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Abstract

Reputation systems can be used to foster good behaviour and to encourage adherence to contracts in
e-commerce. Several reputation systems have been deployed in practical applications or proposed in the
literature. This paper describes a new system called the beta reputation system which is based on using
beta probability density functions to combine feedback and derive reputation ratings. The advantage of
the beta reputation system is flexibility and simplicity as well as its foundation on the theory of statistics.

1 Introduction

Contracts and agreements need some form of enforcement in order to be respected. Traditionally, trans-
action parties can rely on legal procedures in case of disagreement or contract breach. In e-commerce
it can be difficult to rely on legal procedures because it is often unclear which jurisdiction applies, and
because the cost of legal procedures often are higher than the contractual value itself.

As a substitute for enforcement principles that are used in traditional commerce, reputation sys-
tems have emerged as a method for stimulating adherence to electronic contracts and for fostering trust
amongst strangers in e-commerce transactions [9]. A reputation system gathers, distributes, and aggre-
gates feedback about participants behaviour. According to Resnick et al. [10] reputation mechanisms
can provide an incentive for honest behaviour and help people make decisions about who to trust.

*The work reported in this paper has been funded in part by the Co-operative Research Centre for Enterprise Distributed
Systems Technology (DSTC) through the Australian Federal Government’s CRC Programme (Department of Industry, Science
& Resources)
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Past experience with remote transaction partners can be projected into the future, giving a measure
of their trustworthiness. This effect has been called the ‘shadow of the future’ by political scientist
Robert Axelrod [1]. Without such systems, where strangers are interacting in an e-commerce setting, the
temptation to act deceptively for immediate gain could be more appealing than cooperation.

The first Web sites to introduce reputation schemes were on-line auction sites such as eBay.com.
They are now also used by company reputation rating sites such as BizRate.com, which ranks merchants
on the basis of customer ratings. Consumer Reports Online’s eRatings, rates merchants on the basis of
test purchases carried out by Consumer Reports staff. Product review sites have also emerged, such as
Epinions.com, in which reviews themselves are actually rated by other reviewers. Except for eRatings,
most of the systems do little to overcome the issue of establishing initial trust for new merchants in the
e-commerce arena, as strong reputation ratings generally require time to develop.

In the physical world, capturing and distributing feedback can be costly. In comparison, the Internet
is extremely efficient. However reputation systems still encounter significant challenges. Feedback can
get erased if an entity changes its name, and a dishonest participant can use this to start fresh every time
it builds up a bad reputation. People may not bother to provide feedback at all, negative feedback can
be difficult to elicit, and it is difficult to ensure that feedback is honest [10]. One example of dishonesty
through reputation systems is the attempt by three men to sell a fake painting on eBay for $US135,805
[13]. The sale was abandoned just prior to purchase when the buyer became suspicious. It was shown
that two of the fraudsters actually had good Feedback Forum ratings, developed through rating each other
favourably, and by engaging in honest sales prior to the fraudulent attempt. Reputation can thus be seen
as an asset, not only to promote oneself, but also as something that can be cashed in through a fraudulent
transaction with high gain. It emerges that reputation systems have a multitude of complex facets, and is
becoming a fertile ground for research®. Two fundamental aspects to consider are:

1. An engine that calculates the value of the users’ reputation ratings from various inputs including
feedback from other users. Many specific reputation engines have been proposed recently in the
literature. These range from simple ones which accept numerical values which are simply added
together, such as in eBay, to advanced mechanisms which deploy more complex mathematical
equations [15, 14, 11, 3, 7, 8].

2. A propagation mechanism that allows entities to obtain reputation values when required. There are
two available approaches for user reputation propagation. In the centralised approach reputation
values are stored in a central server, and whenever there is a need, users forward their query to
the central server for the reputation value. One of practical example is eBay. In the decentralised
approach everybody keeps and manages reputation of other people themselves. Whenever there is
a need, users can ask others for the required reputation values [16, 5, 14].

Up to now, most of the researches have concentrated on developing of reputation engine, and that is
also the focus of our paper. However, we would like to point out that development of robust and secure
mechanisms for reputation propagation is a topic that deserves much more study.

In this paper we propose a new reputation engine called the beta reputation system which is based
on the beta probability density function. In contrast to most other reputation systems which are intuitive
and ad hoc, the beta reputation system has a firm basis in the theory of statistics. Although we describe
a centralised approach, the beta reputation system can also be used in a distributed setting.

1The Reputations Research Network (http://databases.si.umich.edu/reputations/) is a forum for people conducting research
into how reputation systems should work in theory, how they actually work in practice, and how they could work better.
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2 Building Blocksin the Beta Reputation System

The beta reputation system consists of elements that can be used separately or in combination in order
to provide a flexible framework for integrating reputation services into e-commerce applications. The
reputation function and reputation rating which are described in Sections 2.2 and 2.3 below form a
basis on which the building blocks described in the subsequent sections can be added depending on the
requirements.

2.1 TheBeta Density Function

Our reputation system is based on the beta probability density function which can be used to repre-
sent probability distributions of binary events. This provides a sound mathematical basis for combining
feedback and for expressing reputation ratings. The mathematical analysis leading to the expression for
posteriori probability estimates of binary events can be found in many text books on probability theory,
e.g. Casella & Berger 1990[2] p.298, and we will only present the results here.

Posteriori probabilities of binary events can be represented as beta distributions. The beta-family of
probability density functions is a continuous family of functions indexed by the two parameters « and .
The beta distribution f(p |, 3) can be expressed using the gamma function I" as:

P(Oé + ,3) pafl
I'()T'(B)
with the restriction that the probability variable p = 0 if @« < 1,and p # 1 if 8 < 1. The probability
expectation value of the beta distribution is given by:

E(p) = a/(a + B). (@)

Let us consider a process with two possible outcomes {z,z}, and let r be the observed number of
outcome z and let s be the observed number of outcome z. Then the probability density function of
observing outcome z in the future can be expressed as a function of past observations by setting:

flpla,B) = (1—p)ﬂ71, where0<p<1,a>0,8>0, (1)

a=r+1 and B=s+1, where r,s>0. 3)

As an example, a process with two possible outcomes {z,z} that has produced outcome x seven
times and outcome Z only once, will have a beta function expressed as f(p|8,2) which is plotted in
Figure 1.

p
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Figure 1: Beta function of event x after 7 observations of  and 1 observation of T.
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This curve expresses the uncertain probability that the process will produce outcome z during future
observations. The probability expectation value is given by E(p) = 0.8. This can be interpreted as
saying that the relative frequency of outcome z in the future is somewhat uncertain, and that the most
likely value is 0.8.

The variable p is a probability variable, so that for a given p the probability density f(p|«, )
represents second order probability. The first-order variable p represents the probability of an event,
whereas the density f(p | «, 5) represents the probability that the first-order variable has a specific value.
Since the first-order variable p is continuous, the second-order probability f(p | «, ) for any given value
of p € [0,1] is vanishingly small and therefore meaningless as such. It is only meaningful to compute

P2 f(p| @, B) for a given interval [p1, po], or simply to compute the expectation value of p. Below we
will define a reputation rating that is based on the expectation value.

2.2 TheReputation Function

When observing binary processes with two possible outcomes {z, z}, the beta function takes the integer
number of past observations of = and 7 to estimate the probability of z, or in other words, to predict the
expected relative frequency with which z will happen in the future.

By replacing the parameters (e, 3) in Eq.(1) by (r, s) through the mapping of Eq.(3), the parameters
(r, s) can be directly interpreted as the number of observations of outcome z and z respectively, and the
prior density function before any observation can be expressed by setting r, s = 0.

Combining feedback resulting from an e-commerce transaction is not the same as statistical observa-
tions of a binary event, because an agent’s perceived satisfaction after a transaction is not binary. Instead
will let positive and negative feedback be given as a pair (r, s) of continuous values where r reflects the
degree of satisfaction and s reflects the degree of dissatisfaction. This leads to the following definition
of the reputation function:

Definition 1 (Reputation Function) Let 2 and s respectively represent the (collective) amount of
positive and negative feedback about target entity 7' provided by an agent (or collection of agents)
denoted by X, then the function (p |72, s ) defined by:

I'(r
e(p|r7,s7) =
T(ry

X
2
i-ll-)r( -l-Jr)l)pr%((l—p)s%(, where0<p<1,0<r¥, 0<sy. (4)

is called T’s reputation function by X. The tuple (r%, s%) will be called T"s reputation parameters by
X . For simplicity and compactness of notation we will sometimes write =X instead of ¢(p|r5,s7).

By using Eq.(2) the probability expectation value of the reputation function can be expressed as:

E(p(plrr,s7)) = (r7 +1)/(r7 + 57 +2). Q)

We will consider reputation functions to be subjective in the sense that if agent X provides feedback
about target 7', then the reputation function resulting from that feedback represents 7"’s reputation as
seen by X, and can not be considered to represent T’s reputation from an objective viewpoint, because
no such thing exists. For this reason ¢(p |ra*, s%) is called 7"s reputation function by X. Superscripts
thus represents the feedback provider, and subscripts represent the feedback target.
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2.3 TheReputation Rating

The concept of reputation function is ideal for mathematical manipulation, but less so for communicating
a reputation rating to human users. A more simple representation than the reputation function is therefore
needed. Most people are familiar with the notion of a probability value, and the probability expectation
value E(p) from Eq.(5) therefore seems very suitable. This would give a reputation rating in the range
[0, 1] where the value 0.5 represents a neutral rating.

It might be more intuitive to let the reputation rating be in a range such as e.g. [—100,+100] or
[—1,+1] where the zero middle value represents neutral rating. Any range can be obtained by simply
scaling the probability expectation value. In the following we will scale the reputation rating to be in the
range [—1, +1].

Definition 2 (Reputation Rating) Letr2% and s respectively represent the (collective) amount of pos-
itive and negative feedback about target entity T' provided by an agent (or collection of agents) denoted
by X, then the function Rep(r# , s ) defined by:

X X e — 53
Rep(rs, s = (E AR 0.5 = . 6
piFsf) = (BlelpIrf,sf)) —05)-2 = s ©®)
is called T’s reputation rating by X . For simplicity and compactness of notation we will sometimes write
Rep7 instead of Rep(rs, s ).

The reputation rating can be interpreted as measure of reputation, or in other words as an indication
of how a particular agent is expected to behave in future transactions. The parameter »~ represents the
amount of feedback about 7" supporting good reputation, and the parameters s* represents the amount
of feedback about T" supporting bad reputation.

2.4 Combining Feedback

Reputation systems must be able to combine feedback from multiple sources. In the beta reputation
system this can be done by simply accumulating all the received r and s parameters from the feedback
providers. Assume two agents X and Y giving feedback about the same target T. Target Ts reputation
functlons by X and by Y can then be expressed as ¢(p | 2%, s2 ) and p(p | r¥., s¥.) respectively, or as @2
and ¥, in the short notation. By combining their feedback, X and Y can create an updated reputation
function for 7. The following definition captures this idea.

Definition 3 (Combining Feedback)
Let p(p|r7,s2) and p(p| ¥, sX.) be two different reputation functions on T resulting from X and Y’s
feedback respectively. The reputation function ¢ (p |7, s7" ) defined by:

XY X Y
1. T}Y_TT + rr 7
2. sy = sy + sy

is then called 7"s combined reputation function by X and Y. By using the symbol “ &’ to designate this

operator, we get o(p|r " sj)f YY) = olp|r¥,sX) @ @(p|r¥, s¥). In the short notation this can be

written as: " = ¥ @ o¥ .

It is easy to prove that & is both commutative and associative which means that the order in which
reputation functions are combined has no importance. Independence between reputation functions must
be assumed, which for example translates into not allowing the same reputation function to be counted
more than once.
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2.5 Discounting

Intuitively, feedback from highly reputed agents should carry more weight than feedback from agents
with low reputation rating. This can be taken into account by discounting the feedback as a function of
the reputation of the agent who provided the feedback. This type of discounting has been described in
the context of belief theory by Shafer 1976 [12] and by Jgsang [6].

Josang’s belief model uses a metric called opinion to describe beliefs about the truth of statements.
An opinion is a tuple w2 = (b,d,u), where the parameters b, d and u represent belief, disbelief and
uncertainty parameters respectively. These parameters satisfy b + d + u = 1 where b, d,u € [0, 1]. This
is a sub-additive probability model where the probability of truth (b) and the probability of falsehood (d)
not necessarily add up to 1. The b parameter can thus be interpreted as the probability that proposition
z is true. The d parameter can be interpreted as the probability that z is false. Finally, the u parameter
represents the probability mass that is unaccounted for; in effect, by assigning probability mass to u the
subject proclaims his inability to assess the probability value of z. The advantage of sub-additivity is
that it is possible to express degrees of uncertainty regarding the probability of a particular event. The
following definition is taken from Jagsang [6].

Definition 4 (Belief Discounting)

Let X and Y be two agents where wst = (b, ds%,usr) is X s opinion about Y’s advice, and let 7' be
the target agent where w¥ = (b¥.,d¥%,u¥) is Y’s opinion about T expressed in an advice to X. Let
wgY = (bEY dfY uXY) be the opinion such that:

1B = B
2. dp =bydy, (8)
3. uwfY =df +uf + bful,

then wY is called the discounting of w¥ by ws* expressing X’s opinion about 7' as a result of Y’s
advice to X . By using the symbol ‘ ®’ to designate this operator, we can write w2 Y = wy ® wy.

The opinion metric can be interpreted equivalently to the beta function, and Jgsang [6] provides a
mapping between the two representations defined by:

b= T
T or4s+20
— s

d= 7"—1—%—1—2 ? (9)
= TFst2 -

By using Eq.(9) to insert the expressions for (b, d, ) in Eq.(8), we obtain the following definition of
the discounting operator for reputation functions.

Definition 5 (Reputation Discounting)
Let X, Y and T be three agents where o(p | 755, s5 ) is Y’s reputation function by X, and ¢(p | r¥., s¥.)
is T’s reputation by Y. Let p(p | r2°Y, s2:Y) be the reputation function such that:

1 ’I"X:Y _ 27"57"%
T (53 4+2)(r¥% +s¥+2)+2rF
(10)
Xy _ 2755;

2. 577 = Eelest i ek

then it is called T"’s discounted reputation function by X through Y. By using the symbol * ®’ to desig-
nate this operator, we can write p(p | Y, s£Y) = (p| ¥, s% ) @ w(p | r¥, s¥.). In the short notation
this can be written as: ¢7*Y = ¥ ® ¥
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It is easy to prove that ® is associative but not commutative. This means that in case of a chain
of reputation functions, the computation can start in either end of the chain, but that the order of the
reputation functions is significant. In a chain including more than two reputation function, independence
must be assumed, which for example translates into not allowing the same reputation function to appear
more than once.

2.6 Forgetting

Old feedback may not always be relevant for the actual reputation rating, because the agent may change
its behaviour over time. What is needed is a model in which old feedback is given less weight than
more recent feedback. This translates into gradually forgetting old feedback. This can be achieved by
introducing a forgetting factor which can be adjusted according to the expected rapidity of change in the
observed entity. We will use a forgetting scheme first described by Jgsang [4].

Assume a collection of agents who have provided a sequence @ containing n feedback tuples (r%i, s%i)
indexed by 4 about target T'. The combined feedback from all feedback tuples in @ can be expressed as:

n
chg = Zr%i and s% = Zs%i . (11)
The forgetting factor can now be introduce so that:

e, = zmw D and 52, = Zsm A=) where 0 < A < 1. (12)
=1

It can be observed that having A = 1 is equivalent to not having a forgetting factor, i.e. that nothing
is forgotten. The other extreme is when A = 0 resulting in only the last feedback value to be counted
and all others to be completely forgotten. It is important to observe that the order in which feedback was

received plays a key role.
One disadvantage of Eq.(12) is that all feedback tuples in the sequence @ must be kept forever. This
can be avoided by deriving a recursive algorithm for computing the (r, s) parameters. We define the

recursive parameters (r, (A), 32(;)) so that:

rg = r20 I+, and 570 = P4 VA+ s, where0 < A < 1. (13)
The (TT,)\’ST,)\) parameters resulting from the sequence @ containing n feedback values, with a
forgetting factor A can then be expressed as:

gy =ree) and 59, =520 where0 < A < 1. (14)

2.7 Providing and Collecting Feedback

After each transaction, a single agent can provide both positive and negative feedback simultaneously,
in the form of the parameters » > 0 and s > 0 respectively. The purpose of providing feedback as a
pair (r, s) is to reflect the idea that an agent’s performance in a transaction for example can be partly
satisfactory. This could be expressed through a feedback with r, s = 0.5 which carries the weight of 1,
whereas a feedback with r, s = 0 is weight-less, and would be as if no feedback was provided at all. In
general the sum r + s can be interpreted as the weight of the feedback. The feedback can thus carry an
arbitrary high weight by making the sum r + s arbitrary high, and carries the minimum weight when
r + s = 0, where the latter case is equivalent to not providing any feedback at all.
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As an alternative to providing feedback as a pair (r, s), it is possible to define a normalisation weight
denoted by w so that the sum of the (r, s) parameters satisfy r 4+ s = w. The normalisation will allow the
feedback to be provided as a single value. Similarly to the reputation rating, the single value feedback
can be defined on any range such as e.g. [—100,+100] or [—1,+1]. In the following the single value
feedback value will be defined by v, such that v € [—1,+1]. The (r,s) pair can then be derived as a
function of w and v according to:

r=w(l+wv)/2 and s=w(l—-v)/2. (15)

The purpose of using v instead of (r, s) is to make it easy for people to provide feedback. The idea
is that most people are familiar with a single valued rating, whereas being required to provide feedback
as a pair (r, s) could be confusing for many.

The normalisation weight w can be used to let the feedback weight be determined by the the value of
the transaction, so that feedback for high value transactions would carry more weight, i.e. the feedback
would translate into high (r, s) values. The purpose of this can for example be to make a reputation
rating immune against being overly influenced by feedback from transactions with negligible value.

It is assumed that feedback is received and stored by a feedback collection centre which can be
denoted by C. In case discounting is excluded, the resulting reputation functions can be considered
to originate from the centre itself, and the reputation function of target 7" can then be denoted by ¢ ¢,
although the feedback in reality came from other agents. In case discounting is taken into consideration,
the reputation function of target 7' can be denoted by wg:Q where @ denotes the body of collected
feedback about T'. The expression ¢¥:Q should be interpreted as 7"s reputation function by C derived
from feedback values in @ which all have been discounted by the reputation of the feedback providers.

Figure 2 below shows a typical reputation framework, where it is assumed that all agents, denoted
by X and Y in this example, are authenticated, and that no agent can change identity.

Past transactions

Potential future transaction

(0

....... Feedback ™, $ Reputation ..
...... A Rep$:_: ratings . Repg
X' S
W a4
C

Feedback Collection and
Reputation Rating Centre

Figure 2: Framework for collecting feedback and providing reputation ratings

After a transaction is completed, the agents provide feedback about each others performance during
the transaction. In the figure it can be seen that X provides feedback about Y and that Y provides
feedback about X. The reputation centre collects feedback from all the agents. The centre discounts
received feedback as a function of the feedback providing agent’s reputation, before updating the target
agent’s reputation function and rating. Updated reputation ratings are provided online for all the agents
to see, and is used by the agents to decide whether or not to transact with a particular agent. In the figure
it can be seen that X and Y fetch each others reputation rating.
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3 Performance of the Beta Reputation System

This section provides some examples to illustrate how the various building blocs described above influ-
ences the reputation rating. Feedback will be provided as a single value v instead of as a pair (r, s).

3.1 ExampleA: Varying Weight

This example shows how the reputation rating evolves as a function of accumulated positive feedback
with varying weight w. Let the centre C' receive a sequence @ of n identical feedback values v = 1 about
target 7. Discounting and forgetting are not considered. By using Egs.(6), (7), and (15), T’s reputation
parameters and rating can be expressed as a function of n. and w according to:

c
T = nw C _
{ S§ =0 RePT = 72 (16)

Figure 3 below shows the reputation rating as a function of n for w = 0.0, w = 0.1, w = 0.2,
w=0.6and w = 1.0.
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Figure 3: Reputation rating as a function of n with varying weight w.

It can be seen that the rating quickly approaches 1 when the w = 1 whereas when w = 0 the start
rating Rep = 0 remains unchanged and is thus not influenced by the feedback at all.

3.2 ExampleB: Varying Feedback

This example shows how the reputation rating evolves as a function of accumulated feedback with fixed
weight w = 1 and varying feedback value v. Let the agent T" get a sequence () of n identical feedback
values v. Discounting and forgetting are not considered. By using Egs.(6), (7), and (15), Ts reputation
parameters and rating can be expressed as a function of n. and v according to:
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rp = n(12+'u)
Repr = 15 (17
_ n(l-v)
ST = 5
Figure 4 below shows the reputation rating as a function of n for v = 1.0, v = 0.5, v = 0.0,

v=—0.5,v=—1.0.
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Figure 4: Reputation rating as a function of n with varying feedback v.

It can be seen that the rating quickly becomes relatively stable when the feedback value is fixed. For
v = 1 the rating approaches 1, and for v = —1 the rating approaches -1.

3.3 Example C: Varying Discounting

This example shows how the reputation rating evolves as a function of accumulated feedback with fixed
weight w and varying discounting. Let w = 1 and let centre C' receive a sequence @ of n identical feed-
back values v = 1 about target 7. This time discounting is included. Each feedback tuple (r, s%) € Q
(with fixed value (1,0)) is thus discounted as a function of the feedback provider X’s reputation function
defined by (r$,s$). Forgetting is not considered. By using Egs.(6), (7), (10), and (15) , T”’s reputation
parameters and rating can be expressed as a function of n and (r$, s$) according to:

qu;Q _ chr)C( -
3(s§+2)+2r§ RepC:Q _ nr¢ (18)
T nr§+2'r)c(+3s§+6
c:Q _
St =0

Figure 5 below shows the reputation rating as a function of n for (r§ = 1000,s5§ = 0), (r§
5,s¢=0),(r{ =3, =0), (r{ =3,s§ =3),and (r§{ = 0,55 = 0).

10
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Figure 5: Reputation rating as a function of n with varying discounting rate.

It can be seen that the reputation function discounted by (r§ = 1000, s§ = 0) is practically equiva-
lent to no discounting at all because the curve is indistinguishable from the uppermost curve in Figure 3
and Figure 4. As X’s reputation function gets “weaker” T"s rating is less influenced by the feedback
from X, and when discounted by (rgg =0, 39( = 0), X’s start rating Rep = 0 remains unchanged and is
thus not influenced by the feedback at all.

3.4 ExampleD: Varying Forgetting Factor

This example shows how the reputation rating evolves as a function of accumulated feedback with fixed
weight w and varying forgetting factor A. Let w = 1 and let centre C receive a sequence @ of n identical
feedback values v = 1 about target 7". Discounting is not considered. By using Egs.(6), (7), (12), (15)
and the fact that =% o A = (1 — A"*1/(1 — X) when X < 1, T’s reputation parameters and rating can
be expressed as a function of » and A according to:

rC . — 1A
TA = T-X c L
. Repr = so;xw  When A #1
ST,A = 0
(19)
—_n —
Repr\ = 743 when A =1
sy =
T\

Figure 6 below shows the reputation rating as a function of n for A = 1.0, A = 0.9, A = 0.7, A = 0.5,
and A = 0.0.

It can be seen that the value of X\ determines the maximum reputation rate that an agent can get.
With A = 1, nothing is forgotten, and the maximum rate is 1. With A = 0 only the last feedback is
remembered, and the maximum reputation rate is 1/3.

11
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Figure 6: Reputation rating as a function of n with varying forgetting factor .

3.5 ExampleE: Varying Feedback and Varying Forgetting Factor

This example shows how the reputation rating evolves as a function of accumulated feedback with fixed
weight w = 1. Discounting is not considered. Let there be a sequence @ of 50 feedback inputs about T,
where the first 25 have value sz = +1, and the subsequent 25 inputs have value u?z —1. By using
Eqgs.(6), (7), (12), and (15), T’s reputation parameters and rating can be expressed as a function of n, v
and A according to:
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s, =130, (1 —vE) A

In this particular example, Eq.(20) can be expressed in a more explicit form according to:

i = 117)‘:
’ - c _ 1—)\" n e [0, 25]
Repy\ = 5755w when { A£1
s$, =0
T\
cC _ 1- A25 (n—25)
TEA = Tox A
’ (n—=25) _yn_1 n e [26,50]
Rep$ , = 221 \yhen
C _ 1=An=29) O A# 1
STA = T1=a

(20)

(21)



The Beta Reputation System

’ n n € 0,25
Repfy = ;%5  when { \ _[1 ]
s$, =0 N
T
(22)
C
hy -ty v | 15
sy =n—25 N

Figure 7 below shows the reputation rating as a function of @ and n for A = 1.0, A = 0.9, A = 0.7,
A =0.5,and A = 0.0.
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Figure 7: Reputation rating as a function of n with varying feedback v and forgetting factor A.

It can be seen that the curves are identical to those on Figure 6 for n < 25 where v = 1. Forn > 25
where v = —1, the reputation rating drops quickly. Two phenomena can be observed when the forgetting
factor is low (i.e. when feedback is quickly forgotten); Firstly the reputation rating reaches a stable value
more quickly, and secondly the less extreme the stable reputation rating becomes.

4 Conclusion

We have presented the beta reputation system as a set of building blocks which makes it flexible and
relatively simple to implement in practical applications. We have not tried to address the problem of
immunity against agents changing identities other than assuming that some authentications mechanism
is in place. We have also assumed a centralised approach, although it is possible to adapt the beta
reputation system in order to become decentralised. In contrast to most other reputation systems that
have been implemented or proposed, the beta reputation system has a sound theoretical basis in statistics,
which together with its flexibility and simplicity makes it suitable for supporting electronic contracts and
for building trust between players in e-commerce.
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