*

Decision Making Under Vagueness and Uncertaint

Audun Jgsang
University of Oslo
Norway
josang@ifi.uio.no

Abstract—This paper describes how belief, uncertainty and states, but not which one in particular. For example, we tmigh
vagueness can be represented by subjective opinions. Criteria pelieve that the weather will be eitheainy or sunny but not
for decision making can be articulated in terms of uncertainty which of them. For this reason it is useful to let subsets of

and vagueness in addition to expected utility. The notions of . . . .
uncertainty and vagueness provide a simple way of explaining the domain be possible values of the variable, i.e. to let the

the Ellsberg paradox in decision making. variable take values from theyperdomainwhich contains the
singleton values as well as the composite values. In thie cas
I. INTRODUCTION we are talking about &ypervariablein contrast to a random

Decision making is the process of identifying and choosin(fiable. Belief mass can be assigned to the values of the
between alternative options based on beliefs about thergiff’yPervariable according to the available information.
ent options and their associated utility gains or lossee Th A Subjective opinion distributes @elief massover the
decision maker can be the analyst of the situation, or can ¥gjues of the hyperdomain. The sum of the belief masses
on advice produced by an analyst. In the following, we do nét €ss than or equal to 1, and is complemented by the
distinguish between the decision maker and the analyst, afféfertainty massA subjective opinion also contains mse
use the term ‘analyst’ to cover both. rate prob:_;lbmty distribution expressing prior knowledge abou
Opinions can form the basis of decisions, and this pap@e _s.pecmc class. of random varlgples, SO that in case of
investigates how various aspects of an opinion shouldogratignificant uncertainty about a specific variable, the basesr
nally) determine the optimal decision. For this purpose, w¥ovide a basis for default likelihoods.
introduce new belief, uncertainty and vagueness concbpts t L€t X be a variable over a domail = {x1,%z,..., X}
are described in Sectionll. Decision criteria are defined With cardinality k, wherex (1 <i < k) represents a specific

Section IV and applied to explain Ellsberg’s paradox. value from the domain. Let”(X) be the powerset ak. The
hyperdomairis the reduced powerset &f, denoted byZ(X),

A. Subjective Opinions and defined as follows:
Subjective logic is a formalism that represents uncertain Z(X) = 2(X)\ {{X},{0}}. (1)

probabilistic information in the form ofubjective opinions
and that defines a variety of operations for subjective opimi All proper subsets ofX are values of%(X), but X and 0
In this section we present in detail the concept of subjecti® NOt, since they are not considered possible obsersation
opinion which is used for representing uncertain and vagdlich we can assign beliefs. The hyperdomain has cardmalit
arguments and which provide basis for decision making. 2 — 2. We use the same notation for the values of the domain
In subjective logic adomainis a state space consisting ofind the hyperdomain, and considéra hypervariablewhen
two or more values. The values of the domain can e.g. Bdakes values from the hyperdomain. _
observable or hidden states, events, hypotheses or proposi "€ composite se’(X) is the set of non-singleton values,
tions, just like in traditional Bayesian modeling. Domaare €xPressed as
typically specified to reflect realistic situations for therpose ¢(X)=2X)\X . (2)
of being practically analysed in some way. Let A denote aragent A's opinion on the variablé is a
The different values of the domain are assumed to tﬂﬁple denoted
mutually exclusive and exhaustive, which means that the — LA 3
. . 0.& ( X UX X)’ ( )
variable can take only one value at any time, and that all
possible values of interest are included in the domain. Pehere by : Z(X) — [0,1] is a belief mass distribution, the
example, if the variable is th&/EATHER we can assume its parameter € [0, 1] is an uncertainty mass, aag : X — [0, 1]
domain to be the sefrainy, sunny, overcast is a base rate probability distribution satisfying the daling
For a given variable of interest, the values of its domain afglditivity constrains:

assumed to be the real possible states. A vague observation A b2 (x) —
indi i : ux+y bx(x) =1, (4)
may indicate that the variable takes one of several possible e ZTX)
A
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u vertex (uncertainty)

In the notation of the subjective opiniang, the subscript
denotes the variabl&, the object of the opinion, while
the superscript denotes the opinion owwerthe subjectof
the opinion. Explicitly expressing subjective ownership o
opinions makes it possible to express that different agents
have different opinions on the same variable. Indication of
opinion ownership can be omitted when the subject is clear
or irrelevant, for example, when there is only one agent & th
modelled scenario.

The belief mass distributioh} has ¥ —2 parameters,
whereas the base rate distributiay only hask parameters.
The uncertainty parametes is a simple scalar. A general
opinion thus contains*2+ k — 1 parameters. However, given X5 vertex Px ax
that Eq.(4) and Eq.(5) remove one degree of freedom each,
opinions over a domain of cardinalityonly have % +k—3
degrees of freedom.

A subjective opinion in whichux = 0, i.e. an opinion
without uncertainty, is called dogmatic opinion A dogmatic Assume the random variab} on domainX = {xy, X2, X3}.
opinion for whichby (x) = 1, for some, is called arabsolute Figure 1 shows multinomial opiniowx with belief mass dis-
opinion In contrast, an opinion for which =1, and conse- tribution by = (0.20, 0.20, 0.20), uncertainty massix = 0.40
quently, bx (x) = 0, for everyx € #Z(X), i.e. an opinion with and base rate distributiom = (0.750, 0.125, 0.125).
complete uncertainty, is calledveacuous opinion

Every subjective opinion ‘projects’ to a probability distr

X vertex

Figure 1. Visualisation of a trinomial opinion

Il. ASPECTS OFBELIEF AND UNCERTAINTY IN OPINIONS

bution Px over X defined through the following function: The above section on opinions only distinguishes between
belief mass and uncertainty mass. This section dissedtf bel
Px(x) = ZI(X?X (%i[xj) bx (xj) +ax (%) ux, ®)  into more granular types callesharpnessvaguenesandfocal
XjEZX

uncertainty
whereay (x;|X;) is therelative base ratef x; € X with respect

to x; € Z(X) defined as follows: A. Sharpness

Belief mass that only supports a specific value is called
ay (x|x;) = ax (% Nx;) @) sharp belief massbecause it sharply supports a single value
. ax(xj) and discriminates between values. Note that we also irgerpr

whereay is extended om?(X) additively. For the relative base Pelief mass on a composite value (and its subsets) to be sharp
rate to be always defined, it is enough to assuheq) > 0 for that composite value, because it discriminates betvilegn

for everyx € X. This means that everything we include in th&omposite value and any other value which is not a subset of
domain has a non-zero probability of occurrence in generafhat value. o

Binomial opinions apply to binary random variables where Definition 1 (Sharpness): LeX be a domain with hyper-
the belief mass is distributed over two values. Multinomiglomain #(X) and variable X. Given an opiniomu, the
opinions apply to random variables imary domains, and Sharpness of valuex#(X) is the functiort : 2(X) — (0,1

where the belief mass is distributed over the values of tf&Pressed as

domain. General opinions, also callégper-opinions apply Sharp belief mass:bj(x) = be(xa) ) (8)

to hypervariables where belief mass is distributed ovenesl XCx

in hyperdomains obtained from-ary domains. A binomial ¢ js yseful to express sharpness of composite values in
opinion is equivalent to a Beta probability density funatio orqer 1o assist decision making in situations like the Eiigb

a multinomial opinion is equivalent to a Dirichlet probabil paradox described in Section V.

ity density function, and a hyper-opinion is equivalent t0 The total sharp belief mass denoﬂaﬁ? is simply the sum

a Dirichlet hyper-probability density function [1]. Bindal 4t 5| pelief masses assigned to singletons, defined asafsllo
opinions thus represent the simplest opinion type, whiah ca pefinition 2 (Total Sharp Belief Mass): L&t be a domain

be generalised to multinomial opinions, which in turn cagith variable X, and letwy be an opinion onX. The total

be generalised to hyper-opinions. Simple visualisatioms fsharpness of the opinionx is the function §S: X — [0,1]
binomial and trinomial opinions are based on barycentrg;xpressed as

coordinate systems as illustrated in Figures 1 below.
In general, a multinomial opinion can be represented as Total sharp belief mass: 5= Ybx(x) . 9)
a point inside a regular simplex. In particular, a trinomial Kex
opinion can be represented inside a tetrahedron (a 4-axiSharpness represents the complement of the sum of vague-
barycentric system), as shown in Figure 1. ness and uncertainty, as described below.



B. Vagueness express vagueness is thus the main aspect that makes hyper-

Recall from Eq.(2) that the composite $6{X) is the set Opinions different from multinomial opinions.
of all composite values from the hyperdomain. Belief mass Unde_r the assumption that collectgd evidence never decays,
assigned to a composite value expresses cognitive vagsjenggcertainty can only decrease over time, because accugdulat
because this type of belief mass supports the truth/presef¥idence is never lost. As the natural complement, shaspnes
of multiple singletons inX simultaneously, i.e. it does notand vagueness can only increase. At the extreme, a dogmatic
discriminate between the singletons in the composite vallgP!nion whereb]” = 1 expressedogmatic vaguenesé dog-
In the case of binary domains, there can be no vague beB@tic opinion whereb%® =1 expressesiogmatic sharpness
mass, because there are no composite values. In the cas@high is equivalent to a traditional probability distritn over
hyperdomains, composite values exist, and every singketon @ random variable.
X is a member of multiple composite values. The vagueneséJ”der the assumption that evidence decays e.g. as a function
of a singletonx € Z(X) is defined as the weighted sum ofof time, uncertainty can increase over time because uricgrta
belief masses on the composite values of whicgia member, increase is equivalent to the loss of evidence. Vagueness
where the weights are determined by the base rate dissibutidecreases in case new evidence is sharp, i.e. when the new
The total amount of vague belief mass is simply the sum 8¥idence supports singletons, and old vague evidence slecay
belief masses on all composite values in the hyperdomaie. T#egUeness increases in case new evidence is vague, i.e. when
formal definitions of these concepts are given next. the new evidence supports composite values, and the olg shar
Definition 3 (Vagueness): LeX be a domain andZ(X) evidence decays.
denote its hyperdomain. L&t (X) be the composite set of
X according to Eq.(2). Let x Z(X) denote a value in
hyperdomainZ(X), and let ¥ € ¢(X) denote a composite The vagueness of a trinomial opinion can not easily be
value in%(X). Given an opinionuy, the vagueness of valueVisualised as such on the opinion tetrahedron. Howeveait ¢

xe Z(X) is the function@{ : Z(X) — [0,1] expressed as be visualised in the form of a hyper-Dirichlet PDF. Let us for
) example consider the ternary domathwith corresponding
Vague belief mass:bifix) = 3 ax(x|xj) bx(xj) . (10) hyperdomainZ(X) illustrated in Figure 2.
X €6(X)
XjZX

C. Dirichlet Visualisation of Opinion Vagueness

Note that Eqg.(10) not only defines vagueness of singletons
x € X, but also defines vagueness of composite values
¢ (X), i.e. of all valuesx € Z(X).

In casex is a composite value, then the belief mdosgx)
does not contribute to the vagueness xof despite by (X)
representing vague belief mass for the whole opinion. The

vague belief mass in an opiniank is defined as the sum of Figure 2. Hyperdomain for the example of vague belief mass
belief masses on composite valugs %' (X), formally defined
as follows. The singletons and composite values #{X) are listed

Definition 4 (Total Vague Belief Mass): L&tbe a domain pg|ow.
with variable X, and letwy be an opinion onX. The total
vagueness of the opiniosy is the function B : X — [0,1]

expressed as: Domain: _ X = {X1,%2,X3},
Hyperdomain: Z(X) = {X1,X2,X3,X4,Xs, X6},
Total vague belief mass: = 5 bx(xj) . (11) Composite set: €(X) = {x4,Xs,Xs},
Xj€%(X)
An opinion wy is dogmatic and vague whes}" = 1, and h 4 B a0},
is partially vague when & blY < 1. An opinion has mono- where zz_ gl’f’{’
= {X2,X3}.

vagueness when only a single composite value has (vague)
belief mass assigned to it. On the other hand, an opinion has et us further assume a hyper-opiniag with belief mass
pluri-vagueness when several composite values have (vagdigtribution and base rate distribution specified in Eg.(12
belief mass assigned to them. below.
Note the difference between uncertainty and vagueness in

o . ) . . S Base rate distribution
subjective logic. Uncertainty reflects lack of evidencegevdas Belief mass distribution

vagueness results from evidence that fails to discriminate bx(xs) = 0.8, :Xgl; iggg’ (12)
between specific singletons. A vacuous (totally uncertain) | ux =02 ai()é) ;0'33’

opinion — by definition — does not contain any vagueness.
Hyper-opinions can contain vagueness, whereas multifiomiaNote that this opinion has mono-vagueness, because the
and binomial opinions never contain vagueness. The albdity vague belief mass is assigned to only one composite value.



The projected probability distribution a4 computed with E. Mass-Sum

Eq.(6), and the vague belief mass computed with Eq.(10), arérpe gharpness, vagueness and focal uncertainty concepts

given in Eq.(13) below. defined in the previous section are representative for ealcie v
by pulling belief and uncertainty mass proportionally asro
the belief masses and the uncertainty of the opinion. The

Projected probability

Vague belief mass
distribution g

v/
Px(x1) = 0.066 by(x1) =00, concatenation of sharpness, vagueness and focal untgrtain
v (13) is then called mass-sum, and similarly for total mass-sum.
Px(x2) =0.467, by (x2) =04, The additivity properties of mass-sums are described next.
Py (%) 0.467 bX(X:s) —0.4. F. Mass-Sum for Sharpness, Vagueness and Focal Uncertainty
x(X3) =0.467

N _ S The sum of sharpness, vagueness and focal uncertainty of
The hyper-Dirichlet PDF for this vague opinion is illusgét g value is equal to the value’s projected probability, expeel
in Figure 3. Note how the probability density is spread ous

along the edge between tRgandxs vertices, which precisely
indicates that the opinion expresses vagueness betwesrd
x3. To be mindful of vague belief of this kind can be useful
for an analyst, in the sense that it can exclude specific salue Eq.(15) shows that the projected probability can be spit in
from being plausible. A non-plausible value in this exampliree parts which are: i) sharpness, ii) vagueness, arfod)
is X1. uncertainty. The composition of these three parts, caflads-
sum is the function denotel x (x). The concept of mass-sum
is defined next.

Definition 6 (Mass-Sum): LeX be a domain with hyper-
domainZ(X), and assume that the opiniaiy is specified.
Consider a value x % (X) with sharpnesb(x), vagueness
by, (x) and focal uncertainty§i(x). The mass-sum function of
value x is the triplet denotell x (x) expressed as

bR () + by (X) + U (X) = Px (%) (15)

Mass-sum: M (x) = <b§ (x), by (x), uf (x)) . (16)

1 Given an opiniorwy, each value € Z(X) has an associated
mass-sunmM x (x) which is a function of the opiniomux. The
Figure 3. Hyper-Dirichlet PDF with vague belief term ‘mass-surmmeans that the triplet of sharpness, vagueness
and focal uncertainty has the additivity property of Eq)(15
In order to visualise a mass-sum, consider the ternary
In the case of multinomial and hypernomial opinions largefomainX = {x1, %o, x3} and hyperdomaitz(X) illustrated in

than trinomial, it is challenging to design visualisatiods Figure 4, where the belief masses and uncertainty mass of
possible solution in case visualisation is required fon@ms opinion wy are indicated in the diagram.

over large domains is to use partial visualisation over ifigec
values of the domain that are of interest to the analyst.

D. Focal Uncertainty

When an opinion contains uncertainty, the simplest inter-
pretation is to consider that the whole uncertainty mass is
shared between all the values of the (hyper)domain. However
as indicated by the expressions for projected probability o
e.g. Eq.(6), the uncertainty mass can be interpreted ag bein
implicitly assigned to (hyper)values of the variable, as a

function of the base rate distribution over the variableisTh Figure 4. Hyperdomain with belief masses
interpretation is captured by the definition of focal unagnty
mass. Formally, the opinionwx is specified in Table |. The table

Definition 5 (Focal Uncertainty): LeiX be a domain and includes the mass-sum values in terms of sharpness, veggiene
Z%(X) denote its hyperdomain. Given an opiniaR, the focal and focal uncertainty. The table also shows the projected
uncertainty mass of a valuex%(X) is computed with the probability for every valuex € Z(X).
functionul, : Z(X) — [0,1] defined as The mass-sums from opiniony listed in Table | are
visualised as amass-sum diagranin Figure 5. Mass-sum

Focal uncertainty mass:ujx) = ax(x) ux - (14) diagrams are useful for assisting decision making, bectgse



Table |

OPINION WITH SHARPNESS VAGUENESS FOCAL UNCERTAINTY AND ux(x) can be combined as a triplet, which is then called the
PROJECTED PROBABILITY total mass-sum, denotéd} and expressed as
X | bx(®  ax(x) b§(x) bY(x) (X Px(X) Total mass-sum:My = (b%%, by’ ux) . (18)
Ux

The total mass-sum of opiniany from Figure 4 and Table |

x | 010 020 010 016 004  0.30 is illustrated in Figure 6.

X2 0.10 0.30 0.10 0.16 0.06 0.32
X3 0.00 0.50 0.00 0.28 0.10 0.38

X4 0.20 0.50 0.40 0.12 0.10 0.62 . : OOOCOOOOOOOOOOEEE

X5 0.30 0.70 0.40 0.14 0.14 0.68 M, : T T T i i,

X | 010 080 020 034 016 070 e e — > P
X 0.20 00 01 02 03 04 05 06 07 08 09 1.0

; ; ; Legend: - Total sharp belief mass
Px(ﬁﬂ); NN\ Total vague belief mass

P(x,) |:| Uncertainty mass

| P, (x)
‘ Figure 6. Visualising the total mass-sum fram

M, (x):
M, (x):
M, () RN
M (x,):
M, (x5):
M, (x,):

NN P, (x,) 1. UTILITY AND NORMALISATION

MANNN

0o o; Utility for random variable is expressed by letting each

2 03 04 05 06 07 08 09 1.0

._
S

value x have an associated utilithx (x) expressed on some
Legend: [l Sharp belief mass scale such as monetary value, which can be positive or
N Vague belief mass negative. Giy_en utilityA x (x) in case of outcome, then the
|:| Focal uncertainty mass expected utility forx and total expected utility foK are
Figure 5. Mass-sum diagram faosx Expected utility: Lx (X) = Ax(X)Px(X) , (19)
Total expected utility: & = 5 Ax(x)Px(x) . (20)
xeX

degree of sharpness, vagueness and focal uncertainty can be ) N o
clearly understood. In classical utility theory, decisions are based on expkcte

Mass-sum diagrams visualise the nature of beliefs in eadfility for possible options. Integrating utility into thprob-
value, and can also represent hyper-opinions in a way whighilities for each option [2] produces atility-normalised

scales to larger domains. probability vector which simplifies decision-making models,
In Figure 5 it can be seen thag has the greatest projected?©c@use every option then has a simptiéity-probability.
probability among the singletons, expressed®aé«) = 0.38. Normalisation is needed when comparing decision options.

The normalisation factor must be appropriate for all vddab

However, the mass-sum a&§ is void of sharpness, so its pro- - ) - .
so that the utility-normalised probability vectors are hirit a

jected probability is solely based on vagueness and uricgtta

which affects decision making given range. Note that in case of negative utility for a sfieci
' outcome, the utility-normalised probability for that ootae
G. Total Mass-Sum is also negative. Utility-normalised probability is théme a

) o synthetic notion.

The belief mass of an opinion as a whole can be decom-| ot A+ denote the greatest absolute utility of all utilities in
posed into sharpness which provides distinctive suppart fQ vectors. Thus, if the greatest absolute utility is niagat
singletons, and vagueness which provides vague support d@&n A+ takes its positive (absolute) value.
singletons. These two belief masses are then complementaryefinition 8 (Utility-Normalised Probability Vector): Let
to the uncertainty mass. For any opiniag it can be verified )+ genote the greatest absolute utility froAx and from
that Eq.(17) holds: other relevant utility vectors that will be considered in
order to compare different options. The utility-normatise
probability vector produced b¥x, Ax and A" is expressed

Eq.(17) shows that the belief and uncertainty mass can #e Lk Ax(®0Px(%)

b +blY +ux =1. (17)

split into the three parts of sharpness, vagueness and focal P)'\('(x) = = , ™xeX. (21)
. - . AT At

uncertainty. The composition of these three parts is caditad

mass-sumdenoted |\§ and is defined below. Note that the utility-normalised probability vectBE(‘ does

Definition 7 (Total Mass-Sum): L&t be a domain with hy- hot represent a probability distribution, and in generasioot
perdomainZ(X), and assume that the opiniau is specified. Satisfy the additivity requirement of a probability disuiion.
The sharpnesb%{x), vaguenessb}b(x) and focal uncertainty Other utility-normalised notions are defined next.



Definition 9 (Utility-Normalised Masses): The utility-from urn Y (i.e. if you drawy,). You receive nothing if you
normalised sharpness, vagueness and focal uncertainty fbvaw ‘Red’ in either option. Table Il summarises the options

x € X are expressed as in this game.

Utility-normalised | s x) = Ax ()b (x) 22) Table I
Sharpness: X - At ’ BETTING OPTIONS IN SITUATION INVOLVING UTILITIES

Red Black
Utility-normalised Ax (X)bY (x Option X, draw from urn X: 0 $1000
vagu%aness- b} (x) = 7X(A)+X( ) . (23) Option Y, draw from urn Y 0 $500
Utility-normalised _ nr Ax(X)u () The mass-sums for drawing ‘Black’ are different for options
focal uncertainty: X (x) = A+ (24) X and Y. However, the utility-normalised mass-sums are kqua

o . - ) as illustrated in Figure 7. The normalisation factor usethis
The utility-normalised probabilityis expressed in Eq.(25): example isA — 1000, since $1000 is the greatest absolute

utility.
: Malss—sum:s
,wn}

}Utility—normalised mass-sums

Utility-normalised

probability: PR(x) = bYS(x) + b} (x) + U} (x). (25)

Opt.X, M (x,):
Having defined utility-normalised probability, it is posE  op.y, M,(,):

to directly compare options without involving utilitiesetause

utilities are integrated into the utility-normalised peddilities.  Opt.X, M¥(x,):

|

The utility-normalised mass-sum is defined below. Opt.Y, M}(1,): Py (r,) ‘ ‘ ‘ 3
Definition 10 (Utility-Normalised Mass-Sum): The utility- U : : : : : : : —1 P
. . . . 0.0 0.1 02 03 04 05 06 07 08 09 1.0
normalised mass-sum function of x is the triplet denoted
MY (x) expressed as Legend: [Jlj Sharp betief mass
. : Focal uncertainty mass
Utility-normalised NS NV NF (1 Focal uncertanty mss
mass-sum: Mx (X) = { bx~(x), bx " (x), ux"(X) ) -
' (26) Figure 7. Diagram for mass-sums and for utility-normalised rsasss

Note that utility-normalised sharpness, vagueness aral foc In general, the option with the greatest utility-normafise

unce.rtainty do not represent'realistic measures, and m”Stpl?obability should be chosen. Note that the utility-norised

considered as purely synth_etlc. . . ... probability is equal for options X and Y, expressed as
AS. an example of applying utility-normalised prOb"".b'l'tyPN(xz) = PY(y2). Hence, utility-normalised probability alone

consider two urns named X and. Y that both contain 1q insufficient for determining the best option in this exdenp

red and black balls, where you will be asked to draw a b e decision in this case must be based on the sharpness,

at rang(oT‘féorg, ong oit‘hBeI uLn? The )pzosstl)le outco_lmelzs Hfiich is greatest for option Y, expressedhiys) > b (x2).
nameadx; = Red andx; = black lorurn A, and aré simiarly— nNote that is is not be meaningful to consider utility-

namedy; = ‘Red’ andy, = ‘Black’ for urn Y. : ; : .
: ormalised sharpness for choosing between options. This is
You are told that urn X contains 70 red balls, 10 black bal plained in detail in Section IV,

and 20 balls that are either red or black. The correspondlngln case of equal utilities for all options, then normalieatis

opinion y is expressed as not needed, or it can simply be observed that utility-norseal
mass-sums are equal to the corresponding non-normalised

bx(x1) =7/10, ax(x1) =Y, mass-sums, as expressed below.
Opinion wx = | bx(x2) =10, ax(x) =12, (27)
Ux =210 Projected probability: PY =Py,
You are told that urtY contains 40 red balls, 20 black balls When all Sharpness: bYS =bg,
and 40 balls that are either red or black. The correspondingoptions have Vagueness: bQV — bV’
opinion wy is expressed as equal utility: Focal uncertainty: ulF  =uf,
Mass-sum: MY =Mx.
- by (y1) =410, av(y1) ="/2, In the examples below, utilities for all options are equal, s
Opinion wy = | by(y2) =32/10, ar(y2) =2 (28) " for convenience, the diagrams show simple mass-sums, which
Uy =4/10. are equal to the corresponding utility-normalised massssu

Imagine that you must select one ball at random, from either
urn X or Y, and you are asked to make a choice about which IV. DECISIONCRITERIA
urn to draw it from in a Sing|e betting game. With Option X, The decision criteria follow the indicated order of priwit
you receive $1000 if you draw ‘Black’ from urn X (i.e. if you 1) The option with the highest utility-normalised probabil
drawxy). With option Y, you receive $500 if you draw ‘Black’ ity is the best choice.



2) Given equal maximal utility-normalised probabilityWith option 1B you receive $100 if ‘Black’ is drawn, and you
among multiple options, the option with the greateseceive nothing if either ‘Red’ or ‘Yellow’ is drawn. Tablél |

sharpness is the best choice. summarises the options in game 1.
3) Given equal maximal utility-normalised probability as
well as equal maximal sharpness among multiple op- Table Il

tions, the option with the least focal uncertainty (and GAME 1: PAIR OF BETTING OPTIONS
Red Black Yellow

therefpre with the greatest vagueness, whenever rele- Option TA: 100 3 5

vant) is the best option. Option 1B: 0 $100 0

The above criteria predict the choice of the majority of
participants in the Ellsberg experiment described below.

Make a note of your choice from betting game 1, and then
V. THE ELLSBERG PARADOX proceed to game 2 where you are asked to choose between
WO new options based on the same random draw of a single
- - i . Il from the same urn. With option 2A you receive $100 if
shows how traditional probability theory is unable to expla iihar ‘Red’ or “Yellow is drawn, and you receive nothing if

typicaL hun|1|an decision-.making behaviomrjlr. ith ‘Black’ is drawn. With option 2B you receive $100 if either
In t_ e_E sberg experiment you are shown an urn wit Q%Iack’ or ‘Yellow’ is drawn, and you receive nothing if ‘Red
balls in it, and you are told that 30 balls are red, and th%t drawn. Table IV summarises the options in game 2

the remaining 60 balls are either black or yellow. One ball is ' '

The Ellsberg paradox [3] results from an experiment whi

going to be selected at random, and you are asked to make Table IV
a choice in two separate betting games. Figure 8 shows the GAME 2: PAIR OF BETTING OPTIONS
hyperdomain of the Ellsberg paradox.
Red Black Yellow
Option 2A: $100 0 $100
Option 2B: 0 $100 $100

Would you choose option 2A or 2B?

Ellsberg reports that, when presented with these pairs of
choices, most people select options 1A and 2B. Adopting the
approach of expected utility theory, this reveals a clear in
consistency in probability assessments. On this intempoet,
when a person chooses option 1A over option 1B, he or she is
Figure 8. Hyperdomain and belief mass distribution in theliglitg paradox revealing a higher subjective probability assessmentaipg

‘Red’ than of picking ‘Black’.

The domainX and its hyper-opinion are then expressed as However, when the same person prefers option 2B over op-

tion 2A, he or she reveals that his or her subjective proligbil

x1: Red assessment of picking ‘Black’ or ‘Yellow’ is higher than of

Xo: Black, picking ‘Red’ or ‘Yellow’, which implies that picking ‘Blak’

. x3: Yellow, has a higher probability assessment than that of picking”Re
Hyperdomain %(X) = - Red or Black (29)  This seems to contradict the probability assessment of game
x5: Red or Yellow 1, which therefore represents a paradox.

Xg: Black or Yellow When explicitly expressing the vagueness of the opinions,
the majority’s preference for choices 1A and 2B becomes
perfectly rational, as explained next.

gig;; ;(1)/3, :ig:g - 1;2’ The utilities for options 1A and 1B are equal ($100), so
by (xa) = O: ax (x) = 1/3: fchere is no difference betweerlt.he utiI!ty-normaIised ptmb
Hyper-opinionay = | bx(xa) =0,  ax(xa) = 2/3, ities aqd the prOJected_ probabilities vyh!ch are used fordiec .
bx(xs) =0, ax(xs) = 2/3, modellmg_below. PrOJeqted pr_obabllltles are co.mputechwn
by (%) = 2/3, ax(Xe) = 2/3, Eq.(6) which for convenience is repeated below:
e =0 (30) Px()= 3 ax(xix)bx(x) +ax(x)ux.  (31)
Xje#(X)

A quick look atwy reveals that it contains some sharp belief

mass, some vague belief mass and no uncertainty mass, $dfative base rates are computed with Eq.(7) which for con-
is a dogmatic and partially vague opinion. venience is repeated below:

In betting game 1 you must choose between option 1A and
1B. With option 1A you receive $100 if ‘Red’ is drawn, and
you receive nothing if either ‘Black’ or ‘Yellow’ is drawn.

ax () = 250, (32



The projected probabilities ofi andx, in game 1 are then  Given the absence of uncertainty, the additivity propefty o

) Eq.(15) allows us to compute the sharpnessebygss) = 1/3
Option 1A:  Px(x1) =ax(xyx1) bx(x1) :% . and b>S((X6) =23, %( =Y
The mass-sum diagram of the options in Ellsberg betting
game 2 is illustrated in Figure 10.

(33)
Option 1B:  Px(x2) =ax(x|%)bx(x) =3 .

Note thatPx(x1) = Px(x2), which makes the the options L
equal from a purely first-order probability point of view. Opt2AM,(x): Py (xs)
However they are affected by different vague belief mass asopt.2B, M, (x): P(x,)
shown below. S S R

: s 4 s 67
Vague belief mass of, denotedby,(x), is computed with C )
Eq.(10) which for convenience is repeated below: Legend: [JJl] Sharp beticf mass

Vague belief mass
b () = > ax(xx;) bx(x;) - (34)

X] €%/(X) Figure 10. Mass-sum diagram for game 2 in the Ellsberg paradox

Xj X

The vague belief masses sf andx, in game 1 are then 'Ijhe'difference between options 2A and 2B emerges with
their different sharpness and vagueness. People cleatgrpr

-
© | oo =ofrmmmmemmmeoees
. 4
a~)

Option 1A: b\)((xl) =0, choice 2B §), because it has no vagueness, whereas choice
(35) 2A (xs) is affected by its vagueness df3.
Option 1B: by (x2) = ax(xa|xe) bx(x) = % ) We have shown that preferring option 1A over option 1B,

and that preferring option 2B over option 2A, is perfectly

Given the absence of uncertainty, the additivity propefty @ational, and therefore does not represent a paradox within
Eq.(15) allows us to compute the sharpnessebis;) = 1/3 the opinion model.

and bg (xz) = 0. Other models of uncertain probabilities are also able to

The mass-sum diagram of the options in Ellsberg bettingpain the Ellsberg paradox, such as e.g. Choquet camciti

game 1 is illustrated in Figure 9. (Choquet 1953 [4], Chateauneuf 1991 [5]). However, the
Ellsberg paradox only involves vagueness, not uncertainty

otlAMG): T ) fact, the Ellsberg paradox is quite simple and does not put
Opt.1B, M, (x,): px(xzi) into play the whole spectre of sharpness, vagueness and foca
—————————————F————F——* P uncertainty of opinions which can be relevant for decision
U S R R R S making. More complex examples than the Ellsberg paradox
Legend: [l Sharp belict mass can easily be articulated.
Vague belief mass V1. CONCLUSION

The expressiveness of subjective opinions can distinguish
between uncertainty and vagueness. This can be combined

with utility which produces a powerful framework for deani
The difference between options 14 ] and 1B &) emerges rpaking y P P
e

with their different sharp and vague belief masses. Peop
clearly prefer choice 1A because it only has sharpness and REFERENCES
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The vagueness ofs andXxg in game 2 are

Figure 9. Mass-sum diagram for game 1 in the Ellsberg paradox

Option 2A: by (xs) = ax (Xa|%e) bx (Xs) = 3 ,

Option 2B: by (xg) =0 .





