
Combining Recommender and Reputation

Systems to Produce Better Online Advice�

Audun Jøsang1, Guibing Guo2, Maria Silvia Pini3, Francesco Santini4, and
Yue Xu5

1 University of Oslo, Norway � (josang@ifi.uio.no)
2 NTU, Singapore (gguo1@e.ntu.edu.sg)

3 University of Padova, Italy (pini@dei.unipd.it)
4 INRIA - Rocquencourt, France (francesco.santini@inria.fr)

5 QUT, Australia (yue.xu@qut.edu.au)

Abstract. Although recommender systems and reputation systems have
quite different theoretical and technical bases, both types of systems have
the purpose of providing advice for decision making in e-commerce and
online service environments. The similarity in purpose makes it natural to
integrate both types of systems in order to produce better online advice,
but their difference in theory and implementation makes the integration
challenging. In this paper, we propose to use mappings to subjective
opinions from values produced by recommender systems as well as from
scores produced by reputation systems, and to combine the resulting
opinions within the framework of subjective logic.

1 Introduction

Recommender systems [1] and reputation systems [7, 14] are similar in the sense
that both collect data of members in a community in order to provide advice to
those members. However, there are also fundamental differences. Recommender
systems assume that different people inherently have different tastes, and hence
value things subjectively. In contrast, reputation systems assumption that all
members in a community value things under the same criteria, i.e. objectively.
Said differently, when a recommender system indicates that a user probably does
not like a given resource, it does not mean that there is anything wrong with
it. However, when a reputation system produces a low value for a resource, one
can assume that its quality is poor. We use the term “resource” to denote the
thing (or item) being rated. The purpose of recommender systems is mainly to
generate suggestions about resources that a user a priori is not aware of but
would probably be interest in. The purpose of reputation systems is to provide
advice about resources that the user already is aware of and interested in. On this
background there is a strong potential for combining the two types of systems.

However, it is quite challenging to make an effective integration of the output
results produced by recommender and reputation systems, given the following
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three-fold. First, in general the advices generated from different systems are
distinct and heterogeneous. This is because different systems may use different
forms of feedback and evaluate the performance based on different criteria. Sec-
ond, the result from reputation systems reflects the collective opinions of a whole
community whereas the result from recommender systems only represents the
collective opinions of a local community, i.e. the users with similar preference.
Third, the uncertainty of the generated advice should be taken into considera-
tion. The uncertainty is typically due to the small number of received ratings,
and will hinder the usefulness of ratings in decision making. To address these
issues, we propose to use mappings to subjective opinions from the respective
output results of recommender and reputation systems, so that the outputs are
homogeneous and hence can be easily integrated and fused. Subjective logic [11]
is a probabilistic framework capable of coping with the uncertainty in evidences.

We denote recommendation values and reputation scores as the outputs de-
rived from recommender systems and reputation systems, respectively. Reputa-
tion systems produce reputation scores, e.g. in the range 0 – 5 stars. We assume
a Bayesian/Dirichlet reputation system where the collected feedback ratings can
be converted to subjective opinions, see Section 4.1 for details. Besides, a rec-
ommender system derives predictive recommendation values in the range [0, 1]6,
which will be converted to subjective opinions, see Section 4.2 for details. To
integrate both reputation scores and recommendation values, we introduce the
CasMin operator in Section 5. Finally, in Section 5.3 we show via an example
that the advice produced by our approach is better than that produced by ei-
ther a recommender system or a reputation system alone. To the authors’ best
knowledge, our work is the first effort in the literature to fuse outputs from
recommender systems and reputation systems in order to produce better advice.

2 Related Work

Both recommender systems and reputation systems have been extensively and
separately studied for decades. Recommender systems, as an essential component
of e-commerce and online service applications, provide users with personalized
high-quality recommendations to mitigate the well-known information overload
problem. Collaborative filtering (CF) is a widely adopted technique to generate
recommendations using the ratings of like-minded users [1]. The basic principle
is that users with similar tastes in the past will also favour the same resources in
the future. CF techniques can be classified into memory-based and model-based
approaches. However, CF inherently suffers from two severe issues: data sparsity
and cold start [1], due to the fact that users – especially new users – typically
have rated only a few resources. The uncertainty of predictions arises from such
conditions where none or only few ratings are available for recommendations.

Many approaches have been proposed to reduce the uncertainty and improve
the accuracy of recommendations. One direction of work is to develop new sim-
ilarity measures in order to identify more reliable similar users [2]. However, the

6 The ratings given by users are normalized in the range [0,1] if necessary.
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uncertainty due to few ratings of similar users cannot be handled. Model-based
approaches [12, 15] generally handle these issues better than memory-based ap-
proaches in terms of efficiency and accuracy. This is because global rating data
is used to train a prediction model whereas memory-based approaches work on
local rating data. The main drawback is that the trained static model is diffi-
cult to adapt to real-time increasing ratings. Another direction is to incorporate
social relationships, such as trust-aware recommender systems [13]. The under-
lying principle assumption is that trust and taste are strongly and positively
correlated [7]. Our work follows this general direction, i.e. to integrate taste
and trust. The difference is that our approach takes the global perspective of
resources (reputation scores) rather than the local perspective of users (social
ties). In addition, the integration that we study is based on directly fusing taste
and trust, rather than on moderating taste recommendations with trust.

Attacks against recommender systems are usually summarized as shilling
attacks [3, 4] where bogus rating profiles are injected to promote or degrade some
resources. Although effective methods have been designed for memory-based CF,
the research on robust model-based CF are not well studied [4]. Reputation
systems are often built upon the assumption that user feedback may be fake and
unreliable, and that various kinds of attacks could be conducted to influence the
formation of reputation scores [10].

Reputation systems also suffer from the cold start problem. Remember that
reputation systems generate scores based on feedback (or ratings) from members
in a community [14, 7]. When only little feedback is available, it is like a cold start
situation where the derived reputation scores will be less reliable. Uncertainty
can also increase when feedback greatly conflicts [17]. Users also tend to give
mostly positive feedback which results in the derived reputation scores being
less distinguishable and hence less useful.

In a nutshell, combining scored from both recommender systems and repu-
tation systems can provide users with more accurate and robust online advice
than either of the scores can in isolation. However, to date the integration of the
two types of systems has not been studied in the literature.

3 Subjective Opinions

In this section, we will first introduce the notation and formation of subjective
opinions used for fusing taste and trust. We also depict the mappings to binomial
opinions from the multinomial ratings which is the common form of feedback in
reputation systems and recommender systems.

3.1 Opinions Formation and Representation

A subjective opinion expresses belief about states of a state space called a “frame
of discernment” or “frame” for short. In practice, a state in a frame can be
regarded as a statement or proposition, so that a frame contains a set of state-
ments. Let X = {x1, x2, . . . , xk} be a frame of cardinality k, where xi (1 ≤ i ≤ k)
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represents a specific state. An opinion distributes belief mass over the reduced
powerset of the frame denoted as R(X) defined as:

R(X) = P(X) \ {X, ∅} , (1)

where P(X) denotes the powerset ofX and |P(X)| = 2k. All proper subsets of X
are states of R(X), but the frame X and the empty set ∅ are not states of R(X),
in line with the hyper-Dirichlet model [5]. R(X) has cardinality κ = 2k − 2.

An opinion is a composite function that consists of a belief vector b, an
uncertainty parameter u and base rate vector a that take values in the interval
[0, 1] and that satisfy the following additivity requirements.

Belief additivity: uX +
∑

xi∈R(X)

bX(xi) = 1. (2)

Base rate additivity:

k∑
i=1

aX(xi) = 1, where xi ∈ X. (3)

The opinion of user A over the frame X is denoted as ωA
X = (bX , uX ,aX),

where bX is a belief vector over the states ofR(X), uX is the complementary un-
certainty mass, and aX is a base rate vector over X , all seen from the viewpoint
of belief owner A.

The belief vector bX has (2k − 2) parameters, whereas the base rate vector
aX only has k parameters. The uncertainty parameter uX is a simple scalar.
Thus, a general opinion contains (2k + k − 1) parameters. However, given that
Eq.(2) and Eq.(3) remove one degree of freedom each, opinions over a frame of
cardinality k only have (2k+k−3) degrees of freedom. The probability projection
of hyper opinions is the vector EX expressed as:

EX(xi) =
∑

xj∈R(X)

aX(xi/xj) bX(xj) + aX(xi) uX , ∀xi ∈ R(X) (4)

where aX(xi/xj) denotes relative base rate, i.e. the base rate of subset xi relative
to the base rate of (partially) overlapping subset xj , defined as follows:

aX(xi/xj) =
aX(xi ∩ xj)

aX(xj)
, ∀ xi, xj ⊂ X. (5)

Equivalent probabilistic representations of opinions, e.g. as Beta pdf (proba-
bility density function) or a Dirichlet pdf, offer an alternative interpretation of
subjective opinions in terms of traditional statistics [11].

The term hyper opinion is used for a general opinion [11]. A multinomial
opinion is when the belief vector bX only applies to elements xi ∈ X , not in
R(X). Binomial opinions apply to binary frames and have a special notation
as described below. Let X = {x, x} be a binary frame, then a binomial opinion
about the truth of state x is the ordered quadruple ωx = (b, d, u, a) where:
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b, belief: belief mass in support of x being true;
d, disbelief: belief mass in support of x (NOT x);
u, uncertainty: uncertainty about probability of x;
a, base rate: non-informative prior probability of x.

The special case of Eq.(2) in case of binomial opinions is expressed by Eq.(6).

b+ d+ u = 1. (6)

Similarly, the special case of the probability expectation value of Eq.(4) in case
of binomial opinions is expressed by Eq.(7).

Ex = b+ au. (7)

Binomial and multinomial opinions can be visualised as a point inside a
simplex. Binomial opinions can thus be visualised as a point inside an equal
sided triangle, and a trinomial opinion as a point inside a tetrahedron.

3.2 Mapping to Binomial Opinions

Multinomial opinions represent a generalisation of binomial opinions, and hyper
opinions represent a generalisation of multinomial opinions. It can be necessary
to project hyper opinions onto multinomial opinions, or to project multinomial
opinions onto binomial opinions. For example, a reputation system where ratings
are given in the form of 1-5 stars can represent reputation scores as multinomial
opinions over a frame of five states, each of which represents a specific number
of stars. In this case, a reputation score represented as a multinomial opinion
can be projected to a binomial opinion over a binary frame, as explained below.

Let X = {x1, . . . , xk} be a frame where the k states represent linearly in-
creasing rating levels, e.g. so that xi represents an i-star rating. Let Y = {y, y}
be a binary frame where y and y indicate high quality and low quality of a re-
source, respectively. Assume that a reputation score or recommendation value
is represented as the multinomial opinion ωX = (bX , uX ,aX) over the frame X ,
and that a binomial opinion ωy = (by, dy, uy, ay) over Y is required. The linear
projection from the multinomial opinion ωX on X onto the binomial opinion ωy

on Y is defined by:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

uy = uX

by =
∑k

i=1 bxi

(i−1)
(k−1)

dy = 1− by − uy

ay =
∑k

i=1 axi

(i−1)
(k−1)

(8)

where (i−1)
(k−1) indicates the relative weight, and hence the belief in a higher level

xi will have more weight in the formation of binary belief and base rate. As the
default base rates on X is defined by axi = 1/k, the default base rate of y is
computed as follows:

ay =

k∑
i=1

1

k

(i− 1)

(k − 1)
=

1

k(k − 1)

k∑
i=1

(i− 1) =
1

k(k − 1)

k(k − 1)

2
= 1/2 . (9)
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The advantage of the projection of Eq.(8) is to provide the flexibility of
analysing reputation scores and recommendation values independently of the
frame cardinality.

4 Determining Opinions

This section details the procedures to derive subjective opinions, i.e. reputation
scores and recommendation values from reputation systems and recommender
systems, respectively.

4.1 Opinions Derived from Reputation Systems

A reputation system generally applies to services or goods that can be rated on
one or multiple aspects, such as the set (expected quality, seller communication,
shipment timeliness, shipment charges) in case of eBay.com. In case only a single
aspect can be rated, it is typically the overall quality of a specific service or
target. Each aspect can be rated with a specific level out of l levels such as 1 to
5 stars. It is also common that an aspect is rated with only two possible levels
such as Thumbs Up and Thumbs Down.

Opinions for each aspect can be derived from such ratings. The frame for each
aspect is the set of discrete rating levels, so that in case ratings can be given as 1
to 5 stars the frame has five states. Let X denote the frame of cardinality k, r(xi)
be the number of ratings of type xi, and ωX = (bX , u,aX) be a multinomial
opinion on X . The more ratings collected, the smaller the uncertainty becomes.
The opinion ωX can be determined from the ratings r(xi) according to Eq.(10):

∀xi ∈ X

⎧⎪⎨
⎪⎩

b(xi)=
r(xi)

W +
∑κ

i=1 r(xi)

u = W
W +

∑
κ
i=1 r(xi)

(10)

where W = 2 is the non-informative prior weight with default value dictated
by the requirement of having a uniform pdf (probability density functions) over
binary frames when no evidence other than the domain base rate is available.
The value would e.g. be W = 3 in case it were required to have a uniform
pdf over a ternary frame. However, higher values for W make the probability
distribution less sensitive to new evidence, so the value W = 2 is adopted [16].

An opinion derived according to Eq.(10) can thus represent a reputation
score which can be mapped to a probability value, or to a simple user friendly
representation e.g. in the form of 1 to 5 stars. A reputation score can also be
adjusted as a function of time, reliability of the rater, etc. [6].

A rating is expressed as a specific level corresponding to a singleton state in
the frame. In case there are more than two rating levels, the derived opinions
are multinomial. In case only two types of ratings can be given, e.g. as Thumbs
Up and Thumbs Down, the frame is binary so the opinions are binomial.

Reputation scores represented as multinomial opinions can be mapped to a
binomial opinion according to Eq.(8) by assuming that each rating level corre-
sponds to a value in the range [0, 1], for more details see [8].
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4.2 Opinions Derived from Recommender Systems

As an example, we describe a user-based CF method to generate recommenda-
tions [1]. The task of CF methods is to predict the preference (or rating) of a
given resource (or item) for an active user, based on the rating histories of the
active user as well as other participants in the community.

We keep the symbols s, v for users and i, j for items. Let rv,i denote a rating
given by user v on item i, and let Iv denote the set of items that user v previously
has rated. The mean rating of user v is computed by:

rv =
1

|Iv|
∑
i∈Iv

rv,i . (11)

Let Ns,j denote the neighbourhood of an active user s constrained by having
rated item j, i.e. the set of users who have rated (some of) the same items as
user s and who have also rated the specific target item j. In general, only the
top-K most similar users will be selected as the neighbourhood. The prediction
ps,j for user s on target item j is computed by:

ps,j = rs + κ
∑

v∈Ns,j

w(s, v)(rv,j − rv), (12)

where κ is a normalisation factor and w(s, v) represents the similarity between
users s and v. There are several ways to compute user similarity, where the most
commonly used method is the Pearson correlation coefficient [1]:

w(s, v) =

∑
i∈Is,v

(rs,i − rs)(rv,i − rv)√∑
i∈Is,v

(rs,i − rs)2
∑

i∈Is,v
(rv,i − rv)2

, (13)

where Is,v represents the set of items that both users s and v has rated, and
w(s, v) is located in the range of [−1, 1]. A problem for similarity computation
is that in case of none or only few commonly rated items, i.e. the size of Iu,v is
small, the computed similarity is not reliable which results the predicted value
uncertain. This problem is called cold start. However, when representing predic-
tions in terms of subjective opinions, the degree of uncertainty can be explicitly
expressed. Below is described a method by means of which subjective opinions
can be derived from raw CF predictions.

The derivation is based on three intuitive assumptions. First, the uncertainty
of the derived prediction opinion as expressed by Eq.(10) is a decreasing function
of the number of ratings by similar users in Ns,j . Second, the probability expec-
tation value of the derived prediction opinion as expressed by Eq.(7) is equal
to the prediction of Eq.(12). Third, Eq.(6) also holds. Thus the set of equations
below emerges.

⎧⎪⎪⎨
⎪⎪⎩

us
j = W

W+
∑

v∈Ns,j

|Is,v |

ps,j= bsj + aus
j

1 = bsj + dsj + us
j

⇒

⎧⎪⎪⎨
⎪⎪⎩

us
j=

W
W+

∑

v∈Ns,j

|Is,v |

bsj = ps,j − aus
j

dsj= 1− bsj − us
j

(14)
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where W = 2 is the non-informative prior weight. As before Ns,j is the neigh-
bourhood of user s constrained by having rated item j, and Is,v is the set of
items that both users s and v have rated.

Although Eq.(14) is obtained from a user-based CF method, it can be easily
adapted to item-based methods by:

⎧⎪⎪⎨
⎪⎪⎩

us
j = W

W+
∑

i∈Ns,j

|Ui,j |

ps,j= bsj + aus
j

1 = bsj + dsj + us
j

⇒

⎧⎪⎪⎨
⎪⎪⎩

us
j=

W
W+

∑

i∈Ns,j

|Ui,j |

bsj = ps,j − aus
j

dsj= 1− bsj − us
j

(15)

where Ns,j is the neighbourhood of item j, i.e. the set of items that have been
rated by the users who also rated target item j as well as (some of) items rated
by user s, and Ui,j is the set of users who rated both items i and j. As before,
generally only the top-K most similar items will be selected as the neighbourhood
for rating prediction.

5 Combining Recommender and Reputation Values

After obtaining the subjective opinions from reputation systems and recom-
mender systems respectively, the question is how they can be combined. We
present the cascading minimum common belief fusion (CasMin) as a relatively
conservative operator for fusing rating levels expressed as opinions. The detailed
algorithm of CasMin fusion is also given below, and the usage is exemplified at
the end of this section.

5.1 Cascading Minimum Common Belief Fusion

Various belief fusion models can be used to model specific situations. It is often
challenging to determine the correct or the most appropriate fusion operator for
a specific situation, see e.g. [9] for a discussion. We now present a new fusion
model called Cascading Minimum Common Belief Fusion (CasMin) which is
applicable when the states in the frame represent ordered levels.

When fusing belief masses on the highest order state in the frame, the greatest
belief mass in one argument is reduced to match the belief mass in the other
argument to produce the mutual minimum belief mass on that state. The amount
of belief mass removed from the greatest belief mass is cascaded to the belief mass
of the next inferior state in the frame and so forth until the lowest order state in
the frame is reached. Belief mass from the least arguments can also be matched
by uncertainty mass from the other argument, so that uncertainty typically is
reduced, and belief mass in the lowest order states typically is increased.

An example situation is company investment where weighted ratings are
given by analysts expressed as (1) strong sell, (2) sell, (3) hold, (4) buy, (5)
strong buy. An investor might want to determine conservative company ratings
based on the CasMin fusion model, so that in case a single analyst gives a low
rating to a company on a specific level then the CasMin rating on that level is
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low even if all the other analysts give a high rating to the same company on that
level. The conservative property of this fusion operator is useful in situations
of possible bias in the arguments such as market analysis, where analysts tend
to avoid negative opinions as they typically receive flack from the management
teams and pressure that they may lose access to the companies that they cover.

The case that we are interested in is about giving advice that is confirmed
by both recommendation values and reputation scores for resources. CasMin fu-
sion provides a conservative fusion model for this situation because it takes the
smallest of reputation score and recommendation value on each level, starting
from the highest level, and on each level cascading the overshooting values down
to the level below. A high CasMin fusion result, i.e. with large scores/values for
high levels, can only be obtained when both reputation scores and recommen-
dation values are high. In this way, the advice produced by CasMin fusion will
be more conservative than that provided by reputation systems or recommender
systems alone. We will describe the details of CasMin fusion in next sub section.

5.2 CasMin Fusion Operator

LetX = {x1, . . . xk} be an ordered frame where xk is considered to be the highest
order state predefined by a recommender or reputation system. The reduced
powerset of X is denoted R(X) with cardinality κ. Assume that there are two
opinions ωA

X and ωB
X over the frame X where the superscripts A and B represent

the belief owners. The two opinions can be mathematically merged using the

CasMin operator which in expressions is denoted as: ω
(A↓B)

X = CasMin(ωA
X , ωB

X).
The CasMin operator requires binomial or multinomial opinions, so in case

of hyper opinion arguments, first project to binomial or multinomial opinions as
described by Eq.(16), where the beliefs of the hyper opinion ω′

X are denoted as
b′X , and the the beliefs of the multinomial opinion ωX are denoted as bX .

bX(xi) =
∑

xj∈R(X)

aX(xi/xj) b
′
X(xj) , ∀xi ∈ X, (16)

With multinomial opinions arguments the CasMin fusion operation proceeds
according to the algorithm of Fig.1. Specifically, it first acts on the belief on the
highest level state xk and finally on the belief on lowest level state x1. Line 2
ensures that the belief on the A-argument is always greater than that of the B-
argument, by executing a swap operation if necessary. For each level xi, there are
two possible cases, i.e. whether the A-argument’s belief is less than or equal to
the sum of the B-argument’s belief and uncertainty (lines 3-7) or not (lines 8-13).
In either case, (a part of) the B-argument’s uncertainty can compensate for it’s
belief value being less than that of the A-argument (lines 4, 9-10). The remaining
minimum belief value will be assigned to both A and B’s arguments (lines 5,
12), and then the differences between the new and previous belief values (lines 6,
11) will be cascaded to the next inferior state xi−1 (line 14). This procedure will
be repeated until the frame is finished. Finally, user A’s new opinion represents
the fused result and will be returned (line 16).
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1. FOR i = k to 2 DO {
2. IF bAX(xi) ≤ bBX(xi) THEN {Swap(ωA

X , ωB
X);}

3. IF uB
X > (bAX(xi)− bBX(xi)) THEN {

4. uB
X = uB

X − (bAX(xi)− bBX(xi));

5. bBX(xi) = bAX(xi);
6. bcascade = 0;
7. }
8. ELSE {
9. bBX(xi) = bBX(xi) + uB

X ;
10. uB

X = 0;

11. bcascade = bAX(xi)− bBX(xi);

12. bAX(xi) = bBX(xi);
13. }
14. bAX(xi−1) = bAX(xi−1) + bcascade;
15. }
16. ω

(A↓B)

X = ωA
X ;

Fig. 1. Algorithm for the CasMin belief fusion operator

The CasMin operator is commutative, associative and idempotent, and a
totally uncertain opinion acts as the neutral element for the CasMin operator.

5.3 Example

We consider the case of providing advice about hotels through a web site such
as e.g. tripadvisor.com. It is assumed that a recommender system tracks user
preferences, and that a reputation system allows users to rate hotels.

With the method described in Eq.(10) the reputation system can produce
scores expressed as multinomial opinions. With the method described in Eq.(8)
the multinomial opinions can be transformed into binomial opinions.

The recommender system can also use a multi-aspect and multi-level rep-
resentation of ratings. A user can rate general satisfaction high even if another
aspect such as cleanliness is rated low, e.g. in case cleanliness is not an important
preference for the user. The recommender system is thus able to identify hotels
that match the users personal preference. The recommendation values for each
hotel and each user are expressed as binomial opinions using Eq.(14) or Eq.(15).

The recommender system identifies a list of hotels based on the ratings given
by the user and other travelers. The recommender system can predicted that the
user will like the hotels because other users with similar tastes have rated the
hotels with satisfaction. In contrast, the reputation system offers community-
wide scores for each hotel. The CasMin operator produces conservative results
in the sense that hotels must simultaneously have high recommendation values
and high reputation scores. The numerical example of Table 1 illustrates the
result of fusing two such opinions according to the CasMin algorithm of Fig.1.
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Table 1. Fusion of reputation scores and recommendation values

Rep. Multinomial Binomial Rec. CasMin
Hotel Ratings Rep. Score Rep. Score Value Advice

r(x5) = 50 bx5 = 0.65 b = 0.81 b = 0.1 b = 0.30
r(x4) = 10 bx4 = 0.13 d = 0.16 d = 0.7 d = 0.70

Hotel I r(x3) = 10 bx3 = 0.13 u = 0.03 u = 0.2 u = 0.00
r(x2) = 0 bx2 = 0.00
r(x1) = 5 bx1 = 0.06

uX = 0.03

r(x5) = 5 bx5 = 0.06 b = 0.16 b = 0.7 b = 0.19
r(x4) = 0 bx4 = 0.00 d = 0.81 d = 0.1 d = 0.61

Hotel II r(x3) = 10 bx3 = 0.13 u = 0.03 u = 0.2 u = 0.20
r(x2) = 10 bx2 = 0.13
r(x1) = 50 bx1 = 0.65

uX = 0.03

r(x5) = 50 bx5 = 0.65 b = 0.81 b = 0.7 b = 0.81
r(x4) = 10 bx4 = 0.13 d = 0.16 d = 0.1 d = 0.19

Hotel III r(x3) = 10 bx3 = 0.13 u = 0.03 u = 0.2 u = 0.00
r(x2) = 0 bx2 = 0.00
r(x1) = 5 bx1 = 0.06

uX = 0.03

Table 1 shows the results of analysing three separate hotels called Hotel I, II
and III, respectively. In case of Hotel I and Hotel II where the recommendation
values and reputation scores are in conflict, the fused belief value is small. The
only strong result is for Hotel III where both the recommendation value and
reputation score are positive. In addition, as shown in cases of Hotel I and Hotel
III, it is often the case for reputation systems that the scores have a strong posi-
tive bias, reducing the utility and discriminating power of the reputation system.
The advantage of combining recommender systems and reputation systems is to
amplify the discriminating power.

6 Conclusions

Since both recommender systems and reputation systems support decision mak-
ing we believe that combining both types of systems may produce better advice
than any individual systems can do alone. However, the significant differences
in the underlying theory and implementation make such integration challenging.
In this paper, we proposed a method to represent reputation scores and recom-
mendation values within the framework of subjective logic. We also proposed the
new CasMin fusion operator in order to fuse the results from recommender and
reputation systems in a conservative fashion, i.e. so that high results can only
be obtained when both reputation scores and recommendation values are high
for a given resource. The proposed method was illustrated with a hypothetical
example. In future research we intent to apply the method to real data in order
to judge its usefulness.
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