
vations on the posterior probability distribution. In this work,
we propose a method for dynamically converging the weight
W in a way that satisfies two constraints. The first constraint
is that the prior Dirichlet PDF (i.e. in the absence of evidence)
must always be uniform, which dictates that W = k where k
is the cardinality of the domain. The second constraint is that
the prior weight of large domains must not be so heavy that
it prevents new observation evidence from having the expected
influence over the shape of the Dirichlet PDF, which dictates
that W quickly converges to a low constant CW in the presence
of observation evidence, where typically CW = 2. In the case of
a binary domain, the noninformative prior weight is normally
set to W = 2, irrespective of the amount of evidence. In the case
of a multidimensional domain with arbitrarily large cardinality
k, the noninformative prior weight is initially equal to the
domain cardinality k, but rapidly decreases to the constant
convergence factor CW as the amount of evidence increases.

I. INTRODUCTION

Dirichlet PDFs (Probability Density Functions) are equiv-
alent to subjective opinions which represent arguments in
subjective logic (SL). A subjective opinion can explicitly
represent epistemic uncertainty of probabilities through its
belief mass distribution, its epistemic uncertainty mass, and
its prior probability distribution [1]. Note that the concept of
prior probability is normally called base rate in subjective
logic. Subjective opinions implicitly also represent other un-
certainty characteristics, such as vagueness, dissonance, and
consonance [2], but these characteristics are not discussed in
the present study.

In the present work, we propose a simple function to
determine the noninformative prior weight W of Dirichlet
PDFs (Probability Density Functions), which thereby also
applies to multinomial subjective opinions. This prior weight
is designed to provide a sound balance between the prior
probability and the influence of new evidence on the posterior
probability.

II. PRIOR PROBABILITY AND PRIOR WEIGHT

The concept of prior probabilities is central in the theory
of probability. For example, prior probabilities are needed
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for default reasoning, for Bayes’ theorem, for abductive
reasoning and for Bayesian updating. This section describes
the concept of prior probability distribution over random
variables, and how the noninformative prior weight influ-
ences posterior probability distributions.

Given a domain X of cardinality k, the default prior prob-
ability of each singleton value in the domain is uniformely
1/k. The default prior probability of a subset consisting of n
singletons is n/k. This type of subset is called a composite
state value, which has default prior probability equal to the
number of singletons it contains, relative to the cardinality of
the whole domain. The default prior probability of a subset
is sometimes called ‘relative atomicity’ in the literature.
In addition to defining default prior probability relative to
the whole domain X, we can also define default relative
prior probability with respect to another fully or partially
overlapping state value x ⊂ X.

In contrast to default prior probabilities, it is possible
and useful to apply realistic prior probabilities that reflect
real background probabilities for real situations. Realistic
prior probabilities are in general different from default prior
probabilities. Considering for example the prior probabil-
ity of a particular infectious medical condition in a given
population, the domain can be defined as the binary set
{‘infected’, ‘not infected’} with respect to that particular
medical condition. Assuming that a random person enters
a hospital, the physician would a priori not know whether
that person is infected or not, because the physician does not
have any evidence.

Applying default prior probabilities to the case of the
infectious condition, would mean that the physician assumes
a prior probability of 0.5 that the the person is infected,
which would be totally inadequate in general. Typically, the
background probability of an infectious condition is normally
much lower than 0.5, and can typically be determined given
relevant statistics from a given population.

Statistical data about medical conditions is collected from
hospitals, clinics and other sources where people are treated
for particular medical conditions. To determine infection
rates for infectious conditions is precisely to determine prior
probabilities for the same conditions. This can be determined
through statistics, guidelines and expert opinions.

It is extremely useful to have available prior probabilities
for medical conditions. This data can be used not only by
policy makers, the prior probabilities can also be used with
medical tests to provide a better indication of the likelihood
that a patient has a specific medical condition [3].

It is also possible to dynamically update prior probabilities
as a function of observed evidence. Assume e.g. an urn



containing balls of red (x) and black (x) colour of unknown
proportions, then the initial prior probabilities of the two
types of balls should be the default uniform prior probability
a(x) = a(x) = 1/2. Then, after picking (with return) and
observing some balls, the prior probabilities can be adjusted
closer to the relative proportions of observed balls.

The advantage of integrating prior probabilities with belief
mass distribution and epistemic uncertainty in subjective
opinions is to enables a simple intuitive interpretation of
beliefs, and to provide a basis for conditional reasoning
under uncertainty. When computing the projected (expected)
probability distribution of a opinion, the contribution from
the prior probability distribution is proportional to the un-
certainty mass. In case of total uncertainty, the projected
posterior probability is equal to the prior probability.

Prior probabilities are expressed in the form of a prior
probability distribution, aX , so that aX(x) represents the
prior probability of the state value x ∈ X. Prior probability
distribution is formally defined below.

Definition 1 (Prior Probability Distribution): Let X be
a domain, and let X be a random state variable in X. The
prior probability distribution aX assigns a prior probability
to possible values of X ∈ X, and is an additive probability
distribution, formally expressed as:

Prior probability distribution: aX : X→ [0, 1],

with the additivity requirement:
∑
x∈X

aX(x) = 1 . (1)

�
The prior probability distribution is normally assumed

to be shared among analysts (i.e., not subjective) because
it is based on general background information. Although
different analysts can have different opinions about the same
state variable, they normally share the same prior probability
distribution. However, in case two observers or analysts do
not share the same background information it is obvious that
they can assign different prior probability distributions to the
same state variable. Hence, prior probabilities can be shared
or subjective.

This flexibility allows two different analysts to assign a
different belief mass distribution and uncertainty mass, as
well as a different prior probability distribution to the same
state variable. In this way, the different views, analyses and
interpretations of the same situation by different observers
can be naturally expressed.

Events that can be repeated many times are typically
frequentist in nature, meaning that prior probabilities for
such events typically can be derived from statistical ob-
servations. For an event that happened once in the past,
or that might happen once in the future, the analyst must
typically determine prior probabilities from subjective intu-
ition, or from analysing the nature of the phenomenon using
scientific methods. However, in many cases this can lead to
considerable vagueness about prior probabilities, and when
nothing else is known, it is possible to use the default prior
probability distribution for a random state variable. More

specifically, when there are k singletons in the domain, the
default prior probability of each singleton is 1/k.

The difference between subjective and frequentist proba-
bilities is that the former typically is defined as subjective
betting odds – and the latter based on relative frequencies of
empirically observed data. Note that subjective probability
typicvally converges towards frequentist probability when
empirical data is collected and becomes available [4]. The
concepts of subjective and empirical prior probabilities can
be interpreted in a similar fashion, where they also converge
and merge into a single prior probability when empirical data
about the population is collected and becomes available.

When no evidence other than the prior probability dis-
tribution is known, the projected probability distribution is
equal to the prior probability distribution. As the amount
of collected evidence increases, the projected probability
distribution is increasingly determined by that evidence and
decreasingly determined by the prior probability distribution.
The concept of prior weight, here denoted by W , is the factor
which determines how strongly the projected probability is
determined by the prior probability distribution relative to
the evidence. A heavy prior weight lets the prior probability
distribution have more influence on the projected probability
distribution, and a light prior weight lets the collected
evidence have more influence.

The concept of noninformative prior weight expresses
that prior probability based on background statistics or
background beliefs should not be considered as observation
evidence, hence the term ‘noninformative’. However, the
prior can not be totally weightless, it has to carry some
weight. To determine a noninformative prior weight which
gives sound and rational balance between background and
observation is the main contribution of this paper.

III. BETA PDF AND BINOMIAL OPINIONS

The opinion type in subjective logic depends on the state
variable it applies to, i.e., binomial opinions for binary
variables, multinomial opinions for multidimensional state
variables, and hyper-opinions for hypervariables. In this sec-
tion, we provide a brief description of Beta PDFs (probability
density functions), and how they correspond to binomial
opinions [1].

A. Beta Distribution

Given the binary domain X = {x, x̄} and the value x ∈ X,
Beta(px) is the probability density function Beta(px;α, β) :
[0, 1] → R≥0 where px + px̄ = 1. The Beta PDF is given
by:

Beta(px;α, β) =
Γ(α+ β)

Γ(α)Γ(β)
(px)α−1(1− px)β−1, (2)

where α > 0, β > 0, p(x) 6= 0 if α < 1 and p(x) 6= 1
if β < 1; and the additivity requirement should hold with∫ 1

0
Beta(px;α, β) dpx = 1. The α and β parameters can

simply be represented by the prior probability ax and the



observation evidence (rx, sx) where rx is the amount of
positive evidence and sx is the amount of negative evidence:

α = rx + axW, β = sx + (1− ax)W . (3)

W is the noninformative prior weight in the absence of
positive evidence rx or negative evidence sx. The expected
probability of the Beta PDF is given by Eq. (4):

E(x) =
α

α+ β
=

rx + axW

rx + sx +W
(4)

For the binomial Beta distribution, the prior weight W =
2 produces consistent and intuitive results for all types
of evidence, from vacuous (no evidence) to dogmatic (an
infinite amount of evidence) and anything in between.

The special case of α + β = 2 leads to a = α
2 , and in

particular when α = β = 1 then a = 1
2 .

As an example of the mapping from opinions to Beta
distributions, the opinion of Fig. 2 corresponds to the Beta
PDF of Fig. 1.
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Fig. 1. Plot of function Beta(p | 8, 2) PDF

B. Binomial Opinion Representation

A binomial opinion is equivalent to a Beta PDF through
the bijective mapping of Eq. (6). A binomial opinion on a
given proposition x is represented by ωx = (bx, dx, ux, ax)
where the opinion applies to the value x in the binary domain
X = {x, x̄} with the additivity requirement bx+dx+ux = 1.
To be specific, each parameter indicates,
• bx: belief mass supporting x being TRUE;
• dx: disbelief mass supporting x being FALSE, i.e.,

supporting x̄ being TRUE;
• ux: epistemic uncertainty; and
• ax: prior probability of x being TRUE.
The projected probability of x is computed as:

P(x) = bx + axux (5)

A vacuous opinion is an opinion for which ux = 1, meaning
that bx = dx = 0. A binomial opinion is typically used for
judging true vs. false or agree vs. disagree.

Fig. ¨2 illustrates the opinion ωx = (0.7, 0.1, 0.2, 0.5)
indicated by a black dot in the triangle.

The projector line through the opinion point, parallel to the
line from the uncertainty top vertex to the prior probability
point ax, determines the projected probability P(x).
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Fig. 2. Opinion triangle

Equivalence netween a binomial opinion and a Beta PDF
can be achieved through the following mapping rule:

bx = rx
rx+sx+W ,

dx = sx
rx+sx+W ,

ux = W
rx+sx+W .

(6)

The mapping of Eq. (6) leads to P(x) = E(x), i.e. to
equality between the projected probability of the binomial
opinion and the expected probability of the Beta PDF.

Note that the noninformative prior weight W is a factor
in the mapping of Eq. (6). It can be seen that a large W
produces a relatively larger epistemic uncertainty mass ux in
the presence of evidence rx and sx. For the mapping from
a Beta PDF to a binomial opinion the noninformative prior
weight is normally set to W = 2.

The uniform Beta distribution is Beta(1, 1) which corre-
sponds to the opinion wx = (0, 0, 1, 1

2 ). This particular
opinion thus represents the case when nothing is known
about the probability of x, i.e. its distribution is uniform,
as illustrated in Fig. 3.
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IV. DIRICHLET PDF AND MULTINOMIAL
OPINIONS

A. Dirichlet Distribution

Multinomial probability density over a domain of cardi-
nality k is represented by the k-dimensional Dirichlet PDF,



where the special case with k = 2 is the Beta PDF as
discussed above. Let X denote a domain of k mutually
disjoint state values, let αX denote the strength vector over
the values of X and let pX denote the probability distribution
over X. Dirichlet PDF with pX as k-dimensional probability
variable is defined by:

Dir(pX ;αX) =
Γ
(∑

x∈X αX(x)
)

∏
x∈X(αX(x))

∏
x∈X

pX(x)(αX(x)−1), (7)

where αX(x) ≥ 0 and pX(x) 6= 0 if αX(x) < 1. The total
strength αX(x) for each belief value x ∈ X can be given by:

αX(x) = rX(x) + aX(x)W,where rX(x) ≥ 0. ∀x ∈ X,
(8)

Here W is noninformative weight representing the amount
of influence that the prior probability distribution aX shall
have on the expected probability distribution EX . Given the
Dirichlet PDF, the expected probability distribution over X
can be obtained by:

EX(x) =
αX(x)∑

xi∈X αX(xi)
=

rX(x) + aX(x)W

W +
∑
xi∈X rX(xi)

(9)

B. Multinomial Opinion Representation

A multinomial opinion is equivalent to a Dirichlet PDF
through the bijective mapping of Eq. (11). A multinomial
opinion in a given proposition x is represented by ωX =
(bX , uX ,aX) over a domain X with random state variable
X ∈ X. We assume domain cardinality k = |X| > 2 and
the additivity requirement

∑
x∈X bX(x) + uX = 1. To be

specific, each parameter indicates,
• bX : belief mass distribution over X;
• uX : epistemic uncertainty mass;
• aX : prior probability distribution over X.
The projected probability distribution of multinomial opin-

ions is given by:

PX(x) = bX(x) + aX(x)uX , ∀x ∈ X (10)

The only type of multinomial opinions that can be easily
visualised is trinomial, which can be represented as a point
inside a tetrahedron (3D simplex), which in fact is a barycen-
tric coordinate system of four axes, as shown in Fig. 4.

X

PX aX

x
3

vertex
x
1

vertex
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X x

2
vertex

u vertex  (uncertainty)

Fig. 4. Visualisation of trinomial opinion as barycentric tetrahedron

In Fig. 4, the vertical elevation of the opinion point
inside the tetrahedron represents the uncertainty mass. The
distances from each of the three triangular side planes to
the opinion point represent the respective belief masses. The
prior probability distribution aX is indicated as a point on
the base triangular plane. The line that joins the tetrahedron
summit and the prior probability distribution point represents
the director. The projected probability distribution point is
geometrically determined by tracing a projection from the
opinion point, parallel to the director, onto the base plane.

Assume a ternary domain X = {x1, x2, x3}, and a
corresponding random state variable X . Fig. 4 shows the
tetrahedron with the example multinomial opinion ωX that
has belief mass distribution bX = {0.20, 0.20, 0.20}, un-
certainty mass uX = 0.40, and prior probability distribution
aX = {0.750, 0.125, 0.125}. Only the uncertainty axis is
shown in Fig. 4. The belief axes for x1, x2 and x3 are not
shown due to the difficulty of 3D visualisation on the 2D
plane of Fig. 4.

The triangle and tetrahedron are part of the simplex family
of geometrical shapes. A multinomial opinion on a domain
of cardinality k can be represented as a point in a simplex
of dimension k. For example, a binomial opinion can be
represented inside a triangle which is a 2D simplex, and
a trinomial opinion can be represented inside a tetrahedron
which is a 3D simplex.

By applying Eq. (10) to the example of Fig. 4, the pro-
jected probability distribution is PX = {0.50, 0.25, 0.25}.

The observed evidence in the Dirichlet PDF can be
mapped to the multinomial opinions as:

bX(x) =
r(x)∑

xi∈X r(xi) +W

uX =
W∑

xi∈X r(xi) +W

(11)

The mapping of Eq. (11) leads to PX = EX , i.e. to
equality between the projected probability distribution of the
nultinomial opinion and the expected probability distribution
of the Dirichlet PDF.

Note that a binomial or multinomial opinion assigns
belief mass to singleton state values only. However, in real
life, we sometimes have difficulty in distinguishing between
possible states due to cognitive limitations or environmental
noise. In such situations we might want to assign belief
mass to composite values. This kind of opinions are called
hyper-opinions, which correspond to Dirichlet hyper PDFs.
However, hyper opinions are not discussed here.

V. PRIOR WEIGHT OF THE DIRICHLET PDF

For Dirichlet PDFs, which are equivalent to multinomial
opinions, the problem with setting the prior weight as W = 2
is that a totally uncertain opinion doe not correspond to a
uniform Dirichlet PDF, as illustrated in Fig. 5.

It is normally assumed that the prior probability density
in case of a binary domain X = {x, x} is uniform. This
requires that αX(x) = αX(x) = 1, which means that



Fig. 5. Non-uniform vacuous trinomial Dirichlet PDF
Dir(pX | {0.67, 0.67, 0.67}) with W = 2.

W = αX(x) + αX(x) = 2. Similarly, a uniform prior
probability density over a domain larger than binary would
require an noninformative prior weight W = k, meaning
that W must be equal to the cardinality k of the domain for
which a uniform prior probability density is assumed.

However, selecting W > 2 would result in new obser-
vation evidence having relatively less influence over the
Dirichlet PDF, and over the posterior probability distribution.
In fact it would be unnatural to set W = k in general for
arbitrarily large domains, because a large W would make the
PDF relatively insensitive to new observation evidence.

As an example, consider a domain of cardinality 100.
To have a uniform prior PDF when no evidence has been
received would require W = 100. Assume now that a
specific event (state value) of interest has been observed
100 times, and no other event has been observed, then the
projected probability of the event would only be about 1/2,
which would be highly counter-intuitive and inadequate. In
contrast, when assuming a uniform PDF in the binary case,
meaning that W = 2, and assuming the positive outcome has
been observed 100 times, and the negative outcome has not
been observed, then the projected probability of the positive
outcome is close to 1, as intuition would dictate.

As a solution to making any prior Dirichlet PDF uniform
for any domain cardinality, and still allowing new obser-
vations to have a normal influence on the PDF, we define
the convergent noninformative prior weight expressed by
Eq. (12) below.

Definition 2 (Convergent Noninformative Prior Weight):
Let X be a domain with cardinality k and for which the
vector rX represents collected evidence. Assuming the
convergence factor CW , then the convergent noninformative
prior weight for the Dirichlet PDF over X is defined by:

W =
k + CW k

∑
k rX(x)

1 + k
∑
k rX(x)

(12)

�
The convergence factor CW determines the sensitivity of

the Dirichlet PDF to new observations. The larger CW , the
less sensitive the Dirichlet PDF becomes to new observation

evidence. If we assume that the sensitivity should always be
the same as for the binomial case, then it is natural to set
CW = 2, which reflects the noninformative prior weight of
the uniform Beta PDF over a binary domain.

The property of W according to Eq. (12) is, for example,
that W = 2 when k = 2, that W = k when

∑
k rX(x) = 0,

and that W = 2 when
∑
k rX(x)→∞.

Fig. 6 shows how the noninformative prior weight W
changes as a function of k and

∑
k rX(x) with CW = 2. It

can be seen that W converges to CW very rapidly.

Fig. 6. W computed as a function of k and
∑

k rX(x)

Note that Fig. 6 shows the cardinality dimension k as a
continuous parameter, but this assumption does not reflect
reality. The domain cardinality k is of course an integer
with minimum value k = 2 . Hence, the plot of Fig. 6 is
a simplification using a continuous k to show the effect it
has on the noninformative prior weight W .

When determining the noninformative prior weight ac-
cording to Eq. (12), the vacuous multinomial opinion cor-
responds to a uniform Dirichlet PDF, as illustrated in Fig. 7.

Fig. 7. Uniform vacuous trinomial Dirichlet PDF Dir(pX | {1, 1, 1})
with W = 3

Thanks to the dynamic nature of W according to Eq. (12),
the influence of new evidence on the Dirichlet PDF is sound
and intuitive. For example, if each state value has been



observed once, then we have,

rX(x1) = rX(x2) = rX(x3) = 1. (13)

The computation of the prior weight according to Eq. (12)
gives W = 21/10 = 2.1, and the strength parameters of the
Dirichlet PDF are computed according to Eq. (8) as:

αX(x1) = αX(x2) = αX(x3) = 17/10 = 1.7. (14)

The corresponding Dirichlet PDF is shown in Fig. 8

Fig. 8. Trinomial Dirichlet PDF Dir(pX | {1.7, 1.7, 1.7}) with W = 2.1

VI. DISCUSSION

The challenge of defining a sound noninformative prior
has been a topic for debate in the statistics community for
many decades. In this regard, Jeffreys prior is often put
forward as a candidate. Without going into detail, Jeffreys
noninformative prior weight is W = 1 for the binomial Beta
PDF [5], which gives the concave prior PDF illustrated in
Fig. 9. The dashed uniform illustrates what the uniform Beta
would have been with W = 2.

Fig. 9. Beta PDF for Jeffreys prior

As a generalisation of Jeffreys prior for the Beta PDF,
Jeffreys noninforative prior weight for Dirichlet PDFs is
W = k/2 in general, with k as domain cardinality [6], [7].

It can be noted that the Jeffreys noninformative prior does
not satisfy the two criteria we proposed, i.e. 1) that the prior
PDF shall be uniform, and 2) that the prior weight must
not be so heavy that the Dirichlet is not properly influenced
by new observations. Assume for example a domain with
cardinality k = 2000. In that case, Jeffreys prior would
dictate the noninformative prior weight to be W = 1000,
meaning that it would take around 500 observations to have
any significant influence on the Dirichlet, which obviously
is a totally inadequate model. This observation indicates that
Jeffreys prior does not represent a sound prior in general.

The concept of uncertainty is complex due to its multidi-
mensional nature and causes. In case of relatively little evi-
dence, which corresponds to large epistemic uncertainty, the
prior probability has a correspondingly large influence on the
expected probability. In case of total epistemic uncertainty,
the corresponding Beta or Dirichlet PDFs should arguably be
uniform. The cardinality of the domain should not change
this property. At the same time, the influence of evidence
should not depend on the domain cardinality. In order to
satisfy both of these requirements, the noninformative prior
weight cannot be a general constant. In fact, it must be
dynamically determined as a function of the domain cardi-
nality, an appropriate convergence factor, and the amount of
collected evidence. The function expressed in Eq. (12) has
precisely the required property.

VII. CONCLUSION

In this work, we propose the convergent noninformative
prior weight for Dirichlet PDFs. This method of computing
the noninformative prior guarantees that the vacuous Beta
as well as the vacuous Dirichlet PDF for any domain
cardinality is uniform, as would be expected. In addition,
for situations where observation evidence is included, the
function produces a dynamic noninformative prior which lets
the included evidence influence the Dirichlet PDF in a sound
and intuitive fashion.
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