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Abstract—This paper describes how belief, uncertainty and
vagueness can be represented by subjective opinions. Criteria
for decision making can be articulated in terms of uncertainty
and vagueness in addition to expected utility. The notions of
uncertainty and vagueness provide a simple way of explaining
the Ellsberg paradox in decision making.

I. I NTRODUCTION

Decision making is the process of identifying and choosing
between alternative options based on beliefs about the differ-
ent options and their associated utility gains or losses. The
decision maker can be the analyst of the situation, or can act
on advice produced by an analyst. In the following, we do not
distinguish between the decision maker and the analyst, and
use the term ‘analyst’ to cover both.

Opinions can form the basis of decisions, and this paper
investigates how various aspects of an opinion should (ratio-
nally) determine the optimal decision. For this purpose, we
introduce new belief, uncertainty and vagueness concepts that
are described in SectionII. Decision criteria are defined in
Section IV and applied to explain Ellsberg’s paradox.

A. Subjective Opinions

Subjective logic is a formalism that represents uncertain
probabilistic information in the form ofsubjective opinions,
and that defines a variety of operations for subjective opinions.
In this section we present in detail the concept of subjective
opinion which is used for representing uncertain and vague
arguments and which provide basis for decision making.

In subjective logic adomain is a state space consisting of
two or more values. The values of the domain can e.g. be
observable or hidden states, events, hypotheses or proposi-
tions, just like in traditional Bayesian modeling. Domainsare
typically specified to reflect realistic situations for the purpose
of being practically analysed in some way.

The different values of the domain are assumed to be
mutually exclusive and exhaustive, which means that the
variable can take only one value at any time, and that all
possible values of interest are included in the domain. For
example, if the variable is theWEATHER, we can assume its
domain to be the set{rainy, sunny, overcast}.

For a given variable of interest, the values of its domain are
assumed to be the real possible states. A vague observation
may indicate that the variable takes one of several possible
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states, but not which one in particular. For example, we might
believe that the weather will be eitherrainy or sunny, but not
which of them. For this reason it is useful to let subsets of
the domain be possible values of the variable, i.e. to let the
variable take values from thehyperdomainwhich contains the
singleton values as well as the composite values. In this case
we are talking about ahypervariablein contrast to a random
variable. Belief mass can be assigned to the values of the
hypervariable according to the available information.

A subjective opinion distributes abelief massover the
values of the hyperdomain. The sum of the belief masses
is less than or equal to 1, and is complemented by the
uncertainty mass. A subjective opinion also contains abase
rate probability distribution expressing prior knowledge about
the specific class of random variables, so that in case of
significant uncertainty about a specific variable, the base rates
provide a basis for default likelihoods.

Let X be a variable over a domainX = {x1,x2, . . . ,xk}
with cardinality k, wherexi (1≤ i ≤ k) represents a specific
value from the domain. LetP(X) be the powerset ofX. The
hyperdomainis the reduced powerset ofX, denoted byR(X),
and defined as follows:

R(X) = P(X)\{{X},{ /0}}. (1)

All proper subsets ofX are values ofR(X), but X and /0
are not, since they are not considered possible observations to
which we can assign beliefs. The hyperdomain has cardinality
2k−2. We use the same notation for the values of the domain
and the hyperdomain, and considerX a hypervariablewhen
it takes values from the hyperdomain.

The composite setC (X) is the set of non-singleton values,
expressed as

C (X) = R(X)\X . (2)

Let A denote anagent. A’s opinion on the variableX is a
tuple denoted

ωA
X = (bbbA

X,u
A
X,aaa

A
X), (3)

where bbbA
X : R(X) → [0,1] is a belief mass distribution, the

parameteruA
X ∈ [0,1] is an uncertainty mass, andaaaA

X :X→ [0,1]
is a base rate probability distribution satisfying the following
additivity constrains:

uA
X +∑

x∈R(X)

bbbA
X(x) = 1, (4)

∑
x∈X

aaaA
X(x) = 1 . (5)
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In the notation of the subjective opinionωA
X , the subscript

denotes the variableX, the object of the opinion, while
the superscript denotes the opinion ownerA, the subjectof
the opinion. Explicitly expressing subjective ownership of
opinions makes it possible to express that different agents
have different opinions on the same variable. Indication of
opinion ownership can be omitted when the subject is clear
or irrelevant, for example, when there is only one agent in the
modelled scenario.

The belief mass distributionbbbA
X has 2k − 2 parameters,

whereas the base rate distributionaaaA
X only hask parameters.

The uncertainty parameteruA
X is a simple scalar. A general

opinion thus contains 2k + k−1 parameters. However, given
that Eq.(4) and Eq.(5) remove one degree of freedom each,
opinions over a domain of cardinalityk only have 2k+k−3
degrees of freedom.

A subjective opinion in whichuX = 0, i.e. an opinion
without uncertainty, is called adogmatic opinion. A dogmatic
opinion for whichbX(x) = 1, for somex, is called anabsolute
opinion. In contrast, an opinion for whichuX = 1, and conse-
quently,bX(x) = 0, for everyx∈ R(X), i.e. an opinion with
complete uncertainty, is called avacuous opinion.

Every subjective opinion ‘projects’ to a probability distri-
bution PX overX defined through the following function:

PX(xi) = ∑
x j∈R(X)

aaaX(xi |x j) bbbX(x j)+aaaX(xi) uX, (6)

whereaX(xi |x j) is therelative base rateof xi ∈X with respect
to x j ∈ R(X) defined as follows:

aaaX(xi |x j) =
aaaX(xi ∩x j)

aaaX(x j)
, (7)

whereaX is extended onR(X) additively. For the relative base
rate to be always defined, it is enough to assumeaA

X(xi)> 0,
for everyxi ∈X. This means that everything we include in the
domain has a non-zero probability of occurrence in general.

Binomial opinions apply to binary random variables where
the belief mass is distributed over two values. Multinomial
opinions apply to random variables inn-ary domains, and
where the belief mass is distributed over the values of the
domain. General opinions, also calledhyper-opinions, apply
to hypervariables where belief mass is distributed over values
in hyperdomains obtained fromn-ary domains. A binomial
opinion is equivalent to a Beta probability density function,
a multinomial opinion is equivalent to a Dirichlet probabil-
ity density function, and a hyper-opinion is equivalent to
a Dirichlet hyper-probability density function [1]. Binomial
opinions thus represent the simplest opinion type, which can
be generalised to multinomial opinions, which in turn can
be generalised to hyper-opinions. Simple visualisations for
binomial and trinomial opinions are based on barycentric
coordinate systems as illustrated in Figures 1 below.

In general, a multinomial opinion can be represented as
a point inside a regular simplex. In particular, a trinomial
opinion can be represented inside a tetrahedron (a 4-axis
barycentric system), as shown in Figure 1.

X

PX aXx3 vertex
x1 vertex

u
X

x2 vertex

u vertex  (uncertainty)

Figure 1. Visualisation of a trinomial opinion

Assume the random variableX on domainX= {x1, x2, x3}.
Figure 1 shows multinomial opinionωX with belief mass dis-
tribution bbbX = (0.20, 0.20, 0.20), uncertainty massuX = 0.40
and base rate distributionaaaX = (0.750, 0.125, 0.125).

II. A SPECTS OFBELIEF AND UNCERTAINTY IN OPINIONS

The above section on opinions only distinguishes between
belief mass and uncertainty mass. This section dissects belief
into more granular types calledsharpness, vaguenessandfocal
uncertainty.

A. Sharpness

Belief mass that only supports a specific value is called
sharp belief mass, because it sharply supports a single value
and discriminates between values. Note that we also interpret
belief mass on a composite value (and its subsets) to be sharp
for that composite value, because it discriminates betweenthat
composite value and any other value which is not a subset of
that value.

Definition 1 (Sharpness): LetX be a domain with hyper-
domain R(X) and variable X. Given an opinionωX, the
sharpness of value x∈R(X) is the function bbbS

X : R(X)→ [0,1]
expressed as

Sharp belief mass: bbbS
X(x) = ∑

xi⊆x
bbbX(xi) . (8)

It is useful to express sharpness of composite values in
order to assist decision making in situations like the Ellsberg
paradox described in Section V.

The total sharp belief mass denotedbTS
X is simply the sum

of all belief masses assigned to singletons, defined as follows.
Definition 2 (Total Sharp Belief Mass): LetX be a domain

with variable X, and letωX be an opinion onX. The total
sharpness of the opinionωX is the function bTS

X : X → [0,1]
expressed as

Total sharp belief mass: bTS
X = ∑

xi∈X

bbbX(xi) . (9)

Sharpness represents the complement of the sum of vague-
ness and uncertainty, as described below.



B. Vagueness

Recall from Eq.(2) that the composite setC (X) is the set
of all composite values from the hyperdomain. Belief mass
assigned to a composite value expresses cognitive vagueness,
because this type of belief mass supports the truth/presence
of multiple singletons inX simultaneously, i.e. it does not
discriminate between the singletons in the composite value.
In the case of binary domains, there can be no vague belief
mass, because there are no composite values. In the case of
hyperdomains, composite values exist, and every singletonx∈
X is a member of multiple composite values. The vagueness
of a singletonx ∈ R(X) is defined as the weighted sum of
belief masses on the composite values of whichx is a member,
where the weights are determined by the base rate distribution.
The total amount of vague belief mass is simply the sum of
belief masses on all composite values in the hyperdomain. The
formal definitions of these concepts are given next.

Definition 3 (Vagueness): LetX be a domain andR(X)
denote its hyperdomain. LetC (X) be the composite set of
X according to Eq.(2). Let x∈ R(X) denote a value in
hyperdomainR(X), and let xj ∈ C (X) denote a composite
value inC (X). Given an opinionωX, the vagueness of value
x∈ R(X) is the function bbbV

X : R(X)→ [0,1] expressed as

Vague belief mass: bbbV
X(x) = ∑

xj∈C (X)

x j 6⊆x

aaaX(x|x j) bbbX(x j) . (10)

Note that Eq.(10) not only defines vagueness of singletons
x ∈ X, but also defines vagueness of composite valuesx ∈
C (X), i.e. of all valuesx∈ R(X).

In casex is a composite value, then the belief massbbbX(x)
does not contribute to the vagueness ofx, despite bbbX(x)
representing vague belief mass for the whole opinion. The
vague belief mass in an opinionωX is defined as the sum of
belief masses on composite valuesx j ∈C (X), formally defined
as follows.

Definition 4 (Total Vague Belief Mass): LetX be a domain
with variable X, and letωX be an opinion onX. The total
vagueness of the opinionωX is the function bTV

X : X → [0,1]
expressed as:

Total vague belief mass: bTV
X = ∑

x j∈C (X)

bbbX(x j) . (11)

An opinion ωX is dogmatic and vague whenbTV
X = 1, and

is partially vague when 0< bTV
X < 1. An opinion has mono-

vagueness when only a single composite value has (vague)
belief mass assigned to it. On the other hand, an opinion has
pluri-vagueness when several composite values have (vague)
belief mass assigned to them.

Note the difference between uncertainty and vagueness in
subjective logic. Uncertainty reflects lack of evidence, whereas
vagueness results from evidence that fails to discriminate
between specific singletons. A vacuous (totally uncertain)
opinion – by definition – does not contain any vagueness.
Hyper-opinions can contain vagueness, whereas multinomial
and binomial opinions never contain vagueness. The abilityto

express vagueness is thus the main aspect that makes hyper-
opinions different from multinomial opinions.

Under the assumption that collected evidence never decays,
uncertainty can only decrease over time, because accumulated
evidence is never lost. As the natural complement, sharpness
and vagueness can only increase. At the extreme, a dogmatic
opinion wherebTV

X = 1 expressesdogmatic vagueness. A dog-
matic opinion wherebTS

X = 1 expressesdogmatic sharpness,
which is equivalent to a traditional probability distribution over
a random variable.

Under the assumption that evidence decays e.g. as a function
of time, uncertainty can increase over time because uncertainty
increase is equivalent to the loss of evidence. Vagueness
decreases in case new evidence is sharp, i.e. when the new
evidence supports singletons, and old vague evidence decays.
Vagueness increases in case new evidence is vague, i.e. when
the new evidence supports composite values, and the old sharp
evidence decays.

C. Dirichlet Visualisation of Opinion Vagueness

The vagueness of a trinomial opinion can not easily be
visualised as such on the opinion tetrahedron. However, it can
be visualised in the form of a hyper-Dirichlet PDF. Let us for
example consider the ternary domainX with corresponding
hyperdomainR(X) illustrated in Figure 2.
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Figure 2. Hyperdomain for the example of vague belief mass

The singletons and composite values ofR(X) are listed
below.







Domain: X = {x1,x2,x3},
Hyperdomain: R(X) = {x1,x2,x3,x4,x5,x6},
Composite set: C (X) = {x4,x5,x6},

where







x4 = {x1,x2},
x5 = {x1,x3},
x6 = {x2,x3}.

Let us further assume a hyper-opinionωX with belief mass
distribution and base rate distribution specified in Eq.(12)
below.

Belief mass distribution
{

bbbX(x6) = 0.8,
uX = 0.2.

Base rate distribution






aaaX(x1) = 0.33,
aaaX(x2) = 0.33,
aaaX(x3) = 0.33.

(12)

Note that this opinion has mono-vagueness, because the
vague belief mass is assigned to only one composite value.



The projected probability distribution onX computed with
Eq.(6), and the vague belief mass computed with Eq.(10), are
given in Eq.(13) below.

Projected probability
distribution






















PX(x1) = 0.066,

PX(x2) = 0.467,

PX(x3) = 0.467.

Vague belief mass






















bbbV
X(x1) = 0.0,

bbbV
X(x2) = 0.4,

bbbV
X(x3) = 0.4.

(13)

The hyper-Dirichlet PDF for this vague opinion is illustrated
in Figure 3. Note how the probability density is spread out
along the edge between thex2 andx3 vertices, which precisely
indicates that the opinion expresses vagueness betweenx2 and
x3. To be mindful of vague belief of this kind can be useful
for an analyst, in the sense that it can exclude specific values
from being plausible. A non-plausible value in this example
is x1.
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Figure 3. Hyper-Dirichlet PDF with vague belief

In the case of multinomial and hypernomial opinions larger
than trinomial, it is challenging to design visualisations. A
possible solution in case visualisation is required for opinions
over large domains is to use partial visualisation over specific
values of the domain that are of interest to the analyst.

D. Focal Uncertainty

When an opinion contains uncertainty, the simplest inter-
pretation is to consider that the whole uncertainty mass is
shared between all the values of the (hyper)domain. However,
as indicated by the expressions for projected probability of
e.g. Eq.(6), the uncertainty mass can be interpreted as being
implicitly assigned to (hyper)values of the variable, as a
function of the base rate distribution over the variable. This
interpretation is captured by the definition of focal uncertainty
mass.

Definition 5 (Focal Uncertainty): LetX be a domain and
R(X) denote its hyperdomain. Given an opinionωX, the focal
uncertainty mass of a value x∈ R(X) is computed with the
function uuuF

X : R(X)→ [0,1] defined as

Focal uncertainty mass: uuuF
X(x) = aaaX(x) uX . (14)

E. Mass-Sum

The sharpness, vagueness and focal uncertainty concepts
defined in the previous section are representative for each value
by pulling belief and uncertainty mass proportionally across
the belief masses and the uncertainty of the opinion. The
concatenation of sharpness, vagueness and focal uncertainty
is then called mass-sum, and similarly for total mass-sum.

The additivity properties of mass-sums are described next.

F. Mass-Sum for Sharpness, Vagueness and Focal Uncertainty

The sum of sharpness, vagueness and focal uncertainty of
a value is equal to the value’s projected probability, expressed
as

bbbS
X(x)+bbbV

X(x)+uuuF
X(x) = PX(x). (15)

Eq.(15) shows that the projected probability can be split into
three parts which are: i) sharpness, ii) vagueness, and iii)focal
uncertainty. The composition of these three parts, calledmass-
sum, is the function denotedMX(x). The concept of mass-sum
is defined next.

Definition 6 (Mass-Sum): LetX be a domain with hyper-
domainR(X), and assume that the opinionωX is specified.
Consider a value x∈ R(X) with sharpness bbbS

X(x), vagueness
bbbV

X(x) and focal uncertainty uuuF
X(x). The mass-sum function of

value x is the triplet denotedMX(x) expressed as

Mass-sum: MX(x) =
(

bbbS
X(x), bbbV

X(x), uuuF
X(x)

)

. (16)

Given an opinionωX, each valuex∈R(X) has an associated
mass-sumMX(x) which is a function of the opinionωX. The
term ‘mass-sum’ means that the triplet of sharpness, vagueness
and focal uncertainty has the additivity property of Eq.(15).

In order to visualise a mass-sum, consider the ternary
domainX= {x1,x2,x3} and hyperdomainR(X) illustrated in
Figure 4, where the belief masses and uncertainty mass of
opinion ωX are indicated in the diagram.
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x1 x2
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x5 x6
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Figure 4. Hyperdomain with belief masses

Formally, the opinionωX is specified in Table I. The table
includes the mass-sum values in terms of sharpness, vagueness
and focal uncertainty. The table also shows the projected
probability for every valuex∈ R(X).

The mass-sums from opinionωX listed in Table I are
visualised as amass-sum diagramin Figure 5. Mass-sum
diagrams are useful for assisting decision making, becausethe



Table I
OPINION WITH SHARPNESS, VAGUENESS, FOCAL UNCERTAINTY AND

PROJECTED PROBABILITY.

x bbbX(x) aaaX(x) bbbS
X(x) bbbV

X(x) uuuF
X(x) PX(x)

uX

x1 0.10 0.20 0.10 0.16 0.04 0.30
x2 0.10 0.30 0.10 0.16 0.06 0.32
x3 0.00 0.50 0.00 0.28 0.10 0.38
x4 0.20 0.50 0.40 0.12 0.10 0.62
x5 0.30 0.70 0.40 0.14 0.14 0.68
x6 0.10 0.80 0.20 0.34 0.16 0.70
X 0.20

0.0 1.0

P

Legend: Sharp belief mass

Focal uncertainty mass

:)(M 5xX

:)(M 6xX

:)(M 1xX

:)(M 2xX

:)(M 3xX

:)(M 4xX

Vague belief mass

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

)(P 1xX

)(P 2xX

)(P 3xX

)(P 4xX

)(P 5xX

)(P 6xX

Figure 5. Mass-sum diagram forωX

degree of sharpness, vagueness and focal uncertainty can be
clearly understood.

Mass-sum diagrams visualise the nature of beliefs in each
value, and can also represent hyper-opinions in a way which
scales to larger domains.

In Figure 5 it can be seen thatx3 has the greatest projected
probability among the singletons, expressed asPX(x3) = 0.38.
However, the mass-sum ofx3 is void of sharpness, so its pro-
jected probability is solely based on vagueness and uncertainty,
which affects decision making.

G. Total Mass-Sum

The belief mass of an opinion as a whole can be decom-
posed into sharpness which provides distinctive support for
singletons, and vagueness which provides vague support for
singletons. These two belief masses are then complementary
to the uncertainty mass. For any opinionωX it can be verified
that Eq.(17) holds:

bTS
X +bTV

X +uX = 1 . (17)

Eq.(17) shows that the belief and uncertainty mass can be
split into the three parts of sharpness, vagueness and focal
uncertainty. The composition of these three parts is calledtotal
mass-sum, denoted MT

X, and is defined below.
Definition 7 (Total Mass-Sum): LetX be a domain with hy-

perdomainR(X), and assume that the opinionωX is specified.
The sharpness bbbS

X(x), vagueness bbbV
X(x) and focal uncertainty

uuuX(x) can be combined as a triplet, which is then called the
total mass-sum, denotedMT

X and expressed as

Total mass-sum:MT
X =

(

bTS
X , bTV

X , uX
)

. (18)

The total mass-sum of opinionωX from Figure 4 and Table I
is illustrated in Figure 6.

0.0 1.0

P

Legend: Total sharp belief mass

Uncertainty mass

:MT

X

Total vague belief mass

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Figure 6. Visualising the total mass-sum fromωX

III. U TILITY AND NORMALISATION

Utility for random variable is expressed by letting each
value x have an associated utilityλλλ X(x) expressed on some
scale such as monetary value, which can be positive or
negative. Given utilityλλλ X(x) in case of outcomex, then the
expected utility forx and total expected utility forX are

Expected utility: LX(x) = λλλ X(x)PX(x) , (19)

Total expected utility: LTX = ∑
x∈X

λλλ X(x)PX(x) . (20)

In classical utility theory, decisions are based on expected
utility for possible options. Integrating utility into theprob-
abilities for each option [2] produces autility-normalised
probability vector, which simplifies decision-making models,
because every option then has a simpleutility-probability.

Normalisation is needed when comparing decision options.
The normalisation factor must be appropriate for all variables,
so that the utility-normalised probability vectors are within a
given range. Note that in case of negative utility for a specific
outcome, the utility-normalised probability for that outcome
is also negative. Utility-normalised probability is therefore a
synthetic notion.

Let λ+ denote the greatest absolute utility of all utilities in
all vectors. Thus, if the greatest absolute utility is negative,
thenλ+ takes its positive (absolute) value.

Definition 8 (Utility-Normalised Probability Vector): Let
λ+ denote the greatest absolute utility fromλλλ X and from
other relevant utility vectors that will be considered in
order to compare different options. The utility-normalised
probability vector produced byPX, λλλ X and λ+ is expressed
as

PN
X(x) =

LX(x)
λ+

=
λλλ X(x)PX(x)

λ+
, ∀x∈ X. (21)

Note that the utility-normalised probability vectorPN
X does

not represent a probability distribution, and in general does not
satisfy the additivity requirement of a probability distribution.
Other utility-normalised notions are defined next.



Definition 9 (Utility-Normalised Masses): The utility-
normalised sharpness, vagueness and focal uncertainty for
x∈ X are expressed as

Utility-normalised
sharpness:

bbbNS
X (x) =

λλλ X(x)bbb
S
X(x)

λ+
, (22)

Utility-normalised
vagueness:

bbbNV
X (x) =

λλλ X(x)bbb
V
X(x)

λ+
, (23)

Utility-normalised
focal uncertainty:

uuuNF
X (x) =

λλλ X(x)uuuF
X(x)

λ+
. (24)

The utility-normalised probabilityis expressed in Eq.(25):

Utility-normalised
probability:

PN
X(x) = bbbNS

X (x)+bbbNV
X (x)+uuuN

X(x). (25)

Having defined utility-normalised probability, it is possible
to directly compare options without involving utilities, because
utilities are integrated into the utility-normalised probabilities.

The utility-normalised mass-sum is defined below.
Definition 10 (Utility-Normalised Mass-Sum): The utility-

normalised mass-sum function of x is the triplet denoted
MN

X(x) expressed as

Utility-normalised
mass-sum:

MN
X(x) =

(

bbbNS
X (x), bbbNV

X (x), uuuNF
X (x)

)

.

(26)
Note that utility-normalised sharpness, vagueness and focal

uncertainty do not represent realistic measures, and must be
considered as purely synthetic.

As an example of applying utility-normalised probability,
consider two urns named X and Y that both contain 100
red and black balls, where you will be asked to draw a ball
at random from one of the urns. The possible outcomes are
namedx1 = ‘Red’ andx2 = ‘Black’ for urn X, and are similarly
namedy1 = ‘Red’ andy2 = ‘Black’ for urn Y.

You are told that urn X contains 70 red balls, 10 black balls
and 20 balls that are either red or black. The corresponding
opinion ωX is expressed as

Opinion ωX =





bbbX(x1) = 7/10, aaaX(x1) = 1/2,
bbbX(x2) = 1/10, aaaX(x2) = 1/2,
uX = 2/10.



 (27)

You are told that urnY contains 40 red balls, 20 black balls
and 40 balls that are either red or black. The corresponding
opinion ωY is expressed as

Opinion ωY =





bbbY(y1) = 4/10, aaaY(y1) = 1/2,
bbbY(y2) = 2/10, aaaY(y2) = 1/2,
uY = 4/10.



 (28)

Imagine that you must select one ball at random, from either
urn X or Y, and you are asked to make a choice about which
urn to draw it from in a single betting game. With option X,
you receive $1000 if you draw ‘Black’ from urn X (i.e. if you
drawx2). With option Y, you receive $500 if you draw ‘Black’

from urn Y (i.e. if you drawy2). You receive nothing if you
draw ‘Red’ in either option. Table II summarises the options
in this game.

Table II
BETTING OPTIONS IN SITUATION INVOLVING UTILITIES

Red Black
Option X, draw from urn X: 0 $1000
Option Y, draw from urn Y: 0 $500

The mass-sums for drawing ‘Black’ are different for options
X and Y. However, the utility-normalised mass-sums are equal,
as illustrated in Figure 7. The normalisation factor used inthis
example isλ+ = 1000, since $1000 is the greatest absolute
utility.
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Opt.X,
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Figure 7. Diagram for mass-sums and for utility-normalised mass-sums

In general, the option with the greatest utility-normalised
probability should be chosen. Note that the utility-normalised
probability is equal for options X and Y, expressed as
PN

X(x2) = PN
Y (y2). Hence, utility-normalised probability alone

is insufficient for determining the best option in this example.
The decision in this case must be based on the sharpness,
which is greatest for option Y, expressed asbbbS

Y(y2)> bbbS
X(x2).

Note that is is not be meaningful to consider utility-
normalised sharpness for choosing between options. This is
explained in detail in Section IV.

In case of equal utilities for all options, then normalisation is
not needed, or it can simply be observed that utility-normalised
mass-sums are equal to the corresponding non-normalised
mass-sums, as expressed below.

When all
options have
equal utility:























Projected probability: PN
X = PX,

Sharpness: bbbNS
X = bbbS

X,

Vagueness: bbbNV
X = bbbV

X ,
Focal uncertainty: uuuNF

X = uuuF
X,

Mass-sum: MN
X = MX.

In the examples below, utilities for all options are equal, so
for convenience, the diagrams show simple mass-sums, which
are equal to the corresponding utility-normalised mass-sums.

IV. D ECISION CRITERIA

The decision criteria follow the indicated order of priority.

1) The option with the highest utility-normalised probabil-
ity is the best choice.



2) Given equal maximal utility-normalised probability
among multiple options, the option with the greatest
sharpness is the best choice.

3) Given equal maximal utility-normalised probability as
well as equal maximal sharpness among multiple op-
tions, the option with the least focal uncertainty (and
therefore with the greatest vagueness, whenever rele-
vant) is the best option.

The above criteria predict the choice of the majority of
participants in the Ellsberg experiment described below.

V. THE ELLSBERG PARADOX

The Ellsberg paradox [3] results from an experiment which
shows how traditional probability theory is unable to explain
typical human decision-making behaviour.

In the Ellsberg experiment you are shown an urn with 90
balls in it, and you are told that 30 balls are red, and that
the remaining 60 balls are either black or yellow. One ball is
going to be selected at random, and you are asked to make
a choice in two separate betting games. Figure 8 shows the
hyperdomain of the Ellsberg paradox.

x3
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R  ( )
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x5 x6

1/3 0
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0
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Figure 8. Hyperdomain and belief mass distribution in the Ellsberg paradox

The domainX and its hyper-opinion are then expressed as

HyperdomainR(X) =































x1 : Red,
x2 : Black,
x3 : Yellow,
x4 : Red or Black,
x5 : Red or Yellow,
x6 : Black or Yellow.































(29)

Hyper-opinionωX =





















bbbX(x1) = 1/3, aaaX(x1) = 1/3,
bbbX(x2) = 0, aaaX(x2) = 1/3,
bbbX(x3) = 0, aaaX(x3) = 1/3,
bbbX(x4) = 0, aaaX(x4) = 2/3,
bbbX(x5) = 0, aaaX(x5) = 2/3,
bbbX(x6) = 2/3, aaaX(x6) = 2/3,
uX = 0.





















(30)
A quick look atωX reveals that it contains some sharp belief

mass, some vague belief mass and no uncertainty mass, so it
is a dogmatic and partially vague opinion.

In betting game 1 you must choose between option 1A and
1B. With option 1A you receive $100 if ‘Red’ is drawn, and
you receive nothing if either ‘Black’ or ‘Yellow’ is drawn.

With option 1B you receive $100 if ‘Black’ is drawn, and you
receive nothing if either ‘Red’ or ‘Yellow’ is drawn. Table III
summarises the options in game 1.

Table III
GAME 1: PAIR OF BETTING OPTIONS

Red Black Yellow
Option 1A: $100 0 0
Option 1B: 0 $100 0

Make a note of your choice from betting game 1, and then
proceed to game 2 where you are asked to choose between
two new options based on the same random draw of a single
ball from the same urn. With option 2A you receive $100 if
either ‘Red’ or ‘Yellow’ is drawn, and you receive nothing if
‘Black’ is drawn. With option 2B you receive $100 if either
‘Black’ or ‘Yellow’ is drawn, and you receive nothing if ‘Red’
is drawn. Table IV summarises the options in game 2.

Table IV
GAME 2: PAIR OF BETTING OPTIONS

Red Black Yellow
Option 2A: $100 0 $100
Option 2B: 0 $100 $100

Would you choose option 2A or 2B?
Ellsberg reports that, when presented with these pairs of

choices, most people select options 1A and 2B. Adopting the
approach of expected utility theory, this reveals a clear in-
consistency in probability assessments. On this interpretation,
when a person chooses option 1A over option 1B, he or she is
revealing a higher subjective probability assessment of picking
‘Red’ than of picking ‘Black’.

However, when the same person prefers option 2B over op-
tion 2A, he or she reveals that his or her subjective probability
assessment of picking ‘Black’ or ‘Yellow’ is higher than of
picking ‘Red’ or ‘Yellow’, which implies that picking ‘Black’
has a higher probability assessment than that of picking ‘Red’.
This seems to contradict the probability assessment of game
1, which therefore represents a paradox.

When explicitly expressing the vagueness of the opinions,
the majority’s preference for choices 1A and 2B becomes
perfectly rational, as explained next.

The utilities for options 1A and 1B are equal ($100), so
there is no difference between the utility-normalised probabil-
ities and the projected probabilities which are used for decision
modelling below. Projected probabilities are computed with
Eq.(6) which for convenience is repeated below:

PX(x) = ∑
x j∈R(X)

aaaX(x|x j) bbbX(x j)+aaaX(x) uX. (31)

Relative base rates are computed with Eq.(7) which for con-
venience is repeated below:

aaaX(x|x j) =
aaaX(x∩x j)

aaaX(x j)
. (32)



The projected probabilities ofx1 andx2 in game 1 are then

Option 1A: PX(x1) = aaaX(x1|x1) bbbX(x1) = 1
3 .

Option 1B: PX(x2) = aaaX(x2|x6) bbbX(x2) = 1
3 .

(33)

Note thatPX(x1) = PX(x2), which makes the the options
equal from a purely first-order probability point of view.
However they are affected by different vague belief mass as
shown below.

Vague belief mass ofx, denotedbbbV
X(x), is computed with

Eq.(10) which for convenience is repeated below:

bbbV
X(x) = ∑

xj∈C (X)

x j 6⊆x

aaaX(x|x j) bbbX(x j) . (34)

The vague belief masses ofx1 andx2 in game 1 are then

Option 1A: bbbV
X(x1) = 0 ,

Option 1B: bbbV
X(x2) = aaaX(x2|x6) bbbX(x6) = 1

3 .

(35)

Given the absence of uncertainty, the additivity property of
Eq.(15) allows us to compute the sharpnesses asbbbS

X(x1) = 1/3

and bbbS
X(x2) = 0.

The mass-sum diagram of the options in Ellsberg betting
game 1 is illustrated in Figure 9.
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Figure 9. Mass-sum diagram for game 1 in the Ellsberg paradox

The difference between options 1A (x1) and 1B (x2) emerges
with their different sharp and vague belief masses. People
clearly prefer choice 1A because it only has sharpness and
no vagueness, whereas choice 1B is affected by vagueness.

We now turn to betting game 2, where Option 2A(x5) and
Option 2B (x6) have the the projected probabilities

Opt.2A:PX(x5) = aaaX(x1|x1) bbbX(x1)+aaaX(x3|x6) bbbX(x6) = 2/3,

Opt.2B:PX(x6) = aaaX(x2|x6) bbbX(x6)+aaaX(x3|x6) bbbX(x6) = 2/3.

Note thatPX(x5) = PX(x6), which makes the the options
equal from a first-order probability point of view. However
they have different vague belief masses, as shown below.
Vague belief mass is computed with Eq.(10).

The vagueness ofx5 andx6 in game 2 are

Option 2A: bbbV
X(x5) = aaaX(x3|x6) bbbX(x6) =

1
3 ,

Option 2B: bbbV
X(x6) = 0 .

Given the absence of uncertainty, the additivity property of
Eq.(15) allows us to compute the sharpnesses asbbbS

X(x5) = 1/3

and bbbS
X(x6) = 2/3.

The mass-sum diagram of the options in Ellsberg betting
game 2 is illustrated in Figure 10.
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Figure 10. Mass-sum diagram for game 2 in the Ellsberg paradox

The difference between options 2A and 2B emerges with
their different sharpness and vagueness. People clearly prefer
choice 2B (x6), because it has no vagueness, whereas choice
2A (x5) is affected by its vagueness of1/3.

We have shown that preferring option 1A over option 1B,
and that preferring option 2B over option 2A, is perfectly
rational, and therefore does not represent a paradox within
the opinion model.

Other models of uncertain probabilities are also able to
explain the Ellsberg paradox, such as e.g. Choquet capacities
(Choquet 1953 [4], Chateauneuf 1991 [5]). However, the
Ellsberg paradox only involves vagueness, not uncertainty. In
fact, the Ellsberg paradox is quite simple and does not put
into play the whole spectre of sharpness, vagueness and focal
uncertainty of opinions which can be relevant for decision
making. More complex examples than the Ellsberg paradox
can easily be articulated.

VI. CONCLUSION

The expressiveness of subjective opinions can distinguish
between uncertainty and vagueness. This can be combined
with utility which produces a powerful framework for decision
making.
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