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Abstract— Reputation systems can be used in online markets
and communities in order to stimulate quality and good be-
haviour as well as to sanction poor quality and bad behaviour.
The basic idea is to have a mechanism for rating services
on various aspects, and a way of computing reputation scores
based on the ratings from many different parties. By making
the reputation scores public, such systems can assist parties in
deciding whether or not to use a particular service. Reputation
systems represent soft security mechanisms for social control.
This article presents a type of reputation system based on the
Dirichlet probability distribution which is a multinomial Bayesian
probability distribution. Dirichlet reputation systems represent
a generalisation of the binomial Beta reputation system. The
multinomial aspect of Dirichlet reputation systems means that
any set of discrete rating levels can be defined. This provides great
flexibility and usability, as well as a sound basis for designing
reputation systems.

I. INTRODUCTION

Reputation systems [1] represent an important type of
online trust management mechanisms. Such systems, which
are attracting strong interest from industry and the academic
research community, are increasingly being integrated with
online services and applications.

The problem of determining whether something or some-
body can be trusted was not thought of as a problem when the
Internet and the Web were conceived, because the community
consisted of a group of users motivated by the same goals,
and with strong trust in each other. Each time new and
groundbreaking Internet technologies are being developed and
deployed, the early adopters typically have good intentions
because they are motivated by the desire to make the new
technology successful. However, people and organisations
currently engaging in Internet activities are not uniformly well
intentioned in the same sense, because they are increasingly
motivated by financial profit and personal gain. The result
is that we are poorly prepared for controlling markets and
communities where the participants’ behaviour is governed
by self interest, or even worse, by a combination of selfish,
malicious and criminal intentions.

Reputation systems are well suited for stimulating social
control within online communities or markets. The basic
idea is to let parties rate each other, for example after the
completion of a transaction, and use the aggregated ratings

0Appears in the proceedings of the 2nd International Conference on
Availability, Reliability and Security (ARES 2007), Vienna, April 2007.

about a given party to derive a reputation score, which can
assist other parties in deciding whether or not to transact with
that party in the future. A natural side effect of integrating
reputation systems with services and applications is that it
also provides an incentive for good behaviour, and therefore
tends to have a positive effect on market quality.

Reputation systems represents soft security mechanisms that
complement traditional information security mechanisms. This
was first described by Rasmussen & Jansson (1996) [2] who
used the term hard security for traditional mechanisms like
authentication and access control, and soft security for what
they called social control mechanisms.

Reputation systems are already being used in many success-
ful commercial online applications[3]. There is also a rapidly
growing literature around trust and reputation systems, but
unfortunately this activity is not very coherent. The systems
being proposed are often designed from scratch, and only in
very few cases are researchers building on proposals by others.
The current period can therefore be seen as pioneering for
online trust management.

We have previously proposed and studied binomial Bayesian
reputation systems [4], [5], [6] which allow ratings to be
expressed with two values, as either positive (e.g. good) or
negative (e.g. bad). The disadvantage of a binomial model is
that it excludes the possibility of providing ratings with graded
levels such as e.g. mediocre - bad - average - good - excellent.
Binomial models are in principle unable to distinguish between
polarised ratings (i.e. many very bad and many very good
ratings) and average ratings. Although it would be possible to
express binary ratings with graded values by splitting a binary
rating into a partially positive and partially negative rating,
the mathematical treatment of this approach remains awkward
with the Beta distribution.

The mathematical representation of reputation systems
based on the Dirichlet distribution allows graded ratings to
be directly expressed and reflected in the derived reputation
scores.

This article describes reputation systems based on tradi-
tional statistical principles in the form of the Dirichlet multi-
nomial probability distribution function. This provides a sound
as well as a flexible platform for designing practical reputation
systems.



II. THE DIRICHLET MULTINOMIAL MODEL

Multinomial Bayesian reputation systems are centered
around the Dirichlet multinomial probability distribution. For
self-containment, we briefly outline the Dirichlet multinomial
model below, and refer to [7] for more details.

A. The Dirichlet Distribution

We are interested in knowing the probability distribution
over the disjoint elements of a state space. In case of a
binary state space, it is determined by the Beta distribution.
In the general case it is determined by the Dirichlet distri-
bution, which describes the probability distribution over a k-
component random variable p(θi), i = 1 . . . k with sample
space [0, 1]k, subject to the simple additivity requirement
∑k

i=1 p(θi) = 1.
The Dirichlet distribution captures a sequence of obser-

vations of the k possible outcomes with k positive real
parameters α(θi), i = 1 . . . k, each corresponding to one of
the possible outcomes. In order to have a compact notation
we define a vector ~p = {p(θi) | 1 ≤ i ≤ k} to denote
the k-component random probability variable, and a vector
~α = {αi | 1 ≤ i ≤ k} to denote the k-component random
observation variable [α(θi)]

k
i=1.

The Dirichlet probability density function is then given by

f(~p | ~α) =
Γ
(

∑k

i=1 α(θi)
)

∏k

i=1 Γ(α(θi))

k
∏

i=1

p(θi)
α(θi)−1 , (1)

where























p(θ1), . . . , p(θk) ≥ 0

∑k

i=1 p(θi) = 1

α(θ1), . . . , α(θk) > 0.

The probability expectation value of any of the k random
variables is defined as:

E(p(θi) | ~α) =
α(θi)

∑k

i=1 α(θi)
. (2)

Because of the additivity requirement
∑k

i=1 p(θi) = 1,
the Dirichlet distribution has only k − 1 degrees of freedom.
This means that knowing k− 1 probability variables and their
density uniquely determines the last probability variable and
its density.

B. A Priori Distribution for k Alternatives

Now, we come to the question of an a priori density function
for the probabilities of k exhaustive and mutually exclusive
alternatives (e.g. k different colours of balls in an urn). Let
p(θi) denote the random variable describing the probability of
a random sample (e.g. drawing a ball of a particular colour)
yielding alternative i. Since p(θi) describes a probability, then
the sample space for (p(θi))

k
i=1 is [0, 1]k. Since the alternatives

are exhaustive and mutually exclusive, then
k
∑

i=1

p(θi) = 1. (3)

In order to have a uniform distribution, the common a
proiori parameters must be α(xi) = 1. Generalising the
case of 2 alternatives where the probability density function
is called the Beta distribution, we will take an a priori
Dirichlet distribution over k alternatives. Since there is no
reason to assume a preference for any alternative over any
other alternative, then the parameters will be taken to be equal,
with the result that the a priori probability expectation value
E(p(θi)) = 1

k
for all i. This means that the common a priori

parameter must be αk(xi) = C
k

for some constant C. Since it
is normally required that the a priori distribution in case of 2
alternatives is uniform, then necessarily the a priori constant
is defined as C = 2, and the common value in the case of k
alternatives is:

αk = C/k = 2/k . (4)

Should one assume an a priori uniform distribution over state
spaces other than binary, the constant, and also the common
value would be different. The a priori constant C will always
be equal to the cardinality of the state space over which a
uniform distribution is assumed. The constant C = 2 the
emerges when a uniform distribution over binary state spaces
is assumed. This means that the a priori distribution over state
spaces larger than binary will not be uniform.

The state space cardinality provides a priori information
about the base rate of an arbitrary event out of the k possible
events. We define the default base rate ak for any of the k
singleton events of a state space if size k as:

ak = 1/k . (5)

In case no other evidence is available, the base rate alone
determines the probability distribution of the events. For
example in the binary case, the a priori probability of any
of the two possible outcomes is 1

2 , and the probability density
function is the uniform Beta(1, 1). As more evidence becomes
available, the influence of the base rate is reduced, until the
evidence alone determines the probability distribution of the
events. It is thus possible to separate between the a priori base
rate expressed by ak in the default case, and the a posteriori
evidence over the possible events denoted as a vector ~r. Base
rates different from the default value will be described below.
The total evidence α(θi) for each singleton event θi can then
be expressed as:

α(θi) = r(θi) + Cak, (C : a priori constant). (6)

In order to distinguish between the a priori default base rate,
and the a posteriori evidence, the Dirichlet distribution can be
expressed with prior information represented as a base rate
vector ~a over the state space. This will be called the Dirichlet
Distribution with Prior.

Definition 1 (Dirichlet Distribution with Prior):
Let Θ be a state space consisting of k mutually disjoint
elements. Let ~r represent the evidence vector over the elements
of Θ and let ~a represent the base rate vector over the same
elements. Then the multinomial probability density function
over Θ is expressed as:



f(~p | ~r,~a) =

Γ(
Pk

i=1
(r(xi)+Ca(xi)))

Q

k
i=1

Γ(r(xi)+Ca(xi))

∏k

i=1 p(xi)
(r(xi)+Ca(xi)−1) .

(7)

where







































p(x1), . . . , p(xk) ≥ 0,

∑k

i=1 p(xi) = 1,

α(x1), . . . , α(xk) > 0,

∑k

i=1 a(xi) = 1.

The expression of Eq.(7) is useful, because it allows the
determination of the probability distribution over state spaces
where each element can have an arbitrary base rate as long
as the simple additivity principle is satisfied. The probability
expectation of any of the k random probability variables can
be written as:

E(p(xi) | ~r,~a) =
r(xi) + Ca(xi)

C +
∑k

i=1 r(xi)
. (8)

The a priori constant C can be set to C = 2 when
a uniform distribution over binary state spaces is assumed.
Selecting a larger value for C will result in new observations
having less influence over the Dirichlet distribution, and can
in fact represent specific a priori information provided by a
domain expert or by another reputation system. It can be noted
that it would be unnatural to require a uniform distribution
over arbitrary large state spaces because it would make the
sensitivity to new evidence arbitrarily small.

For example, requiring a uniform a priori distribution over
a state space of cardinality 100, would force the constant C
to be C = 100. In case an event of interest has been observed
100 times, and no other event has been observed, the derived
probability expectation of the event of interest will still only
be about 1

2 , which would seem totally counterintuitive. In
contrast, when a uniform distribution is assumed in the binary
case, and the same observations are analysed, the derived
probability expectation of the event of interest would be close
to 1, as intuition would dictate.

C. Visualising Dirichlet Distributions

Visualising Dirichlet distributions is challenging because it
is a density function over k − 1 dimensions, where k is the
state space cardinality. For this reason, Dirichlet distributions
over ternary state spaces are the largest that can be easily
visualised.

With k = 3, the probability distribution has 2 degrees of
freedom, and the equation p(θ1) + p(θ2) + p(θ3) = 1 defines
a triangular plane as illustrated in Fig.1.

In order to visualise probability density over the triangular
plane, it is convenient to lay the triangular plane horizontally
in the x-y plane, and visualise the density dimension along
the z-axis.

Let is consider the example of an urn containing balls of the
three different colours: red black and yellow (i.e. k = 3). Let
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Fig. 1. Triangular plane

us first assume that no other information than the cardinality
is available, meaning that the default base rate is a(xi) = 1/3
for all states, and r(red) = r(black) = r(yellow) = 0. Then
Eq.(8) dictates that the expected a priori probability of picking
a ball of any specific colour is the default base rate probability,
which is 1

3 . The a priori Dirichlet density function is illustrated
in Fig.2.
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Fig. 2. Prior Dirichlet distribution in case of urn with balls of 3 different
colours

Let us now assume that an observer has picked (with return)
6 red, 1 black and 1 yellow ball, i.e. r(red) = 6, r(black) =
1, r(yellow) = 1, then the a posteriori expected probability
of picking a red ball can be computed as E(p(red)) = 2

3 . The
a posteriori Dirichlet density function is illustrated in Fig.3.

III. THE DIRICHLET REPUTATION SYSTEM

Multinomial Bayesian systems are based on computing
reputation scores by statistical updating of Dirichlet PDF. The
a posteriori (i.e. the updated) reputation score is computed by
combining the a priori (i.e. previous) reputation score with
the new rating. The same principle is also used for binomial
Bayesian reputation systems based on the Beta distribution [8],
[4], [9], [10].
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Fig. 3. A posteriori Dirichlet distribution after picking 6 red, 1 black and 1
yellow ball

A. Collecting Ratings

A general reputation system allows for an agent to rate
another agent or service, with any level from a set of pre-
defined rating levels. Some form of control over what and
when ratings can be given is normally required, such as e.g.
after a transaction has taken place, but this issue will not be
discussed here. Let there be k different discrete rating levels.
This translates into having a state space of cardinality k for
the Dirichlet distribution. Let the rating level be indexed by i.
The aggregate ratings for a particular agent y are stored as a
cumulative vector, expressed as:

~Ry = (Ry(i) | i = 1 . . . k) . (9)

The simplest way of updating a rating vector as a result of
a new rating is by adding the newly received rating vector ~r
to the previously stored vector ~R. The case when old ratings
are aged is described in Sec.III-B.

Each new rating of agent y by an agent x takes the form of
a trivial vector ~rx

y where only one element has value 1, and all
other vector elements have value 0. The index i of the vector
element with value 1 refers to the specific rating level.

B. Aggregating Ratings with Aging

Ratings may be aggregated by simple addition of the
components (vector addition).

Agents (and in particular human agents) may change their
behaviour over time, so it is desirable to give relatively
greater weight to more recent ratings. This can be achieved by
introducing a longevity factor λ ∈ [0, 1], which controls the
rate at which old ratings are aged and discounted as a function
of time. With λ = 0 ratings are completely forgotten after a
single time period. With λ = 1, ratings are never forgotten.

Let new ratings be collected in discrete time periods. Let
sum of the ratings of a particular agent y in period t be denoted
by the vector ~ry,t. More specifically, it is the sum of all ratings

~rx
y of agent y by other agents x during that period, expressed

by:

~ry,t =
∑

x∈My,t

~rx
y (10)

where My,t is the set of all agents who rated agent y during
period t.

Let the total accumulated ratings (with aging) of agent y
after the time period t be denoted by ~Ry,t. Then the new
accumulated rating after time period t + 1 can be expressed
as:

~Ry,(t+1) = λ · ~Ry,t + ~ry,(t+1), where 0 ≤ λ ≤ 1 . (11)

Eq.(11) represents a recursive updating algorithm that can
be executed once every period for all agents. Assuming that
new ratings after n periods is received at time t + n, then the
new rating can be computed as:

~Ry,(t+n) = λn · ~Ry,t + ~ry,(t+n) , 0 ≤ λ ≤ 1. (12)

C. Convergence Values for Reputation Scores

The recursive algorithm of Eq.(11) makes it possible to
compute convergence values for the rating vectors, as well as
for reputation scores. Assuming that a particular agent receives
the same ratings every period, the Eq.(11) defines a geometric
series. We use the well known result of geometric series:

∞
∑

j=0

λj =
1

1 − λ
for − 1 < λ < 1 . (13)

Let ~ry represent the rating vector of agent y for each period.
The Total accumulated rating vector after an infinite number
of periods is then expressed as:

~Ry,∞ =
~ry

1 − λ
, where 0 ≤ λ < 1 . (14)

Eq.(14) shows that the longevity factor determines the
convergence values for the accumulated rating vectors.

D. Reputation Representation

A reputation score applies to member agents in a community
M . Before any evidence is known about a particular agent y,
its reputation is defined by the base rate reputation which is
the same for all agents. As evidence about a particular agent
is gathered, its reputation will change accordingly.

The reputation score of a multinomial system can be
represented on different forms, which can be evidence rep-
resentation, density representation, multinomial probability
representation, or point estimate representation. Each form
will be described in turn below.

1) Evidence Representation: The most direct form of rep-
resentation is to simply express the aggregate evidence vector
~Ry. The amount of ratings of level i for agent y is denoted
by Ry(i).

It is not necessary to express individual base rate vectors,
as it will be the same for all agents.



2) Density Representation: The reputation score of an agent
can be expressed as a multinomial probability density function
(PDF) in the form of Eq.(7). For ternary state spaces, the PDF
can be visualised as in Fig.3. Visualisation of PDFs for state
spaces larger than ternary is not practical.

3) Multinomial Probability Representation: The most nat-
ural is to define the reputation score as a function of the
probability expectation values of each element in the state
space. The expectation value for each rating level can be
computed with Eq.(8).

Let ~R represent a target agent’s aggregate ratings. Then the
vector ~S defined by:

~Sy :

(

Sy(i) =
Ry(i) + Ca(i)

C +
∑k

j=1 Ry(j)
; | i = 1 . . . k

)

. (15)

is the corresponding multinomial probability reputation
score. As already stated, C = 2 is the value of choice, but
larger value for the constant C can be chosen if a reduce
influence of new evidence over the base rate is required.

The reputation score ~S can be interpreted like a multinomial
probability measure as an indication of how a particular agent
is expected to behave in future transactions. It can easily be
verified that

k
∑

i=1

S(i) = 1 . (16)

The multinomial reputation score can for example be visu-
alised as columns, which would clearly indicate if ratings are
polarised. Assume for example a rating scale with the 5 levels:

1) Mediocre
2) Bad
3) Average
4) Good
5) Excellent
We assume a default base rate distribution. Before any rat-

ings have been received, the multinomial probability reputation
score will be represented as in Fig.4.

Fig. 4. Base rate probability expectation values

Let us assume that 10 ratings are received, where 5 are
mediocre, and 5 are excellent. This translates into the multi-
nomial probability reputation score of Fig.5.

Let us now instead assume that 10 average ratings have
been received. This translates into the multinomial probability
reputation score of Fig.6.

Fig. 5. Probability expectation values after 5 mediocre and 5 excellent ratings

Fig. 6. Probability expectation values after 10 average ratings

In case an agent receives the same ratings every period, the
reputation scores will converge to specific values. These values
emerge by inserting the convergence values of Eq.(14) into
Eq.(15). Let ~ry be the constant ratings that agent y receives
every period. The convergence score value for each rating level
i can then be expressed as:

Sy,∞(i) =
λ · ry(i) + (1 − λ)Ca(i)

(1 − λ)C + λ
∑k

j=1 ry(j)
(17)

In particular it can be seen that when no ratings are received
(i.e. ~ry is the null vector), then the convergence score value
for each level is simply the base rate for that level.

4) Point Estimate Representation: While informative, the
multinomial probability representation can require consider-
able space to be displayed on a computer screen. A more
compact form can be to express the reputation score as a
single value in some predefined interval. This can be done by
assigning a point value ν to each rating level i, and computing
the normalised weighted point estimate score σ.

Assume e.g. k different rating levels with point values
evenly distributed in the range [0,1], so that ν(i) = i−1

k−1 . The
point estimate reputation score is then computed as:

σ =
k
∑

i=1

ν(i)S(i) . (18)

However, this point estimate removes information, so that
for example the polarised ratings of Fig.5 are no longer visible.
Let for example service y1 receive 10 average ratings , and
let service y2 receive 5 mediocre ratings and 5 excellent. In
this case, y1 and y2 would both have the same point estimate



reputation score of 0.5, although the ratings in fact are quite
different.

A point estimate in the range [0,1] can be mapped to any
range, such as 1-5 stars, a percentage or a probability etc.
E. Dynamic Community Base Rates

Bootstrapping a reputation system to a stable and conserva-
tive state is important. In the framework described above, the
base rate distribution ~a will define initial default reputation for
all agents. The base rate can for example be evenly distributed,
or biased towards either a negative or a positive reputation.
This must be defined by those who set up the reputation system
in a specific market or community.

Agents will come and go during the lifetime of a market,
and it is important to be able to assign new members a
reasonable base rate reputation. In the simplest case, this can
be the same as the initial default reputation that was given to
all agents during bootstrap.

However, it is possible to track the average reputation score
of the whole community, and this can be used to set the base
rate for new agents, either directly or with a certain additional
bias.

Not only new agents, but also existing agents with a
standing track record can get the dynamic base rate. After all, a
dynamic community base rate reflects the whole community,
and should therefore be applied to all the members of that
community.

The aggregate reputation vector for the whole community
at time t can be computed as:

~RM,t =
∑

yj∈M

~Ry,t (19)

This vector then needs to be normalised to a base rate vector
as follows:

Definition 2 (Community Base Rate): Let ~RM,t be an ag-
gregate reputation vector for a whole community, and let SM,t

be the corresponding multinomial probability reputation vector
which can be computed with Eq.(15). The community base
rate as a function of existing reputations at time t + 1 is then
simply expressed as the community score at time t:

~aM,(t+1) = ~SM,t. (20)
The base rate vector of Eq.(20) can be given to every new

agent that joins the community. In addition, the community
base rate vector can be used for every agent every time their
reputation score is computed. In this way, the base rate will
dynamically reflect the quality of the market at any one time.

If desirable, the base rate for new agents can be biased in
either negative or positive direction in order to make it harder
or easier to enter the market.

When base rates are a function of the community reputation,
the expressions for convergence values with constant ratings
can no longer be defined with Eq.(14).

IV. EXAMPLE VISUALISATIONS OF REPUTATION

A. Example 1: Periods of Mediocre and Excellent Ratings

In this example, agents can be rated at 5 discrete levels,
with base rates evenly distributed as shown in Table IV-A.

Level Verbal tag Base rate
L1 Mediocre 0.2
L2 Bad 0.2
L3 Average 0.2
L4 Good 0.2
L5 Excellent 0.2

TABLE I
EXAMPLE RATING LEVELS WITH BASE RATES

Let an agent first be rated L1 (mediocre) every period in 5
periods, and subsequently L5 (excellent) every period in the
next 5 periods. The longevity factor is set to λ = 0.9.

The multinomial probability reputation score of the agent
can then be visualised as a function of level/time, as in Fig.7
below.

Fig. 7. Evolution of an agent’s reputation after a sequence of 5 mediocre
(L1) and 5 excellent (L5) ratings

It can be seen that the initial multinomial probability is
evenly distributed according to the base rate, and that from
then on the probability values of the different levels change
as a function of the ratings. The trend during periods 1-5 is
clearly different from the trend during periods 6-10.

B. Example 2: Score Convergence with Fixed and Dynamic
Base Rates

In this example we will compare the convergence of rep-
utation scores in case of fixed and in case of dynamic base
rates.

We assume again a reputation system with 5 rating levels
and a longevity factor λ = 0.9. In the first 10 periods the agent
is rated as mediocre, and in periods 11-50 the agent is rated as
excellent. It can be seen that the evolution of the score values
change abruptly between period 10 and 11. This is illustrated
in Fig.8

With constant base rates, the score values converge to the
values that Eq.(17) predicts. With an infinite series of excellent



Fig. 8. Constant base rate and the evolution of an agent’s reputation with a
sequence of 10 mediocre (L1) and 40 excellent (L5) ratings

ratings, the score for L5 converges to S(L5) = 0.855, and the
scores for the other levels converge to 0.036.

Now to the case of dynamic base rates. For simplicity we
assume that the community consists of a single agent who
is rated as before, i.e. 10 mediocre ratings followed by 40
excellent ratings. After each period, the base rate is updated
to the score of the previous period. This is illustrated in Fig.9.

Fig. 9. Dynamic base rate and the evolution of an agent’s reputation with a
sequence of 10 mediocre (L1) and 40 excellent (L5) ratings

As expected an abrupt change occurs between period 10 and
11. However this time, the reputation score for L5 converges
to S(L5) = 1, and the reputation score for the other levels
converge to 0.

With a dynamic base rate, the convergence values are not
determined by the longevity factor. This example unnatural
because the community only consists of a single agent. How-
ever, convergence values from the longevity factor will be
independent from the longevity factor for any community size.

C. Example 3: Evolution of Point Estimates

We consider the following sequence of ratings:
Periods 1 - 10: L1 Mediocre
Periods 11 - 20: L2 Bad
Periods 21 - 30: L3 Average
Periods 31 - 40: L4 Good
Periods 41 - 50: L5 Excellent
The longevity factor is λ = 0.9 as before, and the base rate

is dynamic. The evolution of the scores of each level as well
as the point estimate are illustrated in Fig.10.

Fig. 10. Scores and point estimate during a sequence of varying ratings

In Fig.10 the multinomial reputation scores change abruptly
between each sequence of 10 periods. The point estimate first
drops as the score for L1 increase during the first 10 periods.
After that the point estimate increases relatively smoothly
during the subsequent 40 periods. Because of the dynamic
base rate, the point estimate will eventually converge to 1.

V. EXAMPLE REPUTATION SYSTEM ARCHITECTURE

As a simple example of how a reputation system can be
implemented in a general level we describe a simple reputation
toolbar which can be installed on any browser. This allows the
reputation score of any Web page to be visualised to the user,
as well as the user to rate Web sites and Web pages. The
toolbar communicates with a centralised server which keeps
the reputation vectors of all Web pages. A Web page can be
rated by the user with a discrete set of different levels, as
described above. This architecture is illustrated in Fig.11

While the browser is fetching a Web page, the reputation
toolbar will query the reputation server about the reputation
score of that Web page or Web site. This is provided as a
reputation score. The user is also invited to rate the same Web
site through the toolbar. This rating is sent to the reputation
server, and taken into account when computing the reputation
score in the future.

The computation of the reputation score is always done by
the server, and only the scores are sent to the toolbar to be
visualised in some form.



Fig. 11. Network architecture for reputation toolbars

The toolbar and the reputation server is currently being
developed as part of a project on online trust management
at Queensland University of Technology. The functionality of
the reputation toolbar of Fig.11 can very well be integrated
with a traditional search engine toolbar. The reputation scores
can then be taken into account for computing ranking when
searching Web resources, or can be presented as a separate
score for each search query result. In the latter case, the
reputation server and the search engine do not need to be
co-located. The reputation score can simply be fetched as part
of a search query, either by the search engine itself, or by a
shell on the client machine.

The addition of a reputation system to the traditional search
engine will allow the implementation of the critical surfer
model, which represents an improvement over the current
random surfer and the intentional surfer models.

The random surfer model is implemented by the traditional
PageRank algorithm originally used by Google[11], and re-
flects the probability that a random surfer would access an
given Web page. The increasing usage of rel="nofollow"
in Web pages will have the effect that scores computed by
the PageRank algorithm no longer reflect the real structure of
the Web, and no longer reflect a true random surfer model.
The random surfer follows any link, whereas search engines
only follow those that are not marked by rel="nofollow".
A likely development is that most outgoing hyperlinks will
be marked in this way in a selfish manner in order not to
suffer decreased scores. The search engines will then face the
problem of scarcity of cross links between Web sites, making
the computed scores increasingly unreliable.

As a substitute for the hyperlinks, search engines need to use
other types of evidence. A ranking can for example be based
on the link to every page that people actually visit, and this is
called the intentional surfer model. By encouraging people to
use toolbars, search engines can get precisely that information.
A toolbar provides some value-added functionality to users,
such as displaying the PageRank of every page the user visits.
In return for this functionality, the search engine is informed

about every single Web page that the user visits.
The critical surfer model is based on critical ratings and

feedback about web pages. The critical surfer model is imple-
mented by taking expressions of approval or disapproval of
particular Web pages into account when ranking Web pages
in search results. This is currently not possible with existing
search engine technology, but would be possible by integrating
reputation systems with search engines.

VI. DISCUSSION AND CONCLUSION

The Dirichlet distribution provides a flexible basis for
constructing reputation systems. Reputation scores can be
represented as point estimates, or as multinomial probabilities.
Either or both can be used, depending on the needs of the
application. Although the Dirichlet distribution might seem
mathematically complicated, the computation of the distribu-
tion itself never actually has to be done to accumulate ratings
or to compute reputation scores. In fact, the multidimensional
Dirichlet distribution itself would provide poor usability and
human interpretation. Instead, reputation scores represented
as point estimates and multinomial probabilities, which are
simple to compute, will provide very good usability.

The strength of Bayesian reputation systems is that they
provide a statistically sound basis for computing reputation
scores, and we have shown that it provides a very flexible
framework for constructing reputation systems.

REFERENCES

[1] P. Resnick, R. Zeckhauser, R. Friedman, and K. Kuwabara, “Reputation
Systems,” Communications of the ACM, vol. 43, no. 12, pp. 45–48,
December 2000.

[2] L. Rasmusson and S. Janssen, “Simulated Social Control for Secure In-
ternet Commerce,” in Proceedings of the 1996 New Security Paradigms
Workshop, C. Meadows, Ed. ACM, 1996.

[3] A. Jøsang, R. Ismail, and C. Boyd, “A Survey of Trust and Reputation
Systems for Online Service Provision,” Decision Support Systems,
vol. 43, no. 2, pp. 618–644, 2007.

[4] A. Jøsang and R. Ismail, “The Beta Reputation System,” in Proceedings
of the 15th Bled Electronic Commerce Conference, June 2002.

[5] A. Jøsang, S. Hird, and E. Faccer, “Simulating the Effect of Reputa-
tion Systems on e-Markets,” in Proceedings of the First International
Conference on Trust Management (iTrust), P. Nixon and S. Terzis, Eds.,
Crete, May 2003.

[6] A. Withby, A. Jøsang, and J. Indulska, “Filtering Out Unfair Ratings
in Bayesian Reputation Systems,” The Icfain Journal of Management
Research, vol. 4, no. 2, pp. 48–64, 2005.

[7] A. Gelman et al., Bayesian Data Analysis, 2nd ed. Florida, USA:
Chapman and Hall/CRC, 2004.

[8] A. Jøsang, “Trust-Based Decision Making for Electronic Transactions,”
in Proceedings of the 4th Nordic Workshop on Secure Computer Systems
(NORDSEC’99), L. Yngström and T. Svensson, Eds. Stockholm
University, Sweden, 1999.

[9] L. Mui, M. Mohtashemi, C. Ang, P. Szolovits, and A. Halberstadt,
“Ratings in Distributed Systems: A Bayesian Approach,” in Proceedings
of the Workshop on Information Technologies and Systems (WITS), 2001.

[10] L. Mui, M. Mohtashemi, and A. Halberstadt, “A Computational Model
of Trust and Reputation,” in Proceedings of the 35th Hawaii Interna-
tional Conference on System Science (HICSS), 2002.

[11] L. Page, S. Brin, R. Motwani, and T. Winograd, “The PageRank
Citation Ranking: Bringing Order to the Web,” Stanford Digital Library
Technologies Project, Tech. Rep., 1998.


