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Abstract — Opinion fusion in subjective logic consists of
combining separate observers’ opinions about the same
frame of discernment. The principle of fission is the op-
posite of fusion, namely to split an opinion into two sepa-
rate opinions which when fused would produce the original
opinion. Different fusion methods can be applied, depend-
ing on the situation to be modelled. The cumulative fusion
operator and the averaging fusion operator are defined for
subjective opinions, and for belief functions in general. This
paper describes fission of opinions which is the opposite of
cumulative fusion. The fission operator can for example be
applied to transforming trust networks with dependent trust
paths into trust networks in canonical form where all trust
paths are independent.

Keywords: Fusion, fission, unfusion, subjective logic, be-
lief, opinion, uncertainty, trust.

1 Introduction

Belief fusion is a term used to denote various methods
of combining beliefs on the same frame of discernment, or
framefor short®, whereit is assumed that the separate beliefs
originate from different sources. Belief fission can be seen
as the opposite of fusion. While fusion is used to merge
beliefs, fission is used to split beliefs.

The two types of fusion defined for subjective logic are
cumulative fusion and averaging fusion [5]. Situations that
can be modelled with the cumulative fusion operator are for
example when fusing beliefs of two observers who have as-
sessed separate and independent evidence about the same
frame, such as when they have observed the outcomes of a
given process over two separate non-overlapping time pe-
riods. Situations that can be modelled with the averaging
fusion operator are for example when fusing beliefs of two
observers who have assessed the same evidence and possi-
bly interpreted it differently.

Subjective logic is a form of probabilistic logic where
belief ownership and uncertainty about probability values
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are explicitly expressed. Subjective logic is therefore suit-
able for modeling and analysing situations involving uncer-
tainty and incomplete knowledge[1, 2]. For example, it can
be used for computational trust [9] and for modelling and
analysing Bayesian networks[6].

Arguments in subjective logic are subjective opinions
about propositions. The opinion space is related to the clas-
sical belief function space used in Dempster-Shafer belief
theory. The difference is that belief functions allow belief
mass to be assigned to arbitrary subsets of aframe, whereas
subjective opinions only allow belief massto be assigned to
singletons as well as to the whole frame. In addition, sub-
jective opinions include base rates of singletons, whereas
classica belief functionsdo not.

The operator most commonly used for belief fusion in
Dempster-Shafer belief theory is the so-called Dempster’s
rule, also known as the normalised conjunctive rule of com-
bination [12]. The equivalent of Dempster’s rule in subjec-
tive logic would be a normalised form of the multiplication
operator [10]. It is normally assumed that the arguments of
multiplication apply to separate frames and originate from
the same observer. However, when using multiplication as a
form of fusion as with Dempster’s rule the arguments must
apply to the same frame and originate from separate ob-
servers. We will not be concerned with multiplication here.
A large number of other belief fusion operators have been
defined for belief functions, see e.g. [13].

A binomial opinion applies to a single proposition, i.e.
to abinary frame consisting of a proposition and its comple-
ment, and can be represented as a Beta distribution over abi-
nary frame. A multinomial opinion appliesto aframe, i.e. a
set of propositions, and can berepresented asaDirichlet dis-
tribution over the frame. Multinomial opinions represent a
generalisation of binomial opinionsin the sameway that the
Dirichlet distribution represents a generalisation of the Beta
distribution. Through the correspondence between opinions
and Beta/Dirichlet distributions, subjectivelogic providesan
algebrafor the latter functions.

Assuming that an opinion can be considered as the ac-
tual or virtual result of fusion, there are situations where it



is useful to split it into two separate opinions, and this pro-
cessis caled opinion fission. This operator, which requires
an opinion and a fission parameter as input arguments, will
producetwo separate opinionsas output. Fission isbasically
the opposite operation to fusion. The mathematical formu-
lation of fission will be described in the following sections.

2 Fundamentals of Subjective Logic

Subjective opinions express subjective beliefs about the
truth of propositions with degrees of uncertainty, and can
indicate subjective belief ownership whenever required. A
multinomial opinion is usually denoted as w4 where A is
the subject, also called the belief owner, and X is the set
of proposition to which the opinion applies. An aternative
notation isw(A: X). Binomial opinions are denoted as w2
where the singleton proposition x is assumed to belong to
aframe e.g. denoted as X, but the frame is usually not in-
cluded in the notation for binomial opinions. The propo-
sitions of a frame are normally assumed to be exhaustive
and mutually digoint, and subjects are assumed to have a
common semantic interpretation of propositions. The sub-
ject owner, the proposition and its frame are attributes of an
opinion. Indication of subjective opinion ownership can be
omitted whenever irrelevant.

2.1 Binomial Opinions

Let z beaproposition. Entity A’sbinomial opinion about
the truth of a « is the ordered quadruple w? = (b,d,u, a)
with the components:

b:  belief in the proposition being true
d. disbelief in the proposition being true
(i.e. belief in the proposition being false)
u:  uncertainty about the probability of =
(i.e. the amount of uncommitted belief)
a. baserate of z, (i.e. a priori probability of x)
These components satisfy:

b, d, u, a €[0,1] @

and b+d+u=1 2
The characteristics of various binomial opinion classes
arelisted below. An opinion where:
b = 1: isequivalent to binary logic TRUE,
d = 1: isequivaent to binary logic FALSE,
b+ d = 1: isequivalent to the probability p(z) = b,
0 < (b+d) < 1: expresses levels of uncertainty, and
b+ d = 0: isvacuous (i.e. totally uncertain).
The probability expectation value of a binomial opinion
is
E(wz) =b+au . (3

The expression of Eq.(3) is equivalent to the pignistic prob-
ability defined in classical belief theory [14], and is based
on the principle that the belief mass assigned to the whole
frame is split equally among the singletons of the frame.

This interpretation reguires that the base rate ., is equa to
the proportion of singletons contained in x relative to the
frame X.

Binomia opinions can be represented on an equilateral
triangle as shown in Fig.1 below. A point inside the trian-
glerepresentsa (b, d, u) triple. Theb,d,u-axesrun from one
edgeto the opposite vertex indicated by the Belief, Disbelief
or Uncertainty labels. For example, a strong positive opin-
ion is represented by a point toward the bottom right Belief
vertex. The base rate a,, aso caled relative atomicity, is
shown as a point on the probability base line. The proba-
bility expectation value E(w,) is formed by projecting the
opinion onto the base, parallel to the base rate director line.
As an example, the opinion w, = (0.4, 0.1, 0.5, 0.6) is
shown on the figure.
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Figure 1: Opinion triangle with example opinion

Uncertainty about probability values can beinterpreted as
ignorance, or second order uncertainty about the first order
probabilities. In this paper, the term “uncertainty” will be
used in the sense of ““uncertainty about probability values”.
Subjective logic therefore represents a generalisation of tra-
ditional probabilistic logic.

2.2 Multinomial Opinions

Let X beaframe, i.e. aset of exhaustive and mutually
digoint propositions x;. Entity A’s multinomia opinion
over X is the composite function wg = (E,U,a), where
b is a vector of belief masses over the propositions of X,
is the uncertainty mass, and @ is a vector of base rate values
over the propositions of X. These components satisfy:

—

b(x;),u,d(z;) € [0,1], Va; € X 4
u+ Z b(z;) = 1 (5)

zr;€X
> () =1 (6)

r;€X

Visualising multinomial opinionsis not trivial. Trinomial
opinions can be visualised as pointsinside atriangular pyra-



mid as shown in Fig.2, but the 2D aspect of printed paper
and computer monitors makes visualisation of multinomial
opinionsimpractical in general.

by
Figure 2: Opinion pyramid with example trinomial opinion

Opinions with dimensions larger than trinomial do not
lend themselves to traditional visualisation.

2.3 Dirichlet Representation

A multinomial opinion over aframe X = {zi,...x}
of cardindity & can be represented as a Dirichlet distri-
bution over the k-component random probability variable
p(x;), i = 1...k with sample space [0, 1], subject to the
simple additivity requirement 3%, p(z;) = 1.

The Dirichlet distribution with prior captures evidence
about the k& possible states with & positive real evidence
parameters 7(z;), ¢ = 1...k, each corresponding to one
of the possible states. In order to have a compact nota-
tion we denote the vector p' = {p(z;) | 1 < i < k}
as the k-component probability variable, and the vector
7= {r; | 1 <i < k} asthe k-component evidencevariable.

In order to distinguish between the a priori base rate, and
the a posteriori evidence, the notation for the Dirichlet dis-
tribution must also include the prior information represented
as the base rate vector @ over the frame. the Dirichlet distri-
bution, denoted as Dir(p'| 7, @) is then expressed as:

Dir(p'| 7, @) =

D(X i, (Fla)+Waz:))) 1, pla;) F@)+Wal@)-1)

F D)t Walz:)) Lli=1
koo K
> p(xi) =1 St a(z) =1
=1 i=1
where and
pla;) > 0,Vi (i) > 0,Vi .
(7)
and where W denotes the so-called non-informative prior
weight.

It can be noted that Eq.(7) ssimply isageneralisation of the
Beta distribution. The multinomial probability expectation

values of the k& random probability variables are expressed
as:

B(z:) = B(p(a,) | 7, d@) = % _
i=1T\Ti

The non-informative prior weight W will normally be set
to W = 2 when a uniform distribution over a binary frame
isassumed. Selecting alarger valuefor W will result in new
observations having less influence over the Dirichlet distri-
bution, and canin fact represent specific a priori information
provided by a domain expert. It can be noted that it would
be unnatural to require a uniform distribution over arbitrary
large frames because it would make the sensitivity to new
evidence arbitrarily small.

The mapping between a subjective opinion and aDirichlet
PDF is described below.

©)

Theorem 1 Evidence Notation Equivalence

Let wxy = (Ex,ux,ax) be an opinion expressed in be-
lief notation, and w = (¥, @) be an opinion expressed in
evidence notation, both over the same frame X. Then the
following equivalence holds:

For ux #0
(x4 ) — WbX("“)
bee) = e 1T T
= k
Ux =w +Z?i1r(zi) l=ux +i;1 bx ()
€)
Forux = 0:
k
r(z;) = p(x; r(x;) = p(x;)o0
=4
ux :0

(10)

This theorem can be derived by assuming that corre-
sponding subjective opinionsand Dirichlet PDFs have equal
probability expectation values[8].

Inthe case where u x = 0 afew additional comments can
be made. If p(x;) = 1 for a particular proposition z;, then
r(z;) = oo and al the other evidence parameters are finite.
If p(z;) = 1/k foral i = 1...k, then all the evidence
parameters are al equally infinite. As already mentioned,
the prior non-informativeweight W isa constant that is nor-
mally setto W = 2.

3 Fusion of Multinomial Opinions

In many situations there will be multiple sources of ev-
idence, and fusion can be used to combine evidence from
different sources.

In order to provide an interpretation of fusion in subjec-
tivelogicitisuseful to consider aprocessthat is observed by
two sensors. A distinction can be made between two cases.



1. The two sensors observe the process during digoint
time periods. In this case the observations are indepen-
dent, and it is natural to simply add the observations
from the two sensors, and the resulting fusion is called
cumulative fusion.

2. The two sensors observe the process during the same
time period. In this case the observations are depen-
dent, and it is natural to take the average of the obser-
vations by the two sensors, and the resulting fusion is
called averaging fusion.

3.1 Cumulative Fusion

Assume aframe X containing k& elements. Then assume
two observers A and B who have independent opinions over
the frame X. This can for example result from having ob-
served the outcomes of a process over two separate time pe-
riods.

Let the two observers’ respective opinions be expressed
aSw}% = (634(7 u?(? 634() and W§ - (b)B}, u)B}, a)B})

The cumulative fusi on of these two bodies of evidenceis
denoted as w{°? = w{ & wf. The symbol “o” denotes
the merging of two observers A and B who hold indepen-
dent opinions about the frame X into asingleimaginary ob-
server denoted as A o B. The mathematical expressions for
cumulative fusion is described below.

Definition 1 The Cumulative Fusion Operator

Let w4 and w¥ be opinions respectively held by agents A
and B over the same frame X = {x; | i =1,---,k}. The
opinion w4°B = (p4°B u4°B G4°B) is the cumulatively
fused opinion of w4 and w¥. The opinion components are
expressed as:

Casel: For u% #0 VvV uf £0:
bA<>B _ bfiu§+bfiu?(
zi T ouftul —uguf
(11)
uAeB  — uuy
X T ugtuB —uful
Casell: For uy =0 A uf=0:
AoB  _ A B
bx? - ’szl + (1 - ’Y)bml
(12)
uy®B =0
uff

where ~ = hm
uX—’O U’I)Lx( +U’X
uf—0

The opinion w4°? represents the fusion of independent
opinions of observers A and B about the same frame X .

The cumulative fusion operator is equivalent to a poste-
riori updating of Dirichlet distributions. Its derivation is
based on the addition of Dirichlet parameters combined with

the bijective mapping between multinomial opinionsand the
Dirichlet distribution as described in Theorem 1.

It can be verified that the cumulative fusion operator is
commutative, associative and non-idempotent. In Case Il
of Def.1, the associativity depends on the preservation of
relative weights of intermediate results, which requires the
additional weight variable~y. In this case, the cumulative op-
erator is equivalent to the weighted average of probabilities.

The cumulative fusion operator represents a generalisa-
tion of the consensus operator [2, 4] which emerges directly
from Def.1 by assuming a binary frame.

3.2 Averaging Fusion

Assume aframe X containing k& elements. Then, assume
two observers A and B who have dependent opinions over
the frame X. This can for example result from observing
the outcomes of a process over the same time periods.

Let the two observers’ respective opinions be expressed
aswy = (by,uy,a@y) andwf = (05, uf,ak).

The averaging fusion of these two bodies of evidence is
denoted as w’s?? = wi@w?. The symbol denotes
the merging of two observers A and B who hold dependent
opinions about the frame X into asingleimaginary observer
denoted as Ao B. The mathematical expressions for averag-

ing fusion is described bel ow.

Definition 2 The Averaging Fusion Operator

Let wi and w¥ be opinions respectively held by agents A
and B over the same frame X = {z; | ¢ =1,--- ,k}. The
opinion w 2" is the averaged opinion of w% and w%. Then
the opinion components are expressed as:

Casel: For uf #0 v uf #0:
pAeB by uR +by uk
e T ugtuR
(13)
AoB 2u‘;}u§
X T ugtuR
Casell: For uf =0 A uf =0:
b =b + (1= )by
(14)
ug®® =0
ug

where ~ = hm o
ug—0 ug +uf
ux~>0

The opinion w}‘}gB represents the combination of the de-
pendent opinions of observers A and B about the same
frame X.

The averaging fusion operator is equivalent to averag-
ing the evidence of Dirichlet distributions. Its derivation
is based on the average of Dirichlet parameters combined



the bijective mapping between multinomial opinionsand the
Dirichlet distribution as described in Theorem 1.

It can be verified that the averaging fusion operator is
commutative and idempotent, but not associative.

The averaging fusion operator represents a generalisation
of the consensus operator for dependent opinions described
in[11].

It can be noted that partially dependent opinions can be
fused using a combination of the cumulative and averaging
fusion operators[11], but this requires an additional param-
eter to determine the degree of dependence between the two
argument opinions.

4 Fission of Multinomial Opinions

The principle of opinion fission is the opposite operation
to opinion fusion. This section describes the fission opera-
tor corresponding to the cumul ative fusion operator that was
described in the previous section.

Therearein general an infinite number of waysto split an
opinion. The principle followed here is to require an aux-
iliary fission parameter ¢ to determine how the argument
opinion shall be split. As such, opinion fission is a binary
operator, i.e. it takes two input arguments which are the fis-
sion parameter and the opinion to be split.

4.1 Opinion Fission

Assume a frame X containing k£ elements. Assume that
the opinionw§ = (5, u, @) over X isheld by areal or imag-
inary entity C.

The fission of w§ consists of splitting w¢ into two opin-
ionsw" and w2 assigned to the (real or imaginary) agents
Cy and Cy so that w§ = W' @ w2, The parameter ¢ de-
termines the relative proportion of evidence that each new
opinion gets. Fission of w§ resultsin two opinions denoted
asoow§ =W anddow§ = wi?. Themathematical ex-
pressions for cumulative fission are constructed as follows.

The mapping of an opinion w§ = (E,u, @) to Dirichlet
evidence parameters Dir(7 ¢, @ ¢ ) according to Eq.(9) and
Eq.(10), and linear splitting into two parts Dir(7 ", @ <)
and Dir(7$?, @¢?) as afunction of the fission parameter ¢
produces:

~C, _ ¢Wbh
L0 =C "X T w
Dir(Fyt,dy") (15)
_.)?1 —a
~Cy _ (1= )Wg
= Cy = C X' T T
Dir(ry2,dy?) : (16)

>Cy _ =
Ay~ =a

where W denotes the non-informative prior weight.

The reverse mapping of these evidence parameters into
two separate opinions according to Eq.(9) and Eq.(10) pro-
duces the expressions of Def.3 below. As would be ex-
pected, the base rate is not affected by fission.

Definition 3 The Fission Operator

Let w§ be an opinion over the frame X. The cumulative
fission of w§ based on the fission parameter ¢ where 0 <
¢ < 1 produces two opinions w$* and w$? defined by:

501 _ ¢b
X ut+oy ?:1 b(x;)
Cl . C1 _ u
X UX T es e (17)
iy =d
5Ce _ (1-¢)b
X T ut(1-g) L, ()
CQ . Cz _ u
Y ux = ut(1—¢) 2, b(zs) (18)
ar=a

By using the symbol ‘@’ to designate this operator, we
define:

c c
wy' = 90wy

Co T~ C
wy' = 90wy

(19)
(20)

In case [C' : X] represents a trust edge where X repre-
sents a target entity, it can also be assumed that the entity X
is being split, which leads to the same mathematical expres-
sionas Eq.(17) and Eq.(18), but with the following notation:

w{, =pouw§ =w$ (21)

WS, = POwWE =i (22)
It can be verified that w ' & w? = w§, as expected. In

case ¢ = 0 or ¢ = 1 one of the resulting opinions will be

vacuous, and the other equal to the argument opinion.

4.2 Other Types of Opinion Fission
4.2.1 Fission of Average

Assume aframe X containing k elements. Then assume
that the opinion w§ = (b, u,@) over X isheld by areal or
imaginary entity A.

Average fission of w4 consists of splitting w4 into two
opinions wi' and w%? assigned to the (real or imaginary)
agents A; and A, so that wi = wi' Bwi?.

It turns out that averaging fission of an opinion trivialy
produces two opinions that are equal to the argument opin-
ion. Thisisbecausethe averagefusion of two egqual opinions
necessarily produces the same opinion. It would be mean-
ingless to define this operator formally because it is trivial,
and because it does not provide a useful model for any inter-
esting practical situation.



4.2.2  Unfusion of Opinions

Assume aframe X containing & elements. Then assume
two observers A and B whose opinions have been fused into
w{*B = w§ = (bg/},uX,aX) and assume that entity B’s
contributing opinionw? = (b8, u%, @8) isknown,

The unfusion of these two bodies of evidence is denoted
asw{’l = wi = w§ © wk, which represents entity A’s
contributing opinion. Thisis different from, but still related
tofission. Unfusionis describedin [7].

5 Trust Network Canonicalisation
through Opinion Fission

This section describes an example of applying opinionfis-
sion to transform a trust network of dependent trust paths
into atrust network of independent trust paths.

Trust networks can be modelled with subjective logic,
where a trust relationship between two nodes is repre-
sented as a binomia opinion. Binomial opinions are ex-
pressed as w2 = (b,d,u,a) where d denotes disbelief
in statement x. When the statement for example says
x : “*David is honest and reliable””’, then the opinion can
be interpreted as evaluation trust in David. More specifi-
caly, the trust target is David, and the trust scope is o :
”To be honest and reliable”, so that + = D(o). The opin-
ion can be denoted with explicit attributes as w g(o , but
the trust scope can be omitted when it can be implicit;y as
sumed.

As an example, let us assume that Alice needs to get her
car serviced, and that she asks Bob to recommend agood car
mechanic. When Bob recommends David, Alice would like
to get a second opinion, so she asks Claire for her opinion
about David. The trust scope in this case can be expressed
as o : ”’To be a competent car mechanic”. This situation is
illustrated in Fig. 3 below where the indexes on arrowsindi-
cates the order in which they are formed.

trust

derived trust

Figure 3: Deriving trust from parallel transitive chains

When trust and referral s are expressed as subjective opin-
ions, each transitive trust path Alice—~Bob—David, and
Alice—Claire—David can be computed with the transitivity
operator?, where the ideaiis that the referrals from Bob and
Claire are discounted as a function Alice's trust in Bob and

2Also called the discounting operator

Claire respectively. Finally the two paths can be combined
using the cumulative fusion operator.

The transitivity operator is used to compute trust along a
chain of trust edges. Assume two agents A and B where A
has referral trust in B, denoted by w3, for the purpose of
judging the functional or referral trustworthiness of C'. In
addition B has functional or referral trust in C, denoted by

wg. Agent A can then derive her trust in C' by discount-
ing B’s trust in C with A’s trust in B, denoted by w45,
Transitivity is denoted by the symbol ‘®’, and defined as:

b = vt
dA:B _ bAdB

WAB A B
= w5 ® wg where )
vo B=re ug P = dA+uB+bBuC
A:B _ B
ac’ ac -

(23)

The effect of transitivity is a general increase in uncer-
tainty, and not necessarily an increase in disbelief [3].

The operators for modelling trust networks are used in
subjectivelogic [2, 6], and semantic constraints must be sat-
isfied in order for the computational transitive trust deriva
tion to be meaningful [9].

A trust relationship between A and B isdenoted as[A,B].
The transitivity of two arcsis denoted as “:” and the fusion
of two parallel paths is denoted as “o” The trust graph of
Fig.3 can then be expressed as.

[A,D] = (]A,B]: [B,D])¢

([A.C]-[C,D]) (24

The transitivity operator for opinions is denoted as ” ®”
and the fusion operator as” @". The computational trust ex-
pression corresponding to Eq.(24) is then:

wp = (wg ®wp) ® (Wi ®wH)

(25)
The existence of a dependent edge in a trust graph is
recognised by multiple instances of the same edge in the
trust network expression. Edge splitting is a method to iso-
late independent trust edges. Thisis achieved by splitting a
given dependent edge into as many different edges as there
are different instances of the same edge in the trust network
expression. Edge splitting is achieved by splitting one of the
nodesin the dependent edge into different nodes so that each
independent edge is connected to a different node.

A general directed trust graph is based on directed trust
edges between pairs of nodes. It is desirable not to put
any restrictions on the possible trust edges except that they
should not be cyclic. Thismeansthat the set of possibletrust
paths from a given source X to agiventarget Y can contain
dependent paths. An example of atrust network with depen-
dent paths is shown on the left-hand side of Fig.4, and the
result of edge splitting is shown on the right-hand side.

Below we will show how opinion fission can be used for
practical edge splitting.
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Figure 4: Edge splitting of dependent trust network

The non-canonical expression for the left-hand side trust
network of Fig.4is:

(A4, D)= ([4,B]:[B,D])
o ([A,C]:[C,D]) (26)
o ([A,B]:[B,C]:[C,D])

In this expression the edges [A, B] and [C, D] appear
twice. Edge splitting in this example consists of splitting
the node B into B; and B», and the node C into C'; and
C5. This producesthe right-hand side trust network in Fig.4
with canonical expression:

[4,D] = ([A,Bi] : [B1, D])
o ([A,C1] : [C1, D))

o ([A, B] : [Ba, Cs] : [Co, D])

(27)

Edge splitting must be trandlated into opinion splitting in
order to apply subjective logic. The principle for opinions
splitting is to separate the opinion on the dependent edge
into two independent opinionsthat when cumulatively fused
produce the original opinion. Thisis opinion fission as de-
scribed in Sec.4, and depends on the fission factor ¢ that
determines the proportion of evidence assigned to each in-
dependent opinion part. The binomial expressions for the
fission of a trust opinion such as w$§ = (b,d,u,a) is ex-
pressed as.

pCr — ®b
D T ¢(b+d)+u
c D (b+d)+u
wp' (28)
UC1 — u
D (b+d)+u
agl =a
pC2 — (1-¢)b
D T (1-¢)(b+d)+u
15" = o
1—¢)(b+d)+u
ng : (29)

uCZ _ u
D = (1-¢)(b+d)+u

Ca _
apr=a

When deriving trust values from the canonicalised trust
network of Eq.(26) we areinterested in knowingits certainty

level as compared with asimplified network, as described in
[9]. The computational trust expression of Eq.(27) is:

wh (wg, ®wB)
@ (wh, ®wE wH?)
® (Wi ®wp')

(30)

We are interested in the expression for the uncertainty of
w# corresponding to trust expression of Eq.(27). Since edge
splitting introduces parametersfor splitting opinions, the un-
certainty will be a function of these parameters. By using
Eq.(23) the expressions for the uncertainty in the trust paths
of Eq.(27) can be derived as.

ug:Bl = dél + uél + bélugl
A:Cy _ JA A A Cy
ug BaCr dﬁfl —Eucl :bCluQ (31)
D2:02 J— 2
up =bp,dci +dp, +up,

A B> A B2, Ca
+bp,up’  +bp,boiup

By using Eq.(11) and EQ.(31), the expression for the un-
certainty in the trust network of Eq.(27) can be derived as:

A

up =

A:By]_ A:Cy_ A:Bg:C

up 1uD 1uD 2:C2
AB, AC,, AB, ABoCUs, AC, AByCs , AB| AC; AByCs
up up tup up +up tup 2up up Cup

(32)
By using Eq.(28), Eq.(31) and Eq.(32), the uncertainty
value of the derived trust w4} according to the edge splitting
principle can be computed. This value depends on the edge
opinions and on the two fission parameters ¢4 and ¢%,.
As an example the opinion values will be set to:

wa =wB =wl =w§ =wE =(09,00,0.1,0.5) (33)

The computed trust values for the two possible simplified
graphs are:

(wa @wB) @ (Wi ®wh) =(0.895,0,0.105,0.5) (34)
wa @wd owh  =(0.729,0,0.271,0.5) (35)

The uncertainty level u4 when combining these two
graphs through edge splitting as a function of ¢4 and ¢
isshowninFig.5

The result of combining dependent parallel paths is that
the produced uncertainty is lower than it should be because
too much evidence is taken into account during opinion fu-
sion. Theresult of removing arbitrary edges from a network
in order to avoid dependence is the risk that too little evi-
dence is taken into account so that the uncertainty is higher
than it should be. The ideal solution is to split the depen-
dent paths into separate independent paths in such a way
that the uncertainty is minimized. This precisely avoids the
risk of producing too low uncertainty by including depen-
dent edges, as well as the risk of producing too high uncer-
tainty by removing genuine trust edges.

The conclusion which can be drawn from this in the ex-
ample aboveis that the optimal value for the fission param-
eters are ¢4 = ¢% = 1 because that is when the overall
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Figure 5: Uncertainty v asafunction of ¢4 and ¢$,

network uncertainty is at its lowest while still avoiding de-
pendent paths. In fact the uncertainty can be evaluated to
u = 0.105.

These optimal fission parameters are used when applying
Eq.(17). This produces the trust network simplification of
Eq.(34) where the edge [ B, C] is completely removed from
the left-hand side graph of Fig.4.

The fission parameters that produce the highest uncer-
tainty is when ¢4 = ¢% = 0, resulting in u = 0.271.
Thisalso avoids dependent paths but resultsin the inefficient
trust network of Eq.(35) wherethe edges [A, C| and [B, D],
which are the most certain and efficient trust paths, are com-
pletely removed from the left-hand side graph of Fig.4. In
other words, given the edge opinion values used in this ex-
ample, ([4, B] : [B,C] : [C, D]) isthe least certain path of
the left-hand side graph of Fig.4.

In general, acanonica network derived from a network of
dependent pathsiswhen the uncertainty has been minimized
while at the same time avoiding dependent paths through
edge splitting. Fission of opinionsisthe operator needed for
edge splitting in subjective logic. In brief, opinion fission
makes it possible to canonicalise trust networks of depen-
dent paths.

6 Conclusion

The principle of belief fusion is used in numerous appli-
cations. The principle of belief fission, which can be consid-
ered the inverse of fusion, isless commonly used. However,
there are situations where fission can be useful. In this paper
we have described the fission operator corresponding to cu-
mulative fusion in subjective logic. Opinion fission can for
example be applied for canonicalisation of trust networks
with dependent paths,

References

[1] A. Jesang. Artificial reasoning with subjective logic.
In AbhayaNayak and Maurice Pagnucco, editors, Pro-

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

ceedings of the 2nd Australian Workshop on Common-
sense Reasoning, Perth, December 1997. Australian
Computer Society.

A. Jgsang. A Logic for Uncertain Probabilities.
International Journal of Uncertainty, Fuzziness and
Knowledge-Based Systems, 9(3):279-311, June 2001.

A. Jgsang. Subjective Evidential Reasoning. In Pro-
ceedings of the International Conference on Infor-
mation Processing and Management of Uncertainty
(IPMU2002), Annecy, France, July 2002.

A. Jgsang. The Consensus Operator for Combining
Beliefs. Artificial Intelligence Journal, 142(1-2):157—
170, October 2002.

A. Jagsang. Probabilistic Logic Under Uncertainty. In
The Proceedings of Computing: The Australian The-
ory Symposium (CATS2007), CRPIT Volume 65, Bal-
larat, Austraia, January 2007.

A. Jzsang. Conditional Reasoning with Subjective
Logic. Journal of Multiple-Valued Logic and Soft
Computing, 15(1):5-38, 2008.

A. Jgsang. Cumulative and Averaging Unfusion of Be-
liefs. In The Proceedings of the International Confer-
ence on Information Processing and Management of
Uncertainty (IPMU2008), Malaga, June 2008.

A.Jgsang, J. Diaz, and M. Rifgi. Cumulativeand Aver-
aging Fusion of Beliefs (in press). Information Fusion
Journal, 00(00):00-00, 2009.

A. Josang, R. Hayward, and S. Pope. Trust Network
Analysis with Subjective Logic. In Proceedings of
the 29" Australasian Computer Science Conference
(ACSC2006), CRPIT Volume 48, Hobart, Australia,
January 2006.

A. Jgsang and D. McAnaly. Multiplication and Co-
multiplication of Beliefs. International Journal of Ap-
proximate Reasoning, 38(1):19-51, 2004.

A. Josang, S. Pope, and S. Marsh. Exploring Dif-
ferent Types of Trust Propagation. In Proceedings
of the 4th International Conference on Trust Manage-
ment (iTrust), Pisa, May 2006.

G. Shafer. A Mathematical Theory of Evidence.
Princeton University Press, 1976.

Florentin Smarandache. An In-Depth Look at Informa-
tion Fusion Rules & the Unification of Fusion Theo-
ries. Computing Research Repository (CoRR), Cornell
University arXiv, ¢s.OH/0410033, 2004.

Ph. Smets and R. Kennes. The transferable belief
model. Artificial Intelligence, 66:191-234, 1994.



