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Abstract—The development of formal approaches to
intelligence analysis has a wide range of application to
both strategic and tactical intelligence analysis within
law enforcement, defence, and intelligence communities.
The ability of these formal models to mitigate attempted
deception by an adversary is affected by many factors,
including the choice of analytical model, the type of
formal representation used, and the ability to address
issues of source reliability and information credibility.
This paper discusses how the use of Subjective Logic
and the modelling approach known as the Analysis of
Competing Hypotheses using Subjective Logic (ACH-
SL) can provide a level of protection against attempted
deception and misperception.

I. INTRODUCTION

O, what a tangled web we weave,
When first we practise to deceive!

– Sir Walter Scott, Marmion, 1808

In many ways, intelligence analysts are very similar
to physical scientists. They both study aspects of the
world in order to understand its causes and effects,
and to make predictions about their future states.
However, the natures of their domains of enquiry are
vastly different. Physical processes are not perverse
in their behaviour – they do not attempt to deceive
their observers – and they are neither arbitrary nor
capricious. Their laws are assumed to be universal and
constant, even if the theories that attempt to describe
these laws are not. The same cannot be said for the
domain of intelligence analysts. For the most part, they
study aspects of human behaviour ‘in the wild’, where
their subjects exhibit complex and perverse behaviours
– including attempts to deceive those observing them.

Despite the differences in their domains of en-

quiry, both physical scientists and intelligence analysts
need to apply a rigourous methodological approach in
studying their subjects. Naturally, scientists will use
scientific method to understand the physical world
– producing very valuable knowledge as a result –
and intelligence analysts likewise should apply some
suitable methodology.

Both science and intelligence analysis require the
enquirer to choose from among several alternative
hypotheses in order to present the most plausible of
these as likely explanations for what they observe. Sci-
entists who do not use a rigourous methodology risk
their work being scorned, along with their professional
reputations. Intelligence analysts who do not use a
rigourous methodology risk something far greater –
catastrophic intelligence failure.

The consequences of intelligence failure can be
disastrous, so much so that the recorded history of the
world – both ancient and modern – is replete with a
litany of devastating intelligence failures too numerous
to list. Examples of these are easily found in any
period of history – such as the failure of the United
States to perceive an impending attack on Pearl Harbor
– and the failure of Japan to reason that Midway
Island was a trap, with the consequent sinking of four
Japanese aircraft carriers and the loss of all crews,
aircrews and aircraft.

Analysts that do not use some rigourous methodol-
ogy will often work intuitively to identify what they
believe to be the most likely explanation and then work
backwards, using a satisficing approach where the
‘correct’ explanation is the first one that is consistent
with the evidence [1]. The single greatest flaw with
this approach is that the evidence may be consistent
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with more than one hypothesis, and unless the analyst
evaluates every reasonable alternative, they may arrive
at an incorrect conclusion. Worse still, if an adversary
is undertaking deception, then the evidence may have
been suppressed or manipulated so as to lead the
analyst to false conclusions.

It is therefore foolhardy to believe that good in-
telligence can be developed by relying solely on
human cognition without resort to methodologies or
frameworks that attempt to augment human cognitive
capacity while also mitigating its defects. The follow-
ing sections will discuss formal approaches based on
the Analysis of Competing Hypotheses (ACH) [1] –
and in particular the variant known as ACH-SL [2],
and some of the ways in which the application of
ACH-SL can serve to mitigate or detect adversarial
deception and non-adversarial misperception.

II. DECEPTION AND MISPERCEPTION

Deception is the act of deceiving. It is an intentional
action that requires both a deceiver and someone to be
deceived. We say that someone is deceived when they
subjectively believe an aspect of the world to be in
some state other than it objectively is, as a result of
the deliberate actions of an adversary.

Planned deception by an adversary can be cat-
egorised into two general types – simulation and
dissimulation. Dissimulation is the act of hiding or
obscuring, while simulation attempts to show the false
[3]. These can be further categorised into the practices
of masking, repackaging, dazzling, mimicking, invent-
ing and decoying [3], [4], [5], [6].

Deception works because of human perceptual and
cognitive biases [7]. Our expectations and our experi-
ence have a lasting and direct influence on our percep-
tions. We fail to correctly reason about alternatives that
do not align with our expectations, and we assign and
judge evidence according to our expectations and our
experiences [6], [7]. Consequently, we miss important
events, discount information that is not consistent with
the expected outcome, and do not consider alternative
outcomes. Stech and Elässer note that people tend to
be poor at detecting deception since its occurrence is
relatively rare. They categorise four types of analytic
errors that hinder detection of deception [8], [9]:

• Poor anomaly detection: Analysts miss indicators

of anomalies or discount their importance as
being either irrelevant or inconsistent with other
information.

• Misattribution: Analysts attribute inconsistencies
or anomalies to collection gaps or processing
errors, rather than to deception.

• Failure to link deception tactics to deception
hypotheses: Analysts fail to recognise anomalies
as possible indications of attempted deception.

• Inadequate support for deception hypotheses:
Analysts fail to consider the likelihood of decep-
tion with respect to an adversary’s strategic goals.

In practice, simply being able to counter deception
is insufficient, since it is the consequences of deception
and misperception that are of immediate importance –
not just its causes. For example, if an analyst were
to misinterpret the data that is available to them and
therefore misread an adversary’s intention, then the
consequences could be just as dire as if the adversary
deliberately engaged in some form of deception. The
problem of misperception – and deception – is a
direct consequence of the limitations of our cognitive
faculties.

Our limited mental capacity cannot cope with the
enormous complexity of the ‘real world’ so instead
we create simplified mental models of reality that
approximate what we perceive to be the ‘real world’,
and reason about those models instead. This creates a
bounded rationality [10], where each person behaves
rationally according to their own simplified model, but
not necessarily from any objective perspective. The
sufficiency of these mental models as approximate
models of the world varies with the risks and rewards
of their application. For frequently experienced events,
basic human reasoning is usually sufficient [6]. In
everyday personal affairs few of our decisions use
any directed analytical processes – and even fewer
of these require any sort of rigourous approach –
due to relatively minor consequences. The same is
not true for large-scale human affairs – such as the
business of nations and corporations – where the
relative consequences of decisions can have enormous
impact. This distinction in and of itself is cause enough
to consider whether human ‘everyday reasoning’ is
robust and reliable enough for use in these contexts.
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Unfortunately as humans, we systematically make
substantive errors in reasoning due to problems of
framing, resistance of mental models to change, risk
aversion, limitations of short-term memory, and other
cognitive and perceptual biases [7], [1], [11], [12],
[13], [14]. This has severe implications for the process
of intelligence analysis, and may lead to incorrect con-
clusions, especially in situations that appear familiar
but which actually result in different outcomes; in sit-
uations where the gradual assimilation of information
into established mental models results in the failure
to detect ‘weak signals’ that should have triggered
a major re-evaluation; and in situations where the
complexity of the mental models are untenable due
to human limitations of short-term memory [1], [15],
[16], [17]. Readers looking for a good discussion
of the cognitive biases of humans and their impact
on intelligence analysis – and deception in particular
– should consult Heuer’s Strategic Deception and
Counterdeception [7].

III. ANALYSIS OF COMPETING HYPOTHESES

Intelligence analysis generally requires that analysts
choose from among several alternative hypotheses
in order to present the most plausible of these as
likely explanations for the evidence being analyzed.
One way in which some of the inherent cognitive
limitations can be overcome is to require the analyst to
simultaneously evaluate all reasonable hypotheses and
reach conclusions about their relative likelihood, based
on the evidence provided. However, the simultaneous
evaluation of non-trivial problems is a near-impossible
feat for human cognition alone. While the limitations
of short term memory appear to be around seven
items [15], recent research suggests the number of
individual variables we can mentally handle while
trying to solve a problem is relatively small – four
variables are difficult, while five are nearly impossible
[18]. This implies that for any problem with more than
three possible hypotheses or three items of evidence,
the ability of humans to reason correctly diminishes
rapidly with an increase in the number of items of
evidence or hypotheses.

The Analysis of Competing Hypotheses (ACH)
approach [1] was developed to provide a framework
for assisted reasoning that would help overcome these
limitations. ACH was developed in the mid- to late-
1970’s by Richards Heuer, a former CIA Directorate of

Intelligence methodology specialist, in response to his
“never-ending quest for better analysis” [1]. His eight-
step ACH methodology provides a basic framework
for the identification of assumptions, arguments and
hypotheses; consideration of all evidence and hypothe-
ses – including its value relative to the hypotheses;
a method of disconfirmation for identifying the most
likely hypotheses; an approach to reporting the results
of the analysis; and an approach to detecting future
changes in the outcomes.

In simple terms, ACH requires the analyst to si-
multaneously evaluate all reasonable hypotheses and
reach conclusions about their relative likelihood, based
on the evidence provided. Heuer acknowledges that
while this holistic approach will not always yield the
right answer, it does provide some protection against
cognitive biases and limitations [1]. While this original
ACH approach is fundamentally sound, it suffers from
a number of significant but correctable problems.

1) Base rate errors due to framing and other
causes: ACH recommends that analysts consider how
consistent each item of evidence is with each possible
hypothesis. This can be reasonably interpreted to mean
that for each hypothesis, one should consider the
likelihood that the evidence is true p(ej |hi) – and
this will likely be the interpretation for derivative
evidence. However, for causal evidence1, a different
and possibly erroneous interpretation is likely.

Causal evidence is perceived to have a direct causal
influence on a hypothesis, and typically reflects rea-
soning from cause to effect. An example of this is
the presence of a persistent low pressure system being
causal evidence for rain, since a low pressure system
appears to influence precipitation. The ‘state of mind’
of an adversary is often regarded as causal evidence
since it usually presumed to have direct influence on
their decision making processes.

Derivative evidence [19] – also known as diagnostic
evidence [20] – is indirect intermediate evidence –
not usually perceived as being causal in nature – and
is usually observed in conjunction or contemporane-
ous with the occurrence of one or more hypotheses.
Derivative evidence typically reflects reasoning from
effect back to cause – or where no causal link seems
suitable. For example, a soggy lawn would likely be
considered derivative evidence for rain since soggy

1See Causal and Derivative Evidence in [2]
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lawns are also associated with the use of sprinklers,
and recently-washed automobiles.

The particular problem arises when analysts attempt
to make judgements about the likelihood of causal ev-
idence being true when the hypothesis is true p(ej |hi).
Since there is an apparent causal relationship between
the evidence and the hypothesis, the analyst is more
likely to reason from the cause to the effect – from
the evidence to the hypothesis. The danger lies in
the the analyst reasoning about the likelihood of the
hypothesis, given that the evidence is true p(hi|ej)
and taking this as an approximation of p(ej|hi). This
type of reasoning tends to ignore the likelihood of of
the hypothesis being true when the evidence is false
p(hi|ēj), and can produce very misleading results.
Stech and Elässer [8] make a similar point when they
argue that analysts’ judgements are more susceptible
to deception if they also do not take the false positive
rate of the evidence into account. They developed
ACH-CD2 as a modified variant of ACH to account
for cognitive factors that make people poor at detecting
deception [8]. Stech and Elässer correctly argue that
the use of ACH can lead to greater susceptibility for
deception, especially when reasoning about a single
view of evidence, i.e. the likelihood of each hypothesis
given the assertion of the evidence p(hi|ej). Their
argument is that this type of reasoning neglects the
base rates both of the evidence br(ej) and of the
hypothesis br(hi) which can result in reasoning errors
that lead to incorrect conclusions [21], and increase
susceptibility to deception.

Stech and Elässer demonstrate this with an excellent
example of how reasoning about the detection of
Krypton gas in a middle-eastern country can lead to
the erroneous conclusion that the country in question
likely has a nuclear enrichment program. For clarity,
their example has been reproduced below [8]:

Detect Krypton

p(enrichment | Krypton) = high
→ p(enrichment program) = high

→ p(nuclear program) = high

They argue that the main problem with this rea-
soning is that it does not consider that Krypton gas
is also used to test pipelines for leaks, and that
being a middle-eastern country with oil pipelines, the

2Analysis of Competing Hypotheses – Counter Deception
(ACH-CD)

probability of the gas being used outside of a nuclear
program is also fairly high, i.e.

p(Krypton | not enrichment) = medium to high

This additional information should lead the analyst
to conclude that there is a fair amount of uncertainty of
a nuclear program given the detection of Krypton. The
assignment of the ‘high’ value to p(enrichment | Kryp-
ton) neglects the fact that an oil-rich middle-eastern
country is likely to use Krypton gas – regardless of
whether they have a nuclear program.

2) Problems of discarding of weakly diagnostic
evidence: Another problem with the original ACH
approach is the discarding of evidence that has little
ability to distinguish between hypotheses [1]. While
this process of discarding weakly diagnostic evidence
is intended to mitigate some cognitive biases, it may
actually lead to greater susceptibility to deception. If
an adversary is planning deception, then they might
simulate strong indicators of an alternative hypothesis,
or dissimulate (i.e. suppress) indicators which have
strong diagnostic value for the correct hypothesis. If
the analyst has no way to know which evidence, if any,
is being dissimulated or simulated, then sole reliance
on evidence that has relatively strong diagnostic value
may lead the analyst to an incorrect conclusion.

In all forms of ACH, analysts are required to
consider how well each item of evidence is capable
of distinguishing between the hypotheses. From this,
the analyst must arrive at measures of diagnosticity
that are consistent across each hypothesis for an item
of evidence, and also across the items of evidence.
This is a high-load cognitive task that is likely to
result in inconsistencies or very coarse measures of
diagnosticity that may not provide a clear differen-
tiation between hypotheses. As a consequence, the
diagnosticity of an item of evidence may be so coarse
that the evidence appears to have no diagnostic value.
Discarding many items of evidence that appear to have
no or little diagnosticity may remove noise from the
analysis but may result in the loss of ‘weak signals’
that contradict the strong indicators and could be
suggestive of attempted deception.

The problem arises since a combination of weak
diagnostic evidence can significantly affect the overall
results. As an illustration of this point, compare the
results of Fig. 1(a), where weak diagnostic evidence
was excluded from the model, with the results of
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(a) A two-hypothesis analytical model without consideration of
weak diagnostic evidence e3 . . . e6.

(b) The same analytical model but with the inclusion of the
weak diagnostic evidence.

Fig. 1. Example of the possible effect on the overall result from including or discarding weak diagnostic evidence in an abstract,
hypothetical problem. The weak diagnostic evidence e3 . . . e6 is missing in Fig 1(a), and shown in grey in Fig 1(b). This example
has been greatly simplified for illustrative purposes. The overall conclusions would be calculated using the consensus of the subjective
opinions ωhi||ej

– and not an average simple scalar probabilities p(hi||ej) – which provide overall beliefs in ωh1 and ωh2 .

Fig. 1(b), where the weak diagnostic evidence was not
excluded. In Fig. 1(a), the conclusions strongly support
Hypothesis B, while in Fig. 1(b), the additional weak
diagnostic evidence decreases its likelihood – and by
implication might be indicative of deception or some
other type of misperception.

Often the presence of weak diagnostic evidence
allows the calculation of interesting metrics that may
serve as good indicators of deception or misperception,
especially in cases where it would be difficult for
an adversary to simulate or dissimulate the weak
diagnostic evidence. These metrics will be discussed
in detail later.

3) Limitations of disconfirming evidence: Lastly,
the original ACH approach suggests that the process of
analysis should attempt to disconfirm each hypothesis
– where the hypothesis with the least amount of
disconfirming evidence is likely to be the correct one
[1]. While this approach is appropriate for scientific
enquiry, it is insufficient for intelligence analysis. As
already noted, scientific method assumes a world that
is not perverse in its behaviour, where its inhabitants
are not arbitrary nor capricious in their actions, and
where there are assumed to be fundamental laws
operating behind its phenomena. The same does not
hold true for intelligence analysis, where nations and
other actors behave in ways that may appear rational
to the participants, but are not always rational from
an objective point of view; are subject to rich and
dynamic social, political and cultural interests and

effects; and where the very evidence itself is likely to
be uncertain and may not be from trustworthy sources.
As such, it is easy to show that under these conditions
of uncertainty, the most likely hypothesis may well be
the one with the most amount of evidence against; the
most in favour; or neither.

IV. ANALYSIS OF COMPETING HYPOTHESES USING
SUBJECTIVE LOGIC (ACH-SL)

The Analysis of Competing Hypotheses using Sub-
jective Logic (ACH-SL) [2] was developed to ad-
dress a range of intelligence analysis issues, including
susceptibility to deception, and is an elaboration of
the original ACH approach. It is more than just a
theoretical concept, and has been implemented in
analytical technology called ShEBA3 that provides a
framework for the analysis of multiple hypotheses with
multiple items of evidence.

The ACH-SL process can be described in terms of
information transformation, as visualised in Fig. 2.
Knowledge or belief about the collected evidence is
transformed by the analytical model (the relationships
between hypotheses and evidence) to produce the
analytical results of the beliefs in the hypotheses. The
approach uses the formal calculus known as Subjec-
tive Logic [22] to make recommendations about the
likelihoods of the hypotheses, given individual analyst
judgments, uncertain knowledge about the value of the
evidence, and multiple items of evidence.

3ShEBA – Structured Evidence Based Analysis of Hypotheses
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Fig. 2. ACH-SL as an information transformation

The objective of this process is to produce accurate
analysis – but not necessarily certain results. In cases
where the evidence is clear and the analytical model
perfectly distinguishes between the hypotheses, the
results should be equally clear and certain. However,
even with unreliable or sketchy information and an
imperfect model, the analytical results should produce
accurate results that reflect this lack of certainty. The
accuracy of the analytical results therefore depends
on both accurate assessment of the evidence, and the
quality of the analytical model.

Accurate assessment of the evidence requires that
the analyst correctly judges for each item of collected
information, its currency, the reliability of its sources,
and how well it supports the evidence. A high quality
analytical model requires that analyst has included all
plausible hypotheses, has considered all causal factors
and diagnostic indicators, and made sound judgements
as to how the evidence relates to the hypotheses.

However, even with accurate evidence assessment
and a high-quality model, the possibility of deception
or misperception still remains. It is still possible that
information has been simulated or dissimulated by
an adversary in order to mislead the analysis, and
it is still possible that the analyst has not generated
a suitable set of hypotheses. Fortunately, ACH-SL
includes formal metrics which, used correctly, can
measure the quality of the analytical model and its
results, and provide an indication of possible deception
or misperception.

A related issue concerns the discarding of unob-
servable but relevant evidence. If unobservable yet
relevant evidence is not included in the analytical
model, then the analyst increases their susceptibility

to deception since the evidence may be unobservable
due to dissimulation by an adversary. Therefore it is
important to accurately model the analyst’s ignorance
about the value of the evidence, otherwise the lack
of evidence can lead to erroneous conclusions, i.e.
“absence of evidence is not evidence of absence.” 4

Some knowledge of Subjective Logic is needed to
understand ACH-SL. Readers that are not familiar
with Subjective Logic are invited to review Subjective
Logic Fundamentals in Appendix A. Since ACH-SL
is an elaboration of the original ACH approach, it
follows the same basic approach as the original ACH
method [1], except where noted.

A. Outline of the ACH-SL process

The analyst starts by deciding on an exhaustive and
exclusive set of hypotheses to be considered. The term
‘exhaustive and exclusive’ refers to the condition that
one of the hypotheses – and only one – must be true.
The competing hypotheses may be alternative courses
of action, adversarial intentions, force strength esti-
mations, etc. Deciding on what hypotheses to include
is extremely important. If the correct hypotheses are
not included in the analysis, then the analyst will
not get the correct answer, no matter how good the
evidence. However, the issue of hypothesis generation
lies outside the scope of this document is discussed
further in [1].

Next, the analyst considers each hypothesis and lists
its possible causal influences and diagnostic indicators.
These form the items of evidence that will be con-
sidered in the analysis. In deciding what to include,
it is important not to limit the evidence to what is
already known or believed to be discoverable. Heuer
makes the excellent point that analysts should interpret
‘evidence’ in its broadest sense and should not be
limited just to current intelligence reporting [1].

Since ACH-SL requires calculations that are gen-
erally too complex and time consuming to perform
manually, an appropriate analytical framework that
embodies ACH-SL – such as ShEBA – is highly
recommended. Using this framework the analyst con-
structs an analytical model of how the evidence relates
to the hypotheses. Not all evidence is created equal
– some evidence is better for distinguishing between

4Dr. Carl Sagan, astronomer, writer and scientist, 1934-1996.
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hypotheses than others. The degree to which evidence
is considered diagnostic is the degree to which its pres-
ence or absence is indicative of one or more hypothe-
ses. If an item of evidence seems consistent with all
the hypotheses, it will generally have weak diagnostic
value. In the original ACH method, diagnosticity is
explicitly provided by the analyst as an input [1], and
it is used both to eliminate evidence from the model
that does not distinguish well between hypotheses, and
to provide a means of eliminating hypotheses based on
the relative weight of disconfirming evidence.

In the modified ACH-SL system, diagnosticity is
not explicitly provided by the analyst. Instead, it is
derived from the ‘first-order’ values that the ana-
lyst assigns to a set of conditional beliefs for each
combination of hypothesis hi and item of evidence
ej . For causal evidence, the conditionals ωhi|ej

, ωhi|ēj

represent the beliefs that the hypothesis will be true,
assuming that the item of evidence is true – and the
belief that the hypothesis will be true, assuming the
item of evidence is false. For derivative evidence,
ωej|hi

represents the belief that the item of evidence
will be true, assuming that the hypothesis is true. In
forming the conditionals for an item of evidence, the
analyst must separate out their understanding of the
item of evidence under enquiry from the general set
of evidence to be considered, i.e. the analyst must
not consider the significance of other evidence when
forming the conditionals. Failure to do so can bias the
analysis.

The choice of whether an item of evidence should
be treated in a causal or derivative manner is im-
material to the calculations – the style of reasoning
that produces the least cognitive load should be the
primary consideration5. Analysts can choose to make
statements about combinations of hypotheses such as
ω(h2∨h3)|e2

, but not for combinations of evidence since
this would likely introduce bias.

It is important to note that a distinction can be made
between events that can be repeated many times and
events that can only happen once. Conditionals for
events that can be repeated many times are frequentist
events and can be expressed as simple Bayesian be-
liefs6 if there can be absolute certainty regarding their
values. However, expressing a conditional as a fre-
quentist probability seems to be a meaningless notion
when the consequent is an event that can only hap-
pen once. Even when the conditionals are calculated
from a very large set of data, the possibility remains
that the evidence at hand does not provide complete
information about these conditionals, and can not be
expressed on a purely frequentist form7. For events
that can only happen once – including almost all
problems of intelligence analysis – the observer must
arbitrarily decide what the conditionals should be, and

5See Causal and Derivative Evidence in [2]
6Which correspond to zero-uncertainty beliefs in Subjective

Logic. See Appendix A.
7See [24] for a discussion about the problems of induction and

causation

(a) Model defined by user using a mixture
of causal and derivative conditionals

(b) Same model after transformation into
a normalised form

Fig. 3. Example ACH-SL model construction. Note that in Fig. 3(a), e1 has derivative conditionals and that for e2, a single pair of
conditionals has been specified for the combination of h2 ∨h3. Fig. 3(b) is the equivalent representation of Fig. 3(a) with all individual
conditionals generated by a normalisation transform. The base rate of each hypothesis is represented by br(hi).
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consequently there can be a great deal of uncertainty
about their values. For these non-frequentist problems,
each conditional is usually expressed as a maximized-
uncertainty belief [22], where the uncertainty of the
belief is set to the maximum allowable amount for the
desired probability expectation value. Therefore, the
conditionals for any problem can usually be provided
by the analyst as simple scalar probabilities – i.e.
p(hi|ej),p(hi|ēj) – and the uncertainty maximization
can be handled by the analytical system.

Regardless of how the conditionals for the hy-
potheses are specified – derivative or causal, single-
or multi-hypothesis, zero-uncertainty or uncertainty-
maximized – the conditionals can be expressed (within
the internals of the analytical framework) as a ‘nor-
malised’ set of ωhi|ej

, ωhi|ēj
conditionals (see Fig. 3

for an example). The complete set of conditionals for
all items of evidence and all hypotheses constitutes
the analytical model.

After completion of the analytical model, it can
be used to evaluate a complete or incomplete set of
evidence. The inputs to the analytical model are a set
of observable evidence E = {ωe1 , ωe2 , . . . ωek

} The
value of each item of evidence can be highly certain or
uncertain, with varying degrees of likelihood, depend-
ing on the reliability of the sources of information for
the evidence, the presumed accuracy of the sources’

observations, the currency of the information, and
other factors which will be discussed later. Evidence
for which no data is available is expressed as a vacuous
belief that is completely uncertain.

The primary output of the analysis is a set of n
beliefs H = {ωh1 , ωh2 , . . . ωhn

}, representing the cer-
tainty and likelihood of each hypothesis. In addition,
intermediate analytical items are available, including
separate analytical results for each combination of n
hypotheses and m items of evidence, i.e.

H||E = {ωh1||e1
, ωh1||e2

, . . . ωh1||em
,

ωh2||e1
, ωh2||e2

, . . . ωhn||em
} (IV.1)

Deriving the primary results from an analytical
model and a set of evidence is a two-step process.
Fig. 4 shows how both the intermediate and primary
results are derived from the combination of a set
of evidence and the analytical model. First, a set of
intermediate results ωhi||ej

are calculated for each pair
of conditionals in the analytic model. Different but
equivalent formulas for calculation are used depending
on whether the conditionals are causal or or derivative.
For causal conditionals, ωhi||ej

is calculated using the
deduction operator � [25]. For derivative conditionals,

Fig. 4. Generation of intermediate and primary results from the ACH-SL model in Fig. 3(b), and values for the evidence e1, e2, e3.
The primary results are a result of belief fusion ⊕ [23] of the intermediate results for each hypothesis. Note the method by which the
intermediate results are obtained is not shown. For details, please refer to the text.
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ωhi||ej
is calculated using the abduction operator �̄ 8.

ωhi||ej
= ωej

� (ωhi|ej
, ωhi|ēj

) (IV.2)

ωhi||ej
= ωej

�̄ (ωej|hi
, ωej |h̄i

,br(hi)) (IV.3)

The second and last step of the process involves
fusing the intermediate results for each hypothesis hi

using the consensus operator ⊕ [23] to obtain the
overall belief in each hypothesis ωhi

.

ωhi
= ωhi||e1

⊕ ωhi||e2
· · · ⊕ ωhi||em

(IV.4)

V. ACH-SL METRICS AND THEIR USES

In the original ACH approach, after the primary
analytical results are calculated, it is recommended
that the analyst perform additional analysis to deter-
mine how sensitive the results are to a few pieces
of crucial evidence. While the basic ACH approach
does not elaborate on the methods for doing this, the
ACH-CD approach provides computed indicators of
possible vulnerabilities for deception [9]. Similarly,
ACH-SL provides a number of metrics that are useful
in indicating the sensitivity of the conclusions, the
possibility of misperception or deception, and the
explanatory power of the chosen hypotheses.

Two key metrics that can be derived from the
analytical model without the need to consider either
the beliefs of either the items of evidence or the
analytical results, are diagnosticity and sensitivity:

• Diagnosticity is a measure of how well an item
of evidence is capable of distinguishing between
a chosen subset of hypotheses. As an aid for
intelligence collection, diagnosticity is most
useful as a guide for which evidence would be
useful for analysing a particular problem.

• Sensitivity is most useful for analysing the sen-
sitivity of the results. It is a measure of the
relative influence of a single item of evidence
on the primary results for a subset of hypotheses
{ωh1 , ωh2 , . . . ωhn

}. It provides an indication of
the degree to which the value of the calculated
beliefs could change if the item of evidence ej

were to alter in value.

8The abduction operator is described briefly in [2] and will be
detailed in a forthcoming paper.

In addition, here are a number of useful metrics
that can be derived after the primary and intermediate
analytical results are calculated, specifically support,
concordance, and consistency:

• Support is a measure of the degree to which
an intermediate analytical result ωhi||ej

supports
or opposes the primary result for the hypothesis
ωhi
. A positive measure indicates support while

a negative result indicates opposition.

• Concordance is a measure of the current and
potential similarity of a set of beliefs. Beliefs
that are completely concordant are exactly the
same expectations and base rates, while those
with partial or no concordance have different
expectations, certainties, or base rates.

• Consistency is a measure of how well the pri-
mary result for a hypothesis ωhi

is supported by
the intermediate results for each item of evidence
hi||E = {ωhi||e1

, ωhi||e2
, . . . ωhi||ek

}.
The following sections describe these metrics in

further detail.

A. Diagnosticity

Diagnosticity provides a measure of how well an
item of evidence is capable of distinguishing between
a chosen subset of hypotheses. For example, the over-
all diagnosticity of a item of evidence may be poor in
distinguishing between six hypotheses, yet it may be
very good at distinguishing between just two of those
six.

Diagnosticity is derived from the logical condition-
als p(hi|ej) and p(hi|ēj). If these conditionals are not
known, then they can be derived from knowledge of
the p(ej |hi) and p(ej |h̄i), and from the base rate of
the hypothesis br(hi)9. Diagnosticity is represented as
a real number between 0 and 1 – with a value of 0
indicating that the evidence does not distinguish be-
tween the hypotheses in any way; and with a value of
1 indicating that the evidence is capable of completely
distinguishing between the hypotheses. The diagnos-
ticity is a useful measure for intelligence collection
purposes, as it indicates the relative importance of a
piece of evidence for a particular analytical purpose.

9see Calculating opinions about the hypotheses in [2]
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Details on how diagnosticity is derived are found in
[2], and reproduced in Appendix E.

As an aid for intelligence collection, diagnosticity
can be used as a guide to determine what items of
evidence would be most useful for analysing a partic-
ular problem. A high degree of certainty is needed
for items of evidence that are diagnostic of high-
risk or high-value hypotheses, and should therefore
be sourced from multiple channels if possible.

B. Sensitivity

While the diagnosticity metric describes how well
a single item of evidence is capable of distinguishing
between competing hypotheses, the sensitivity metric
provides an indication of the degree to which the
results could change if the item of evidence were to
alter in value. This makes the metric particularly useful
for analysing the sensitivity of the primary results.
Fig. 5 shows the key difference in the way in which
diagnosticity and sensitivity are derived.

Fig. 5. Diagnosticity is calculated relative to the conditionals
in the same row, while sensitivity is calculated relative to the
conditionals in the same column.

The calculated beliefs in the hypotheses
ωh1 , ωh2 , . . . ωhk

will vary with changes in the
belief in the evidence ωe1, ωe2 , . . . ωen

, that form
the inputs to the analytical model. Some items of
evidence have greater potential than others to alter the
results – some disproportionately so. This is due to
both the difference in the expectations of the causal
logical conditionals |E(ωhi|ej

) − E(ωhi|ēj
)|, and their

uncertainty values uhi|ej
, uhi|ēj

. A large difference in
the expectation of the conditionals has the potential
to produce a large fluctuation in the expectation of

the intermediate result E(ωhi||ej
), as the belief in the

item of evidence ωej
changes (IV.2). However, the

degree of certainty of the conditionals determines the
minimum certainty of each intermediate result hi||ej

that is obtained using the deduction or deduction
operators (IV.2). The behaviour of the consensus
operator is to weight the input intermediate results
according to the square of their relative certainty,
and therefore the certainty greatly influences the
calculation of the primary result ωhi

(IV.4).

Fig. 6. The sensitivity of a hypothesis with respect to an item
of evidence is the relative product of the mean of the squares of
their certainties and expectation difference of their causal logical
conditionals

The relative degree to which the the value of a
hypothesis (or a subset of hypotheses) will be deter-
mined by the value of an item of evidence is known
as its sensitivity, and is useful in sensitivity analysis
for quickly identifying the items of evidence that will
likely have the greatest impact. It is calculated for a
hypothesis (or a subset of hypotheses) and an item
of evidence as the magnitude of the product of the
difference in the conditionals and their mean certainty,
relative to that for all evidence. This is demonstrated
in Fig. 6, where the sensitivity of a hypothesis with
respect to an item of evidence is the relative area of
each.

Sensitivity is a value in the range Srel ∈ [0, 1], where
a value of zero indicates that the value of the primary
result for the subset of hypotheses H is completely
independent of the evidence ej , and conversely, where
a value of one indicates complete dependence. The
mathematical definition of sensitivity can be found in
Appendix F on page 26.
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C. Support

Fig. 7. Support of an opinion is calculated as the difference
between its expectation and base rate

Support is a measure of the difference between the
expectation and base rate for a belief. When applied
to an intermediate analytic result ωhi||ej

, it indicates
the degree to which the result supports or opposes the
hypothesis hi. Support is a value in the range Sωx

∈
[−ax, 1 − ax], with a a positive measure indicates
support while a negative result indicates opposition. In
Fig. 7, the opinion ωx has positive support, while ωy

has negative support. Generally, evidence that is highly
diagnostic will have a greater absolute magnitude
of support than for weakly diagnostic evidence. The
mathematical definition of support can be found in
Appendix G.

D. Concordance

Concordance is a measure of similarity of a set
of beliefs, and indicates their degree of agreement.
Concordance is a value in the range K ∈ [0, 1], with a
value of K = 1 indicating perfect agreement (i.e. the
beliefs are exactly the same), and a value of K = 0
indicating completely antithetical beliefs. It is closely
related to but not the same as the difference of their
expectations. For beliefs, it is necessary also to ac-
count for the projected convergence or divergence as a
result of possible past or future decay, or improvement
or degradation of the reliability of the source of the
belief. For a set of beliefs, concordance is derived from
a measure of the mean difference of their expectation
values, and the mean difference of the mean of the

expectation values of the beliefs that are projected to
the same uncertainty.

Concordance is particularly useful as an indication
of how closely the intermediate analytical results for
a hypothesis agree with each other. In Fig. 8, opinions
ωx1 and ωx2 lie on the same line of projection –
and have a higher concordance than that of ωy1 and
ωy2 . The opinions ωy1 and ωy2 lie on different lines
of projection, and therefore have less concordance,
even though the expectation differences the two pairs
of opinions are the same, and the apparent distance
between ωy1 , ωy2 is less than that of ωx1, ωx2 .

Fig. 8. The concordances of two sets of opinions can be different,
even when their expectation differences are the same.

Concordance is calculated with respect to a common
reference point, usually the mean opinion ωμ

10. In
Fig. 9, the concordance is calculated as the comple-
ment of half of the sum of the difference in expec-
tations from the mean opinion of both the original
opinions and of the opinions projected to the same
uncertainty as the mean opinion, i.e.

Kωx,ωy
= 1 − ΔEx,μ + ΔEy,μ + ΔEx′,μ + ΔEy′,μ

2
The mathematical definition of concordance can be
found in Appendix H.

The concordance of an intermediate analytical result
ωhi||ej

with respect to the primary result for a hypothe-
sis ωhi

indicates their degree of agreement, taking into

10See Mean of a set of opinions in Appendix D
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Fig. 9. Concordance is calculated with respect to the mean of
the opinions, ωμ

account the certainty of the beliefs. In general, each
intermediate result should have a high concordance
with its associated primary result. A large difference in
their uncertainty acts to reduce the degree of difference
in their expectations – providing the beliefs tend to
project along similar projection paths.

Within the broader context of intelligence analysis,
concordance is a useful measure of the agreement
between multiple information sources, concerning a
single piece of evidence (i.e. ωA

ej
, ωB

ej
, . . . ωC

ej
). The

measure of their concordance provides an indication
of their agreement, despite potentially having very
different expectation values. Discussion and examples
of the use of the concordance metric for this purpose
will be discussed in later papers.

E. Consistency

Consistency is a measure of the degree to which
all of the intermediate analytical results for a single
hypothesis either support or oppose the hypothesis.
If all results support a hypothesis – or all oppose –
the results are said to be completely consistent. If
there is both support11 and opposition, then there is
at best only partial consistency. If the mean difference
of support is low, then any consistency will tend to be
somewhat high. Conversely, if the mean difference is
high, then there will likely be low consistency.

11see Section V-C

(a) Extremely low consistency

(b) Medium consistency

(c) Complete consistency

Fig. 10. Consistency of a set of opinions depends on the tendency
to support or oppose the hypothesis

The amount of support or opposition contributed
by each of the intermediate analytic results ωh||ei

will roughly be proportional to the relevance12 of the
evidence with respect to the hypothesis. Therefore,
evidence with low relevance for the hypothesis will,
at best, exhibit low support or opposition, while ev-
idence with high relevance may exhibit high support
or opposition – depending on the certainty and value

12See Relevance in the Appendix of [2]
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of the evidence. Since the relevance of the logical
conditionals ωh|ei

and ωh|ēi
will likely vary for each

item of evidence, the amount of individual support or
opposition will also likely vary.

Fig. 10 shows three sets of three opinions, each
with different consistency. In Fig. 10(a), one opinion
strongly supports the hypothesis, while two fairly
strongly oppose it, leading to extremely low consis-
tency. Fig. 10(b) exhibits a medium level of consis-
tency – while the opinions are inconsistent in their
support or opposition of the hypothesis, the mean
difference of their expectations is very low. Complete
consistency can be seen in Fig. 10(c), where all of the
opinions support the hypothesis.

Consistency is a value in the range C ∈ [0, 1], with
a value of C = 1 indicating complete consistency (i.e.
the beliefs all support or all oppose the hypothesis),
and a value of C = 0 indicating extreme inconsistency.
The mathematical definition of consistency can be
found in Appendix I.

Since for any non-trivial ACH problem, there are
likely to be many items of evidence, an indication
of how consistently the evidence supports or opposes
the analytical result is very useful. In ‘real world’
problems with evidence of uncertain quality, unclear
links between evidence and hypotheses, and many
weakly diagnostic factors at play, the consistency of
the intermediate analytic results will likely be subop-
timal, with some small amount of inconsistency as a
result. A high degree of inconsistency in the results
suggests at least two interesting possibilities:

1) A high degree of inconsistency in combination
with low concordance for one or more items of
evidence could indicate possible deception or
misperception. Examination of the sensitivity
of the items of evidence – particularly items of
evidence with low concordance – may reveal
items of evidence of questionable reliability.

2) If more than one hypothesis has a high degree of
inconsistency, this may also indicate that the set
of chosen hypotheses has poor explanatory value
for the observed evidence. The inconsistency
may be due to an inadequate set of hypotheses,
or a weak analytical model of the relationships
between the hypotheses and evidence. Possible
remedies might include considering a different

or expanded set of hypotheses and/or evidence,
and a careful examination of the conditionals
within the analytical model that specify their
relationship.

VI. INCREASING THE ACCURACY OF EVIDENCE

ASSESSMENT

The objective of the ACH-SL process is to produce
accurate analysis that is reflective of accuracy and
certainty of the evidence provided. Accurate assess-
ment of the evidence requires that the analyst correctly
judges for each item of collected information, its
currency, the reliability of its sources, and how well it
supports the evidence.

A. Reliability of multiple or intermediary sources

The reliability of different information sources can
vary widely, can change over time, and can also vary
with the type of information that they provide. For
example, a former mafia hitman-turned-informer may
be considered a very reliable source of information for
certain topics of interest; will be less reliable for oth-
ers; and will be completely untrustworthy/unreliable
for topics that might implicate a member of his family.
Over time, the reliability of the informer to provide
information on current topics will decay, until at some
time – weeks or years – the informer is considered to
not be a reliable source of current information on any
topics of interest.

Information can also come from a variety of dif-
ferent types of sources. The simplest of these is a
single source who is considered to be an original
source of the information. For example, a witness to a
robbery would be considered to be an original source
of information about certain aspects of the robbery,
as would others who were present at the time and
place the robbery took place – including the robber.
Even though the witnesses and the robber may all
disagree about the details of the event, their knowledge
or belief about the robbery is first-hand and not
obtained through intermediaries. More complex types
of sources include those who are intermediate sources,
who are by definition not original sources. To greater
or lesser degrees they filter, interpret, repackage and
disseminate information from other sources – some-
times other intermediate sources – and the information
relayed by them can sometimes be very different from
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that provided by their originators. It is important to
note that a single entity can be both an original source
for some information, and an intermediary source for
other information.

In practice, discovering the original information and
the original sources from the intermediate sources can
be very difficult, if not impossible. The problem of
using intermediate sources is the uncertainty intro-
duced by their reliability. As the number of inter-
mediate sources in the information chain grows, the
greater becomes the potential for uncertainty in the
information that is received. Fig. 11 shows how an
item of information that originated with D is passed
through intermediate sources of until it is delivered
to the analyst A. If the information is transmitted
via word-of-mouth, or filtered and repackaged like
a report or news article, then the certainty of the
information will decrease unless every intermediate
source is completely reliable. Even if there is no
obvious repackaging or filtering, and the information
is passed though apparently untouched (as with paper-
based documents) the possibility of deliberate tamper-
ing still remains.

Fig. 11. Transitive information chains decreases the certainty of
the received information

Even worse is the problem of a hidden common
source

Ideally then, each item of evidence needs multiple
independent sources of information. Having multiple
sources increases the overall certainty of the received
information, so long as the intermediate sources are
not completely unreliable. Multiple opinions about
an item of evidence can also be fused to provide a
consensus opinion which reflects all of the opinions in

a fair and equal way, and which serves to decrease its
uncertainty. Fig. 12 shows how an item of information
that originated with D is passes in parallel through two
intermediate sources B and C – both of whom deliver
it to the analyst, A. Even though the relatively poor
reliability of B and C decrease the certainty of the
information that each deliver, their fusion results in
increased certainty when compared to the information
individually provided by B and C .

Fig. 12. Parallel paths increase the certainty of the received
information

Subjective Logic can be used to address the issue
of source reliability and multiple sources using the
discounting [26], [27] and consensus [23] operators.
Fig. 13 illustrates an example problem of reconciling
information about an item of evidence e that is pro-
vided by three different sources with varying degrees
of reliability. The figure shows three sources X, Y
and Z providing information about the same topic.
The task for the analyst is to arrive at an overall
assessment as to the credibility and reliability of the
information, so the information can be used as input
into an existing ACH-SL analytical model. In Fig. 13,
this overall assessment is represented by a ‘virtual’
source that provides a single piece of evidence e for
use in the model.

The information provided by source X, eX , is
rated as “B-3” on the example ‘Admiralty Scale’ 13

in Table I, meaning that the source is considered

13For a brief discussion of the Admiralty Scale, see [28]
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Fig. 13. Reconciling information of different value from sources
of differing credibility results in a consensus value of the infor-
mation and an combined source credibility rating.

to be “usually reliable”, and the information they
have provided prima facie implies that e is “likely”.
Similarly, the information provided by Y and Z (eY ,
eZ ) are both rated as “C-1”. This means that the
sources are considered to be “fairly reliable” and that
each piece of information suggests that e is “almost
certainly true”.

With Subjective Logic, each of the categories in Ta-
ble I can be mapped to a Subjective Opinion, and using
the discount operator ⊗ [26], [27], an overall opinion
can be obtained about the value and uncertainty of
the information provided by each source, where the
credibility of each piece of information is discounted
by the reliability of its source, i.e.:

Cred(X) ⊗ Rel(eX) → ωX
e = (0.48, 0.32, 0.2, 0.5)

Cred(Y ) ⊗ Rel(eY ) → ωY
e = (0.57, 0.03, 0.4, 0.5)

Cred(Z) ⊗ Rel(eZ) → ωZ
e = (0.57, 0.03, 0.4, 0.5)

The individual opinions about the information pro-
vided by each source can then be combined using the
consensus operator ⊕ [23] to produce an overall opin-
ion about the value and uncertainty of the evidence,
given the opinion of the value and uncertainty of each
piece of information provided, i.e.:

ωX
e ⊕ ωY

e ⊕ ωZ
e → ωX♦Y ♦Z

e = (0.66, 0.22, 0.12, 0.5)

This single subjective opinion represents both the
value of the evidence and the uncertainty associated
with it. It can be input directly into the ACH-SL
calculations, and it can be ascribed an overall semantic
interpretation that represents a ‘virtual’ source with
a single piece of information (Fig. 13). Using the
method described in Representations of subjective
opinions [2], this subjective opinion is given an in-
terpretation of “A-3” indicating that the evidence is
“likely” and that this assessment should be considered
to be “almost always reliable”, i.e. the certainty of this
assessment is very high.

B. Effect of belief decay

Belief decay is important to model in situation-
based decision making, where there is a temporal
delay between observations and any decisions that are
predicated on the probability expectation and certainty
of those observations [29]. A belief about some con-
tinuing state of the world, based on an observation,
will be less certain in the future if no additional

TABLE I

EXAMPLE SUBJECTIVE OPINION MAPPINGS FOR A 6 × 6 ‘ADMIRALTY SCALE’.

Credibility of Source Reliability of Information
Collector’s assessment of Source’s reliability Source’s assessment of the likelihood of information

Score Interpretation Beliefa Score Interpretation Beliefa

A Almost Always Reliable (0.95, 0.05, 0.0, a) 1 Almost Certainly True (0.95, 0.05, 0.0, a)

B Usually Reliable (0.8, 0.2, 0.0, a) 2 Very Likely (0.8, 0.2, 0.0, a)

C Fairly Reliable (0.6, 0.4, 0.0, a) 3 Likely (0.6, 0.4, 0.0, a)

D Fairly Unreliable (0.4, 0.6, 0.0, a) 4 Unlikely (0.4, 0.6, 0.0, a)

E Unreliable (0.1, 0.9, 0.0, a) 5 Very Unlikely (0.1, 0.9, 0.0, a)

F Untested (0.0, 0.0, 1.0, a) 6 Unknown (0.0, 0.0, 1.0, a)

a The numbers in the parentheses constitute subjective logic beliefs in the form (b, d, u, a) – denoting belief,
disbelief, uncertainty and base rate, respectively. For more information, please consult Appendix A.
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observation is possible. Beliefs are therefore subject to
exponential decay, where the rate of decay of a belief’s
certainty is proportional to its current certainty; and
where the probability expectation of a decaying belief
will approach its base rate, as its remaining certainty
approaches zero.

Fig. 14. Successive observations over time increase the certainty
of decaying beliefs.

For example, if we observe that “John is at home”
at 9:00am, we will in general be less certain that
this is still true at 12:00pm, and far less certain at
3:00pm. In this way, we say that the certainty of
our belief has decayed since the initial observation
on which the belief was predicated. Of course, if we
periodically observed John at his home over the course
of the day, then the belief that “John is at home” over
the entire course of the day will vary in certainty.
Fig. 14 provides such an example where the resultant
belief from an initial observation at time t0 erodes
with time, until succesively reinforced by subsequent
observations at times t1, t2, and t3.

Fig. 15. A decaying belief ωx at some time t0, and later at tn.
The remaining certainty at ωtn

x is proportional to k = e−λ(tn−t0)

of ωt0
x .

In Fig. 15, an initial belief ωx at time t0 can be

written as ωt0
x , and the same belief with decayed

certainty (i.e. increased uncertainty) at some time tn

can be written as ωtn
x . The proportion of remaining

certainty k after the decay of some interval time
t = tn − t0 represents the tendency of the belief to
become less certain with time where

k = e−λt =
1 − utn

x

1 − ut0
x

The temporal distance t = tn − t0, and the decay
constant λ, acts to discount the original belief in
the same way as a dogmatic opinion [22] with an
expectation E(ωy) = e−λt. We therefore can the
express the decay of beliefs in a similar manner to
the discounting of beliefs [26], [27]. The mathematical
definintion of belief decay is provided in Appendix B.

C. Source reliability revision

The belief in the reliability of a source, whether it
be a person, organization, sensor, or system does not
remain static. It will usually change with the perceived
reliability of the source, and decay according to the
temporal distance between the time at which some
judgement about the reliability of the source was
possible, and the time at which an observation from
that source is used for some decision.

Sources that provide reliable information now may
not always do so in the future, and sources that
were once unreliable may improve. Various factors
can influence this, such as the upgrade of sensor or
analytical systems; financial problems that motivate
a source to provide poor quality information for
quick financial gain; and better or worse access to
valuable information as the result of a promotion or
reorganization within an organization – to name just a
few. Continuous belief revision is therefore necessary
to ensure that the perceived reliability of a source
reflects its actual reliability. Without it, the estimated
reliability of a source will deviate more and more from
its actual reliability, and therefore the information
provided by the source cannot be safely judged.

Reputation systems [30] are ideally suited for repre-
senting and managing source reliability. A reputation
system gathers and aggregates feedback about the
behaviour of entities in order to derive measures of
reputation [31]. While reputation systems typically
collect ratings about members of a community from
within the same community, the approach can also be
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used to manage reputation about any set of entities,
using ratings provided by a closed community, such
as an intelligence or law enforcement agency. Using
a closed, trusted community also avoids most of the
typical complaints about reputation systems, such as
unfair ratings, retaliation, ‘ballot box stuffing’, and
inadequate authentication [32].

In the case of a source’s reliability, the feedback
provided to the reputation system is the completeness
and accuracy of the information provided, evaluated
at some later time when there is sufficient certainty
concerning its accuracy. This evaluation typically oc-
curs independently of its use in any analysis and is an
‘after the event’ assessment. Complete and accurate
information that is provided by the source increases
the perceived reliability of the source, while incom-
plete or inaccurate information acts to decrease the
perception of reliability.

It is an intuitive principle that recent observations
are generally a better indicator of performance than are
distant past observations [32] – all other things being
equal. Therefore, the quality of recently provided
information is generally a better indication of source
reliability than that of information provided in the
distant past. Simulations of markets that implement
this principle in their reputation systems have been
shown to facilitate honest trading, while those that do
not remember past performance – or never forget past
performance – have been shown to facilitate dishonest
trading [32]. This implies that the perceived reliability
of a source should naturally decay over time, increas-
ing the uncertainty, and moving its reliability measure
closer to the base rate - usually a neutral position. This
ensures that more recently provided information will
influence the derived measure of reliability more than
old information. Further details are available in [31],
[32].

VII. CONCLUSION

ACH-SL allows analysts to include weak diagnostic
information that could be used to expose possible
deceptions and to provide more balanced conclusions
as to the expected outcomes.

Its use of Subjective Logic to represent belief in
evidence and conclusions allows partial or complete
uncertainty about evidence to be expressed both in
the analytical model and the conclusions that follow.

In addition, the Subjective Logic calculus allows in-
formation to be aggregated from different sources that
have varying reliability, while the use of reputation
systems can be used to capture and maintain source
reliability and provides a formal way to model the
reliability of sources – and therefore monitor and
moderate the credibility of the information provided.

This paper is not intended as a complete solution
to the problem of deception and misperception in
analysis. While the metrics provided by ACH-SL can
be very useful for detecting anomalies that may be
indicative of of deception or misperception, further
research needs to be performed to provide a high-
level analysis of the likelihood of various types and
locations of deception or misperception; and also
account for the influence of an adversary’s strategic
goals in deciding how likely the anomalies are to be
indicators of deception or misperception.

In addition, some of the other areas of importance
have only been roughly sketched in this paper. The
design of a reputation system for use in intelligence
source management is an interesting and important
research task. At first glance, such a task may seem
simple, but a more studied viewing will reveal sub-
tleties and complexities that make it far more difficult
to actually design one for an intelligence collection or
assessment organisation.

The same is also true for much of the concepts
outlined in the paper. In order to make them useful,
they need to be situated within an intelligence systems
framework that allows sufficiently rich and flexible
constructs – and yet that is simple and efficient enough
for a human analyst to use without negative effects on
cognitive load.
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APPENDIX
SUBJECTIVE LOGIC THEORY AND DEFINITIONS

A. Subjective Logic Fundamentals

This section introduces Subjective Logic, which is extensively used within the ACH-SL approach to model the
influence of evidence on hypotheses, and provide a calculus for the evaluation of the model when measurement
of the evidence is provided.

Belief theory is a framework related to probability theory, but where the sum of probabilities over all possible
outcomes not necessarily add up to 1, and the remaining probability is assigned to the union of possible
outcomes [22]. Belief calculus is suitable for approximate reasoning in situations where the probability of
events can not be expressed with certainty, and is ideally suited for both human and machine representations
of belief.

Belief theory applies to state spaces of possible exclusive events, and uses the notion of belief masses that
are distributed over subsets of a state space, where the sum of belief masses so assigned must add up to one.
A subset with belief mass is called a focal element of the state space. When all the belief mass is assigned to
the whole state space, the belief distribution function is called vacuous, because it expresses no certainty about
any event in particular. When all the focal elements are atomic events, the belief function is called Bayesian,
which corresponds to a classical probability model. When no belief mass is assigned to the whole state space,
the belief function is dogmatic [33]. Let us note, that trivially, every Bayesian belief function is dogmatic, and
that in case of binary state spaces, every dogmatic belief function is Bayesian.

Subjective Logic [22] represents a specific belief calculus that uses a belief metric called opinion to express
beliefs. An opinion denoted by ωA

x = (bA
x , dA

x , uA
x , aA

x ) expresses the relying party A’s belief in the truth of
statement x. Here b, d, and u represent belief, disbelief and uncertainty, and base rate 14 respectively where
bA
x , dA

x , uA
x , aA

x ∈ [0, 1] and the following equation holds:

bA
x + dA

x + uA
x = 1 . (A-1)

The parameter aA
x represents the base rate of x and reflects the size of the state space from which the

statement x is taken. In most cases the state space is binary, in which case aA
x = 0.5. The base rate is used

for computing an opinion’s probability expectation value expressed by:

E(ωA
x ) = bA

x + aA
x uA

x , (A-2)

meaning that a determines how uncertainty shall contribute to E(ωA
x ). When the statement x for example says

“Party B is honest and reliable” then the opinion can be interpreted as trust in B, which can also be denoted
as ωA

B.

The opinion space can be mapped into the interior of an equal-sided triangle, where, for an opinion
ωx = (bx, dx, ux, ax), the three parameters bx, dx and ux determine the position of the point in the triangle
representing the opinion. Fig. 16 illustrates an example where the opinion about a proposition x from a binary
frame of discernment has the value ωx = (0.7, 0.1, 0.2, 0.5).

The top vertex of the triangle represents uncertainty, the bottom left vertex represents disbelief, and the
bottom right vertex represents belief. The parameter bx is the value of a linear function on the triangle which
takes value 0 on the edge which joins the uncertainty and disbelief vertices and takes value 1 at the belief
vertex. In other words, bx is equal to the quotient when the perpendicular distance between the opinion point
and the edge joining the uncertainty and disbelief vertices is divided by the perpendicular distance between
the belief vertex and the same edge. The parameters dx and ux are determined similarly. The edge joining the

14Also referred to as relative atomicity in [22] and in other later papers
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Fig. 16. Opinion triangle with example opinion

disbelief and belief vertices is called the probability axis. The base rate is indicated by a point on the probability
axis, and the projector starting from the opinion point is parallel to the line that joins the uncertainty vertex
and the base rate point on the probability axis. The point at which the projector meets the probability axis
determines the expectation value of the opinion, i.e. it coincides with the point corresponding to expectation
value bx + axux.

Opinions can be ordered according to probability expectation value, but additional criteria are needed in
case of equal probability expectation values. We will use the following rules to determine the order of opinions
[22]:

Let ωx and ωy be two opinions. They can be ordered according to the following rules by priority:

1) The opinion with the greatest probability expectation is the greatest opinion.

2) The opinion with the least uncertainty is the greatest opinion.

Opinions can be expressed as beta PDFs (probability density functions). The beta-family of distributions is
a continuous family of distribution functions indexed by the two parameters α and β. The beta PDF denoted
by beta(α, β) can be expressed using the gamma function Γ as:

beta(α, β) =
Γ(α + β)
Γ(α)Γ(β)

pα−1(1 − p)β−1 (A-3)

where 0 ≤ p ≤ 1 and α, β > 0, with the restriction that the probability variable p �= 0 if α < 1, and p �= 1 if
β < 1. The probability expectation value of the beta distribution is given by:

E(p) = α/(α + β). (A-4)

The following mapping defines how opinions can be represented as beta PDFs.

(bx, dx, ux, ax) �−→ beta
(

2bx

ux
+ 2ax, 2dx

ux
+ 2(1 − ax)

)
(A-5)

This means for example that an opinion with ux = 1 and ax = 0.5 which maps to beta (1, 1) is equivalent
to a uniform PDF. It also means that a dogmatic opinion with ux = 0 which maps to beta (bxη, dxη) where
η → ∞ is equivalent to a spike PDF with infinitesimal width and infinite height. Dogmatic opinions can thus
be interpreted as being based on an infinite amount of evidence.
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When nothing is known, the a priori distribution is the uniform beta with α = 1 and β = 1 illustrated in
Fig. 17a. Then after r positive and s negative observations the a posteriori distribution is the beta PDF with
the parameters α = r + 1 and β = s + 1. For example the beta PDF after observing 7 positive and 1 negative
outcomes is illustrated in Fig. 17b below. This corresponds to the opinion of Fig. 16 through the mapping of
(A-5).
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Fig. 17. Uniform beta PDF examples

A PDF of this type expresses the uncertain probability that a process will produce positive outcome during
future observations. The probability expectation value of Fig. 17b. is E(p) = 0.8. This can be interpreted as
saying that the relative frequency of a positive outcome in the future is somewhat uncertain, and that the most
likely value is 0.8.

The variable p in (A-3) is a probability variable, so that for a given p the probability density beta(α, β)
represents second order probability. The first-order variable p represents the probability of an event, whereas
the density beta(α, β) represents the probability that the first-order variable has a specific value.

By definition, the PDF and the corresponding opinion always have the same probability expectation value,
and can be interpreted as equivalent. This makes it possible to fuse opinions using Bayesian updating of beta
PDFs.

Subjective Logic includes the standard set of operators that are used for probability calculus and binary
logic; specialized operators for belief fusion and discounting; and additional functions for analyzing directed
graphs of subjective opinions.

Within ACH-SL, the value and certainty of evidence and hypotheses are represented as subjective opinions
which can be transformed to and from other representations of belief. These representations include ‘fuzzy’
terms used by humans, as well as various machine representations, including Bayesian representations.
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B. Decay

Definition 1.1 (Decay Constant): Let some initial belief ωx at time t0 can be written as ωt0
x . Let the same

belief with decayed certainty (i.e. increased uncertainty) at some time tn be written as ωtn
x . The proportion of

remaining certainty k after the decay of some interval time t = tn − t0 can be calculated as

k =
1 − utn

x

1 − ut0
x

(B-1)

and therefore the decay constant λ ≥ 0 for exponential decay is

k = e−λt (B-2)

which can also be written as
λ =

− ln k

t
(B-3)

Proof: Since the certainty is subject to exponential decay, then the rate of decay of a belief ω x must be
proportional to its certainty (1 − ut0

x ), and is expressed by the following differential equation, where λ ≥ 0 is
the decay constant

du

dt
= λ(1 − ut0

x ) (B-4)

which has the solution

1 − utn

x = (1 − ut0
x ) e−λt

1 − utn
x

1 − ut0
x

= e−λt

Substituting k from B-1 gives
k = e−λt

Definition 1.2 (Instantaneous Decay): The instantaneous decay of a belief ωx = (bx, dx, ux, ax) to a relative
certainty of k (B-1) produces the belief ωx′ = (bx′ , dx′ , ux′ , ax′) where

Decay(ωx, k) → ωx′ =

⎧⎪⎪⎨
⎪⎪⎩

bx′ = kbx

dx′ = kdx

ux′ = 1 + kux − k
ax′ = ax

(B-5)

Remark 1.3: Given a decaying belief ωx with a decay constant of λ, there must be some time t1/2, when
the remaining certainty (1 − ut1/2

x ) is half of the certainty of the original belief (1 − ut0
x ), i.e.

1 − u
t1/2
x =

1
2

(1 − ut0
x ) (B-6)

Definition 1.4 (Half-life): The half-life is the length of time t1/2 that the certainty of a belief decays (with
the decay constant λ) before there remains one half of the certainty of the original belief, and is given by

t1/2 =
ln 2
λ

(B-7)

Corollary 1.5 (Decay Constant from Half-life): The decay constant λ can be calculated from the half-life,
t1/2 and is given by

λ =
ln 2
t1/2

(B-8)
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C. Projection

Decay always produces a belief with the same or decreased certainty at some future point in time. The
complement of decay is projection, which is agnostic with respect to time, and projects the existing opinion
ωx to a position of either increased or decreased certainty ωx′ → ux′ = uγ along the ‘path of least resistance’
defined by the point at the top vertex of the triangle, (0, 0, 1, ax), and the opinion (bx, dx, ux, ax) (see Fig. 18).

Fig. 18. An opinion ωx with uncertainty ux projected to a new opinion ωx′ with a target uncertainty of ux′ = uγ

Projection is needed to approximate the past value of a decayed belief, to a specified level of certainty. Like
decay, projection treats both bx and dx fairly, and produces an opinion that maintains their relative sizes. In the
special case of the opinion being completely uncertain ux = 1, both bx = dx = 0, and the projected opinion
will lie along the line E(ωx′) = ax.

Definition 1.6 (Projection): The projection of a subjective opinion ωx = (bx, dx, ux, ax) to some target
uncertainty uγ ∈ [0, 1] produces a new opinion ωy = (bx′ , dx′ , ux′ , ax′) as defined by

Proj(ωx, uγ) → ωx′ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ux = 1,

⎧⎪⎪⎨
⎪⎪⎩

bx′ = ax(1 − uγ)
dx′ = (1 − ax)(1 − uγ)
ux′ = uγ

ax′ = ax

ux < 1,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

bx′ = bx + bx

bx+dx
(ux − uγ)

dx′ = bx + dx

bx+dx
(ux − uγ)

ux′ = uγ

ax′ = ax

(C-1)

D. Mean of a set of opinions

This mean, μ, of a set of a set of k probabilities is, in effect, an unweighted compromise of all probabilities
in the input set and its formula is simply

μ =

k∑
i=1

p(xi)

k
(D-1)
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Similarly, the mean of a set of Subjective Opinions is the opinion that represents a compromise of all opinions
in the input set, equally weighted with respect to the certainty, expectation, and base rate of each opinion. It is
unsuited for belief fusion since it is an unweighted measure, and should not be confused with the consensus
operator [23] that is used for belief fusion.

Fig. 19. The mean of two or three opinions with the same base rate is point with the smallest equidistant distance from each

The effects of the operator are portrayed in Fig. 19, where the resultant mean opinion ωμ is an opinion
whose expectation, certainty, and base rate values are respectively the mean of the expectation, certainty and
base rate values of the input opinions (ω1, ω2, ω3). Visually, for two or three opinions that share a common
base rate, the mean opinion will lie equidistant from each of them in the opinion triangle. In the example in
Fig. 19, the mean opinion lies at a distance d from each of the input opinions. For more than three opinions
– or where the base rates are different – no such visual symmetry is guaranteed.

Definition 1.7 (Mean): Let Θ = {ω1, ω2, . . . ωk, } represent a set of k > 1 opinions. Then the mean opinion
of Θ, ωμ = (bμ, dμ, uμ, aμ) where

E(ωμ) =

k∑
i=1

E(ωi)

k
, uμ =

k∑
i=1

ui

k
, aμ =

k∑
i=1

ai

k
(D-2)

and therefore is defined as

ωμ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

bμ =

kP

i=1
(bi+aiui) −

kP

i=1
ai·

kP

i=1
ui

k

dμ = 1 −
kP

i=1
(bi+aiui) −

kP

i=1
ai·

kP

i=1
ui+

kP

i=1
ui

k

uμ =

kP

i=1
ui

k

aμ =

kP

i=1
ai

k

(D-3)
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E. Diagnosticity

Diagnosticity is a measure of how well evidence distinguishes between hypotheses, based on knowledge of
the logical conditionals p(hi|e) and p(hi|ē).
Definition 1.8 (Diagnosticity of evidence): Let Φ = {h1, h2, . . . hk} be a state space for a set k hypotheses

where one and only one hi ∈ Φ is true. Let ΩΦ = {Θ1,Θ2, . . . Θm} be the corresponding set of m state spaces
for a single item of evidence, e (where Θi = {ei, ei},Θi ∈ ΩΦ) that represent the conditionals ωhi|e, ωhi|e for
each hypothesis hi ∈ Φ. Then we define the diagnosticity of the evidence e with respect to an arbitrary subset
of hypotheses H ⊆ Φ with k > 0 elements to be

D(e,H) =

⎧⎪⎨
⎪⎩

Etotal(e,H) = 0, 0;

Etotal(e,H) > 0,

k∑
n=1

|E(ωhn|e)−E(ωhn|ē)−Dmean(e,H)|
Etotal(e,H)

(E-1)

where Dmean(e,H) is the mean of the sum of the differences, and Etotal(e,H) is the sum of their expectations,
defined respectively as

Dmean(e,H) =

k∑
n=1

[E(ωhn|e)−E(ωhn|ē)]

k (E-2)

Etotal(e,H) =
k∑

n=1

[
E(ωhn|e) + E(ωhn|ē)

]
(E-3)

Then the diagnosticity of the evidence e with respect to an arbitrary subset of hypotheses H can be rewritten
as (substituting E-2 and E-3 into E-1):

D(e,H) =

k∑
n=1

∣∣∣∣E(ωhn|e)−E(ωhn|ē)−
k∑

n=1

[
E(ωhn|e)−E(ωhn|ē)

k

]∣∣∣∣
k∑

n=1
[E(ωhn|e)+E(ωhn|ē)]

(E-4)

Remark 1.9: It can be seen that D(e,H) ∈ [0..1] where a value of zero indicates that the evidence lends
no weight to any of the hypotheses, while a value of 1 indicates that at extreme values for the evidence (i.e.
E(ωe) = 0 ∨ E(ωe) = 1), one of the hypotheses, hi ∈ H , will be absolutely true and for the other extreme,
one or more will be absolutely false.

Lemma 1.10 (Diagnosticity of evidence for a complete set of hypotheses): The diagnosticity of the evi-
dence e for a complete set of hypotheses Φ can be expressed in a simplified form as

D(e,Φ) =

m∑
n=1

∣∣E(ωhn|e) − E(ωhn|ē)
∣∣

2
(E-5)
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F. Sensitivity

The relative degree to which the the value of a hypothesis (or a subset of hypotheses) will be determined
by the value of an item of evidence is known as its sensitivity, and is useful in sensitivity analysis for quickly
identifying the items of evidence that will likely have the greatest impact. It is calculated for a subset of
hypotheses and an item of evidence as its relative potential energy – which is defined as the product of the
difference in the expectation of the conditionals, and the mean of the squares of their certainty (see Fig. 20).

Fig. 20. The sensitivity of a hypothesis with respect to an item of evidence is the relative product of the mean of the squares of their
certainties and expectation difference of their causal logical conditionals

Definition 1.11 (Potential energy of a pair of logical conditionals): Let Φ = {h1, h2, . . . hm} be a state
space for a set m hypotheses where one and only one h i ∈ Φ is true. Let e be an item of evidence and
ΩΦ = {Θ1,Θ2, . . . Θn} be the corresponding set of n state spaces (where Θj = {ej , ej},Θj i ∈ ΩΦ) that
represent the conditionals ωhi|e, ωhi|ē for each hypothesis hi ∈ Φ. Then we define the potential energy of an
arbitrary subset of hypotheses H ⊆ Φ with k > 0 elements with respect to an item of evidence e to be

Up(H, e) =
k∑

i=1

[∣∣E(ωhi|e) − E(ωhi|ē)
∣∣ · [(1 − uhi|e)

2 + (1 − uhi|ē)
2
]

2

]
(F-1)

Definition 1.12 (Sensitivity of a result): Let Φ = {h1, h2, . . . hm} be a state space for a set m hypotheses
where one and only one hi ∈ Φ is true. Let Ψ = {e1, e2, . . . en} be a set of n items of evidence. Let Up(H, ei)
be the potential energy (F-1) of an arbitrary subset of hypotheses H ⊆ Φ with k > 0 elements with respect
to an item of evidence ei ∈ Φ. Then we define the sensitivity of the subset of hypotheses H with respect to a
single item of evidence ej ∈ Ψ, relative to Ψ to be

Srel(H, ej ,Ψ) =
Up(H, ej)

n∑
i=1

Up(H, ei)
(F-2)

G. Support

Definition 1.13 (Support): Let x be some proposition and ωx = {bx, dx, ux, ax} be an opinion about x.
Then the degree to which the opinion supports the proposition x is

Sωx
= E(ωx) − ax (G-1)

Formal Methods of Countering Deception and Misperception in Intelligence Analysis

26



H. Concordance

Definition 1.14 (Concordance): Let Θ = {ω1, ω2, . . . ωk, } represent a set of k > 1 opinions. Let ωμ

represent the mean opinion of Θ. Let Θ′ = {ω′
1, ω

′
2, . . . ω

′
k, } be the projections (C-1) of the elements of

Θ to uncertainty uμ, i.e. ∀i, ωi′ = Proj(ωi, uμ). Then the concordance of Θ, KΘ, is

KΘ = 1 −

k∑
i=1

|E(ωi) − E(ωμ)| +
k∑

i=1
|E(ω′

i) − E(ωμ)|
k

(H-1)

I. Consistency

Definition 1.15 (Consistency of Analytical Result): Let h be some hypothesis. Let Ψ = {e1, e2, . . . em}
be the set of m items of evidence. Let the intermediate analytic results for the hypothesis be h||E =
{ωh||e1

, ωh||e2
, . . . ωh||em

}, and the corresponding set of support values (G-1) for each ωh||ei
∈ h||E �→ Sωh||ei

∈
Υ = {Sωh||e1

,Sωh||e2
, . . . Sωh||em

}. Let Sμ be the mean of the support (G-1) of Υ, as defined by

Sμ =

m∑
i=1

Sωh||ei

m
(I-1)

Then the consistency of h with respect to E is

Ch||E =

∣∣∣∣ m∑
i=1

Sωh||ei

∣∣∣∣ + 1 − Sμ

m∑
i=1

∣∣Sωh||ei

∣∣ + 1 − Sμ

(I-2)

which in full form is written as

Ch||E =
m

∣∣∣∣ m∑
i=1

Sωh||ei

∣∣∣∣ + m −
m∑

i=1
Sωh||ei

m
m∑

i=1

∣∣Sωh||ei

∣∣ + m −
m∑

i=1
Sωh||ei

(I-3)
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