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Graphs exceeding the formal complexity of rooted trees are of growing relevance to much NLP
research. Although formally well-understood in graph theory, there is substantial variation in
the types of linguistic graphs, as well as in the interpretation of various structural properties. To
provide a common terminology and transparent statistics across different collections of graphs
in NLP, we propose to establish a shared community resource with an open-source reference
implementation for common statistics.

1. Motivation

The predominant target representations in natural language parsing traditionally have
been trees, in the formal sense that every node is reachable from a distinguished root
node by exactly one directed path. With a gradual shift of emphasis from more surface-
oriented, morpho-syntactic target representations in parsing towards “deeper”, more
semantic analyses, there is increasing interest in processing structures where characteris-
tic properties of trees like the unique root, connectedness, or lack of reentrancies can be
relaxed. Some recent parsing work targets graph-structured representations more general
than trees (Sagae and Tsujii [2008], Das et al. [2010], Jones, Goldwater, and Johnson [2013],
Flanigan et al. [2014], Martins and Almeida [2014]; inter alios). This development is made
possible by ongoing efforts to annotate deeper syntactico-semantic analyses at scale, and
typically such annotations either directly take the form of directed graph structures, or
can be interpreted as such under moderate transformations.

In computational linguistics and in particular in natural language parsing, however,
there is less of an established tradition of using general graphs than in, say, theoretical
computer science (although the central role of feature structures in unification-based
grammar formalisms arguably marks an exception to this claim). Thus, we note a lack of
consensus on which specific structural properties of graphs are most relevant in terms of
linguistic adequacy or formal effects on models and algorithms. As has been the case for
various sub-classes of mildly non-projective dependency trees, for example, we expect
that the design of parsing algorithms for graph-structured target representations will
benefit from the algebraic study of relevant graph sub-classes. In this work, we seek to
initiate a community process of systematizing the landscape of graph representations
of linguistic structure, with particular emphasis on syntactico-semantic analysis. We
present a “pilot” study over a selective sample of extant collections of linguistic graphs
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(Section 2), propose an initial inventory of formally well-defined properties (Section 3),
and demonstrate how contrastive statistics over graph banks can contribute to improved
understanding of different frameworks (Section 4). Finally we present a proposal for
community follow-up action—which we hope may elicit more in-depth discussion of
formal and linguistic differences across graph banks (Section 5).

2. A Menagerie of Graph Banks

For this study, we consider four larger graph banks that are generally available (through
the Linguistic Data Consortium) and have already been applied in training and eval-
uation of data-driven parsers. To capture relevant variation, this selection represents
different (and arguably increasing) levels of abstraction over the surface signal and its
syntactic structure, viz. (a) Combinatory Categorial Grammar word–word dependencies
(CCD); (b) Semantic Dependency Parsing targets from SemEval 2014 and 2015 (SDP);
(c) the Elementary Dependency Structures (EDS) of Oepen and Lønning (2006); and
(d) Abstract Meaning Representation (AMR; Banarescu et al. [2013]). Additional candidate
graph banks for inclusion in a community-maintained on-line catalogue are, for example,
the Groningen Meaning Bank (GMB; Basile et al. [2012]), Universal Conceptual Cognitive
Annotation (UCCA; Abend and Rappoport [2013]), as well as combinations of layers of
annotations from the Penn Treebank (PTB; Marcus, Santorini, and Marcinkiewicz [1993])
and OntoNotes (Hovy et al. 2006) ecosystems. Also, recent work on “deeper” syntax
(Ballesteros et al. 2015) and the Universal Dependencies initiative (de Marneffe et al.
2014) push towards increasing use of non-tree structures.

There are multiple linguistic and formal differences between these resources. Most
importantly, CCD and SDP represent bi-lexical dependencies, where graph nodes correspond
to surface lexical units (words or tokens). In contrast, EDS and AMR take the form of
semantic networks (or conceptual graphs), where nodes represent concepts and there need
not be an explicit mapping to surface linguistic forms. In Section 3 below, we discuss
some of the ramifications of this fundamental contrast for the analysis of semantically
vacuous surface elements and other formal graph properties.

CCG Dependencies (CCD). Hockenmaier and Steedman (2007) construct CCGbank
from a combination of careful interpretation of the syntactic annotations in the PTB
with additional, manually curated lexical and constructional knowledge. In CCGbank
(LDC2005 T13), the strings of the venerable PTB Wall Street Journal (WSJ) corpus are
annotated with pairs of (a) CCG syntactic derivations and (b) sets of semantic bi-lexical
dependency triples, which we term CCD. The latter “include most semantically relevant
non-anaphoric local and long-range dependencies” and are suggested by the CCGbank
creators as a proxy for predicate–argument structure. While CCD has mainly been used
for contrastive parser evaluation (Clark and Curran [2007], Fowler and Penn [2010]; inter
alios), there is current work that views each set of triples as a directed graph and parses
directly into these target representations (Du, Sun, and Wan 2015).

SDP 2014 and 2015: DM and PSD. For the SDP tasks at SemEval, Oepen et al. (2014,
2015) prepared aligned sets of semantic dependency graphs over the same WSJ text
by reduction (i.e. lossy conversion) of independently developed syntactico-semantic
treebanks into bi-lexical semantic dependencies. SDP (LDC2016 T10) comprises multiple
linguistic frameworks, but for our pilot comparison we focus on two sets of target
representations that are not derivative of the PTB, viz. (a) DELPH-IN MRS-Derived
Dependencies (DM; Oepen and Lønning [2006], Ivanova et al. [2012]) and (b) Prague
Semantic Dependencies (PSD; Hajič et al. [2012], Miyao, Oepen, and Zeman [2014]). Both
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are rooted in general theories of grammar—Head-Driven Phrase Structure Grammar
(Pollard and Sag 1994) and Prague Functional Generative Description (FGD; Sgall,
Hajičová, and Panevová [1986]), respectively—and there are numerous current reports
on parsing into these target representations.

Elementary Dependency Structures (EDS). The DM bi-lexical dependencies originally derive
from the underspecified logical forms of Copestake et al. (2005), which Oepen and
Lønning (2006) by elimination of scope constraints reduced to variable-free, unordered
semantic dependency graphs called EDS (also included in LDC2016 T10). These graphs
are formally—if not linguistically—equivalent to AMR (see below). Nodes in EDS are
independent of surface lexical units, but for each node there is an explicit, many-to-one
mapping onto sub-strings of the underlying linguistic signal. Thus, we include EDS as a
middle ground between the node-ordered lexicalized dependency graphs of CCD and
SDP and the unordered AMR graphs, which provide no overt links to the surface signal.

Abstract Meaning Representation (AMR). Unlike the bi-lexical dependency graphs of CCD,
DM, and PSD, AMR eschews explicit syntactic derivations and consideration of the syntax–
semantics interface; it rather seeks to directly annotate “whole-sentence logical meanings”
(Banarescu et al. 2013). Node labels in AMR name abstract concepts, which in large parts
draw on the ontology of OntoNotes predicate senses and corresponding semantic roles.
Nodes are not overtly related to surface lexical units, and thus are unordered. Although
AMR has its roots in semantic networks and earlier knowledge representation approaches
(Langkilde and Knight 1998), larger-scale manual AMR annotation is a recent development
only. We sample two variants of AMR, viz. (a) the graphs as annotated in AMRBank 1.0
(LDC2014 T12), and (b) a normalized version that we call AMR−1, where so-called “inverse
roles” (like ARG0-of) are reversed. Such inverted edges are frequently used in AMR in
order to render the graph as a single rooted structure, where the root is interpreted as
the top-level focus.1 In Section 3 below, we map this interpretation to our concept of top
nodes for both AMR and AMR−1. Flanigan et al. (2014) published the first parser targeting
AMR, and the state of the art has been repeatedly updated since.

3. Graph Properties and Statistics

To help understand the similarities and differences in our sample of graph banks, in this
section we propose an initial inventory of formally well-defined graph properties and
calculate contrastive statistics; these are given in Table 1. For all resources, our statistics
are computed for the designated training segments, e.g. Sections 02 through 21 for the
PTB-derived CCGbank.

The structures in our graph banks can all be viewed as directed graphs or digraphs.
A digraph is a pair G = (V, E) where V is a set of nodes and E ⊆ V ×V is a set of edges.
The number of graphs and their average token counts (following PTB conventions) and
node counts are given in rows (01) to (03) in the top part of Table 1. A higher proportion
of nodes per token in EDS reflects its frequent use of lexical decomposition, for example
in nominalizations, compounding, and comparatives. In all representations, both nodes
and edges are labeled with various data, such as lemmata, parts of speech, or predicates,
and semantic roles, respectively. The number of labels varies greatly; counts for edge
labels are given in row (04).

1 The graph bank is natively constructed and released with inverted edges, but for parser evaluation the
AMR−1 normalization is typically assumed; our conversion builds on the code of Cai and Knight (2013).
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Table 1
Sample statistics for each full graph bank (top) and for the common “control” subset (bottom);
some metrics are average percentages over full graphs (%g), others over individual nodes (%n).

CCD DM PSD EDS AMR AMR−1

C
O

U
N

T
S (01) number of graphs 39604 35656 35656 35656 10309 10309

(02) average number of tokens 23.47 22.51 22.51 22.51 20.62 20.62
(03) average number of nodes per token 0.88 0.77 0.64 0.99 0.67 0.67
(04) number of edge labels 6 59 90 10 135 100

T
R

E
E

N
E

S
S

(05) %g trees 1.45 2.31 42.26 0.98 52.48 18.60
(06) %g treewidth one 29.27 69.82 43.08 65.37 52.72 52.72
(07) average treewidth 1.742 1.303 1.614 1.352 1.524 1.524
(08) maximal treewidth 5 3 7 3 4 4
(09) average edge density 1.070 1.019 1.073 1.047 1.065 1.065
(10) %n reentrant 28.09 27.43 11.41 28.42 5.23 18.95
(11) %g cyclic 1.28 0.00 0.00 0.04 3.15 0.71
(12) %g not connected 12.53 6.57 0.70 1.49 0.00 0.00
(13) %g multi-rooted 99.67 99.49 99.33 98.75 0.00 77.50
(14) percentage of non-top roots 47.78 44.94 4.34 41.15 0.00 19.39

O
R

D
E

R (15) average edge length 2.582 2.684 3.320 – – –
(16) %g noncrossing 48.23 69.21 64.61 – – –
(17) %g pagenumber two 98.64 99.55 98.07 – – –

C
O

N
T

R
O

L

(01) number of graphs 87 87 87 87 87 87
(03) average number of nodes per token 0.88 0.79 0.64 1.01 0.66 0.66
(05) %g trees 1.15 1.15 45.98 1.15 60.92 3.45
(06) %g treewidth one 37.93 81.61 47.13 81.61 60.92 60.92
(07) average treewidth 1.644 1.184 1.540 1.184 1.402 1.402
(09) average edge density 1.057 1.011 1.061 1.028 1.038 1.038
(10) %n reentrant 28.92 27.73 10.28 27.77 2.88 21.09
(11) %g cyclic 0.00 0.00 0.00 0.00 2.30 0.00
(12) %g not connected 6.90 3.45 1.15 1.15 0.00 0.00
(13) %g multi-rooted 100.00 100.00 100.00 98.85 0.00 93.10

Singletons. CCD, DM, and PSD maintain technical compatibility with a strong tradition
in syntactic dependency parsing: Tokens of the surface string correspond one-to-one to
the nodes of the graph representing its syntactico-semantic analysis. For semantically
vacuous surface elements, these graphs include nodes that are (a) isolated in the structure
(with in- and out-degree zero) and (b) not designated as top nodes (see below).2 Such
nodes—called singletons—have no significance for meaning representation and are
excluded from all graph statistics, for increased comparability, except in row (02).

Treeness. A digraph G is called a (rooted) tree if there exists a node r, the root, such that
every node of G is reachable from r via a unique directed path. While trees make up the
minority of the structures in our sample of graph banks, their exact proportion varies
greatly: from 0.98% in EDS to 52.48% in AMR (row 05). This percentage decreases to
18.60% for AMR−1, where normalizing the inverted edges creates a significant number of
reentrancies. The second-highest proportion of trees (42.26%) is observed in PSD, which
here appears to show its origins in the underlying FGD tectogrammatical trees, where
synthetic nodes and explicit identity edges serve to encode argument sharing across
predicates (Miyao, Oepen, and Zeman 2014).

2 Particles, complementizers, and (most) punctuation marks, for example, are conventionally analyzed as not
meaning-bearing, though the exact categorization varies substantially across linguistic frameworks.
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Treewidth. Intuitively, even a graph that is not a tree may be more or less “like” a tree. One
well-known measure that can be used to quantify the “treeness” of a graph is its treewidth
(Diestel 2005); trees are graphs with treewidth one. Treewidth is relevant because it is a
complexity parameter in some of the current AMR parsing algorithms (Chiang et al. 2013).
Graphs with treewidth one cover between 29.27% (CCD) and 69.82% (DM) of the instances
in the five data sets (row 06), and the average treewidth varies from 1.303 in the DM data to
1.742 in CCD (row 07). The relatively high treewidth in the PSD data (1.614) is interesting
in light of the fact that this data set, at the same time, has the second-highest percentage
of trees. PSD also has the highest maximal treewidth (row 08). Note that treewidth, as a
measure defined on undirected graphs, is the same for the two AMR variants.

Edge Density. Another way to quantify the treeness of a (loop-free) digraph G = (V, E) is
to measure its edge density, the number of edges per node. More formally, we define the
edge density as |E|/(|V| − 1) if |V| > 1, and 1 otherwise. Because a tree on |V| nodes
has exactly |V| − 1 edges, trees have edge density one. The average edge density of all
five data sets is very close to this number (row 09): The smallest value (1.019) is observed
for DM graphs, the highest (1.073) for PSD graphs.

Reentrancies. In a tree, every node except the root has in-degree one. In our sample of
graph banks, between 5% and 28% of the (non-singleton) nodes have in-degree two
or greater (row 10). The lowest percentage is observed in the AMR data; the highest
percentage in the EDS data.

Acyclicity. In contrast to trees, general digraphs may contain cycles. However, in the
preparation of the SDP data, cycles have been explicitly ruled out (Oepen et al. [2015]
report a proportion of 0.39% cyclic graphs in the raw data underlying the DM and PSD
graphs). Cycles are relatively rare even in CCD (1.28%). Their percentage is highest for
non-normalized AMR (3.15%), but decreases substantially (to 0.71%) with the reversal of
edges in the normalized version AMR−1 (row 11).

Connectedness. Another central property of trees is that they are connected, meaning that
there exists an undirected path between any pair of nodes. This property is characteristic
for AMR graphs; but graphs in the other collections are not generally connected (row 12),
with proportions of non-connected graphs between 0.7% (PSD) and 12.5% (CCD).

Top Nodes. In contrast to the unique root node in trees, graphs can have multiple
(structural) roots, which we define as nodes with in-degree zero; with the exception of
unnormalized AMR, the majority of graphs are multi-rooted in all our samples (row 13).
Thus, all our graph banks distinguish one or several nodes in each graph as top nodes;
these correspond to the most central semantic entities in the graph, usually the main
predicates.3 For DM, CCD and AMR, each graph has at most one top node. In PSD, top
nodes are derived in a way that can lead to multiple top nodes per sentence in the case
of conjunction. Root nodes that are not top occur in all data sets except AMR (row 14),
although their proportion varies greatly, from 4% in PSD to 47% in CCD. High proportions
of non-top roots in CCD and DM can in part be explained by the treatment of non-scopal
modifiers (e.g. most attributive adjectives and adverbs) as semantic predicates.

Order-Related Properties. In the three surface-oriented data sets, the left-to-right order
of the tokens in a sentence induces a natural linear order on the nodes. This makes it
possible to quantify the length of an edge as the distance between the left and the right

3 In AMR, top nodes are called “roots”, a term that we reserve for the above structural interpretation.
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endpoint. Row (15) shows that the average edge lengths in CCD and DM are comparable
(2.582 and 2.684), while edges in the PSD data are significantly longer (3.320). This is at
least partially related to the analysis of coordinate structures in PSD, where dependencies
from the predicate have been propagated to all conjuncts.

A natural way to visualize a bi-lexical dependency graph is to draw its edges as
semicircles in the halfplane above the sentence. A graph is called noncrossing if in such
a drawing, the semicircles intersect only at their endpoints. This property is a natural
generalization of projectivity as it is known from dependency trees (Kuhlmann and Nivre
2006), and like projectivity can be exploited to obtain polynomial parsing algorithms
(Kuhlmann and Jonsson 2015; Schluter 2015). However, the coverage of the noncrossing
property (row 16) is lower than that of projectivity on syntactic data sets: The proportion
is largest (69.21%) in the DM data but significantly smaller (48.23%) in CCD. At the same
time, a natural generalization of the noncrossing property, where one is allowed to also
use the halfplane below the sentence for drawing edges, covers more than 98% of all
three data sets (row 17); in theoretical computer science, this extended class of graphs is
characterized by a property called pagenumber two. The statistics suggest that the forms
of crossings that are expressed in the data are severely limited.

4. A Control Experiment on Parallel Text

In comparing AMR to the other representations, a skeptic might argue that there are two
separate dimensions at play, viz. (a) variation in text types and the phenomena they
invoke and (b) actual linguistic differences in the semantic graphs. To tease these apart,
we conduct a control experiment on the subset of graphs that all annotate the same basic
text, 87 WSJ sentences from the PTB. A selection of our graph statistics over this parallel
text is summarized in the bottom part of Table 1. While it appears that this subset of
graphs presents structurally mildly less complex and shorter (at an average length of
22 tokens) inputs, we find all general tendencies from Section 3 and relative ordering
among representations confirmed. Thus, we conjecture that these general contrasts
primarily reflect contentful linguistic differences. As additional supporting evidence for
this assumption, we observe that the statistics are remarkably stable—often to the third
decimal—when using only half the available training data.

5. Outlook: A Community Resource

We anticipate a bit of a cottage industry in linguistic graph banks and graph processing
tasks over the next few years, which may make it difficult to keep track of contentful
similarities and differences across frameworks and approaches. This pilot is intended to
initiate the creation and maintenance of an on-line catalogue as a community resource.

To stimulate community engagement, we have (a) copied and expanded parts of this
pilot into the ACL wiki, as well as (b) shared our open-source reference implementation
of our toolkit for graph statistics.4 We will seek to enable the developers of additional
linguistic graph banks to adapt the software to their resources and then contribute
statistics and documentation to the catalogue wiki. Our mid- to long-term goal in this
effort is three-fold, viz. (a) to contribute to enhanced comparability and replicability;
(b) to help identify sub-classes of digraphs for which efficient algorithms can be designed;

4 http://www.aclweb.org/aclwiki/index.php?title=Graph_Parsing_(State_of_the_Art)
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and (c) to aid the discovery and contrastive discussion of substantive linguistic variation
across resources, of the kind indicated speculatively in the examples of Section 3 above.

Current reported “parsing success” measures range between graph similarity F1
values in the mid-sixties for AMR (Pust et al. 2015), high seventies for PSD (Martins and
Almeida 2014), and low nineties for CCD and DM (Du, Sun, and Wan 2015; Miyao, Oepen,
and Zeman 2014). Such variation may in principle be owed to diverging evaluation
setups, to differences in linguistic “granularity” (i.e. the number and complexity of
distinctions made), to the size, homogeneity, and consistency of training and test data,
and of course to cumulative effort that has gone into advancing the state of the art on
individual tasks. A shared understanding of these parameters in much greater depth will
be a prerequisite to judging the relative suitability of different resources and approaches.
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