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Categories of Belief Fusion
Audun Jøsang

Abstract—Belief Fusion consists of merging beliefs about a domain of interest from multiple separate sources. No single belief fusion method is
adequate for all categories of situations, hence the challenge is to determine which belief fusion method is the most appropriate for a given situation.
The conclusion to be drawn from this discussion is that the analyst must first understand the dynamics of the situation at hand in order to find the best
fusion method for analysing it. The aim of this article is first to demonstrate that there are appropriate situations to use belief fusion, and that different
mathematical fusion operators are required for the different situations. Secondly we propose criteria than can be applied to identify the various
categories of fusion situations, and describe specific belief fusion operators that are suitable for modeling the fusion situations in each category.

F

1 INTRODUCTION

When analyzing hypotheses about specific domains of interest
there is often a need to combine evidence from multiple sources.
This principle belongs to information fusion in general, and is
called belief fusion when the evidence is represented as belief.
It is important to realise that there is no single fusion method
that is suitable for analyzing all situations of belief fusion. It is
also quite challenging to determine the best belief fusion method
for a specific situation, and there has been considerable confusion
around this issue in the literature. It is therefore crucial to have
a consistent method for categorising different situations of belief
fusion, and to apply this method for selecting the most suitable
belief-fusion operator for each category of situations.

Beliefs are represented as subjective opinions throughout this
article. A subjective opinion generalises the traditional representa-
tions of belief functions by including a base rate distribution over
the values of the domain variable. A domain of interest contains
the possible hypotheses or states that the analyst is interested in,
e.g. for identifying the hypothesis which correspond best with
reality. A subjective opinion is denoted ωC

X , where C represents
the source of the opinion and X represents the variable of the
opinion’s object/target domain.

In general, the source of an opinion can be a human, or it
can be a sensor which produces data which in turn can form
the basis for an opinion. Multiple separate sources, e.g. denoted
C1, C2, ... CN , can produce different and possibly conflicting
opinions ω

C1
X , ω

C2
X , . . .ωCN

X about the same variable X . In this
situation, source fusion consists of merging the different sources
into a single source that can be denoted �(C1,C2, . . .CN), and
mathematically fusing their opinions into a single opinion denoted
ω
�(C1,C2,...CN )
X which then represents the opinion of the merged

sources. The source merger function is here denoted by the
symbol ‘�’, and the general belief-fusion principle is illustrated
in Figure 1.

Different belief fusion situations can vary significantly and
semantically depending on the purpose and nature of the fusion
process, and hence require different fusion operators. However, it
can be challenging to identify the correct or most suitable fusion
operator for a specific situation. In general, a given fusion operator
is unsuitable when it produces wrong results in some instances of
a situation, even if it produces correct results in most instances of
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Figure 1. Belief-fusion principle

the situation. A fusion operator should produce sound and intuitive
results in all realistic instances of the situation to be analysed.

In order to see the importance of using the correct belief fusion
method in a given fusion situation it is instructive to consider other
situation types where the effect of applying the correct or incorrect
formal model and method is more obvious. First, consider the
situation of predicting the physical strength of a steel chain, where
the classical and correct model is that of the weakest link. Then,
consider the situation of determining the competitive strength of a
relay swimming team, for which an adequate model is the average
strength of each swimmer on the team, in terms of how fast each
swimmer can swim.

Applying the weakest-link model (i.e. the slowest swimmer)
to predict the overall speed of the relay swimming team is an
approximation which might give a relatively good prediction in
most instances of high-level swimming championships. However,
it is obviously an incorrect model and would produce rather
unreliable predictions if there are large variations in speed between
the swimmers in a relay swimming team.

Similarly, applying the average strength model for assessing
the physical strength of the steel chain represents an approxima-
tion which would produce relatively good strength predictions in
most instances of high-quality steel chains where the link strength
is highly uniform. However, it is obviously a very poor model
which would be unreliable in general, and which could have fatal
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consequences if life depended on it.
These examples illustrate the inadequacy of anecdotal exam-

ples for determining whether the weakest-link model is suitable
for predicting the strength of relay swimming teams. Similarly it is
insufficient to simply use a few anecdotal examples to test whether
the averaging principle is adequate for modelling the strength
of steel chains. Without a clear understanding of the situation
to be modelled, the analyst does not have a basis for selecting
the correct and appropriate model. The selection of appropriate
models might be obvious for the simple examples above, but it
can be challenging to judge whether a fusion operator is suitable
for a specific situation of belief fusion [1].

The conclusion to be drawn from this discussion is that the
analyst must first understand the dynamics of the situation at hand
in order to find the best model for analysing it.

The aim of this article is first to demonstrate that there can
be many different categories of situations of belief fusion, and
that different mathematical fusion operators are required for the
computation of belief fusion in the different categories of belief-
fusion situations. Secondly we propose criteria for identifying the
various categories of fusion situations, and describe specific belief
fusion operators that are suitable for belief fusion in each category.

This work forms part of the effort to define “Evaluation
of Techniques for Uncertainty Representation” under the ETUR
Working Group [2] where the URREF ontology is one of the
reference documents [3], [4]. Previous work on defining categories
for belief fusion is described in [1], [5]. The contribution of the
current work is to generalise and define new operators for belief
fusion, and to clarify the understanding of fusion categories. Belief
fusion belongs to the domain of high-level fusion [6] in contrast
to other types of low-level data fusion.

Section 2 describes a set of belief-fusion categories The
criteria defined in Section 3 then describe how a given fusion
situation can be understood and categorised. Section 6 describes
corresponding fusion operators for the respective categories. Sec-
tion 7 provides numerical examples to compare the different
fusion operators, and Section 8 discusses the implications of the
categories of belief fusion presented in this article.

2 CATEGORIES OF FUSION SITUATIONS

Situations of belief fusion take belief arguments from multiple
sources through a fusion process to produce a single belief
argument. More specifically, a fusion situation is characterised by
a domain of two or more state values, and the various sources’
different belief arguments about these values. The domain of state
values can be interpreted as a set of competing hypotheses, where
it is assumed that only one value/hypothesis is TRUE at any one
time. Each belief argument can assign belief mass to one or several
state values, which thereby represents support for those values in
terms of which values are believed to be TRUE. The purpose
of belief fusion is to produce a new belief argument that reflect
the sources’ collective set of belief arguments in the most fair or
correct way. It is then assumed that the fused belief argument
supports the most correct, acceptable or most preferred value,
when seen from the perspective of the collective set of sources.

It is often challenging to determine the correct or the most
appropriate fusion operator for a specific situation. Our approach
of addressing this challenge is to define categories of similar
situations according to their typical characteristics, which then
allows to determine a suitable belief fusion operator for each

category. Four distinct categories as well as one hybrid category
of fusion situations are described below.

• Belief Constraint Fusion (BCF) is suitable when assuming
that: 1) belief arguments must not be wrong (sources are
totally reliable), and 2) there is no compromise in case of
totally conflicting arguments, hence the fusion result is not
defined in that case. In some situations these properties are
desirable. An example is when two persons try to agree
on seeing a movie at the cinema. If their preferences share
common movies they can decide to watch one of them. Yet, if
their preferences have no movies in common then there is no
solution, with the rational consequence they will not watch
any movie together. BCF is described in Section 6.1.

• Cumulative Belief Fusion (CBF) is suitable when assuming
that the amount of independent evidence increases by in-
cluding more and more sources. For example, when different
independent biometric sensors (e.g. fingerprint, voice, face)
are being used to authenticate a person, the results from
each sensor can be fused with CBF, which produces an
opinion with decreasing uncertainty (increased assurance)
about the identity of the person. CBF has the vacuous
opinion as neutral element, but is not idempotent. CBF is
described in Section 6.2. A modification of CBF is when
it is assumed or desired that the fusion process produces
uncertainty maximised opinions. It is then possible to apply
uncertainty maximisation after CBF, which is called CBF-
UM for short. This could e.g. be when witnesses express
their opinions about whether Oswald shot Kennedy, which
when fused with CBF-UM produces an epistemic opinion
about who shot him. CBF-UM is described in Section 6.5.

• Averaging Belief Fusion (ABF) is suitable when dependence
between sources is assumed, so that including more sources
does not necessarily add more evidence behind the fused
belief, it just changes the average distribution of evidence.
In case of equal belief arguments, the fused result should
be the same, which means that idempotence is assumed. An
example of this type of situation is when a jury tries to reach
a verdict after having observed the court proceedings. It is
also assumed that a vacuous belief argument does have an
influence on the fused result, which means that ABF does not
have a neutral element. This is interpreted in the sense that
the source of the vacuous belief argument says: “I do not see
any evidence and therefore do not have any belief about this,
and I want my vacuous argument belief to be reflected in the
fused output belief”. ABF is described in Section 6.3.

• Weighted Belief Fusion (WBF) is also suitable when de-
pendence between sources is assumed, so that adding more
sources does not necessarily add more evidence in total.
Equal belief arguments should produce equal fused belief,
meaning that idempotence is assumed. However, it is as-
sumed that a vacuous belief argument has no influence on the
fused result, meaning that WBF does have a neutral element
in the form of vacuous belief. This is interpreted in the sense
that the source of a vacuous belief argument says: “I do
not see any evidence and therefore do not have any belief
about this, and I will let the sources that do have evidence
and belief about this determine the fused belief without
me”. An example of this type of situation is when experts
(e.g. medical doctors) express multinomial opinions about
a set of hypothesis (e.g. diagnoses). WBF is described in
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Figure 2. Procedure for selecting a suitable belief-fusion operator for each category

Section 6.4. In case of hyper-opinions WBF does not identify
shared (vague) belief on overlapping (composite) values in
the domain, and simply computes the weighted average.

• Weighted Belief Fusion with Vagueness Maximisation
(WBF-VM) can be used when the analyst naturally wants
to preserve shared beliefs from different sources, and to
transform conflicting beliefs into vague belief. In this way
shared belief is preserved when it exists, and compromise
vague belief is formed when necessary. In the case of totally
conflicting beliefs, then the resulting fused belief becomes
vague. WBF-VM is probability-idempotent, commutative
and has the vacuous belief argument as neutral element.
Probability-idempotence means that the projected probability
distribution is preserved when fusing equal opinions, but the
fused opinion will in general have different vague belief.
A situations where WBF-VM is suitable is when experts
(e.g. medical doctors) express hyper-opinions about a set
of hypothesis (e.g. diagnoses). WBF-VM takes into account
shared (vague) belief on overlapping (composite) values, and
is therefore suitable for preserving shared beliefs when fusing
hyper-opinions. WBF-VM is described in Section 6.6.

The subtle differences between the fusion situations above
illustrate the challenge of modelling them correctly. For instance,
consider the task of determining the location of a mobile phone
subscriber at a specific point in time by collecting location evi-
dence from a base station, in which case it seems natural to use
belief constraint fusion. If two adjacent base stations detect the
subscriber, then the belief constraint operator can be used to locate
the subscriber within the overlapping region of the respective radio

cells. However, if two base stations far apart detect the subscriber
at the same time, then the result of belief constraint fusion is not
defined so there is no conclusion. With additional assumptions, it
would still be reasonable to think that the subscriber is probably
located in one of the two cells, but not which one in particular, and
that the case needs further investigation because the inconsistent
signals might be caused by an error in the system. Some method
of trust revision [7] can be applied in this situation.

3 CRITERIA FOR IDENTIFYING FUSION CATEGORIES

While having multiple fusion categories can help in scoping
the solution space, there is still the issue of determining which
category a specific situation belongs to. In order to select the
correct or most adequate fusion method the analyst must consider
a set of assumptions about the fusion situation to be analysed
and for each assumption judge whether it is applicable. The most
adequate fusion method is then identified as a function of the
set of assumptions that applies to the situation to be analysed.
This procedure for identifying and selecting the most appropriate
fusion operator is illustrated in Figure 2. The steps in the selection
procedure are further described below.
(a) The analyst first needs a good understanding of the situation

to be modelled in order to select the most suitable fusion
operator. This includes being able to make the binary choices
of (b), (d), (f) and (h) below.

(b) Shall it be possible to fuse totally conflicting beliefs?
(c) In case it is assumed that two totally conflicting belief

arguments should leave no room for compromise, then BCF
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(Belief Constraint Fusion) is probably the most suitable
operator. BCF is not defined in case of totally conflicting
belief or preference arguments, which reflects the assumption
that there is no compromise solution in case of total conflict.

(d) Is idempotence assumed, i.e. should two equal belief argu-
ments produce the same output belief?

(e) In case idempotence is not assumed, then CBF (Cumulative
Belief Fusion) is probably the most suitable operator. CBF
is suitable when non-idempotent is assumed, meaning that
equal belief arguments represent independent support for
specific values of the variable, which thereby contribute to
reducing the uncertainty in the output belief. In addition to
being non-idempotent, CBF can handle totally conflicting
opinions, as required for this category.

(f) Should a vacuous belief argument have any influence on the
output fusion result?

(g) In case it is assumed that a vacuous belief arguments shall
influence the output, then no neutral element exists, which
indicates that ABF (Averaging Belief Fusion) is a suitable
operator. ABF can be meaningful e.g. for making a survey of
opinions where vacuity (lack of belief) in a belief argument
shall be reflected as less confidence in the output fused belief.

(h) How should conflicting belief be handled?
(i) The simplest belief conflict management principle is to com-

pute the weighted average of conflicting belief mass. WBF
(Weighted Belief Fusion) is suitable for fusing multinomial
opinions, but less so for fusing hyper-opinions because the
operator is blind to common belief between two vague belief
arguments which assign belief mass to partially overlapping
composite values.

(j) In case it is assumed that conflicting belief mass should be
transformed into compromise (vague) belief then WBF-VM
is suitable, i.e. it would be adequate to apply vagueness max-
imisation (VM) after the weighted belief fusion (WBF). In
contrast to simple WBF, the post-processing with vagueness
maximisation takes into account and reflects common belief
aspects between different opinion arguments, which often
better reflects human intuition.

It can be difficult to tell which category a specific situation
belongs to. In addition, the choice of fusion operator can also
be influenced by the type of fusion result the analyst wants to
obtain, which e.g. could be to have an uncertainty-maximised or
vagueness-maximised fused opinion.

The various belief fusion operators corresponding to each cat-
egory in Figure 2 are described in Section 6 below. Before delving
into the the formalism of belief fusion operators it is necessary
to first describe the representation of subjective opinions and the
corresponding Dirichlet PDF (Probability Density Function).

4 SUBJECTIVE OPINIONS

This section describes subjective opinions which represent beliefs
over random variables in subjective logic.

In the formalism of subjective logic, a domain is a state space
of values which can represent e.g. observable or hidden states,
events, hypotheses or propositions [5]. A variable X associated
with a domain X can take values x ∈ X. A variable with an
associated probability distribution over its domain is called a
random variable.

The different values of the domain are assumed to be mutually
exclusive and exhaustive, which means that the variable can take

only one value at any time, and that all possible values of interest
are included in the domain.

Available evidence may indicate that the variable takes a value
in a given subset of values, but it is unclear which specific value
in particular. For this reason it is meaningful to consider subsets
as composite values, where the hyperdomain contains all the
singletons as well as composites values. It is then possible to have
a belief mass distribution over all these values, instead of only
having a probability distributions over singleton values.

A subjective opinion distributes a belief mass over the values
of the hyperdomain. The sum of the belief masses is less than
or equal to 1, and is complemented with an uncertainty mass
which reflects the opinion’s confidence level. Subjective opinions
also contain a base rate probability distribution expressing prior
knowledge about the specific class of random variables, so that
in case of significant uncertainty about a specific variable, the
base rates provide a basis for default likelihoods. We give formal
definitions of these concepts in what follows.

Let X be a variable over a domain X = {x1,x2, . . . ,xk} of
cardinality k, where xi (1≤ i≤ k) represents a specific value from
the domain. Let P(X) be the powerset of X. The hyperdomain is
the reduced powerset of X, denoted by R(X), and defined as:

R(X) = P(X)\{X, /0}. (1)

All proper subsets of X are values of R(X), but X and /0 are
not, because they are not considered as possible observations to
which belief mass can be assigned. Since X and /0 are excluded
the hyperdomain has cardinality 2k−2. We use the same notation
for the values of a domain and its hyperdomain, and say that X is
a hypervariable when it takes values from the hyperdomain.

Let A denote a source which can be a human, a sensor, etc. A
subjective opinion ωA

X of the source A on the variable X is a tuple

ω
A
X = (bbbA

X ,u
A
X ,aaa

A
X ), (2)

where bbbA
X : R(X)→ [0,1] is a belief mass distribution, the pa-

rameter uA
X ∈ [0,1] is an uncertainty mass, and aaaA

X : X→ [0,1] is a
base rate probability distribution satisfying the following additivity
constrains:

uA
X +∑

x∈R(X)
bbbA

X (x) = 1, (3)

∑
x∈X

aaaA
X (x) = 1 . (4)

In the notation of the subjective opinion ωA
X , the superscript is

the source A, while the subscript is the object target variable X . An
explicit source notation makes is possible to express the fact that
different sources produce different opinions on the same variable.
The source can be omitted in the opinion notation whenever the
source is implicit or irrelevant, for example when there is only one
source in the modelled situation.

The belief mass distribution bbbA
X has 2k−2 parameters, whereas

the base rate distribution aaaA
X only has k parameters. The uncer-

tainty parameter uA
X is a simple scalar. A general opinion thus

contains 2k + k− 1 parameters. However, given that Eq.(3) and
Eq.(4) remove one degree of freedom each, an opinion over a
domain of cardinality k only has 2k + k− 3 degrees of freedom.
Note that it is possible to express base rates over composite values
as expressed by Eq.(5) below.

aaaX (xi) = ∑
x j∈X
x j⊆xi

aaaX (x j) , ∀xi ∈R(X) . (5)
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A subjective opinion in which uX = 0, i.e. an opinion without
uncertainty, is called a dogmatic opinion. A dogmatic opinion for
which bX (x) = 1, for some x, is called an absolute opinion. In
contrast, an opinion for which uX = 1, and consequently, bX (x) =
0, for every x ∈ R(X), i.e. an opinion with total uncertainty, is
called a vacuous opinion.

Every subjective opinion ‘projects’ to a probability distribution
PX over X defined through the following function:

PX (xi) = ∑
x j∈R(X)

aaaX (xi|x j) bbbX (x j)+aaaX (xi) uX , (6)

where aX (xi|x j) is the relative base rate of xi ∈ X with respect to
x j ∈R(X) defined as follows:

aaaX (xi|x j) =
aaaX (xi∩ x j)

aaaX (x j)
, (7)

where aX is extended on R(X) additively. For the relative base
rate to be always defined, it is enough to assume aA

X (xi) > 0, for
every xi ∈X. This means that everything we include in the domain
has a non-zero probability of occurrence in general.

Binomial opinions apply to binary random variables where the
belief mass is distributed over the two values in a binary domain.
Multinomial opinions apply to random variables in n-ary domains,
and where the belief mass is distributed over the values of the
domain. Figure 3 visualises a ternary multinomial opinion as a
point inside a tetrahedron.

ωX 

PX aX x3 vertex x1 vertex 

uX 

x2 vertex 

u vertex  (uncertainty) 

Figure 3. Example trinomial opinion

General opinions, also called hyper-opinions, apply to hyper-
variables where belief mass is distributed over values in a hyper-
domain which is the reduced powerset of an n-ary domain. Given
a hyper-opinion, it is possible to project it onto a multinomial
opinion. Assume a hyper opinion ωX and let bbb. X be the belief mass
distribution defined by the sum in Eq.(6), i.e.

bbb. X (x) = ∑
x′∈R(X)

aaaX (x|x′) bbbX (x′) , (8)

then it is easy to check that bbb. X : X→ [0,1], and that bbb. X together
with uX satisfies the additivity property in Eq.(3). The multinomial
opinion denoted ω. X = (bbb. X ,uX ,aaaX ) is the projected opinion from
the hyper-opinion of ωX . By defining the unary operator �. to
represent hyper-to-multinomial projection we can write:

Hyper-to-Multinomial Projection : ω. X = �. (ωX ). (9)

From Eq.(6) and Eq.(8) we obtain P(ωX ) = P(ω. X ). This
means that every hyper-opinion can be approximated with its

projected multinomial opinion which by definition has the same
projected probability distribution as the initial hyper-opinion.

A binomial opinion is equivalent to a Beta probability den-
sity function, a multinomial opinion is equivalent to a Dirichlet
probability density function, and a hyper-opinion is equivalent
to a Dirichlet hyper-probability density function [8]. Binomial
opinions thus represent the simplest opinion type, which can be
generalised to multinomial opinions, which in turn can be gener-
alised to hyper-opinions. Simple visualisations for binomial and
trinomial opinions are based on barycentric coordinate systems as
illustrated in Figures 3 and 4.

Consider a domain X with its hyperdomain R(X) and power-
set P(X). Recall that {X} ∈P(X). Let x denote a specific value
of R(X) or of P(X).

In DST (Dempster-Shafer Theory) [9], the belief mass on
value x is denoted mmm(x), and the belief mass distribution is
called a basic belief assignment (bba). It is possible to define a
direct bijective mapping between the bba of DST and the belief
mass distribution and uncertainty mass of subjective opinions, as
expressed by Eq.(10):

Mapping between the
bba of DST and the
belief/uncertainty masses
of subjective opinions:


mmm(x) = bbbX (x), ∀x ∈R(X),

mmm(X) = uX .

(10)
Technically, the bba of DST and the belief/uncertainty repre-

sentation of subjective opinions are thus equivalent. Their interpre-
tations however are different. Subjective opinions can not assign
belief mass to the domain X itself. This interpretation corresponds
to the (hyper-) Dirichlet model, where only observations of values
of X (or R(X)) are counted as evidence. The domain X itself
can not be an observation in the (hyper-) Dirichlet model, and
hence can not be counted as evidence. The difference between the
belief representation in DST and the opinion representation in SL
is that the DST belief representation does not take base rates into
account. As a result the projected (called ‘pignistic’) probability
in DST [9] can only be computed with default base rates equal to
the relative cardinalities of (hyper) values in the domain, whereas
the projected probability of subjective opinions can be computed
with any base rate distribution.

5 DIRICHLET REPRESENTATION OF BELIEFS

A hyper-opinion is equivalent to a Dirichlet HPDF (hyper prob-
ability density function) over a hyperdomain R(X), according
to the bijective mapping described in Section 5.2. For self-
containment, we briefly outline the Dirichlet hypernomial model
below, and refer to [10] for details about the Dirichlet model, and
to [5] for details about the Dirichlet HPDF. The Dirichlet HPDF
can be projected to a Hyper-Dirichlet PDF [11] which is useful
for visualisation, but the Hyper-Dirichlet PDF is out of the scope
of this presentation.

5.1 The Dirichlet Hypernomial Model

Multinomial probability density over a domain X of cardinality k
is expressed by the k-dimensional Dirichlet PDF, where the special
case of a probability density over a binary domain (where k = 2)
is expressed by the Beta PDF. As a generalisation, hypernomial
probability over the hyperdomain R(X) of cardinality κ = 2k−2
is expressed by the κ-dimensional Dirichlet HPDF [11].
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The set of input arguments to the Dirichlet HPDF over R(X)
then becomes a sequence of strength parameters of the κ possi-
ble (composite) values x ∈ R(X) represented as κ positive real
numbers αX (xi), i = 1 . . .κ , each corresponding to one of the
possible values x ∈ R(X). Because this is a Dirichlet PDF over
a hypervariable, it is called a Dirichlet Hyper-PDF, or Dirichlet
HPDF for short.
Definition 1 (Dirichlet HPDF). Let X be a domain consisting

of k mutually disjoint values, where the corresponding hyper-
domain R(X) has cardinality κ = (2k− 2). Let αX represent
the strength vector over the κ values x ∈ R(X). The hyper-
probability distribution pppH

X and the strength vector αX are
both κ-dimensional. The Dirichlet hyper-probability density
function over pppH

X , called Dirichlet HPDF for short, is denoted
DirH

X (pppH
X ; αX ), and is expressed as

DirH
X (pppH

X ;αX ) =
Γ

(
∑

x∈R(X)
αX (x)

)
∏

x∈R(X)
Γ(αX (x)) ∏x∈R(X)pppH

X (x)
(αX (x)−1),

where αX (x)≥ 0 ,
(11)

with the restrictions that pH
X (x) 6= 0 if αX (x)< 1 .

The strength vector αX represents the prior as well as the ob-
servation evidence, now assumed applicable to values x ∈R(X).

Since the values of R(X) can contain multiple singletons from
X, a value of R(X) has a base rate equal to the sum of the base
rates of the singletons it contains, as expressed by Eq.(5). The
strength αX (x) for each value x ∈R(X) can then be expressed as

∀x ∈R(X),
αX (x) = rrrX (x)+aaaX (x)W,

where



rrrX (x)≥ 0 ,

aaaX (x) = ∑
x j⊆x
x j∈X

aaa(x j),

W = 2 .

(12)

The Dirichlet HPDF over a set of κ possible states xi ∈R(X)
can thus be expressed as a function of the observation evidence
rrrX and the base rate distribution aaaX (x), where x ∈ R(X). The
constant W represents the non-informative prior weight which as
a convention is set to W = 2 [5] (p.33). The superscript ‘eH’ in the
notation DireH

X indicates that it is expressed as a function of the
evidence parameter vector rrrX (not the strength parameter vector
αX ), and that it is a Dirichlet HPDF (not a traditional Dirichlet
PDF). The evidence-based Dirichlet HPDF is expressed as

DireH
X (pppH

X ;rrrX ,aaaX ) =

Γ

(
∑

x∈R(X)
(rrrX (x)+aaaX (x)W )

)
∏

x∈R(X)
Γ(rrrX (x)+aaaX (x)W ) ∏

x∈R(X)
pppH

X (x)
(rrrX (x)+aaaX (x)W−1),

where (rrrX (x)+aaaX (x)W )≥ 0,

(13)

with the restriction that pppH
X (x) 6= 0 if (rrrX (x)+aaaX (x)W )< 1 .

DireH
X in Eq.(13) is the expression for probability density over

hyper-probability distributions pH
X , where each value x ∈ R(X)

has a base rate according to Eq.(7).
Because a value x j ∈ R(X) can be composite, the expected

probability of any value x ∈ X is not only a function of the direct
probability density on x, but also of the probability density of all

other values x j ∈R(X) that contain x. More formally, the expected
probability of x ∈ X results from the probability density of each
x j ∈R(X) where x∩ x j 6= /0.

Given the Dirichlet HPDF of Eq.(13), the expected probability
of any of the k values x ∈ X can be written as

EX (x) =

∑
xi∈R(X)

aaaX (x|xi)rrr(xi)+WaaaX (x)

W + ∑
xi∈R(X)

rrr(xi)
∀x ∈ X . (14)

The mapping between the hyper-opinion and the Dirichlet
HPDF is based on defining the expected probability distribution of
a Dirichlet HPDF expressed by Eq.(14) to be equal to the projected
probability of hyper-opinions expressed by Eq.(6), i.e. EX = PX .

5.2 Mapping Between a Hyper-opinion and a Dirichlet HPDF

Figure 4 is a screenshot of the visualisation of the mapping
between binomial opinions ω

C1
X and ω

C2
X on the left and the

corresponding Beta PDFs on the right.
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Figure 4. Mapping opinions ω
C1
X and ω

C2
X to Beta PDFs

In general, a hyper-opinion is equivalent to a Dirichlet HPDF
according to the mapping defined below.
Definition 2 (Mapping: Hyper-opinion ↔ Dirichlet HPDF).

Let X be a domain consisting of k mutually disjoint values,
where the corresponding hyperdomain R(X) has cardinality
κ = (2k−2), and let X be a hypervariable in R(X). Let ωX be
a hyper-opinion on X , and let DireH

X (pppH
X ;rrrX ,aaaX ) be a Dirichlet

HPDF over the hyper-probability distribution pppH
X . The hyper-

opinion ωX and the Dirichlet HPDF DireH
X (pppH

X ;rrrX ,aaaX ) are
equivalent through the following mapping:

∀x ∈R(X)



bbbX (x) =
rrrX (x)

W + ∑
xi∈R(X)

rrrX (xi)
,

uX =
W

W + ∑
xi∈R(X)

rrrX (xi)
,
⇔



For uX 6= 0:
rrrX (x) =

WbbbX (x)
uX

,

1 = uX +∑
xi∈R(X)

bbbX (xi),

For uX = 0:
rrrX (x) = bbbX (x) ·∞,

1 = ∑
xi∈R(X)

bbbX (xi).



(15)
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The advantage of the Dirichlet HPDF is to provide an inter-
pretation and equivalent representation of hyper-opinions.

This equivalence is very powerful because tools and methods
used in Bayesian statistics can be applied to subjective opinions.
In addition, the operators of subjective logic, such as conditional
deduction, the subjective Bayes’ theorem [12] and abduction,
can be applied to statistical representations of data based on the
Dirichlet model.

6 BELIEF FUSION OPERATORS

There are different categories of belief fusion situations, and
each category requires its own operator for the computation of
belief fusion [1]. In this article we focus on five different fusion
categories, namely constraint fusion cumulative fusion, averaging
fusion, weighted fusion and weighted fusion with vagueness which
are described below.

6.1 Belief Constraint Fusion

A typical application of belief theory in the literature is belief
fusion with the classical Dempster’s rule [9]. There has been
considerable confusion and controversy around the adequacy of
belief fusion operators, especially regarding Dempster’s rule [13].
The confusion started with Zadeh’s example from 1984 [14] where
Dempster’s rule is applied to a situation for which it is unsuitable
and therefore produces erratic results. The controversy followed
when authors failed to realise that it is not a question of whether
Dempster’s rule is correct or wrong, but of recognising the type of
situations for which Dempster’s rule is suitable.

As an analogy of the controversy around Dempster’s rule,
imagine a world where the swim vest (analogy of Dempster’s
rule) has been invented as a safety device (analogy of a belief
fusion operator). Then somebody demonstrates with an example
that swim vests provide very poor protection in a car crash
(analogy of Zadeh’s example). Some researchers explain this
by saying that swim vests perform poorly only in the case of
high speed (analogy of high conflict) car crashes, and suggest to
reduce the driving speed to make swim vests perform better. Other
researchers propose the seat belt as an alternative safety device
because it works well in car crashes, but this proposal is met
with criticism by people who claim that seat belts provide poor
protection in a sinking boat, in which case swim vests provide
good protection. Many other safety devices are invented, and each
device is promoted with an anecdotal example where it provides
relatively good protection. In this confusing discussion nobody
seems to understand that different safety hazards require different
safety devices for protection, and that there is no single safety
device that can provide adequate protection in all situations.

In an analogous fashion, the fact that different belief fusion
situations require different belief fusion operators has often been
ignored in the belief theory literature, and has been a significant
source of confusion for many years [13]. There is nothing wrong
with Dempster’s rule per se; there are situations where it is
perfectly appropriate, and there are situations where it is clearly
inappropriate. No single belief fusion operator is suitable in every
situation.

Dempster’s rule is traditionally presented as a method for
(cumulative) fusion of beliefs from different (independent) sources
[9] with the purpose of identifying the most ‘correct’ hypothesis
value from the domain. However, many authors have demonstrated
that Dempster’s rule is not an appropriate operator for this type of

fusion [14]. Motivated by the apparent inconsistency of results
produced by Dempster’s rule numerous authors have proposed
alternative belief fusion operators [15], [16], [17], [18], [19], [20],
[21], [22], but the authors often fail to specify which type of
situations they model.

We argue that Dempster’s rule is better suited as a method for
belief constraint fusion [13], [23], as shown in Figure 2. Situations
of this type are e.g. when agents express different preferences
with regard to a common decision that the agents must agree on
[23] or when the analyst is presented with specific hints that are
guaranteed to be valid [24], which is expressed by saying that the
sources are ‘reliable’.

It is common to see situations where people with different
preferences try to agree on a single choice, or situations where
evidence is presented as factual hints. This must not be confused
with fusion of belief from different agents to determine the most
likely correct hypothesis or actual event, because the beliefs
can not be taken as factual. Multi-agent preference combination
assumes that each agent has already made up her mind, and then
that they together want to determine the most acceptable decision
or choice for all. Similarly, the fusion of hints assumes that the
truth is known to the sources, but that they only reveal parts
of the truth in the form of hints. Preferences and hints over a
variable can be expressed in the form of subjective opinions. The
constraint fusion operator of subjective logic can be applied as a
method for merging preferences and hints from multiple sources
into a single conclusion for the group of sources. This operator
is expressive and flexible, and produces perfectly intuitive results.
Preference can be represented as belief mass, and indifference can
be represented as uncertainty mass. Positive and negative beliefs
are considered as symmetric concepts, so they can be represented
in the same way and combined using the same operator. Vacuous
belief has no influence on the conclusion, and thereby represents
the neutral element.

6.1.1 Method of Belief Constraint Fusion

The BCF (Belief Constraint Fusion) operator described next is an
extension of Dempster’s rule. The notation is also generalised to
cover multiple sources, not only two sources.

Definition 3 (The Constraint Fusion Operator).
Assume the domain X and its hyperdomain R(X), and assume
the hypervariable X which takes its values from R(X). Let
C = {C1,C2, . . .CN} denote a set of N independent sources.
Let C ∈ C denote a specific source, and let ωC

X denote its
opinion about the variable X .
The respective opinions can be mathematically merged using
the BCF (Belief Constraint Fusion) operator denoted ‘�’
which can be expressed as

ω
&(C)
X = �

C∈C

(
ωC

X
)

= ω
C1
X �ω

C2
X � . . .ωCN

X .

(16)

Source combination denoted ‘&’ thus corresponds to belief
fusion with ‘�’. The multi-source expression for BCF is given
by Eq.(17):
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∀ x ∈R(X) , ω
&(C)
X :

bbb&(C)
X (x) = Har(x)

(1−Con) ,

u&(C)
X =

∏
C∈C

uC
X

(1−Con) ,

aaa&(C)(x) =

∑
C∈C

aaaC
X (x)(1−uC

X )

N− ∑
C∈C

uC
X

, ∃uC
X < 1 ,

aaa&(C)(x) =

∑
C∈C

aaaC
X (x)

N
, ∀uC

X = 1 .

(17)

The term Har(x) represents the relative harmony between the
constraint opinion ωC

X (in terms of overlapping belief mass)
on x. The term Con represents the relative conflict between
constraints (in terms of non-overlapping belief mass) between
the constraint opinions ωC

X . DST’s notation mmm(x) for belief-
mass of x ∈P(X) given by Eq.(10) gives the most compact
notation for computing ‘Har’ and ‘Con’:

Har(x) = ∑
∩xC=x

xC∈P(X)

∏
C∈C

mmmC
X (x

C), (18)

Con = ∑
∩xC= /0

xC∈P(X)

∏
C∈C

mmmC
X (x

C). (19)

The divisor (1−Con) in Eq.(17) normalises the belief mass
and uncertainty mass; i.e. it ensures their additivity. The applica-
tion of the BCF operator is mathematically possible only if the
constraint opinions ωC

X are not totally conflicting, i.e., if Con 6= 1.
The BCF operator is commutative and non-idempotent. Asso-

ciativity is preserved when the base rate is equal for all agents.
Associativity in case of different base rates requires that all
preference opinions be combined in a single operation which
requires that Eq.(17) is applied for all input arguments in a single
operation, which then represents semi-associativity.

The base rates of the two arguments are normally equal, but
different base rates can be used in case of base rate disagreement
between the sources, in which case the fused base rate distribution
is the confidence-weighted average base rate.

Associativity in case of different base rates requires that all
arguments opinions be combined in a single operation according
to Definition 3. A totally indifferent opinion acts as the neutral
element for constraint fusion, formally expressed as

IF (ωA
X is indifferent, i.e. uA

X = 1) THEN (ωA
X �ω

B
X =ω

B
X ) . (20)

Having a neutral element in the form of the totally indifferent
(i.e. vacuous) opinion can be useful when modelling situations of
preference combination.

The rich format of subjective opinions makes it simple to
express positive and negative preferences within the same frame-
work, as well as indifference/uncertainty. Because preferences can
be expressed over arbitrary subsets of the domain, this is in fact
a multi-polar model for expressing and combining preferences.
Even in the case of totally conflicting dogmatic opinions the belief

constraint fusion operator produces meaningful results, namely
that the preferences are incompatible. Examples in Sections 6.1.2
– 6.1.5 demonstrates the usefulness of this property.

6.1.2 Expressing Preferences with Subjective Opinions

Preferences can be expressed as soft or hard constraints, qualitative
or quantitative, ordered or partially ordered, etc. It is possible to
specify a mapping between qualitative verbal tags and subjective
opinions, which enables easy solicitation of preferences [25].
Table 1 describes examples of how preferences can be expressed.

Table 1
Example preferences and corresponding subjective opinions

Example Type Domain & Opinion Expression

“Ingredient x is
mandatory”

Binary domain X= {x,x}

Hard positive Binomial opinion ωx : (1,0,0,1/2)

“Ingredient x is
totally out of the
question”

Binary domain X= {x,x}

Hard negative Binomial opinion ωx : (0, 1, 0, 1/2)

“I prefer x with
rating 0.3”

Binary domain X= {x,x}

Quantitative Binomial opinion ωx : (0.3, 0.7, 0.0, 1/2)

“I prefer x or y,
but z is also ac-
ceptable”

Ternary domain Θ = {x,y,z}

Qualitative Trinomial opinion ωΘ : (b({x,y}) = 0.6,
b(z) = 0.3, u = 0.1,
a(x1),a(x2),a(x3) = 1/3)

“I like x, but I
like y even more”

Binary domains X= {x,x} and Y= {y,y}

Positive rank Binomial opinions ωx : (0.6, 0.3, 0.1, 1/2),
ωy : (0.7, 0.2, 0.1, 1/2)

“I don’t like x,
and I dislike y
even more”

Binary domains X= {x,x} and Y= {y,y}

Negative rank Binomial opinions ωx : (0.3, 0.6, 0.1, 1/2),
ωy : (0.2, 0.7, 0.1, 1/2)

“I’m indifferent
about x, y and z”

Ternary domain Θ = {x,y,z}

Neutral Trinomial opinion ωΘ : (uΘ = 1.0,
a(x1),a(x2),a(x3) = 1/3)

“I’m indifferent
but most people
prefer x”

Ternary domain Θ = {x,y,z}

Neutral with bias Trinomial opinion ωΘ : (uΘ = 1.0, a(x) = 0.6,
a(y),a(z) = 0.2)

All the preference types of Table 1 can be interpreted in
terms of subjective opinions, and further combined by considering
them as constraints expressed by different sources/agents. The
examples which comprise two binary domains could equally well
have been modelled with a quaternary product domain with a
corresponding quatronomial product opinion. In fact, to compute
product opinions over product domains is an alternative approach
of simultaneously considering preferences over multiple variables.
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Default base rates are specified in all but the last example,
which indicates total indifference, but with a bias that expresses
the average preference in the population. Base rates are useful in
many situations, such as for default reasoning. Base rates influence
the computed results only in case of significant indifference or
uncertainty.

6.1.3 Example: Going to the Cinema, First Attempt

Assume three friends, Alice, Bob and Clark, who want to see
a film together at the cinema one evening, and that the only
films showing are Black Dust (x1), Grey Matter (x2) and White
Powder (x3), represented as the ternary domain X = {x1, x2, x3}.
Assume that the friends express their preferences in the form of
the opinions of Table 2.

Table 2
Fusion of film preferences

Belief preferences of: Fusion results:
Alice Bob Clark A & B A & B & C
ωA

X ωB
X ωC

X ωA&B
X ωA&B&C

X

b(x1) 0.99 0.00 0.00 0.00 0.00
b(x2) 0.01 0.01 0.00 1.00 1.00
b(x3) 0.00 0.99 0.00 0.00 0.00
b({x2,x3}) 0.00 0.00 1.00 0.00 0.00

Alice and Bob have strong and conflicting preferences. Clark,
who strictly does not want to watch Black Dust (x1), and who
is indifferent about the two other films, is not sure whether he
wants to come along, so Table 2 shows the results of applying the
belief/preference constraint fusion operator, first without him, and
then when including him in the party.

By applying belief constraint fusion, Alice and Bob conclude
that the only film they are both interested in seeing is Grey Matter
(x2). Including Clark in the party does not change that result
because he is indifferent to Grey Matter (x2) and White Powder
(x3) anyway, he just does not want to watch Black Dust (x1).

The belief mass values of Alice and Bob in the above example
are in fact equal to those that Zadeh [14] used to demonstrate the
unsuitability of Dempster’s rule for fusing beliefs by showing how
they produce counter-intuitive results. Zadeh’s example describes
a medical case where two medical doctors express their expert
opinions about possible diagnoses, which typically should not
have been modelled with Dempster’s rule (BCF), but with the
weighted belief fusion (WBF) operator [1], and possibly followed
by vagueness maximisation (WBF-VM). In order to select the
appropriate operator, it is crucial to fully understand the nature
of the situation to be modelled. The failure to understand that
Dempster’s rule does not represent an operator for cumulative
or averaging belief fusion, combined with the unavailability of
the general cumulative, averaging and weighted fusion operators
during that period (1976 [9] – 2013 [1]), has often led to inap-
propriate applications of Dempster’s rule to cases of belief fusion
[13]. However, when specifying the same numerical values as in
[14] in a case of preference constraints such as in the example
above, the belief constraint fusion operator (which is a simple
extension of Dempster’s rule) is the correct fusion operator which
produces perfectly intuitive results.

6.1.4 Example: Going to the Cinema, Second Attempt

In this example Alice and Bob soften their preference with some
indifference in the form of u = 0.01, as specified by Table 3. Clark
has the same opinion as in the previous example, and is still not
sure whether he wants to come along, so Table 3 shows both the
results without him, and with his preference included.

Table 3
Fusion of film preferences with indifference and non-default base rates

Belief preferences of: Fusion results:
Alice Bob Clark A & B A & B & C
ωA

X ωB
X ωC

X ωA&B
X ωA&B&C

X

bbb(X1) 0.98 0.00 0.00 0.490 0.000
bbb(x2) 0.01 0.01 0.00 0.015 0.029
bbb(x3) 0.00 0.98 0.00 0.490 0.961
bbb({x2,x3}) 0.00 0.00 1.00 0.000 0.010
u 0.01 0.01 0.00 0.005 0.000
aaa(x1) 0.6 0.6 0.6 0.6 0.6
aaa(x2) = a(x3) 0.2 0.2 0.2 0.2 0.2

Having some indifference in the preferences would mean that
Alice and Bob should pick film Black Dust (x1) or White Powder
(x3), because in both cases, one of them actually prefers one of
the films, and the other finds it acceptable. Neither Alice nor Bob
prefers Grey Matter (x2), they only find it acceptable, so it would
be a bad choice for both of them. When taking into consideration
the base rates a(x1) = 0.6 for Black Dust and a(x3) = 0.2 for
White Powder, the expected preference levels according to Eq.(6)
are such that

PA&B
X (x1)> PA&B

X (x3) . (21)

More precisely, the preference probabilities from Eq.(6) are

PA&B
X (x1) = 0.493 , PA&B

X (x3) = 0.491 . (22)

Because of the higher base rate, Black Dust (x1) also has a
higher expected preference than White Powder (x3) , so the rational
choice would be to watch Black Dust (x1) .

However, when including Clark, who does not want to watch
Black Dust (x1) , the base rates no longer dictate the result. In this
case constraint fusion with Eq.(6) produces PA&B&C(x3) = 0.966
so the obvious choice is to watch White Powder (x3).

6.1.5 Example: Not Going to the Cinema

Assume now that Alice and Bob have totally conflicting prefer-
ences as specified in Table 4, i.e. Alice has a hard preference for
Black Dust (x1) and Bob has a hard preference for White Powder
(x3). As before, Clark still does not want to watch Black Dust (x1),
and is indifferent about the other two films.

In this case, the belief constraint fusion operator can not
be applied because Eq.(17) involves a division by zero. The
conclusion is that the friends will not go to the cinema to see
a film together that evening. The test for detecting this situation
is to observe Con = 1 in Eq.(19). It makes no difference to
include Clark in the party, because a conflict can not be resolved
by including additional preferences. However it would have been
possible for Bob and Clark to watch White Powder (x3) together
without Alice.
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Table 4
Combination of film preferences with hard and conflicting preferences

Belief preferences of: Fusion results:
Alice Bob Clark A & B A & B & C
ωA

X ωB
X ωC

X ωA&B
X ωA&B&C

X

b(x1) 1.00 0.00 0.00 Undefined Undefined
b(x2) 0.00 0.00 0.00 Undefined Undefined
b(x3) 0.00 1.00 0.00 Undefined Undefined
b({x2,x3}) 0.00 0.00 1.00 Undefined Undefined

6.2 Cumulative Belief Fusion

Cumulative Belief Fusion (CBF) is when it is assumed that the
amount of evidence increases by including additional sources of
independent evidence. An example of this type of situation is
when different witnesses express their opinions about whether they
saw the accused at the crime scene, and where their independent
testimonies can be fused to produce an opinion about whether the
accused really was there.

Assume a hyperdomain R(X) and a process where the out-
come variable X takes values from R(X). Assume further that
the outcome can be observed by different independent sources
which can be expressed as C= {C1,C2, . . .CN}. Let C ∈ C denote
a specific source, and let ωC

X denote its opinion about the variable
X . Assume that the sources in C produce independent opinions
about the same variable X .

Observations can be vague, meaning that sometimes the
sources observe an outcome which might be one of multiple
possible singletons in X, but the sources are unable to identify
the observed outcome uniquely.

For example, assume that sources C1 and C2 observe coloured
balls being picked from an urn, where the balls can have one
of four colours: black, white, red or green. Assume further that
the observer C2 is colour-blind, which means that in poor light
conditions he is unable see the difference between red and green
balls, although he can always tell the other colour combinations
apart. As a result, his observations can be vague, meaning that
sometimes he perceives a specific ball to be either red or green, but
is unable to identify the ball’s colour precisely. This corresponds to
the situation where X is a hypervariable which can take composite
values from R(X).

The symbol ‘�’ denotes the fusion of independent sources C ∈
C into a single cumulative merged source denoted �(C).

Let C = {C1,C2, . . .CN} be a frame of N sources with the
respective opinions ω

C1
X ,ωC2

X , . . .ωCN
X over the same variable X .

Let C denote a specific source C ∈ C. The cumulative merger of
all the sources in the source frame C is denoted �(C). The opinion
ω
�(C)
X ≡

(
bbb�(C)X , u�(C)X , aaa�(C)X

)
is the cumulative fused opinion

expressed as:

Case I: uC
X 6= 0, ∀C ∈ C :



bbb�(C)X (x) =

∑
C∈C

(
bbbC

X (x) ∏
C j 6=C

u
C j
X

)

∑
C∈C

(
∏

C j 6=C
u

C j
X

)
− (N−1) ∏

C∈C
uC

X

,

u�(C)X =

∏
C∈C

uC
X

∑
C∈C

(
∏

C j 6=C
u

C j
X

)
− (N−1) ∏

C∈C
uC

X

,

aaa�(C)X (x) =

∑
C∈C

(
aaaC

X ∏
C j 6=C

u
C j
X

)
− ∑

C∈C
aaaC

X · ∏
C∈C

uC
X

∑
C∈C

(
∏

C j 6=C
u

C j
X

)
−N ∏

C∈C
uC

X

,

aaa�(C)X (x) =

∑
C∈C

aaaC
X

N
, ∀uC

X = 1,

(23)

Case II: ∃ uC
X = 0, define Cdog =

{
C where uC

X = 0
}

:



bbb�(C)X (x) = ∑
C∈Cdog

γ C
X bbbC

X (x),

u�(C)X = 0,

aaa�(C)X (x) = ∑
C∈Cdog

γ C
X aaaC

X (x),

(24)

where γ
C
X = lim

uC
dog

X → 0

uC
X

∑
C j∈Cdog

u
C j
X

, ∀C ∈ Cdog . (25)

The notation uC
dog

X → 0 means that uC
X→ 0 for each C ∈ Cdog.

The cumulative fused opinion ω
�(C)
X results from fusing the

respective opinions ωC
X of the sources C ∈ C. The symbol ‘⊕’

denotes the cumulative belief fusion operator, hence we define

ω
�(C)
X ≡ ⊕

C∈C
(ωC

X ) (26)

≡ ω
C1
X ⊕ ω

C2
X ⊕ . . . ω

CN
X . (27)

It can be verified that the cumulative fusion operator is com-
mutative, associative and non-idempotent. In Case II of Eq.(24),
the associativity depends on preserving the relative weights of
intermediate results with the additional weight parameter γ . In this
case, the cumulative fusion operator is equivalent to the weighted
average of probabilities.

The argument base rate distributions are normally equal. When
that is not the case the fused base rate distribution over X is
specified to be the evidence-weighted average base rate.

In case of N dogmatic arguments ωC
X where C ∈ C it can be

assumed that the limits in Eq.(24) are defined as γC
X = 1/N.
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6.2.1 Justification for the Cumulative Fusion Operator

The cumulative belief fusion operator of Eq.(23) is derived by
mapping the argument belief opinions to evidence parameters
through the bijective mapping of Eq.(15). Cumulative fusion of
evidence opinions simply consists of summing up the evidence
parameters, where the sum is mapped back to a belief opinion
through the bijective mapping of Eq.(15). This explanation is
in essence the justification of the cumulative fusion operator of
Eq.(23). A more detailed explanation is provided below.

Let the sources C ∈ C have respective belief opin-
ions expressed as ωC

X . The corresponding Dirichlet PDFs
Dire

X (pppX ;rrrC
X ,aaa

C
X ) contain the respective evidence vectors rrrC

X .

The cumulative fusion of these evidence vectors consists of
vector summation of rrrC

X where C ∈ C, expressed as

rrr�(C)X = ∑
C∈C

rrrC
X . (28)

For each value x ∈R(X) the evidence sum rrr�(C)X (x) is

rrr�(C)X (x) = ∑
C∈C

rrrC
X (x) (29)

= ∑
C∈C

WbbbC
X (x)

uC
X

(30)

=

W ∑
C∈C

(
bbbC

X (x) ∏
C j 6=C

u
C j
X

)
∏

C∈C
uC

X
. (31)

The cumulative fused belief opinion ω
�(C)
X of Eq.(23) results

from mapping the fused evidence belief mass of Eq.(28) back to a
belief opinion by applying the bijective mapping of Eq.(15).

bbb�(C)X (x) =
rrr�(C)X (x)

W + ∑
x∈R(X)

rrr�(C)X (x)
(32)

=

∑
C∈C

(
bbbC

X (x) ∏
C j 6=C

u
C j
X

)

∏
C∈C

uC
X + ∑

x∈R(X)

(
∑

C∈C

(
bbbC

X (x) ∏
C j 6=C

u
C j
X

)) (33)

=

∑
C∈C

(
bbbC

X (x) ∏
C j 6=C

u
C j
X

)

∑
C∈C

(
∏

C j 6=C
u

C j
X

)
− (N−1) ∏

C∈C
uC

X

, ∃ uC
X 6= 0 . (34)

The transition from Eq.(32) to Eq.(33) results from inserting
Eq.(31) into Eq.(32). The transition from Eq.(33) to Eq.(34) results
from applying Eq.(3).

u�(C)X =
W

W + ∑
x∈R(X)

rrr�(C)X (x)
(35)

=

∏
C∈C

uC
X

∏
C∈C

uC
X + ∑

x∈R(X)

(
∑

C∈C

(
bbbC

X (x) ∏
C j 6=C

u
C j
X

)) (36)

=

∏
C∈C

uC
X

∑
C∈C

(
∏

C j 6=C
u

C j
X

)
− (N−1) ∏

C∈C
uC

X

, where ∃ uC
X 6= 0 .

(37)

The transition from Eq.(35) to Eq.(36) results from inserting
Eq.(31) into Eq.(35). The transition from Eq.(36) to Eq.(37) results
from applying Eq.(3).

6.3 Averaging Belief Fusion

Averaging Belief Fusion (ABF) is when dependence between
sources is assumed. In other words, including more sources
does not mean that more evidence is supporting the conclusion.
An example of this type of situations is when a jury tries to
reach a verdict after having observed the court proceedings. The
assumption is that the correctness of the verdict does not increase
as a function of the number of jury members, because the amount
of evidence is fixed by what was presented in court.

Let C denote a group of N separate sources which can be
expressed as C = {C1,C2, . . .CN}. Assume that the sources in C
produce separate opinions based on the same evidence about the
same variable, so their opinions are necessarily dependent. Still,
their perceptions might be different, e.g. because their cognitive
capabilities are different. For example, assume that sources C1
and C2 together observe the picking of coloured balls from an
urn, where the balls can have one of four colours: black, white,
red or green. Assume that observer C2 is colour-blind, which
means that sometimes he has trouble distinguishing between red
and green balls, although he can always distinguish between the
other colour combinations. Observer C1 has perfect colour vision,
and normally can always tell the correct colour when a ball is
picked. As a result, when a red ball is picked, observer C1 almost
always identifies it as red, but observer C2 identifies it as green
relatively frequently. This can lead to C1 and C2 having different
and conflicting opinions about the same variable, although their
observations and opinions are totally dependent. The averaging
belief fusion operator is perfectly suitable for this fusion situation.

Let C = {C1,C2, . . .CN} be a frame of N sources with the
respective opinions ω

C1
X ,ωC2

X , . . .ωCN
X over the same variable X .

Let C denote a specific source C ∈ C. The averaging merger of
all the sources in the source frame C is denoted �(C). The opin-
ion ω

�(C)
X ≡

(
bbb�(C)X , u�(C)X , aaa�(C)X

)
is the averaging-fused opinion

expressed as:
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Case I: uC
X 6= 0, ∀C ∈ C :



bbb�(C)X (x) =

∑
C∈C

(
bbbC

X (x) ∏
C j 6=C

u
C j
X

)

∑
C∈C

(
∏

C j 6=C
u

C j
X

) ,

u�(C)X =

N ∏
C∈C

uC
X

∑
C∈C

(
∏

C j 6=C
u

C j
X

) ,

aaaA�B
X (x) =

∑
C∈C

aaaC
X (x)

N
,

(38)

Case II: ∃ uC
X = 0, define Cdog =

{
C where uC

X = 0
}

:



bbb�(C)X (x) = ∑
C∈Cdog

γ C
X bbbC

X (x),

u�(C)X = 0,

aaa�(C)X (x) = ∑
C∈Cdog

γ C
X aaaC

X (x),

(39)

where γ
C
X = lim

uC
dog

X → 0

uC
X

∑
C j∈Cdog

u
C j
X

, ∀C ∈ Cdog . (40)

The notation uC
dog

X → 0 means that uC
X→ 0 for each C ∈ Cdog.

The averaging-fused opinion ω
�(C)
X results from averaging fusion

of the respective opinions ωC
X of the sources C ∈ C. By using the

symbol ‘⊕’ to designate the averaging belief fusion operator, we
define

ω
�(C)
X ≡ ⊕

C∈C
(ωC

X ). (41)

It can be verified that the averaging belief fusion opera-
tor is commutative, idempotent, and non-associative. The non-
associativity means that

(ωC1
X ⊕ω

C2
X )⊕ω

C3
X 6= ω

C1
X ⊕(ωC2

X ⊕ω
C3
X ). (42)

However, semi-associativity exists as expressed by Eq.(41)
where the argument order is irrelevant because all the arguments
are fused in one single operation. The only way to apply averaging
fusion to more than two arguments is thus by fusing all arguments
in one operation as described in Eq.(38) and expressed by the
notation of Eq.(41). For three argument sources, this is expressed
as:

ω
�(C1,C2,C3)
X ≡⊕

(
ω

C1
X ,ωC2

X ,ω
C3
X

)
. (43)

The argument base rate distributions are normally equal. When
that is not the case the fused base rate distribution is specified to
be the average base rate distribution. In case the opinions of the N
sources in C are all dogmatic opinions, then the limits in Eq.(39)
can be set to γ C

X = 1/N.

6.3.1 Justification for the Averaging Fusion Operator

The averaging belief fusion operator of Eq.(38) is derived by map-
ping the argument belief opinions to evidence opinions through
the bijective mapping of Eq.(15). Averaging fusion of evidence
opinions simply consists of computing the average of the evidence
parameters. The fused evidence opinion is then mapped back to
a belief opinion through the bijective mapping of Eq.(15). This
explanation is in essence the justification of the averaging fusion
operator of Eq.(38). A more detailed explanation is provided
below.

Let the sources C ∈ C have respective belief opin-
ions expressed as ωC

X . The corresponding Dirichlet PDFs
Dire

X (pppX ;rrrC
X ,aaa

C
X ) contain the respective evidence vectors rrrC

X .

The averaging fusion of these evidence vectors consists of
vector averaging of rrrC

X where C ∈ C, expressed as

rrr�(C)X =

∑
C∈C

rrrC
X

N
. (44)

For each value x ∈R(X) the average evidence rrr�(C)X (x) is

rrr�(C)X (x) =
∑

C∈C
rrrC

X (x)

N
=

∑
C∈C

WbbbC
X (x)/uC

X

N
(45)

=

W ∑
C∈C

(
bbbC

X (x) ∏
C j 6=C

u
C j
X

)
N ∏

C∈C
uC

X
. (46)

The averaging-fused belief opinion ω
�(C)
X of Eq.(38) results

from mapping the fused evidence belief mass of Eq.(44) back to a
belief opinion by applying the bijective mapping of Eq.(15).

bbb�(C)X (x) =
rrr�(C)X (x)

W + ∑
x∈R(X)

rrr�(C)X (x)
(47)

=

∑
C∈C

(
bbbC

X (x) ∏
C j 6=C

u
C j
X

)

N ∏
C∈C

uC
X + ∑

x∈R(X)

(
∑

C∈C

(
bbbC

X (x) ∏
C j 6=C

u
C j
X

)) (48)

=

∑
C∈C

(
bbbC

X (x) ∏
C j 6=C

u
C j
X

)

∑
C∈C

(
∏

C j 6=C
u

C j
X

) , where ∃ uC
X 6= 0 . (49)

The transition from Eq.(47) to Eq.(48) results from inserting
Eq.(46) into Eq.(47). The transition from Eq.(48) to Eq.(49) results
from applying Eq.(3).
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u�(C)X =
W

W + ∑
x∈R(X)

rrr�(C)X (x)
(50)

=

N ∏
C∈C

uC
X

N ∏
C∈C

uC
X + ∑

x∈R(X)

(
∑

C∈C

(
bbbC

X (x) ∏
C j 6=C

u
C j
X

)) (51)

=

N ∏
C∈C

uC
X

∑
C∈C

(
∏

C j 6=C
u

C j
X

) , where ∃ uC
X 6= 0 . (52)

The transition from Eq.(50) to Eq.(51) results from inserting
Eq.(46) into Eq.(50). The transition from Eq.(51) to Eq.(52) results
from applying Eq.(3).

6.4 Weighted Belief Fusion

The weighted belief fusion (WBF) operator produces averaging
beliefs weighted by the opinion confidences.

The confidence cX of an opinion ωX is computed as:

cX = 1−uX . (53)

WBF is suitable for fusing source opinions in situations where
the confidence should determine the opinion weight in the fusion
process, which e.g. means that a vacuous opinion (i.e. an without
confidence) has no effect on the fusion result.

When the arguments are conflicting multinomial opinions the
fused result will be a dissonant multinomial opinion. This property
could be seen as counter-intuitive when fusing opinions from
human expert sources, because humans would tend to leverage
belief on overlapping values and prefer vagueness over dissonance
[26]. WBF is therefore best suited for frequentist situations where
dissonance is preferred over vagueness. When vagueness is pre-
ferred the WBF-VM operator described in Section 6.6 can be used
because it transforms dissonance into vagueness.

The definition of 2-source WBF specified in [5] was extended
to multi-source WBF in [27] which is expressed below.

Definition 4 (The Weighted Belief Fusion Operator).
Assume a hyperdomain R(X) and a situation where the

variable X takes values from the domain R(X). Assume
further that the different sources from a frame of N sources
C = {C1,C2, . . .CN} have their respective independent opin-
ions on X . A specific source is denoted by C ∈ C, and its
opinion about the variable X is denoted ωC

X .

Let ω
�̂(C)
X be the opinion such that

ω
�̂(C)
X = (bbb�̂(C)X , u�̂(C)X , aaa�̂(C)X ) , where (54)

Case I: (∀C ∈ C : uC
X 6=0) ∧ (∃C ∈ C : uC

X 6=1) :

bbb�̂(C)X (x) =

∑
C∈C

bbbC
X (x)(1−uC

X ) ∏
Ci∈C
Ci 6=C

uCi
X

∑
C∈C

∏
Ci∈C
Ci 6=C

uCi
X

−N ∏
C∈C

uC
X

,

u�̂(C)X =

(
N− ∑

C∈C
uC

X

)
∏

C∈C
uC

X∑
C∈C

∏
Ci∈C
Ci 6=C

uCi
X

−N ∏
C∈C

uC
X

,

aaa�̂(C)X (x) =

∑
C∈C

aaaC
X (x)(1−uC

X )

N− ∑
C∈C

uC
X

,

(55)

Case II: ∃C ∈ C : uC
X = 0. Let Cdog = {C ∈ C : uC

X = 0} :

bbb�̂(C)X (x) = ∑
C∈Cdog

γ C
X bbbC

X (x),

u�̂(C)X = 0,

aaa�̂(C)X (x) = ∑
C∈Cdog

γC
X aaaC

X (x),

(56)

where γ
C
X = lim

uC
dog

X → 0

uC
X

∑
C j∈Cdog

u
C j
X

, ∀C ∈ Cdog .

Case III: ∀C ∈ C : uC
X = 1 :

bbb�̂(C)X (x) = 0 ,

u�̂(C)X = 1 ,

aaa�̂(C)X (x) =

∑
C∈C

aaaC
X (x)

N
.

(57)

The notation uC
dog

X → 0 means that uC
X→ 0 for each C ∈ Cdog.

ω
�̂(C)
X denotes the WBF (Weighted Belief Fusion) opinion

resulting from the opinions ωC
X provided by the sources C ∈C.

By using the symbol ‘⊕̂’ to denote this belief operator, we
define

ω
�̂(C)
X ≡ ⊕̂

C∈C
(ωC

X ). (58)

It can be verified that WBF is commutative, idempotent and
has the vacuous opinion as neutral element. Semi-associativity
requires that three or more arguments must first be combined
together in the same operation.

The argument base rate distributions are normally equal among
the sources. When that is not the case the fused base rate distri-
bution over X is specified to be the confidence-weighted average
base rate distribution. In case of dogmatic arguments assume the
limits in Eq.(56) to be γ C

X = 1/N where N = |C|.
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The WBF operator is equivalent to updating Dirichlet PDFs
as the confidence-weighted average of source agents’ evidence
to produce posterior Dirichlet PDFs. The derivation of the
confidence-weighted fusion operator is based on the bijective
mapping between the belief and evidence notations described in
Eq. 15.
Theorem 1. The weighted belief fusion operator of Definition 4 is

equivalent to confidence-weighted averaging of the evidence
parameters of the Dirichlet HPDF in Eq.(14).

Proof 1. The weighted belief fusion operator of Definition 4
is derived by mapping the argument belief opinions to ev-
idence opinions through the bijective mapping of Eq.(15).
Weighted belief fusion of evidence opinions simply consists
of computing the confidence-weighted average of the evidence
parameters. The fused evidence opinion is then mapped back
to a belief opinion through the bijective mapping of Eq.(15).
This explanation is in essence the proof of Theorem 1. A more
detailed explanation is provided below.
Let the N sources C ∈ C have the respective belief opinions
ωC

X . The corresponding evidence opinions DireH
X (pppH

X ;rrrC
X ,aaa

C
X )

contain the respective evidence parameters rrrC
X .

The weighted fusion of these bodies of evidence simply
consists of weighted vector averaging of the parameters in the
evidence opinions DireH

X (pppH
X ;rrrC

X ,aaa
C
X ):

DireH
X (pppH

X ; rrr�̂(C)X , aaa�̂(C)X ) = ⊕̂
C∈C

DireH
X (pppH

X ; rrrC
X , aaaA

X ). (59)

More specifically, for each value x ∈ R(X) the confidence-
weighted fusion evidence rrr�̂(C)X (x) is computed as

rrr�̂(C)X (x) =
∑

C∈C
rrrC

X (x)(1−uC
X )

N− ∑
C∈C

uC
X

. (60)

The weighted fusion opinion ω
�̂(C)
X of Definition 4 results from

mapping the fused evidence belief mass of Eq.(59) back to
a belief opinion as defined in Definition 4 by applying the
bijective mapping of Eq.(15).

6.5 Uncertainty Maximisation

Uncertainty maximisation consists of transforming belief mass
of an opinion ωX into uncertainty mass while preserving the
projected probability distribution PX .

Given a specific multinomial opinion ωX , the corresponding
uncertainty-maximised opinion is denoted ω̈X = (b̈bbX , üX ,aaaX ). Ob-
viously, the base rate distribution aaaX is not affected by uncertainty-
maximisation.

The theoretical maximum uncertainty mass üX is determined
by converting as much belief mass as possible into uncertainty
mass, while preserving consistent projected probabilities. This
process is illustrated in Figure 5 which shows an opinion ωX as
well as the corresponding uncertainty-maximised opinion ω̈X .

The projector line defined by the equations

PX (xi) = bbbX (xi)+aaaX (xi)uX , i = 1, . . .k, (61)

which by definition is parallel to the base rate director line, and
which joins PX and ω̈X in Figure 5, defines possible opinions ωX
for which the projected probability distribution is constant. As the
illustration shows, the opinion ω̈X is the uncertainty-maximised

ωX 

aX 

x3 x1 

x2 

uX  vertex 

PX 

ωX 

PX (x1) = bX (x1) + aX (x1) uX 

PX (x2) = bX (x2) + aX (x2) uX 

PX (x3) = bX (x3) + aX (x3) uX 

¨ 

Figure 5. Uncertainty-maximised opinion ω̈X of multinomial opinion ωX

opinion when Eq.(61) is satisfied and at least one belief mass
of ω̈X is zero, since the corresponding point would lie on a
side of the simplex. In general, not all belief masses can be
zero simultaneously, except for vacuous opinions. The example
of Figure 5 shows the case where b̈bbX (x1) = 0.

The candidate maximum uncertainty mass ǔX (xi) at each point
where the projector intersects a side plane defined by bbbX (xi) = 0
can be determined by Eq.(62) :

ǔX (xi) =
PX (xi)

aaaX (xi)
. (62)

All belief masses determined according to Eq.(65) must be
non-negative, which is satisfied through the constraint of Eq.(63):

ǔX (xi)≤
PX (x)
aaaX (x)

, ∀x ∈ X. (63)

Under the constraint of Eq.(63) the maximised uncertainty üX
is the minimum candidate uncertainty from Eq.(62):

üX = min
xi∈X

[ǔX (xi)] . (64)

The belief masses under uncertainty maximisation emerge
from Eq.(65) which is simply a transformation of Eq.(6):

b̈bbX (x) = PX (x)−aaaX (x) üX . (65)

The uncertainty-maximised opinion consists of the compo-
nents denoted ω̈X = (b̈bbX ,aaaX , üX ). By defining �̈ to be the unary
operator for uncertainty maximisation we can write:

Uncertainty Maximisation : ω̈X = �̈(ωX ). (66)

A natural application of uncertainty maximisation is to pro-
duce epistemic opinions during opinion fusion. For that it is nec-
essary to first generate a fused opinion, and subsequently to apply
vagueness maximisation. In the case of e.g. CBF (Cumulative
Belief Fusion) the combination with uncertainty maximisation
is called CBF-UM (Cumulative Belief Fusion with Uncertainty
Maximisation). An situation where it would be natural to apply
CBF-UM could be when different witnesses express highly con-
fident and highly conflicting opinions about whether Oswald shot
Kennedy in 1968, which when fused with e.g. CBF would produce
an opinion with high confidence. Since the combined testimonies
in this case would be inconclusive it could be natural to apply
uncertainty maximisation to the result of CBF to produce CBF-
UM, as shown in the example of Section 7.
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6.6 Vagueness Maximisation

In situations where people give different hypotheses it is fair to
acknowledge that anyone can be wrong, and that a good consensus
might be to agree that one of the hypotheses probably is right. This
would typically be the situation in Zadeh’s example [14] where
two medical doctors give different diagnoses to explain a patient’s
symptoms, so that it would be natural for the doctors to agree
that one of the diagnoses is correct, but that they are unable to
identify which diagnosis in particular is correct. In this situation
the combination of the two doctors result in a vague diagnosis.

Composite values x ∈R(X) are state values containing mul-
tiple singleton values which e.g. can be different hypotheses such
as medical diagnoses. Vague belief is belief mass assigned to a
composite value, meaning that the belief mass applies to multiple
singletons simultaneously. Vague belief mass thus reflects that
the source believes that one of the singletons in the composite
value is TRUE, without being able to identify which singleton in
particular is TRUE. Vagueness is relevant for belief fusion, espe-
cially for WBF because vagueness can express compromise belief
between conflicting sources. Vagueness maximisation consists
of transforming belief masses on multiple singleton values into
belief mass on a composite value, while preserving the projected
probability distribution of Eq.(6).

In case the fused opinion ωX is hypernomial we need to first
apply Eq.(8) to compute the projected multinomial opinion ω. X .

Vagueness maximisation consists of transforming belief
masses on multiple singleton values into a vague belief mass on
the composite value containing the singletons. In case ω. X has
belief mass on every singleton x ∈ X then a transformation into
belief mass on X would not be meaningful because this is the
same as uncertainty mass, and the transformation would break
the assumption of preserving the amount of belief mass. We must
identify the value(s) xi ∈ X that should not be subject to vague
belief mass, which can be done by computing the uncertainty-
maximised opinion ω̈X as described in Section 6.5 above.

The method of uncertainty maximisation described above
forms the basis for the computation of vagueness-maximised
opinions which is described below in the form of 4 consecutive
steps. Note that this method of vagueness maximisation applies
to multinomial opinions. Hence, if the goal is to apply vagueness
maximisation to a hyper-opinion, a necessary preliminary step is
to first project it to a multinomial opinion according to Eq.(9)

Step 1:
Compute üX according to the procedure for uncertainty-
maximisation described in Section 6.5. Let X[1]

cut be the cut-out set
of values xi for which ǔX (xi) = üX with reference to Eq.(62) and
Eq.(64). Note that X[1]

cut may contain a single or multiple values.

Case A: |X[1]
cut| = 1. Keep the singular belief mass bbbX (x) of the

singleton value x ∈ X[1]
cut and proceed to Step 2.

Case B: 1 < |X[1]
cut| < |X|. The composite value x[1]vag = {x ∈ X[1]

cut}
gets assigned the vague belief mass bbbX (x

[1]
vag) according to Eq.(67).

bbbX (x
[1]
vag) = ∑

x∈X[1]
cut

bbbX (x). (67)

Then proceed to Step 2.

Case C: |X[1]
cut| = |X|: Split X into two exclusive sets X[1]

res and
X[2]

res for which the respective sums of projected probability
P(X[1]

res) and P(X[2]
res) are (approximately) equal. While this is

a form of the knapsack problem we propose to simply sum
up the greatest projected probabilities until the sum is greater
than 0.5, and assign the corresponding set of values to X[1]

res,
and the remaining values to X[2]

res. Define the composite values
x[1]vag = {x ∈ X[1]

res} and x[2]vag = {x ∈ X[2]
res}. Assign the vague belief

masses bbbX (x
[1]
vag) = ∑x∈X[1]

res
bbbX (x) and bbbX (x

[2]
vag) = ∑x∈X[2]

res
bbbX (x).

Proceed to the Final Step.

Step 2:
We exclude X[1]

cut to produce the residual set X[2]
res:

X[2]
res = X\X[1]

cut. (68)

Case A: |X[2]
res|= 0. Proceed to the Final Step.

Case B: |X[2]
res| = 1. Keep the singular belief mass bbbX (x) on the

singleton value x ∈ X[2]
res. Proceed to the Final Step.

Case C: |X[2]
res| ≥ 2. Now we focus exclusively on values xi ∈ X[2]

res
when applying the constraint of Eq.(63). The next synthetic
maximum uncertainty mass is:

ü[2]X = min
xi∈X

[2]
res

[ǔX (xi)] . (69)

Eq.(70) gives the corresponding synthetic belief masses:

b̈bb
[2]
X (x) = PX (x)−aaaX (x) ü[2]X , ∀x ∈ X[2]

res. (70)

We define the composite value x[2]vag = {x ∈ X[2]
res}. The vague

belief mass bbbX (x
[2]
vag) can then be assigned according to Eq.(71)

bbbX (x
[2]
vag) = ∑

x∈X[2]
res

(
bbbX (x)− b̈bb

[2]
X (x)

)
. (71)

Let the iterative step index be denoted η . Set η = 3 and
proceed to Step η .

Step η:
Let X[η−1]

cut be the set of values xi for which ǔX (xi) = ü[η−1]
X with

reference to Eq.(62) and Eq.(64). We exclude X[η−1]
cut from X[η−1]

res

to produce the residual set X[η ]
res :

X[η ]
res = X[η−1]

res \X[η−1]
cut . (72)

Case A: |X[η ]
res |= 0. Proceed to the Final Step.

Case B: |X[η ]
res | = 1. Keep the singular belief mass bbbX (x) on the

singleton value x ∈ X[η ]
res . Proceed to the Final Step.

Case C: |X[η ]
res | ≥ 2. Now we focus exclusively on values xi ∈ X[η ]

res
when applying the constraint of Eq.(63). The next synthetic
maximum uncertainty mass is:

ü[η ]
X = min

xi∈X
[η ]
res

[ǔX (xi)] . (73)

The computation of the belief masses emerges from Eq.(74):

b̈bb
[η ]
X (x) = PX (x)−aaaX (x) ü[η ]

X . (74)
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Table 5
Zadeh’s numerical example applied to belief constraint fusion (BCF), cumulative belief fusion (CBF), cumulative belief fusion with uncertainty maximisation

(CBF-UM), averaging belief fusion (ABF), weighted belief fusion (WBF) and weighted belief fusion with vagueness maximisation (WBF-VM)

Source opinions: Fused opinions resulting from applying:
A B BCF CBF CBF-UM ABF WBF WBF-VM

bX (x1) = 0.99 0.00 0.00 0.495 0.485 0.495 0.495 0.000
bX (x2) = 0.01 0.01 1.00 0.010 0.000 0.010 0.010 0.010
bX (x3) = 0.00 0.99 0.00 0.495 0.485 0.495 0.495 0.000
bX (x1, x2) = 0.00 0.00 0.00 0.000 0.000 0.000 0.000 0.000
bX (x1, x3) = 0.00 0.00 0.00 0.000 0.000 0.000 0.000 0.990
bX (x2, x3) = 0.00 0.00 0.00 0.000 0.000 0.000 0.000 0.000
uX = 0.00 0.00 0.00 0.000 0.030 0.000 0.000 0.000

We define the composite value x[η ]
vag = {x ∈ X[η ]

res}. The vague
belief mass bbbX (x

[η ]
vag) can then be assigned according to Eq.(75)

bbbX (x
[η ]
vag) = ∑

x∈X[η ]
res

(
b̈bb
[η−1]
X (x)− b̈bb

[η ]
X (x)

)
. (75)

Increment the step index η as η := η +1, then repeat Step η .

Final Step:
Finally, the components of the vagueness-maximised opinion

ω̇X = (bbbX ,uX ,aaaX ) can be assembled, consisting of the computed
vague belief masses bbbX (x

[η ]
vag), and whenever applicable the

singular belief masses bbbX (xi), in addition to the original
uncertainty mass uX and base rate distribution aaaX . This ends the
process of vagueness maximisation.

By defining the unary operator �̇ to represent vagueness
maximisation we can write

Vagueness Maximisation : ω̇X = �̇(ωX ). (76)

A natural application of vagueness maximisation is to produce
compromise belief when fusing opinions from multiple (con-
flicting) sources. To this end it is necessary to first generate a
fused opinion with WBF, and subsequently to apply vagueness
maximisation. This combination is called WBF-VM (Weighted
Belief Fusion with Vagueness Maximisation) and is denoted ‘ ̂̇⊕’.

As an alternative to WBF-VM for belief fusion with compro-
mise, the belief fusion operator CCF (Consensus & Compromise
Fusion) has been described with a simple two-source version [5]
as well as with a multi-source version [27]. The definition of
multi-source CCF is rather complex [27], whereas multi-source
WBF-VM is rather simple in comparison. In situations where it
is suitable to apply a fusion operator with belief compromise, the
most practical choice is therefore to apply WBF-VM which is
included in the example of Section 7.

7 COMPARISON OF FUSION OPERATORS

The fusion example in Table 5 takes as input arguments the numer-
ical belief masses from Zadeh’s example [14]. In this example, the
sources are two medical doctors who each have an opinion about
the hypothesis space of three possible diseases, and Dempster’s
rule (called BCF (Belief Constraint Fusion) in subjective logic) is
applied for fusing the two opinions. The counter-intuitive results
produced by Dempster’s rule (BCF) demonstrate that Dempster’s
rule is unsuitable for this particular category of situations. A more
suitable operator for the situation of the two doctors is WBF-VM
(Weighted Belief Fusion with Vagueness Maximisation), because

it preserves common belief and produces compromise belief from
conflicting belief sources.

Exactly the same pair of argument opinions can of course
occur in other fusion situations as well. Table 5 shows the results
of fusion with each operator described in the previous sections,
where the the fused result opinion produced by a given operator
is sound and intuitive according to the corresponding situation
category described in Section 2.

On an abstract level, sources A and B provide opinions about
the hypothesis space X = {x1, x2, x3} with variable X . The base
rate distributions are assumed to be equal and uniform, expressed
as aaaA

X = aaaB
X = {1/3, 1/3, 1/3}.

Each operator produces intuitive results given respective rele-
vant situations for which the operators are suitable. For example,
in the medical situation of the original Zadeh’s example where
two medical doctors A and B have conflicting opinions about
the diagnosis of a patient, WBF-VM produces vague belief in
the form of bbbÂ̇�B

X (x1, x3) = 0.99 which seems natural until the
doctors can agree on a single diagnosis for the patient. The BCF
operator produces a sound and intuitive fused opinion with the
same argument opinions when e.g. assuming a situation where
two friends express preferences for watching a film at the cinema.

Fusion of dogmatic conflicting opinions, i.e. where uX = 0, is
defined for all operators except for BCF. If the fusion situation is
determined to be in the BCF category the interpretation of fusing
dogmatic conflicting opinions is that there is no solution, which is
perfectly logic. See Section 6.1.5 for an example of this situation.

Zadeh’s example as in Table 5 does not clearly expose the
difference between the various belief fusion operator because
many fusion operators produce equal results when the sources
are dogmatic as in this case. The modified example in Table 6
brings greater differentiation in the fusion results by introducing
unbalanced levels of uncertainty in the argument opinions. The
difference between the arguments of Table 5 and Table 6 can be
interpreted and explained through the assumptions of the various
belief-fusion categories with regard to how conflicting belief
arguments are handled in the belief fusion process.

8 DISCUSSION AND CONCLUSION

We argue that the main research question in belief fusion is
not about finding the single most correct belief fusion operator,
because no single operator is suitable for all situations. Instead,
the interesting question and the biggest challenge is how to select
the most suitable belief fusion operator for a given situation of
belief fusion. For this purpose we propose to classify situations of
belief fusion into different categories, where a set of belief-fusion
assumptions can be used as criteria for selecting the category to
which a specific belief fusion situation belongs.
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Table 6
A variation of Zadeh’s example applied to belief constraint fusion (BCF), cumulative belief fusion (CBF), cumulative belief fusion with uncertainty maximisation

(CBF-UM), averaging belief fusion (ABF), weighted belief fusion (WBF) and weighted belief fusion with vagueness maximisation (WBF-VM)

Source opinions: Fused opinions resulting from applying:
A B BCF CBF CBF-UM ABF WBF WBF-VM

bX (x1) = 0.98 0.00 0.889 0.890 0.880 0.882 0.889 0.806
bX (x2) = 0.01 0.01 0.011 0.010 0.000 0.010 0.010 0.010
bX (x3) = 0.00 0.90 0.091 0.091 0.081 0.090 0.083 0.000
bX (x1, x2) = 0.00 0.00 0.000 0.000 0.000 0.000 0.000 0.000
bX (x1, x3) = 0.00 0.00 0.000 0.000 0.000 0.000 0.000 0.166
bX (x2, x3) = 0.00 0.00 0.000 0.000 0.000 0.000 0.000 0.000
uX = 0.01 0.09 0.009 0.009 0.039 0.018 0.018 0.018

This article illustrates the importance of selecting a belief
fusion operator that adequately matches the situation to be mod-
elled and analyzed. It is scientifically misguided to follow the
approach of always applying the favourite belief fusion operator
with which the analyst or scientist happens to be familiar, without
regard to the nature of the situation to be modelled. By using
the selection criteria to categorise a given belief-fusion situation
and applying the corresponding belief fusion operator the analyst
is able to obtain sound and useful results more consistently than
by simply making an uninformed choice when selecting a belief
fusion operator for a given application.
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