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Abstract

Abductive reasoning in general de-
scribes the process of discovering hy-
potheses and rules that would entail a
given conclusion. Abductive reason-
ing consists of assessing the likelihood
that a specific hypothesis entails a given
conclusion. Abductive reasoning based
on probabilities is used in many dis-
ciplines, such as medical diagnostics,
where medical test results combined
with conditional probabilities are used
to determine the likelihood of possible
diseases. In this paper we focus on ab-
ductive reasoning in subjective logic.
The advantage of our approach over a
purely probabilistic approach is that de-
grees of ignorance can be explicitly in-
cluded as input and during the analysis.
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1 Introduction

Abductive reasoning is a general approach to find-
ing the hypotheses that would best explain the
given evidence. Discovering or generating rele-
vant hypothesis in general is a hard task which can
require considerable computational effort when
searching over a large space of information [1].
We focus on simple abductive reasoning in the
sense that one or several proposed hypotheses are
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given, and these are simply analysed for their like-
lihood given the evidence. For example, sim-
ple probabilistic abduction consists of determin-
ing the probability of the hypothesis given the ev-
idence as well as a set of conditionals between the
hypothesis and the evidence.

Deductive reasoning, which is related to abduc-
tive reasoning, consists of deriving conclusions
from the given evidence. In that sense, abduction
can be described as the inverse of deduction.

Both abductive and deductive reasoning require
conditionals. Conditional probabilities relate to
conditional propositions which typically are of
the form “If we reduce the CO2 emission, global
warming will be halted”, which are of the form
“IF x THEN y”, where x denotes the antecedent
and y the consequent. An equivalent way of ex-
pressing conditionals is through the concept of
implication, so that the above proposition can be
expressed as “Reducing the CO2 emission im-
plies that global warming is halted”.

When making assertions of conditionals with an-
tecedent and consequent, which can be evaluated
as TRUE or FALSE propositions, we are in fact
evaluating a proposition which can itself be con-
sidered TRUE or FALSE.

The idea of having a conditional connection be-
tween an antecedent and a consequent can be
traced back to Ramsey [10] who articulated what
has become known as Ramsey’s Test: To decide
whether you believe a conditional, provisionally
or hypothetically add the antecedent to your stock
of beliefs, and consider whether to believe the
consequent. This idea was translated into a formal
language by Stalnaker [11] in the form of the so-



called Stalnaker’s Hypothesis, formally expressed
as: p(IF x THEN y) = p(y|x). The interpretation
of Stalnaker’s Hypothesis is that the probability
of the conditional proposition “IF x THEN y” is
equal to the probability of the proposition y given
that the proposition x is TRUE.

However, Lewis [8] argued that conditional
propositions do not have truth-values and that
they do not express propositions. This means that
given any propositions x and y, there is no propo-
sition z for which p(z) = p(y|x), so the condi-
tional probability can not be the same as the prob-
ability of conditionals. Without going into de-
tail we support Stalnaker’s Hypothesis, and would
argue against Lewis by simply saying that it is
meaningful to assign a probability to a conditional
proposition like “y|x”, which is defined in case x
is true, and undefined in case x is false.

A meaningful conditional abduction requires that
the antecedent is relevant to the consequent, or in
other words that the consequent depends on the
antecedent, as explicitly expressed in relevance
logics [3]. Conditionals that are based on the de-
pendence between consequent and antecedent are
considered to be universally valid, and are called
logical conditionals [2]. Deduction with logical
conditionals reflect human intuitive conditional
reasoning.

Both binary logic and probability calculus have
mechanisms for conditional reasoning. In binary
logic, Modus Ponens (MP) and Modus Tollens
(MT) are the classical operators which are used in
any field of logic that requires conditional deduc-
tion. In probability calculus, binomial conditional
deduction is expressed as:

p(y‖x) = p(x)p(y|x) + p(x)p(y|x) (1)

where the terms are interpreted as follows:

p(y|x) : probability of y given x is TRUE
p(y|x) : probability of y given x is FALSE
p(x) : probability of the antecedent x
p(x) : complement probability = 1− p(x)
p(y‖x) : derived probability of consequent y

We follow the convention whereby condi-
tional relationship are denoted on the form
“consequent | antecedent”, i.e. with the conse-
quent first and the antecedent second.

The notation y‖x, introduced in [7], denotes that
the truth or probability of proposition y is derived
as a function of the probability of the antecedent
x together with the conditionals. The expression
p(y‖x) thus represents a derived value, whereas
the expressions p(y|x) and p(y|x) represent input
values together with p(x). Below, this notational
convention will also be used for opinions in sub-
jective logic.

This paper describes how the same principles
for conditional inference outlined above can be
formulated in the framework of subjective logic
when applied to binomial opinions. The advan-
tage of this approach is to allow conditional infer-
ence to take place in the presence of uncertainty
and partial ignorance. This will also allow the an-
alyst to appreciate the relative proportions of firm
evidence and uncertainty as contributing factors
to the derived probabilistic likelihoods.

A more general description of both abduction and
deduction for multinomial opinions is provided in
[5]. Binomial opinions represent a special case of
general multinomial opinions.

2 Probabilistic Conditional Reasoning

In this section, classical results from probabilistic
abduction are briefly reviewed in order to provide
a benchmark for abduction with subjective logic,
described in Sec.3.

2.1 Binomial Conditional Reasoning

Abduction is used extensively in areas where con-
clusions need to be derived from probabilistic in-
put evidence, such as for making diagnoses from
medical tests. For example, a pharmaceutical
company that develops a test for a particular in-
fection disease will typically determine the reli-
ability of the test by letting a group of infected
and a group of non-infected people undergo the
test. The result of these trials will then determine
the reliability of the test in terms of its sensitiv-
ity and false positive rate. This can be expressed
in terms of the binomial conditionals p(x|y) and
p(x|y), where x: “Positive Test”, y: “Infected”
and y: “Not infected”. Their interpretations can
be expressed as follows:



• p(x|y): “The probability of positive test
given infection”

• p(y|x): “The probability of positive test in
the absence of infection”.

In other words p(x|y) expresses the rate of true
positives, and p(x|y) expresses the rate of false
positives of the test. The problem with applying
this in a practical setting is that the conditionals
are expressed in the opposite direction to what the
practitioner needs in order to apply the expression
of Eq.(1). The conditionals needed for making the
diagnosis are:

• p(y|x): “The probability of infection given
positive test”

• p(y|x): “The probability of infection given
negative test”

but these are usually not directly available to the
medical practitioner.

The base rate fallacy in medicine consists of
making the erroneous conclusion that if the pa-
tient tests positive (i.e. p(x) = 1), the proba-
bility of having the disease is p(x|y), which is
equivalent to making the false assumption that
p(y|x) = p(x|y). While this reasoning error of-
ten can give a relatively good approximation of
the correct probability value, it can lead to a com-
pletely wrong result and wrong diagnosis in case
the base rate of the disease in the population is
very low and the reliability of the test is not per-
fect.

The required conditionals can be derived by in-
verting the available conditionals using Bayes
rule. The inverted conditionals are obtained as
follows:
⎧
⎪⎨

⎪⎩

p(x|y) = p(x∧y)
p(y)

p(y|x) = p(x∧y)
p(x)

⇒ p(y|x) = p(y)p(x|y)
p(x)

.

(2)
Here p(y) represents the base rate of the disease
in the population, and p(x) represents the the ex-
pected rate of positive tests as a function of the
base rate of the disease in the population, which
can be computed with Eq.(1) where x and y are
swapped in every term. The notation a(x) and

a(y) will be used to denote the base rate of x
and y respectively. The full expression for the re-
quired positive conditional is then:

p(y|x) = a(y)p(x|y)
a(y)p(x|y) + a(y)p(x|y) (3)

A medical test result is typically positive or neg-
ative, so it can be assumed that either p(x) = 1
(positive) or p(x) = 1 (negative). In case the pa-
tient tests positive, Eq.(1) can be simplified to
p(y‖x) = p(y|x) so that Eq.(3) will give the cor-
rect likelihood that her or she actually has con-
tracted the disease.

2.2 Example 1: Probabilistic Medical
Reasoning

Let the sensitivity of a medical test be expressed
as p(x|y) = 0.9999 (i.e. an infected person
will test positive in 99.99% of the cases) and
the false positive rate be p(x|y) = 0.001 (i.e.
a non-infected person will test positive in 0.1%
of the cases). Let the base rate of infection in
population A be 1% (expressed as a(yA)=0.01)
and let the base rate of infection in population
B be 0.01% (expressed as a(yB)=0.0001). As-
sume that a person from population A tests pos-
itive, then Eq.(1) and Eq.(3) lead to the conclu-
sion that p(yA‖x) = p(yA|x) = 0.9099 which
indicates a 91% likelihood that the person is in-
fected. Assume that a person from population
B tests positive, then Eq.(1) and Eq.(3) produces
p(yB‖x) = p(yB|x) = 0.0909 which indicates
only a 9% likelihood that the person is infected.

By using the correct method in this example, the
base rate fallacy is avoided.

2.3 Binomial Probabilistic Abduction

In the general case where the the truth of the an-
tecedent is expressed as a probability, and not
just binary TRUE and FALSE, the negative con-
ditional is also needed as specified in Eq.(1). In
case the negative conditional is not directly avail-
able, it can be derived according to Eq.(3) where
x is replaced with x in every term. This produces:

p(y|x) = a(y)p(x|y)
a(y)p(x|y)+a(y)p(x|y)

= a(y)(1−p(x|y))
a(y)(1−p(x|y))+a(y)(1−p(x|y))

(4)



Eq.(3) and Eq.(4) make it possible to perform
conditional reasoning when the required condi-
tionals are expressed in the reverse direction to
what is needed by the analyst.

We will use the term “parent state” and “child
state” to denote the reasoning direction, meaning
that the parent is what the analyst has evidence
about, and the child is what the analyst wants
to derive an opinion about. Defining parent and
child is thus equivalent with defining the reason-
ing direction.

Forward conditional inference, called deduction,
is when the parent and child states of the reason-
ing are the antecedent and consequent states re-
spectively of the available conditionals.

Reverse conditional inference, called abduction,
is when the parent state of the reasoning is the
consequent of the conditionals, and the child state
of the reasoning is the antecedent state of the con-
ditionals.

The deductive reasoning principle is illustrated in
Fig.1 where x denotes the parent state and y de-
notes the child state of the reasoning. Condition-
als are expressed as p(consequent |antecedent),
i.e. with the consequent first, and the antecedent
last.

Figure 1: Deduction principle

The abductive reasoning principle is illustrated in
Fig.2. It can be seen that the order of the proposi-
tions in the conditionals is inverted in comparison
to deduction.

The concepts of “causal” and “derivative” rea-
soning are related to deductive and abductive rea-
soning. By assuming that the conditionals express
a causal relationship between the antecedent and
the consequent (i.e. that the antecedent actually
causes the consequent) then causal reasoning is
equivalent to deductive reasoning, and derivative
reasoning is equivalent to abductive reasoning.

Figure 2: Abduction principle

In medical reasoning for example, the infec-
tion causes the test to be positive, not the other
way. The reliability of medical tests is expressed
as causal conditionals, whereas the practitioner
needs to apply the inverted derivative condition-
als. Starting from a positive test to conclude that
the patient is infected therefore represents deriva-
tive reasoning. People usually find causal rea-
soning more natural, and therefore have a ten-
dency to reason in a causal manner even in sit-
uations where derivative reasoning is required. In
other words, derivative situations are often con-
fused with causal situations, which provides an
explanation for the base rate fallacy in medical
diagnostics.

3 Abduction in Subjective Logic

Subjective logic, which will be described here,
takes both the uncertainty and individuality of
beliefs into account while still being compatible
with standard logic and probability calculus. This
is achieved by adding an uncertainty dimension
to the single valued probability measure, and by
taking the individuality of beliefs into account.

3.1 Subjective Logic Fundamentals

Subjective logic [4] is a probabilistic logic that
takes opinions as input. An opinion denoted by
ωA
x = (b, d, u, a) expresses the relying party A’s

belief in the truth of statement x. Here b, d, and u
represent belief, disbelief and uncertainty respec-
tively, where b, d, u ∈ [0, 1] and b + d + u = 1.
The parameter a ∈ [0, 1] is called the base rate,
and is used for computing an opinion’s probabil-
ity expectation value that can be determined as
E(ωA

x ) = b + au. In the absence of any specific
evidence about a given party, the base rate deter-
mines the a priori trust that would be put in any



member of the community.

The opinion space can be mapped into the interior
of an equal-sided triangle, where, for an opinion
ωx = (bx, dx, ux, ax), the three parameters bx, dx
and ux determine the position of the point in the
triangle representing the opinion. Fig.3 illustrates
an example where the opinion about a proposition
x from a binary state space has the value ωx =
(0.7, 0.1, 0.2, 0.5).

a

ω  = (0.7, 0.1, 0.2, 0.5)x

x

xω

xE(  )

0.5 00

1

0.5 0.5

Disbelief1 Belief10
0 1

Uncertainty

Probability axis

Example opinion:

Projector

Figure 3: Opinion triangle with example opinion

The top vertex of the triangle represents uncer-
tainty, the bottom left vertex represents disbelief,
and the bottom right vertex represents belief. The
parameter bx takes value 0 on the left side edge
and takes value 1 at the right side belief vertex.
The parameter dx takes value 0 on the right side
edge and takes value 1 at the left side disbelief
vertex. The parameter ux takes value 0 on the
base edge and takes value 1 at the top uncertainty
vertex. The base of the triangle is called the prob-
ability axis. The base rate is indicated by a point
on the probability axis, and the projector starting
from the opinion point is parallel to the line that
joins the uncertainty vertex and the base rate point
on the probability axis. The point at which the
projector meets the probability axis determines
the expectation value of the opinion, i.e. it coin-
cides with the point corresponding to expectation
value E(ωA

x ).

3.2 Abduction in Subjective Logic

Abduction is related to deduction. The algebraic
expression for conditional deducting in subjective
logic is relatively long and is therefore omitted

here. However, it is relatively simple and can be
computed extremely efficiently. A full presenta-
tion of the expressions for conditional deduction
in subjective logic is given in [7]. Only the nota-
tion is provided here.

Let ωx, ωy|x and ωy|x be an agent’s respective
opinions about x being true, about y being true
given that x is true, and about y being true given
that x is false. Then the opinion ωy‖x is the condi-
tionally derived opinion, expressing the belief in
y being true as a function of the beliefs in x and
the two sub-conditionals y|x and y|x. The con-
ditional deduction operator is a ternary operator,
and by using the function symbol ‘�’ to designate
this operator, we write:

ωy‖x = ωx � (ωy|x, ωy|x) . (5)

Abduction requires the conditionals to be in-
verted. Let x be the parent node, and let y be
the child node. In this situation, the input con-
ditional opinions are ωx|y and ωx|y. That means
that the original conditionals are expressed in the
opposite direction to what is needed.

The inverted conditional opinions, can be de-
rived from knowledge of the supplied condition-
als, ωx|y and ωx|y, and knowledge of the base rate
of the child, ay.

Definition 1 (Abduction) Given knowledge of
the base rate ay of the child state where ωvac

y is
a vacuous subjective opinion about the base rate
of the hypothesis, defined as

ωvac
y = (by, dy, uy, ay)

⎧
⎪⎪⎨

⎪⎪⎩

by = 0
dy = 0
uy = 1
ay = base rate of y

(6)
and given the logical conditionals ωx|y, ωx|y,
then the inverted conditionals ωy|x, ωy|x can be
derived using the following formula

ωy|x =
ωvac
y ·ωx|y

ωvac
y �(ωx|y,ωx|y)

ωy|x =
ωvac
y ·¬ ωx|y

ωvac
y �(¬ ωx|y,¬ ωx|y)

(7)



Figure 4: Likelihood of man made CO2 emission with IPCC’s conditionals

The abduction operator, �, is written as ω
y‖x =

ωx�
(
ωx|y, ωx|y, ay

)
. Details on the multiplica-

tion and division operators can be found in [6].

The advantage of subjective logic over probability
calculus and binary logic is its ability to explicitly
express and take advantage of ignorance and be-
lief ownership. Subjective logic can be applied
to all situations where probability calculus can be
applied, and to many situations where probability
calculus fails precisely because it can not capture
degrees of ignorance. Subjective opinions can be
interpreted as probability density functions, mak-
ing subjective logic a simple and efficient calcu-
lus for probability density functions. An online
demonstration of subjective logic can be accessed
at: http://folk.uio.no/josang/sl/.

4 Example

Let us assume that the conditional relevance
between CO2 emission and global warming is
known. Let x:“Global warming” and y:“Man
made CO2 emission”. The hypothetical ques-
tion we will ask is whether it could be concluded
that man made CO2 emission is occurring sim-
ply based on observing global warming. This is
easier to imagine by considering an alien civili-
sation that observe the temperature of the earth
from millions of kilometers distance without ac-
tually observing the industrialised CO2 emission
taking place.

4.1 IPCC’s View

There have been approximately equally many pe-
riods of global warming as global cooling over
the history of the earth, so the base rate of global
warming is set to 0.5. According to the IPCC (In-
ternational Panel on Climate Change) [9] the rel-
evance between CO2 emission and global warm-
ing is expressed as:

ωIPCC
x|y = (1.0, 0.0, 0.0, 0.5) (8)

ωIPCC
x|y = (0.8, 0.0, 0.2, 0.5) (9)

(10)

Similarly, over the history of the earth, man made
CO2 emission has occurred very rarely, meaning
that ay = 0.1 for example.

Let us further assume the evidence of global
warming, i.e. that an increase in temperature can
be observed, expressed as:

ωx = (0.9, 0.0, 0.1, 0.5) (11)

Having received the IPCC’s view, the alien civil-
isation will conclude that there is man made
CO2 emission with the likelihood ωIPCC

y‖x =

(0.62, 0.00, 0.38, 0.10), as illustrated in Fig.4.

According to IPCC’s view, it can be concluded
that man made CO2 emission is very likely dur-
ing periods of global warming on earth. This is
obviously a questionable conclusion since all but
one period of global warming during the history



Figure 5: Likelihood of man made CO2 emission with the sceptic’s conditionals

of the earth has taken place without man made
CO2 emission.

4.2 The Sceptic’s View

Martin Duke is a journalist who produced the
BBC documentary “The Great Global Warming
Swindle” and who is highly sceptical about IPCC.
Let us take sceptic Martin Dukin’s view that we
don’t know anything about whether a reduction
in man made CO2 emission would have had an
effect on global warming expressed as:

ωSceptic
x|y = (1.0, 0.0, 0.0, 0.5) (12)

ωSceptic
x|y = (0.0, 0.0, 1.0, 0.5) (13)

(14)

Having received the sceptic’s view, the alien civil-
isation will conclude that there is man made
CO2 emission with the likelihood ωSceptic

y‖x =

(0.08, 0.01, 0.91, 0.10), as illustrated in Fig.5.

According to the sceptic’s view, the likelihood of
man made CO2 emission is both low and very un-
certain during periods of global warming on earth.
This conclusion seems more reasonable in light of
the history of the earth.

5 Conclusion

Subjective logic is a belief calculus which takes
into account the fact that perceptions about the
world always are subjective. This translates into

using a belief model that can express degrees of
uncertainty about probability estimates, and we
use the term opinion to denote such subjective be-
liefs. In addition, ownership of opinions is as-
signed to particular agents in order to reflect the
fact that opinions always are individual. The op-
erators of subjective logic use opinions about the
truth of propositions as input parameters, and pro-
duce an opinion about the truth of a proposition as
output parameter.

We have shown that the principle of abduction
from probability calculus can be extended to sub-
jective logic. This allows advanced types of con-
ditional reasoning to be performed in presence of
uncertainty and incomplete information.

This paper focuses on the abduction operator for
binomial opinions. It should be noted that ab-
duction can be extended to multinomial opinions.
Visualisation is particularly simple with binomial
opinions and is almost impossible with multino-
mial opinions. This paper therefore serves to il-
lustrate the principle of abduction in subjective
logic. Multinomial abduction is very general and
can be applied to parent and child state spaces of
any cardinality.
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