Formal Development with ABEL *

Ole-Johan Dahl and Olaf Owe

Department of Informatics
University of Oslo

“In S. Prehn, W.J. Toetenel (Eds.): VDM’91: Formal Software Development Methods, Vol. 2: Tutorials,
LNCS 552, Springer Verlag, 1991, pp. 320-362. (Revised 1992)

Contents
1 Introduction
2 The Formula Language

3 Semantic Definitions

3.1 Generators e
3.2 Function definition
3.2.1 Arbitrary first order axioms
3.2.2 Recursive definitions
3.2.3 Terminating generator induction
3.3 Equality
4 Logical Foundation
4.1 Definedness e
4.2 Non-logical functions e
4.3 Rewriting L
4.4 Induction Proof
5 Modules
5.1 Some standard constructs
5.2 Syntactic subtypes Lo
5.3 Semantic subtypes
5.4 Many-to-one generator bases 0oL
5.5 Typesimulation
B.6 Classes v v v e e

6 A case study

6.1 Abstract specification
6.1.1 Description of events
6.1.2 The specification Lo

6.2 Implementation outline
6.2.1 Hardware specification oL oL
6.2.2 Implementation Lo

1 Introduction

ABEL is a language together with a formal logic for use in program development. The
overall goal has been to support specification and program development through semi-
mechanical aids for reasoning and verification. It has been of major concern that the
language and the associated reasoning formalism are such that consistency requirements
and other proof obligations are as simple and manageable as possible. In particular we
have sought to:

e offer language constructs well suited for mechanical aids to reasoning, with some
emphasis on mechanisms for constructive specification,

e encourage modularization and abstract specification of interfaces,
e facilitate reusability of modules through the use of parameters,

e offer powerful ways of putting modules together, including inheritance, restriction,
inclusion, extension, as well as assumption specification and checking, and

e enable simple and manageable proof obligations, including those related to the com-
position and (internal) consistency of modules, in the form of first order formulas.

A major idea behind ABEL has been to allow the same language cover all stages of program
development from abstract requirement specifications to efficient low level programming.
Thus ABEL includes facilities for non-constructive requirements specification, constructive
specification, applicative programming, and object oriented, imperative programming. (We
let the term “specification” cover all of these.) We have tried to build the language around
a few concepts which may be applied at all levels. Different stages may be related to each
other through a concept of module simulation. If a low level module is proved to simulate
an abstract one, then the latter may be used as an abstract specification of the low level
module.

In the sequel we emphasize an applicative language level called TGI, which stands
for terminating generator induction. TGI specifications give rise to convergent rewrite
rules, which enable efficient manipulation of formulas and other expressions for purposes
of simplification and proof. At the TGI level all proof obligations in connection with the
composition of modules and module simulation are quantifier-free formulas in constructively
defined functions, provided that user specified axioms are quantifier-free. ABEL includes
logic for partial functions, also at the TGI level.

The ABEL language has been developed at the University of Oslo over a period of more
than 15 years, mainly by the authors, and in close interaction with a regular student course
on program specification and verification. The most important sources of ideas have been
as follows: SIMULA 67 (classes and subclasses), the LARCH activity (generator induction),
[7], and OBJ (order sorted algebras), [5].

2 The Formula Language

The syntactic core of ABEL is a strongly typed first order expression language, whose main
elements are variables, functions, and types. As we shall see elements of all three categories
may be introduced and named by the ABEL user. In the complete language we therefore
distinguish between defining occurrences and applied occurrences of such named elements.

A type T represents a set of values, Vi, of that type. The type of any variable, say x, is
specified by syntactically associating the defining occurrence with a type, say T', usually by
writing x:7T. The variable is thereby restricted to range over values of type T. Similarly
the defining occurrence of a function f is associated with the profile of the function by
writing

Ty xTyx...xT,—T

where n>0, and T1,...,T,,,T are types. T1 X Ty x ... x T, is the domain of the function,
and T is the codomain. The number n is sometimes called the arity of the function. A
constant is a function with arity zero. The word signature is our term for a set of function
profiles.

The strong typing of ABEL ensures that the semantic definition of a function respects
the profile in the following sense: for given argument values in the declared domain the
function either has a value of the codomain type, or it has no value for these arguments. It
can only be applied to arguments in the declared domain. An application of the function
to given argument values is said to be well-defined if the function has a value for these
arguments, otherwise it is said to be ill-defined.

ABEL uses the standard notation for function applications, f(e,es,...,e,), where the
parentheses are omitted if n=0. In addition infix, prefix, and postfix operators consisting
of special symbols and boldface script may be used, as well as other “mixfix” notations
where the operator may consist of more than one symbol. In these cases the function
“name” is formed by writing the symbol " in every argument position. Examples:

=" : Bool — Bool
"+7 o Int x Int — Int
if "th“el " fi: BoolxTxT —T

where Bool is the type of truth values, f and t, Int is the type of integers, and T is an
arbitrary type. Now for instance z+y and "+ "(x,y) are alternative notations for an
application of the addition function to the arguments x and y. The notation x= <y=z,
is shorthand for (x<y) A (y=2), and similar usage of other infix relational operators is
allowed.

The set of Boolean, or logical, operators is standard: =", "A", "V, "=" "o "
listed in the order of precedence. In addition ~=" is an alternative equality operator for
Booleans whose precedence is that of relational operators, i.e. higher than the logical ones.
The ABEL syntax for quantified formulas is as follows: Vz :Te P, and Jx:Te P, where
the bound variable ranges over values of the indicated type. Syntactically a quantifier
Vx:Te or Jx:Te,isaunary (prefix) operator which binds less strongly than the other
logical operators, except "~ < .

In general a partial order, <, is syntactically defined for the introduced types. If T <U
holds for types T" and U, then T is said to be a (proper) subtype of U. T'<U means
T <UVT=U. A subtype relationship has inclusion of the associated value sets as a
semantic consequence: T XU = Vr CVy. Notice that the subtype relation is a syntactic
notion; the value set inclusion is a consequence of the type definition conventions of ABEL.
The reverse implication does not in general hold (however, an ABEL implementation might
make it possible to establish certain subtype relations through semantic proofs).

The concept of subtypes is introduced for several purposes, one is to make strong typing
of expressions more flexible. For example, let Nat < Int, where Nat is the type of natural

numbers (non-negative integers). Then the operator "+" would accept operands of either
type, whereas for instance a square root function, sqrt: Nat — Nat would require natural
numbers.

At the same time typing may become stronger. As we shall see, it may be possible
to discover “syntactic theorems” in the form of additional function profiles, like ~+"
Nat x Nat — Nat. This would make it possible to identify the expression u+v as being
of type Nat (rather than Int) if u,v: Nat. Two profiles for the same function are said to be
SYNONYMous.

We are now in a position to define the concept of well-formedness of expressions and at
the same time describe the typing algorithm of ABEL, somewhat simplified. The following
information is assumed to be available:

1. a set of types, partially ordered by the subtype relation,
2. a set of typed variables, and

3. a signature containing function profiles, including a user provided one for each func-
tion introduced.

The signature must satisfy certain restrictions, like not containing redundant profiles. This
means that for any two synonymous profiles f : D — C and f : D' — C’, the
implication D’ <D = C’ <C should hold. For type products D =T; x ... x T,, and
D' =T x...xT), the expression D <D’ means: m=nAT\<T{\...NT, 2T ND#D'.

e A well-formed expression of type T is either a variable of type T, or it is a function
application, say f(ei,...,e,), where e; is a well-formed expression of type T;, i =
1,2,...,n, and there is a f-profile with domain part D such that 77 x...x T, < D,
and T is the “smallest” codomain part of such profiles (assumed to be unique).

The signature will contain one profile if “th el " fi : Bool x T} x T3, — T for every
triple of types T7,75,T, not necessarily distinct, such that 77 <T and T5 < T and T is
minimal. If there is such a type T', the two other types are said to be related. This implies
that an if-construct can only be well-formed if the two alternatives are of related types,
and if well-formed its type is the smallest common supertype. (The type conventions of
ABEL ensure that the latter is unique.)

Only well-formed expressions are part of the ABEL expression language. Thereby the
language, or rather a type checking device, helps the user by preventing a large class
of mistakes. Notice that well-formedness is a syntactic property of expressions, entirely
independent of the semantics of the occurring functions. In the sequel expressions are
assumed to be well-formed.

Let an expression e be of type T. If e only contains applications of total functions,
i.e. functions which have values on the entire user defined domain, then e is necessarily
well-defined for arbitrary (type correct) interpretation of its free variables, and its value
must be of type T'. This is true although the well-definedness of an expression in general
does depend on the semantics of the functions involved.

In computer programming one frequently has to deal with partial functions, i.e. func-
tions which do not have values on the entire domain. A suitable subtype mechanism can be
of some help in this connection, since any partial function will be total on some subdomain.
For instance integer division, which has no function value for the denominator 0, can be

defined as a total function with the profile "/ : Int x Nzo — Int, where Nzo is the type
of non-zero integers. Thus, z/y is well-formed and well-defined for z: Int and y: Nzo.

The last example suggests that there is a need for so-called coercion functions for check-
ing values of a given type for membership in a subtype. For instance z/y would give a
well-defined result for x,y : Int, whenever y # 0. The coercion functions are expressed
using a generalized mixfix format: “~asT : U — T, where the type is considered part
of the function name, and T'<U. The function is partial; the function value is that of the
argument if the latter belongs to the subtype T, otherwise the function has no value. For
e of type U the expression easT is a well-formed expression of type 7', not necessarily
well-defined.

The notation equal can be used for changing the type from U to T without applying
the coercion function. Use of this notation entails an obligation for the user to prove that
the occurrence of the expression e in the given context does have a value of type T' whenever
well-defined. For example, the expressions

x/(y as Nzo) and z/if y#0 th y qua Nzo el L fi

are semantically equivalent for x,y: Int and “/" as above. The notation L stands for a
predefined constant with no value, sometimes pronounced “error”. Its type is the predefined
“empty” type @, which by definition is a proper subtype of all other types. It follows that
the denominator of the second expression is of type Nzo, which makes the expression well-
formed (but not necessarily well-defined).

It is considered practical to have coercions to subtypes inserted automatically by the
typing algorithm, possibly as an option controlled by the user.

3 Semantic Definitions

Having identified a set of type names and the signature of a set of functions it remains to
define associated semantics:

1. a set of values for each type, and
2. the semantics of the identified functions.

In the approach of abstract algebra the semantics consist of a set of equational axioms
which may define both aspects of semantics indirectly through the notion of an initial
(mixed) algebra. While this approach is very flexible and leads to a very abstract, i.e. im-
plementation independent, notion of types, it may be quite demanding mathematically.
For instance, difficult questions about logical consistency and ground completeness arise.
Furthermore, when semantics are based on the concept of initial algebra, the meaning of
subspecifications may depend in non-obvious ways on its specification environment. ABEL
avoids this by following the LARCH approach of being more constructive and somewhat
less abstract (to an even greater extent than LARCH itself).

3.1 Generators

In particular a so-called generator basis (also called a constructor set) is required for each
type. The generator basis, G, for a type T consists of a chosen subset of T-producers,
i.e. functions with the codomain 7. The generator basis Gr by definition spans the entire

value set associated with the type T, in the sense that any T-value is expressible in terms
of generators alone, possibly including generators of other types.

This idea can be seen as a generalization of the concept of enumeration types first
introduced in PASCAL. Whereas the generator basis of an enumeration type consists of
constants, a generator basis G in general may contain T-producers other than constants.
A ground term (variable-free expression) of type T' consisting exclusively of generator appli-
cations is called a basic T-expression. The set of basic T-expressions is called the generator
universe, GUr, of the type T'. In order that GUr be non-empty, G must contain at least
one relative T-constant, i.e. a T-producer with no occurrence of T in its domain. If T" occurs
in the domain of any T-generator, then GUr is infinite. Notice that a generator universe
is at most countably infinite; therefore a concept like real numbers is not expressible as an

ABEL type.
In ABEL one writes genbas ¢, ...,g, in order to specify the generator basis Gp =
{91,--.,9n}, where the type T is identified by context. For the moment we may assume

that types are defined one by one, so that types other than T occurring in the domains of
T-generators are previously defined, “underlying” types.

Examples:

1. The type Bool (predefined) has a generator basis consisting of the constants f and t: Gpoor =
GUBool = {fat}

2. A natural generator basis for the type Nat1 of non-zero natural numbers would consist of the
constant 1 and a successor function:

func 1: — Natl

func S” : Natl — Natl

genbas 1, S°

giving GU yater = {1, S1, SS1, ... }.

3. The type Int of integers may be spanned by a generator basis consisting of 0, a successor
function, and negation:

func 0: — Int

func S” : Int — Int

func — " : Int — Int

genbas 0, S°, —~

giving GU yq: = {0, SO, —0, SS0, S—0, —S0, ——0, SSSO, ...}

4. Whereas real numbers are not expressible in ABEL, rationals are. They may be defined on
top of the types Int and Nati:

func div : Int x Natl — Ratn

genbas div

giving GU gatn = {div(0,1), div(0,2), ..., div(1,1), div(1,2), ..., ...}
using standard representations (overloaded) of values of the underlying types.

5. The type of finite sequences of T-values, denoted Seq{T'}, may be spanned as follows, for

VT = {a,b, .. }
func e : — Seq{T'} — empty sequence
func - : Seq{T} x T — Seq{T'} — append right
genbas ¢, "I~
giving GU geqqry = {¢, eta, e+b, ..., (era)ta, (eFa)-b, ..., ...}

7

6. The type of finite sets of T-values, Set{T'}, may be spanned in a similar way:

func 0 : Set{T} — empty set
func add : Set{T} x T — Set{T} — add an element
genbas), add
giving GU geeqry = {0, add(D,a), add(®,b), ...,

add(add(0,a),a), add(add(d,a),b), ..., ...}

Three of these generator bases, nos. 1, 2 and 5, are such that the basic expressions are in
a one-to-one relationship with the intended abstract values. Therefore these bases are said
to have the one-to-one property. Thus, specifying a one-to-one generator basis for a type
defines the associated values to be (represented by) the corresponding basic expressions
(using unique denotations for values of underlying types, if any).

For the examples 3, 4 and 6 the abstract values must be identified with certain equiva-
lence classes of basic expressions. For instance, the expressions 0, -0, ——0, ... , all represent
the value zero, and add(0, a), add(add((,a),a), add(add(add((,a),a),a),... , all represent
the singleton set {a}. The need to define a corresponding equivalence relation on the gen-
erator universe represents a considerable complication of the mathematical treatment of a
type, and we shall see how the one-to-one property can sometimes be obtained through the
use of subtypes.

Any generator universe is partially ordered by the subterm relation, and this order is
well-founded. It therefore gives rise to an induction principle, called generator induction.
As we shall see, the principle of generator induction is useful for purposes of function
definition as well as theorem proving.

3.2 Function definition

The semantics of functions (other than generators) are given by azioms or by explicit
definitions. We may exemplify the three styles of axiomatization in ABEL through a
simple example, the subtraction function for natural numbers, Nat, including zero, "—"
Nat x Nat — Nat.

3.2.1 Arbitrary first order axioms

Consider the axioms Al :z—0=z and A2:-3Jy: Natex—1<y<z, for x: Nat. Are they
consistent with the standard interpretation of the other occurring functions? Yes, they are,
for instance by interpreting "—" as addition or subtraction. Thus, they do not define the
intended function completely. What if we add z—1<x as a third axiom? Unfortunately
the latter is inconsistent, because no natural number is less than 0. However, a slightly
weaker one preserves consistency; A3 :x#0=x—1<z. We leave it to the interested
reader to discuss whether A1-3 define subtraction on natural numbers completely. (The
answer is no, even if Vi, is completely specified.)

The example shows that arbitrary first order axioms are not always easy to reason about
(or with). This does not mean that such axioms have no place in ABEL specifications;
they are indeed useful for specifying minimal requirements of functions, but not for giving
complete definitions.

3.2.2 Recursive definitions

Using a successor function S” for natural numbers we may provide the following recursive
definition:

def r —y==if x =y th 0 el S(z —Sy) fi

The double equality sign stands for so-called “strong” equality, which expresses that the
two operands are equally well-defined, and equal whenever well-defined. (The standard,
or “weak” equality is strict, i.e. has no value for ill-defined operands.) The left hand
arguments are defining occurrences of distinct, so-called formal variables, whose number
and types are determined by the function profile and whose scope is the right hand side.
The latter must contain no other free variables. The definition is said to be constructive
if it is quantifier-free and contains only generators and constructively defined functions. If
the right hand side is recursive, it should be considered well-defined only for arguments
such that the recursion terminates. This is the usual “fixed point semantics”, which implies
that the definition is useful for bottom-up evaluation of ground terms. It is fairly easy to
see that the recursion will terminate in the example definition if and only if y <x. Since
evaluation of z—y would not terminate for ground terms such that x <y, our function has
no value in that case, which is reasonable in view of the required codomain Nat.

An advantage of explicit function definitions, compared to the use of arbitrary axioms,
is that logical consistency as well as ground completeness are ensured by syntactic checks:
there must be exactly one definition of every non-generator function.

3.2.3 Terminating generator induction

Definition by generator induction means using induction on an argument with respect
to the syntactic structure of basic expressions (which in turn stand for abstract values).
Thereby we obtain a definition of the function over the entire generator universe, which
means for all values of the inductive argument. The generator induction can be expressed
using a generalization of the case-construct of PASCAL for discriminating on values of
enumeration types. Assume that the generator basis of natural numbers is {0,S"}. The
corresponding case-construct has one alternative for either generator:

def r —y ==case y of 0 —» z | Sy —
case x of 0 — L | S2/ — 2/ — ¢/ fo fo

The expression heading each alternative of a case-construct is called a discriminator. No-
tice that a discriminator corresponding to a non-constant generator has variables as ar-
guments. These are defining occurrences of variables whose scope is the corresponding
alternative expression, and serve to name the actual arguments of the leading generator
application of the discriminated value. (Any variable name of the left hand side or of an
outer discriminator may be reused; if so that old variable is inaccessible in the alternative.)
The expression whose value is tested is called the discriminand. If all discriminands in the
right hand side are variables, there is an alternative set of case-free defining equations,
“Guttag-style” axioms, one for each innermost alternative, which are directly usable as
term rewriting rules. In our case they are:

r—0==2x
0—Sy ==
Sr—Sy==z—y

There is no restriction on depth of nested case-constructs, and the discriminand of an
inner one may well be a variable introduced in an outer discriminator. This implies that
the nesting of generators in the left hand sides of the case-free inductive axioms may
be arbitrarily deep. If a discriminand of a case-construct is an expression other than a
variable, the corresponding case-free axioms are conditional. (if-constructs may be seen as
case-expressions with discriminand of type Bool, however, if they are treated as functions
with respect to term rewriting, conditional rewrite rules can in most cases be avoided.)

An important advantage of generator inductive definitions is that there exist powerful
syntactic checks which provide sufficient conditions for the termination of recursion. For
instance, the third of the case-free axioms is recursive, but it obviously terminates since
the arguments of the recursive application are subterms of those of the left hand side.
The definition is therefore said to be by terminating generator induction, TGI. Notice that
partial functions may be defined within a TGI framework, by explicit use of the ill-defined
constant L (error). The evaluation of any application of "—" to values of type Nat, i.e. to
expressions of the form S... S0, either terminates with a resulting Nat value or with the
symbol | which is an explicit indication that the application is ill-defined.

A definition is said to be TGI if the right hand side is quantifier-free, and all occurring
functions, except generators and L, are TGI defined, and, if recursive, the recursion is
“guarded” by generator induction in some textually defined sense which ensures termina-
tion. Termination checks of different complexity and strength are possible; the following
one is fairly general: each recursive application must be “smaller” than the corresponding
left hand side, according to the lexicographic order induced on the list of arguments by the
monotonic extension of the subterm relation, for each defined function according to a fixed
permutation of its arguments.

Example

The check is strong enough to permit the following inductive definition of the Acker-
mann function (which does not belong to the class “primitive recursive” functions):

func Ack : Nat x Nat — Nat
def Ack(z,y) == case z of 0 — Sy | Sz —
case y of 0 — Ack(z,S0) | Sy — Ack(z, Ack(Sx,y)) fo fo

which corresponds to the following set of case-free axioms:

Ack(0,y) == Sy
Ack(Sxz,0) == Ack(x,S0)
Ack(Sx,Sy) == Ack(z, Ack(Sz,y))

There are three recursive applications to consider: Ack(x,S0), Ack(z, Ack(Sx,y)),
and Ack(Sz,y), where the last one is an argument of the second. We check the argu-
ments from left to right: In the two first cases the left argument x is a subterm of that
of the corresponding left hand side, Sz. In the third case the first argument is identical
to that of the left hand side, but the second argument, y, is a subterm of the left hand
one, Sy. This shows that the definition is TGI.

TGI definitions have several important advantages compared to general recursive defi-
nitions:

1. They permit a mechanical derivation of definedness predicates, see section 4.

10

2. They represent a convergent set of rewrite rules. Thus, TGI definitions are not
restricted to bottom-up evaluation of ground terms, but may be used for the purpose
of simplifying arbitrary expressions.

3. They are well suited for semi-mechanical proofs by generator induction, as explained
in the subsection 4.4. In fact, TGI term rewriting and derived techniques are powerful
proof generators for quantifier-free theorems.

3.3 Equality

For a type to have a fixed semantics, independent of its specification environment, its
associated value set must be fully specified. As we have seen, however, a generator basis
only determines a generator universe whose elements are not necessarily in a one-to-one
correspondence with the intended abstract values.

The concept of equality on abstract values has so far been taken for granted, as it would
be for any type T" whose value space Vr is identified as a set of specified elements. In our
approach, however, since the starting point is a generator universe, the T-values must be
specified indirectly, as equivalence classes induced by defining an equivalence relation on
GUrp. (If the generator basis is one-to-one these equivalence classes should be singleton
sets.) Then, turning the table upside down, this equivalence relation on GU 7 can be taken
to be the equality relation on T, which can thus be defined as any other non-generator
function, possibly by TGI technique.

In particular the one-to-one property of a generator basis, say {g1,92,...,9n}, can be
specified by defining an equality function which amounts to syntactic equality of basic
T-expressions, up to equality on arguments of underlying types:

def t=t' == case (t,t') of (9i(%:), 9:(%})) — z;=7, | others — f fo

1

I—s

(2

where nested case levels have been combined and all “off-diagonal” alternatives could be
collected in a final others clause. Notice that the definition is recursive (but TGI) for
those generators which are not relative constants. We may note that the TGI definition
of syntactic equality of basic expressions can be constructed mechanically for any given
generator basis. In ABEL one can therefore use a shorter syntax for specifying the one-to-
one property:

1-1 genbas g1, 92,...,9n

In cases where a many-to-one generator basis must be used, one possibility is to define the
desired equality relation explicitly.

Example 1

Consider the the type Set{T'} of finite sets of T-values, with the generator basis specified
in example 5 of section 3.1. The equality may be TGI defined using the set membership
and set inclusion relations as stepping stones.

func "€ : T x Set{T} — Bool

def tes==casesof) —f]add(s,t') —t=t'Vtesfo
func "C " : Set{T} x Set{T} — Bool

def sCs' ==casesof) —t|add(s,t) ~tes’AsCs fo
def s=s'==s5C s As' Cs

11

Having defined an equality relation explicitly there is an obligation to prove that it is
in fact an equivalence relation, for instance by proving the standard axioms of reflexivity,
commutativity, and transitivity for s,s’;s” : Set{T} :

s=s, s=s =s=s5, and s=5'=5"= s=5"

Equality must in addition be such that meaning is preserved by substitution of equals for
equals in expressions. This means that the relation consisting of the equalities for all types
must be a so-called congruence relation respecting axioms of the form

Yy = y/ = (f(f,y,Z) == f(f,y/,f))

for every function including generators and every argument position. (The strong equality
is necessary for partial functions. It may be simulated using definedness predicates.) Fortu-
nately all of these axioms are respected if all generator bases are one-to-one. But otherwise
the total proof burden associated with explicit equality definition is rather formidable.

Another possibility is to define a so-called observation basis consisting of functions with
one or more arguments of the type in question. The members of an observation basis
are usually “observer” functions, i.e. functions with codomains which are underlying types.
The members of the observation basis are called basic observers. They by definition observe
“all there is to see” in the abstract values of the type under definition. Thus, two basic
expressions of this type are to be considered equal if and only if all possible observations
on them by basic observers are (strongly) equal. An observation basis is specified by the
ABEL statement obsbas hq,...,h,,, listing the chosen basic observers by name.

For example, an observation basis may be specified for Set{T} consisting of the single
function ~ € ". This implicitly defines equality on sets as:

def s=s'==Vt:Te (tes)=(tes)

In general the right hand side is a conjunction of equalities, one for each argument of
the type under definition in the list of basic observers. If partial functions occur, then
definedness predicates are also needed in order to simulate strong equalities. Unfortunately
equality definition through observation basis is only constructive if all member functions
are unary; otherwise quantifiers will occur in the right hand side, as in the example.

On the other hand, an equality defined through an observation basis is necessarily
an equivalence relation, and it satisfies congruence with respect to generators and basic
observers. The associated proof burden is thus considerably less.

Example 2

We define a type IMap{X,Y} of “initialized maps”, which simulate total functions
with domain X and codomain Y. The function values are equal to a default Y-value,
identified initially, except at a finite number of X-values where the map has been
updated. Two IMap objects should be considered equal if and only if they have the
same “function value” for all “arguments”. Hence the specified observation basis.

func init : Y — IMap{X,Y} — initial map
func "["—"]: IMap{X, Y} x X XY — IMap{X,Y} — update map
genbas init, "["+— "]

func "["] : IMap{X, Y} x X —Y — apply map
def mz] == case m of init(y) — y | mi[x1—y1] —

if x=a1 th y; el my[z] i fo
obsbas "[]

12

If more than one update occurs for the same argument value, the last one takes prece-
dence. Thus, for instance: init(yo)[x1— y1][z1— ye][z1]=1yo.

There is no proof obligation associated with these specifications since the only occurring
function definition is for a basic observer.

It follows from the above that TGI function definitions preserve logical consistency as
long as generator bases are one-to-one. There is, however, a danger of losing consistency
when defining functions by generator induction over fully defined types with many-to-one
bases. The reason for this may be explained by noting that generator induction in that
case reveals the entire structure of the generator universe, including details which ought to
be hidden inside equivalence classes. Thus, any use of such generator induction entails an
obligation to prove one or more congruence axioms.

Example 3

We define a function counting the “multiplicity” of elements in finite sets by generator
induction over Set{T'}.

func mpc: Set{T} x T — Nat
def mpc(s,t) == case s of) — 0| add(s1,t1) —
if t=t; th Smpc(sy,t) el mpe(sy,t) fi fo

Now consistency is lost, and this becomes clear when trying to carry out the required
proof of the congruence axiom s=s" = mpc(s,t)=mpec(s’,t). Counterexample: Take
add((, a) for s and add(add(D, a),a) for s’. They are equal sets according to the defined
equality (both represent the same singleton set), but the multiplicity of @ is 1 in s and
2 in s’. (The loss of consistency shows that the concept of element multiplicity has no
place in connection with sets; it belongs to the type of multisets, also called bags.)

The partial lack of syntactic consistency control of TGI function definitions is an ob-
stacle to the use of types with many-to-one generator bases. There are, however, ways of
achieving one-to-one-ness through the use of subtypes. See sections 5.2 and 5.4.

4 Logical Foundation

A function is said to be strict in an argument if ill-definedness in that argument propagates.
A function is said to be strict if it is strict in all arguments. A function is said to be total
if it is well-defined for all well-defined arguments. A function is said to be monotonic
if replacing an argument in an application an ill-defined one makes the ill-definedness
propagate or leaves the function value unchanged. An expression is said to approximate
another if they are equivalent (in all respects) whenever the former is well-defined.

We introduce two non-monotonic logical operators: the definedness operator A, and
non-strict or “strong” equality ==. Thus, Ae expresses that the expression e is well-
defined, and e; == ey is true iff either the expressions e; and es are well-defined and
equal, or they are both ill-defined. Thus, for instance e == | expresses that the left
hand side is ill-defined and is equivalent to —Ae. The definedness operator is defined
inductively below. Definedness conditions and strong equalities are always well-defined:
A(Ae) == A(e; ==e3) == t. The non-monotonic operators are not part of the ABEL
expression language.

We interpret the logical operators in analogy with the three valued logic originating
from Kleene, [9], (although an ill-defined Boolean expression is considered to have no

13

value, rather than a third one). For instance, a conjunction is interpreted as false if either
argument is false, regardless of the well-definedness of the other argument: f A L ==
L Af == f. When one argument is true, ill-definedness in the other one propagates:
t AL == 1L At == 1. The other logical connectives follow by the standard equivalences,
with negation strict (-L == L):

aVb == -(-aA-b)

(a=b) == -a Vb

(a=b) == (a=b) A (b=a)
A universal quantification may be seen as a generalized conjunction, in the standard way;
and 7 is equivalent to =V—. It follows that the logical connectives as well as the quantifiers
are monotonic, and that they satisfy the classical distribution laws and deMorgan laws,
and negations may be moved innermost in the classical way:

(aVb)Ac ==aAcVbAc
(anb)Ve == (aVe)A(bVe)
—(a=b) ==aN-b
=(aVvd) == -an-d
—(aAb) == -aV-d

—Vx:Tea ==3dz:Tena

—dx:Tea ==Vr:Tea
letting x denote a variable, and a, b and ¢ formulas. Furthermore, the following equivalences
may be added for convergent rewriting when extended with capabilities for handling A and
V as associative, commutative operators:

—Q == Q
alNa ==a
aVa ==a
(aVb)Aha ==a
(anNb)Va ==a
alt ==aq
ant ==f
aVt ==t
aVf ==aq

The classical law of the excluded middle and its variants only hold for well-defined formula
a. This reflects the fact that ill-definedness is a third possibility in addition to the two
truth values.

Aa=aV-a or —(aV-a==f)
Aa = —(aA—a) or —(aN—a ==t)
Aa = (a=a) or —((a = a) ==f)

The if- and case-constructs, both strict in the leftmost argument, satisfy the following

laws:

case g(t) of .. | g(y) —e| .. fo==¢)
case u of .. [g(y) — ey | .. fo ==caseuof .. |g(y) — ey, | .. fo

ifatheele fi ==caseaof t —e|f—¢€ fo

where y denotes a list of variables, and ¢ a list of expressions, and where a? denotes a with
all free occurrences of x replaced by the expression e (renaming bound variables in a when
needed), and af denotes simultaneous substitution.

It follows that if a th €% el ¢’% fi==if a th ¢} el €'§ fi

14

Validity

A formula a is said to be wvalid iff it is well-defined and true, i.e. a == t, for all possible
well-defined interpretations of the free variables (“strong” interpretation). It follows that
a A cis valid if and only if both @ and ¢ are valid, and that aV c is valid if either a or c¢ is
valid.

In order to formalize the use of assumptions, we introduce sequents of the form A ~ ¢
where ¢, the conclusion, is a formula, and A, the assumption part, is a list of formulas.
The sequent A ~» ¢ is said to be valid iff A = ¢ is valid, taking commas in the assump-
tion part as A’s. Thus, the sequent expresses that the conclusion must be well-defined
and true unless (at least one formula in) the assumption part is well-defined and false,
ie. =(A==f)= (c==1t). This is called WS logic since the assumptions have “weak”
interpretation and the conclusion has “strong” interpretation.

Provability

In WS logic, we may derive A ~» Ac from A ~» ¢, where Ac expresses that c is well-
defined, due to the strong interpretation of the conclusion. Furthermore, the classical
introduction and elimination rules of natural deduction [13] are sound; in particular, we
have A,a ~ cif and only if A ~ a = ¢, we have A ~» —cifand only if A,¢c ~ f, and
we have A,a ~ cif and only if A, ¢ ~» —a, which means that special rules introducing
and eliminating symbols in the assumption part are not needed. The classical structural
rules of sequent calculus are also sound, when the instantiation rule is restricted to well-
defined substitutions, i.e. a sequent may be instantiated by replacing all occurrences of
the same variable in both the assumption part and the conclusion by the same well-defined
term, as formalized by the rule:

A~ ¢
A7 ~ Ae instantiation rule

T T
Aevce

(If A and ¢ are monotonic, it suffices that the conclusion is well-defined.)

The logical axiom ¢ ~» ¢, which is trivial in classical sequent calculus, is not sound
in WS logic. Instead we have ¢ ~» ¢ if and only if ¢ is well-defined. This means that
a trivial sequent requires a proof of well-definedness; thus in WS logic nothing can be
proved from meaningless assumptions, not even meaningless conclusions. This seems to be
a healthy principle in computer science applications, and it fits well with proof by generator
induction, see below.

By the below formalization of the well-definedness operator A, one may prove well-
definedness requirements in a straightforward way, since AAa is true.

Equality
Strong equality is a congruence relation satisfying the axiom e == e and the rule
A~ e==¢
A~ a? substitution rule
A~ aZ
Notice that with == as a logical symbol, all the strong equations stated above may be

taken as logical axioms.

15

The strict restriction of strong equality is called weak equality. The relationship between
strong and weak equality may be formalized as follows by means of the well-definedness
operator: (e == ¢) is equivalent to (Ae = Ae’) A (Ae = e =¢€'). And notice that a =10
is equivalent to (a = b) A (b = a).

4.1 Definedness

The well-definedness of the logical operators is axiomatized as follows:

A(L) ==f
Ay
A(T) ==t
A(z) == (except when z is a formal variable of a definition)
A(ﬁ == Aa
A(aND) == (AaA(—aVAb))V(AbA (=bV Aa))
A(aVb) == (AaA(aVAD)V(AbA(bV Aa))
Aa = b) = (Aa A (—aVADb))V(ADA(bV Aa))
ANVz:Tea)== (Vz:TeAa)V (Iz: TeAaA-a)
AFz:Te) —(V:U:ToAa)\/(ﬂac:TOAa/\a)
Aif atheel e fi==Aa A if a th Ae el Ae’ fi
Acase e of ... | gi(z;) — e; | .. fo==Ae A case e of ... | g;(x;) — Ae; | .. fo
Ale==¢) ==t
AAe ==

Quantifiers range over defined values only, thus bound variables are well-defined; and so are
variables introduced in a case-construct. Formal variables of a function definition, however,
may not be considered always well-defined.

Notice that the equations above may be used to calculate the well-definedness of a
formula such that the resulting formula is without occurrences of A, except for applications
to formal variables and non-logical functions — the well-definedness of the latter are given
below. It follows from the above definitions that (Aa)Aa and (Aa)=-a are well-defined
for arbitrary formula a.

The left-strict versions of A,V ,=, denoted and, or, implies, respectively, are practi-
cally useful, giving more efficient execution and simpler definedness analysis. For instance,

A(a and b) == Aa and (—a or Ab)

In fact all occurrences of A and V in the above right hand sides could be replaced
by and and or, respectively.

4.2 Non-logical functions

For total and strict functions, such as generators and weak equality, we define
Ag(e) == Ae

letting A of a list be the conjunction of A of each list member, and letting A of an empty
list be t. Thus, generator constants such as t, f, 0 are well-defined. A constructive function
definition, say

def f(y)==e (non-generator)
where y is a list of formal variables, is logically understood as the axiom schema

ft)y==¢} (f-axiom)

16

for any list of terms ¢ (of the appropriate types), well-defined or not. It follows that
Af(t) == Ae} (A f-lemma)

which defines the well-definedness of f if the equation has only one fix-point. For non-TGI,
recursively defined functions it is possible to provide proof rules corresponding to least
fix-point semantics [12]. For a TGI definition, however, there is only one fix-point, and the
well-definedness of f is implicitly defined by the A f-lemma.

However, since the non-monotonic A-operator is outside the ABEL language, it may not
be used inside definitions. For each defined function f, we therefore introduce a monotonic
definedness predicate df with the same domain as f, and such that df(¢) approximates

Af(t). Since f in general may be non-strict the definition of df is not straight forward:
From a TGI definition of f as above, we first define a temporary definedness predicate,
denoted d’f, with domain as f but extended with one boolean argument for each argument

of f:
def d'f(..,y;,d;,..) == Ae (d’ f-definition)

where A’ is A as defined above, but replacing Ah(..,t;,..) by d'h(..,t;,At;,..) for each
non-logical function h, and replacing occurrences of Ay; by d;. It follows that the right
hand side is without occurrences of A, and that it is monotonic and TGI if the definition
of f was TGI. (For non-TGI f, d’f is the maximal fix-point of the above equation when
taking f as the greatest boolean value.) By induction on the nesting of functions, it follows
that Af(.,t;,..) ==d'f(..,t;, At;,..).

We then define the definedness predicate of f as follows:

def df(.,v:,..) ==d"f(..,v:, 0y, ..) (d f-definition)

where dy is strongly equal to y = y, i.e. t if y is well-defined and ill-defined otherwise
(thus Adt == At). For TGI defined f it follows that the definition of df is TGI as
well. Furthermore, df is total and df(t) ==t is equivalent to Af(t) == t; and therefore
df(t) approximates Af(t).

For each non-logical function f, we let df be part of the ABEL language, but not d’ f.
For any generator g, dg(t) is 6t. The well-definedness of a non-constructive function f may
be characterized through non-logical axioms about d f, or indirectly through axioms about
f (because of the underlying strong interpretation). And its definedness predicate may
be used to ensure well-definedness of f-applications in axioms — and also in constructive
definitions of other functions if f is introduced in an assumed property.

Notice that the formula f(z) == h(z') where x and 2’ are lists for free variables,
is equivalent to df(z) = dh(z') A(df(z) = f(x) = h(z')) (since free variables range over
defined values). Note that from ~» df(t) we may derive ~» Af(¢) and vice versa, and
that from ~» 0t we may derive ~» At and vice versa.

Example

From the above TGI definition of the minus-function on natural numbers, we derive
the following definition of its definedness predicate, d” — °, letting d extend the mixfix
notation:
def dx —y == case y of 0 — iz
| Sy’ — case z of 0 — f
| Sz’ —da’ —y fo fo
The right hand side simplifies to dx and éy and y < = by inductive reasoning.

17

Axioms and lemmas

A user defined axiom axm a is understood as a non-logical axiom ~» a taking commas
in @ as A’s. Notice that this gives a strong interpretation of axioms. Free variables are
implicitly universally quantified, and outermost universal quantifiers may be omitted.

A user defined lemma Ima a states that ~» a can be proved in WS logic ex-
tended with the introduced non-logical axioms and generator induction rules. There is an
obligation to prove all stated lemmas.

Example

The following lemmas may be proved about the minus-function defined above:
Ima x,y,2z: Nate
dr—y=y<uw,
(+y)—y=u=,
y<z=z—(r—y)=y
The first lemma follows from the results above and the fact that free variables are
well-defined (thus dy is true). The condition of the last axiom is needed to ensure
well-definedness.

4.3 Rewriting

Each step in a term rewriting process consists in first instantiating a rewrite rule so that the
left hand side matches a subterm of the expression being processed, and then replacing that
subterm by the instantiated right hand side. Notice that strong equations, proved or given
as axioms, may not be used unconditionally as rewrite rules because of the definedness
premise of the instantiation rule, restricting the instantiation of free variables. However,
such a strong equation may be used unconditionally if both sides are strongly equal when
the free variables are taken as formal variables (which may be instantiated unconditionally).

In a Guttag axiom, say f(x,g¢(y),..) == rhs, the variable x is a formal variable of
the corresponding def-item, and may therefore be instantiated to arbitrary (type correct)
expressions, well-defined or not. The variable y on the other hand corresponds to one intro-
duced in a discriminator, which is by definition well-defined. Unfortunately, this distinction
is not recognized in ordinary rewriting, and for that reason there is a subtle difference be-
tween the semantics based on unconditional rewriting with Guttag axioms and that defined
for function definitions with case-constructs in the right hand side.

However, it turns out that the left hand side of a Guttag axiom approximates the
right hand side, when all variables are taken as formal ones. And the Guttag style axioms
form a convergent (unconditional) rewrite system. Without loss of convergence the system
may be enriched with the strong equations given above for the logical operators (but not
generator strictness rules). It follows that a monotonic expression approximates (in the
sense of ABEL semantics) its rewrite result with this system. In particular, a well-defined,
monotonic expression strongly equals the result from rewriting with Guttag axioms [3].

It is possible to generate a set of convergent rewrite rules consistent with the ABEL
semantics of the case-definitions, and generator strictness, by mechanically modifying right
hand sides in certain Guttag axioms (by means of a definedness operator) [10]. No such
modification would be necessary, however, in the Guttag rules for minus or plus on Nat.

18

4.4 Induction Proof

The usual rule for generator induction is sound in WS logic:

xT

9(y) generator induction on T’
~ Vr:Tea

xT
by, N2 A

where there is one premise for each T-generator g, each premise with one assumption for
each argument y; of type T. Each argument list ¥ must consist of fresh variables correctly
typed.

Example
For natural numbers (with 0 and S as generators) we get the following induction rule:

~ aj
a ~ ag. generator induction on Nat
~ Vz:Natea

As an example, we prove the second lemma above (z +y) —y = z (*) by induction on
y. The first premise is rewritten to true with the rules (z 4+ 0) ==z and (z —0) == z.
The second premise becomes:

(z+y)—y=z ~ (z+8Sy)-Sy== (**)

With the rules (z 4+ Sy) == S(z + y) and Sx—Sy == z—y, (*¥) rewrites to (x) ~ (x)Jj
which is trivial since (x) is well-defined.

5 Modules

The module concept is essentially a mechanism for the encapsulation of specifications. A
module is said to be constructive if the semantics of the specified functions are given by
explicit definitions. In ABEL there are four different kinds of modules:

e A type module serves to define a type (possibly with subtypes) including associated
functions.

e A function module defines a collection of functions.
e A property module specifies a set of minimal requirements on type parameters.

e (lass modules are analogues of type modules for imperative, object oriented program-
ming.

Module definitions have the following general format:

<module kind><module name> {<formal type parameters>}
<optional clauses> == <right hand side>

where < module kind> is one of type, funcs, property, and class. In the following
explanations any non-exceptional statement about types is valid for classes as well.

The module name of a type module is at the same time the name of the (main) type
defined by the module. For the purpose of the present review we may assume that all
module (and subtype) names are distinct. The list of formal type parameters is optional.
The <optional clauses> of the left hand side include syntax for the introduction of syntactic

19

subtypes of the main type in a type module, see section 5.2, as well as assumption and
inclusion clauses, see below.

The right hand side of a module definition is a non-empty text consisting of an optional
module expression, called a module prefiz, followed by an optional module body of the form:

module <list of module items> endmodule <optional satisfaction clause>

where the final optional clause may be used to express syntactically that the module satisfies
a list of properties.

A module expression consists of the module name followed by a list of actual type
parameters (if any) enclosed in braces, which are type module expressions. A module
expression represents an instance of the named module obtained by substituting the actual
parameters for the occurrences of the formal ones in its right hand side. A module prefix is
an instance of a module of the same kind as the one being defined. (Exception: the module
prefix of a class may be a type module instance, fully constructive.) In the case of type
modules the one under definition is said to be a semantic subtype of the module prefix. In
that case the latter may contain a predicate which restricts the value space. See section
5.3 for examples of semantic subtypes.

Module items of the following kinds can, with the mentioned exceptions, occur in all
kinds of modules:

e function profiles, described earlier,
e function definitions, described earlier (not allowed in property modules),

e axiom items of the form: axm <list of variable declarations><list of formulas>,
where the formulas may only have free occurrences of the declared variables, (not
allowed in class modules), and

e lemma items headed by the keyword lma, and otherwise of the same format as axiom
items. The contents of a lemma item can also be an entire module item (other than
lemma or axiom item).

In addition any type module shall have exactly one genbas statement and at most one obs-
bas statement (possibly inherited). Procedure declarations, as well as function declarations
in imperative style, are allowed in class modules.

A module is said to be the owner of the module items listed in its module body, if any.
In addition it inherits those owned by the prefixing module instance, if any, and is thereby
made an owner of these items too. For that reason the new module is sometimes said to
be an extension of the prefix module. The owner relationship is of particular importance
for functions, represented by their profiles and semantic specifications, since it gives rise
to possibilities for a controlled kind of function overloading, see below. A function owned
by a module M is also said to be associated with M, and to be a M-function. The set of
functions owned by a module must have distinct names, thus no redefinition of inherited
functions is allowed, with the single exception of function redefinition in subtypes and
subclasses, essentially retaining the original semantics on the reduced domain.

Any non-property module, say M{T},T5 ...}, can introduce requirements on its formal
type parameters by an assumption clause in its left hand side. The clause lists one or
more property module expressions, each with one or more formal M-parameters as actual
parameters. The requirements expressed by a property expression, say P{T1,T>}, are that

20

the actual parameters for 7} and T of any M-instance, say M{U;y,Us,...}, must own
functions satisfying the profiles that would be owned by the property instance P{Uy, Us}.
A function f: D— C is said to satisfy a profile f: D'— C’ if and only if D' <D,
and Vz : D’e f(x) € C'. Notice that profile satisfaction may sometimes be determined by
type analysis.

In addition the associated functions must satisfy the axioms of P{Uy, Us}. Thus, there
is in general a proof obligation associated with any instantiation of M.

Any module can, by an inclusion clause listing one or more function module expressions,
cause these module instances to be included, i.e. they (or more precisely their contents) are
made available to the module under definition. At the same time those available to the
former are also included. Type modules need no explicit inclusion clause in order to become
available; an occurrence of a type expression anywhere in the right hand side, or as an actual
parameter of a module expression in an assumption or inclusion clause, causes the inclusion
of the corresponding type module. The same is true for class modules.

A module M under definition is allowed to refer to any module previously defined. (Ex-
ception: no type module may refer to any class module, directly or indirectly.) Thereby
a definition hierarchy, a partial order, is defined for the set of modules (not module in-
stances) consisting of M and those which have instances available to M, where M is the
single maximal element and Bool is the single minimal one.

Ownership of functions is not altered by assumptions or inclusions. That makes it
possible to avoid name conflicts between functions associated with different modules. It is
considered practical to permit function overloading in the sense that the number and types
of arguments of a function application can influence the binding of the applied function,
with priority for binding to locally owned functions.

Assuming that most functions are owned by type modules, then, in the majority of
cases of no local match, it is sufficient to search for a matching profile in modules which are
mazximal elements in the definition hierarchy, among those which occur in the argument
types. In practical cases at most one match will be found in these modules (which in general
depends on the actual parameters of the occurring module instances as well). If none is
found, the function may be defined in a function module, or it may be a relative constant
(i.e. the owning type module does not occur in the function domain). In these cases a
wider search is required with a correspondingly greater danger of ambiguity especially for
non-local constants. If several functions redefined in semantic subtypes can match, the one
with the smallest domain which does not require argument coercion, is to be chosen.

As a means to resolve ambiguities, and to override the given overloading rules, ABEL
provides notations for identifying the intended owner. (Usually the module name is suffi-
cient, but there exist cases where the actual instance would have to be specified.) An owner
M may be specified either by using the notation M’ as a prefix or the construct at M as
a suffix. For ordinary functional notation the prefix notation, M’f(...), reads well, but for
mixfix notations ending with an operator symbol the at-construct is usually better, as in
the examples of section 5.4. For operators and other mixfix notations starting and ending
with operands good constructs are difficult to find; in ABEL one can e.g. choose between
M(...op...), (...op...)at M, and M’"op”(..., ...) for specifying the owner of an
infix operator.

The advantage of function overloading is illustrated by the fact that any type T', even
a formal one, owns the following predefined module items:

func "=":T x T — Bool

21

func "#" : T x T — Bool

def zx#y==-z=y

func if "th el "fi: Bool xT xT — T

def if zthyelzfi==casexoft—y|f— zfo

It is required that any actual type module specifies the semantics of the equality relation
either by a def item or by an obsbas statement.

It follows from the above rules for allowed contents of different kinds of modules that
classes are necessarily fully constructive, whereas property modules are non-constructive
since they do not contain def items. Type and function modules are primarily intended
to be constructive, but semantics through axm items are not forbidden. The intention
is, however, that the consistency of modules shall be established through later module
extension by constructive function definitions satisfying the stated axioms. Thus, there is
in general a proof obligation associated with module extension to prove any inherited axiom
referring to defined functions only. The axiom is thereby redefined as a Ima item. For any
property module P consistency is established through proofs required in connection with
instantiation of modules assuming P.

As an example of a type module we define the sequence type and a few non-generator
functions which are used in the sequel.

type Seq{T} ==

module
func ¢ : — Seq
func "+" : Seq x T' — Seq — right append
1-1 genbas ¢, "+~
func "7 : T x Seq — Seq — left append
def t4g==caseqof e —crt |+t — (t414¢)+t fo
func "H" : Seq x Seq — Seq — concatenate
def ¢H¢ ==caseq of e —q|¢"+t— (¢qHq")rt fo
func "7" : T x Nat — Seq — repetition
def tfn==casen of 0 —¢|Sn' — (tIn')+t fo

endmodule

Notice that the parameter part is omitted for occurrences of the type under definition. This
is in order to prevent a certain class of meaningless type definitions.

Parameterized type modules may be seen as higher order functions, giving new types
when applied to type arguments. As such they are monotonic with respect to the subtype
relation: Th <XT{ A ... N T,,=3T), = U{Ty,..., T} U0{1{,...,T}}.

5.1 Some standard constructs

We consider the problem of finding a one-to-one generator basis for the type Int of integers.
In example 3 of section 3.1 a basis consisting of zero, successor, and negation functions was
proposed. It is many-to-one, however, since —0=0 and ——x=x for x: Int. An alternative
way to span the negative integers is to replace the unary minus by a predecessor function
S”, but now PSz=SPuz for x:Int. A third possibility is to define the integers as pairs of
sign and absolute value:

type Int == sgn: {pos,neg} x abs: Nat

22

where the right hand side contains some useful special notations. An enumeration type,
say {a,b,...,c}, is defined in the obvious way, by a one-to-one generator basis consisting
of the listed constants. A labeled Cartesian type product, ai:T1 X ag:To X ... X ap :Th,
n >0, is shorthand for a type, Prodn, defined as follows:

type Prodn{Ty,T5,...,T,} ==

module
func (*,",...,"): Ty x Ty x ... x T, — Prodn
1-1 genbas (*,",...,")
func ".a; : Prodn — T; fori=1,2,...,n — component selectors
def (z1,z9,...,2p).0;, ==x; fori=1,2,...,n
endmodule

where the def item is short for a definition by a case with a single branch. Notice that
the case n=0 is useful; Prod0 is a kind of null type whose only abstract value is the empty
tuple.

However, the one-to-one property of the above labeled product is not quite right, since
(pos,0) and (neg,0) should be considered equal. In order to arrive at a definition of the
Int type by conventional means we may use another standard construct, a disjoint union:

type Int == 0: Prod0 + pos : Natl 4+ neg : Natl

where Natl is the type of non-zero natural numbers, type Nat! == 1: Prod0+S" : Natl,
and the “labels” in this case represent generators, sometimes called “injector functions”:

func 0: — Int
func pos : Natl — Int
func neg : Natl — Int

A one-to-one generator basis for Int may consist of these three functions.

We may notice in passing that the constructs of type products and labeled disjoint
unions are type forming mechanisms of an expressiveness directly comparable to that of type
modules with one-to-one generator bases (and without syntactic subtypes). In particular,
a recursive type definition corresponds to a generator basis containing generators other
than relative constants. Notice that at least one generator must be a relative constant for
a basis to be meaningful. Similarly, at least one component of a disjoint union must be
non-recursive.

5.2 Syntactic subtypes

The above generator basis for integers, although correct, is not very practical, considering
the need for explicit injector functions. Thus, if x is a Nat! then the corresponding integer
must be written pos(x). A better idea is to define the Int type as the head of a family
of syntactic subtypes, all defined simultaneously. The types Zero, Natl and Negl shall
be the minimal or basic subtypes, where Vze, ={0}, Vs ={1,2,...}, and Ve =
{-1,-2,...}. By taking the generator domains as suitable subtypes we may obtain a one-
to-one basis. Their codomains should be basic types, which are thereby pairwise disjoint by
definition: Zerol Natl =...=0©. Intermediate subtypes may be user defined as indicated.
(If some are left out they will be added behind the scenes in order to make the family into
a lattice with Int as the maximal element and © as the minimal one.)

23

type Int by Zero, Natl, Negl
and Nat = Zero U Natl,
Neg = Zero LI Neg1,
Nzo = Natl U Negl ==

module
func 0 : — Zero
func S : Nat — Nat1 — basic successor
func N” : Nat!l — Negl — basic negation
1-1 genbas 0, S*, N~
func — : Int — Int — negation
def —z == case z of 0 — 0| N2/ — 2/ | others — Nz fo
func pred : Int — Int — predecessor
def pred(zr) == case = of 0 — NSO | S/ — 2’ | N2/ — NSz’ fo
func succ : Int — Int — successor
def succ(x) == case v of N2/ — —pred(x’) | others — Sz fo
func "+ : Int x Int — Int —addition

def z+y==casey of 0 — z | Sy — succ(z+y') | Ny — —(—z+y’) fo

endmodule

The following sets of (additional) profiles may be constructed automatically by first typing
the right hand side of each function for all possible combinations of (sub-)types for the
arguments, including the empty one, and then removing the redundant resulting profiles.
For a recursively defined function a profile set may be obtained by iteration, starting with all
codomains equal to @. In each step the previous profile set is used in the typing algorithm
to obtain the next set, and the iteration terminates when two successive sets are equal.
Notice that the codomain of a profile represents an “upper type bound” for applications of
the function to arguments in the given domain. An actual application either has a value of
a basic subtype included in the codomain, or is ill-defined. Profiles with occurrences of @
in the domain provide strictness information.

-) pred : Q—Q
Zero — Zero Natl — Nat
Negl — Natl Neg — Negl
Nat1 — Negl Int — Int
Neg — Nat succ : 0—Q
Nat — Neg Nat — Natl
Nzro — Nzro Negl — Neg
Int — Int Int — Int
T4 oxInt —© Intx © —

Natl x Nat — Natl Nat X Natl — Natl
Negl x Neg — Negl Neg x Negl — Negl

Zero X Nzro— Nzro Nzro x Zero — Nzro
Zero X Zero — Zero Nat x Nat — Nat
Neg x Neg — Neg Int x Int — Int

24

5.3 Semantic subtypes

Computers work with numbers of limited size, which can be identified as a semantic subtype
of the corresponding unrestricted type. Thus, the following subtype of natural numbers
would be appropriate for ten-bit number representation:

type TenBitNat == n : Nat where n <1023
module
func S” : TenBitNat — TenBitNat
def Sn == (Nat’Sn)as TenBitNat

endmodule

In redefining an inherited function it is permitted to modify the profile by replacing any
occurrence of the prefix type (or any supertype of it) by the subtype under definition. The
redefined function must behave as the inherited one, except possibly for a possible error
caused by a final coercion.

In order to give a more substantial example we define a fragment of a type module of
binary trees of nodes containing values of some type 7', to be subsequently restricted to
the subtype of “search trees”.

type BinTree{T} ==

module
func nil : — BinTree — empty tree
func tree : Bintree x T x Bintree — Bintree — non-empty tree

1-1 genbas nil, tree

func infiz : Bintree — Seq{T'}

def infix(b) == case b of nil — ¢ | tree(l,t,r) — infiz(l) + t 4 infix(r) fo
endmodule

The infix function computes the sequence of node values taken in infix order. Search trees
are binary trees whose infix sequences are sorted. In order to define that notion we first
have to introduce a suitable concept of ordering relation.

property SortOrd{T} ==
module
func "<" : T x T — Bool
axm z,y,z:Te
dz<y,
r<y<z=ux<z,
r<y=>ax<zVzy
Ima z,y,v,w:Te
T<W<YANWw<w A w<v = r<v<y
endmodule

where the first axiom specifies ~ <~ to be a total function.

When defining a general concept of sortedness of sequences an ordering relation must
be assumed for the element type, and for maximum generality the assumption should be
as weak as possible. The property module SortOrd expresses the weakest notion of order
which permits a concept of sorted sequences, such that sortedness is maintained by element
removal and correct insertion. As indicated by the notation, a “strong” ordering relation

25

is intended, like “<” on integers. It may be noticed, however, that "<", ">" and many
other binary relations over different types satisfy the same axioms. This indicates that a
mechanism for function identifier substitution will be useful when instantiating modules.
In ABEL a notation exemplified as follows is used: SortOrd{U} with "<" for "<".

funcs SeqSort{T'} assuming SortOrd{T} ==
module
func < " : Seq{T} — Bool — sorted wrt. <
def <g==caseqofe—t|qrz—
case d of e >t |¢"+y— <qd Ny<uz fo fo
lma q1,q2,q3: Seq{T}, ©:Te
/<1 H g2 Hq3) = <qo,
(@ rx) A< (rHg2) = < (q1hz4q2)
endmodule

The fact that SortOrd is assumed entails the following consistency requirements for any
actual parameter U for T: that the function profile "<” : U x U — Bool is satisfied by
a U-function (or is assumed for U if U is in turn a formal parameter, as in the example
below), and that this function satisfies the axioms of that property module.

We are now in a position to define the concept of search trees as a semantic subtype of
binary trees, using the two auxiliary modules above.

type SearchTree{T} assuming SortOrd{T'}
including SeqSort{T} ==
b : Bintree{T} where /<infiz(b) convex
module
func lkp : SearchTree x T — T — look up
def [kp(s,t) == case s of nil — L | tree(l,t',r) —
if t <t th lkp(l,t) el
if ¢/ <t th lkp(r,t) el ¢’ fi fi fo
func add : SearchTree x T — SearchTree — add or replace
def add(s,t) == case s of nil — tree(nil,t,nil) | tree(l,t',r) —
if t <t th tree(add(l,t),t',r) el
if ¢/ <t th tree(l,t',add(r,t))
el tree(l,t,r) fi fi fo qua SearchTree
endmodule

The consistency requirements on the included SegSort instance are validated syntactically
by the assumption in its environment. Notice that the function value of the look-up function
may contain non-redundant information, since —t <t A =t <t does not imply t=t' for
the weak ordering relation assumed. For the search tree property to be maintained by add
the node value ¢’ must in that case be replaced by t.

The keyword convex asserts an important property of the defined subtype: that any
subtree of a search tree is itself a search tree. In general the formulas which must be
proved in order to establish the convexity property are determined mechanically by the
generator basis and the restricting predicate. In this case there is an obligation to prove:
/<ianfiz(init), and /<infix(tree(l,w,r)) = <infix(l) A /<infix(r). The proofs follow using
the definition of the infiz function in module BinTree and lemma 1 of module SegSort.

The convexity has the syntactic consequence that the variables [and r introduced
in discriminators on search trees are of type SearchTree (not BinTree), thereby avoiding

26

coercions of arguments to lkp and add in the recursive definitions of these functions. An
important semantic consequence is that induction hypotheses are justified for subtrees in
proofs by generator induction over search trees.

The notation qua SearchTree in the add definition serves to avoid coercion of the
function body which is syntactically of the type BinTree. There is an associated obligation
to prove that the function value is in fact a search tree. That can be achieved by proving

/< (quHinfiz(s) Ha) A <(q1Fv-q) = [<(q1 Hinfiz(add(s,t)) Hq2)

by generator induction on s: SearchTree for arbitrary node value sequences ¢; and ¢s.
In the non-trivial case that s is of the form tree(l,t',r) the proof goes through using
induction hypotheses for [and r, as well as lemma 2 of the SeqSort module and the lemma
of module SortOrd. Then, by taking g1 =g2=¢ we obtain the desired result: /<infiz(s) =
/< infiz(add(s,v)). (Notice that the restricting predicate may be assumed for any search
tree.)

5.4 Many-to-one generator bases

We define a type of abstract finite maps from a “domain type” X to a “codomain type” Y.
A map may be compared to a partial function from X to Y, which is defined for at most
a finite number of arguments.

type Map{X,Y} ==

module
func init : — Map — empty map
func "["—"]: Map x X xY — Map — update map
genbas init, "["—"]
func "[]: Mapx X — Y — apply map
def m[z] == case m of init — L | m/[z/—y] —

if z=2' th y el m'[z] fi fo
obsbas “[]
endmodule

The obsbas statement defines the equality relation on maps as the strict restriction of:
(m1 =mg) == Vr:Xe (m[z] == malz])

which may be useful for proof purposes, but is not a constructive definition. The definedness
predicate d"["] of the map application function may be derived as explained in section 4.
The result is the following TGI definition:

def dm[z] == case m of init — f | m/[2/—y|] — z=2' or dm/[z] fo

By means of the definedness predicate equality on maps may be defined without the use of
strong equality in the right hand side:

(m1 =mg) == Vz:Te dmy[z] =dmse[z] A (dmi[z] = mqlz] = malz])

The equality definition still is not constructive, due to the quantifier in the right hand
side. It is possible, however, to give a definition of the Map type entirely within the TGI
framework in terms of a semantic subtype. The idea is to restrict the generator universe
to a set of canonic forms, one for each equivalence class. Then, redefining the generators

27

so that they generate canonic maps, the subtype is made to appear to have a one-to-one
generator basis. This in turn makes it possible to give a simple TGI redefinition of the
equality relation. Assuming that there is a total order “<” on the “argument” type X of
Map, we can identify canonic representatives of the form:

init[xy—yi|[rar—ys] .. [zn—yn], for xy<ze< ... <z, and n>0.
The notion of total order may be expressed as follows:

property TotOrd{X} == SortOrd{X}
module
axm z,y: Xe
<y Ay<z),
r<yVr=yVy<z
endmodule

Since TotOrd is defined as a extension of SortOrd, it inherits the contents of the latter.
Seeing a property as the conjunction of its axioms, the inheritance implies that the extended
property is stronger. Thus TotOrd{T} = SortOrd{T} holds for arbitrary type T', and
the implication is established syntactically.

Assuming this property for the map argument type we can express formally the concept
of map canonicity:

funcs MapCan{X,Y} assuming TotOrd{X} ==

module
func canonic : Map{X,Y } — Bool
def canonic(m) == case m of init — t | mi[r1—y1| —
case my of nit — t | mof[warys] —
x9 <x1 A canonic(my) fo fo
endmodule

Finally we may define a convex subtype of canonic maps:

type CanMap{X,Y } assuming TotOrd{X}
including MapCan{X,Y} ==
m : Map{X,Y} where canonic(m) convex
module
func init : — CanMap
func "["—"]: CanMap x X xY — CanMap
def m[z—y] == case m of init — mlz—y|at Map | mi[x1—y1] —
if 21 <z th m[z—y]at Map el
if x <z th mq[z—y][z1—1y1] at Map
el mi[x—y|at Map fi fi fo qua CanMap
func "=": CanMap x CanMap — Bool
def my=mo == case (my,mz) of (init,init) —t
| (mi[z1—y1],me[xe —y2]) = mi=mo Az1=22 A Y1 =12
| others — f fo

func crep : Map — CanMap — canonic repr.
def crep(m) == case m of init — m | m/'[z—y] — crep(m’)[z—y| fo
endmodule

28

In order to establish the convexity there is a obligation to prove: canonic(init) and
canonic(m(x — y|) = canonic(m), which is easy. In the semantic redefinition of the
generator “["—"] there is a need to refer to the original generator. Therefore the standard
rule of function overloading must be overruled. It is practical to use the at-construct in
this case because the mixfix notation of the function begins with an operand and ends
with an operator symbol. Notice that the innermost (i.e. leftmost) generator application
of mi[z—y|[z1—y1]at Map refers to the redefined one (since the variable m; is of type
CanMap).

The qua-construct introduces an obligation to prove that the redefined function gen-
erates canonic maps: canonic(m[z+— y]) for m: CanMap. The latter proof goes through
by generator induction on m, using the lemma canonic(m[z’ — y'] at Map) N x < 2/ =
canonic(m[x—y|[x'+—y'] at Map), for m: CanMap, also provable by induction on m.

Both redefined functions must behave as the original ones on the restricted domains.
So one has to prove in addition:

Vo : Xeo mlz'—y]lz] == m[z'+—y]at Map[z] and
m=m' < Vr: Xe (mlx]==m'[z]), for m,m’: CanMap.

The proofs, which are by generator induction on m and m/, are easy. The redefined equality
relation corresponds to that of a one-to-one generator basis. This implies that consistency
can not be violated through the definition of functions by means of generator induction
over CanMap.

The function crep computes the canonic representative of an arbitrary map, and can
thus be seen as a mechanism of “unfailing” coercion to the subtype. Notice that function
overloading implies that the generator applied to crep(m’) in the crep definition is the
one redefined in CanMap. Also the type (codomain) of init has been redefined locally.
Therefore type analysis shows that the body of crep is of type CanMap, which implies that
the function value is indeed a canonic map. It is fairly easy to see that it is idempotent,
and that crep(m)=m for m: CanMap, and thus for m: Map and Map equality.

It may be noticed that the predicate canonic and the corresponding redefined generator
“["—"] are the only non-trivial parts of the construct CanMap. In particular the redefined
equality relation and the crep function could be specified automatically, given a syntactic
indication of the purpose of the subtype. Also all the proof obligations may be identified
mechanically. The proof concerning the redefined equality will in general only go through
if the canonic forms described by the restricting predicate are in fact in a one-to-one
correspondence with the abstract values defined for the supertype.

The CanMap type invites function specifications that exploit of the properties of canonic
representations in order to improve the efficiency of expression evaluation, seeing TGI
specifications as applicative programs. This, however, is likely to make the function defi-
nitions look more like algorithmic implementations than abstract mathematical specifica-
tions, which is not always an advantage for logical reasoning and easy understanding. For
instance, let the composition operator “@®" : Map x Map — Map denote the “union” of
two maps, where components of the right argument override corresponding components of
the left argument. The following semantic definition is easy to understand:

def m @& m/ == case m’ of init — m | my[z—y] — (m & mq)[x—y| fo

A more execution efficient version can be made for canonic maps, using an algorithm
similar to that of merging two sorted sequences (in order to establish the TGI property of
this definition one must consider the combined complexity of both operands):

29

def m @& m' == case m of init — m' | mi[z1—y1] —
case m' of init — m | ma[rar—1ys] —
if 1 <zo th (m @ ma)[ze— yo] at Map el
if 2o <x1 th (mq & m/)[z1—y1]at Map
el (m; @ ma)[xe—yo] at Map fi fi qua CanMap fo fo

This indicates that specifications optimized with respect to ease of reasoning and under-
standing naturally belong to the Map module, (although there is no consistency guarantee
for functions defined by generator induction over the Map type), whereas a redefinition
with better execution efficiency may be given in CanMap. As usual, one would be obliged
to prove the strong equality of the two definitions as applied to canonic maps.

The following stronger result also proves the consistency of the definition of "& " in
Map: (crep(m) @ crep(m/))[z] == (m & m/)[z], for m,m': Map, x: X, where the crep
function computes the canonic representative of an arbitrary map, and the definition of
equality on Map through the observation basis has been used. Notice that the redefined
"@®" operator is applied in the left hand side. If the operator is not redefined then proof of
(m@crep(m’))[z] == (m@m/)[z] is sufficient to show consistency of the definition in Map,
because generator induction is only applied to the second argument. Again, these proof
obligations may be identified mechanically. Notice that they are formulas at the TGI level
since the universal quantifier occurring in the equality definition could be made implicit.
That is not the case for a proof obligation in the form of a congruence axiom.

Also the map application function “["] could be redefined with better efficiency for
canonic maps, however, we leave it to the reader to provide a more execution efficient
version, and to prove it correct.

5.5 Type simulation

The fact that types easy to reason about are often impractical for computational purposes
implies a dilemma as far as program development is concerned; one may have to choose
between easy reasoning and computational efficiency. Fortunately, however, there is a way
of achieving both ends: we may reason in terms of an easy type 1" and compute in terms
of an efficient type T, provided that T’ simulates T in a certain formal sense. We shall
explain the concept of type simulation using an example.

More efficient versions of several functions on (canonic) maps may be obtained (on the
average) by representing maps as search trees. We can make use of the type SearchTree
defined above by first introducing a type of nodes consisting of a key part and a data part:

type Node{Key, Data} assuming SortOrd{Key} == key : Key x data : Data
module

func "< : Node x Node — Bool

def z <y==ux.key < y.key
endmodule satisfying SortOrd{ Node}

A proof that the Node type satisfies the SortOrd property consists in proving that the
SortOrd axioms, —(x<yAy<z) and z<yVz=yVy<z, hold for z,y: Node. This
is trivial on the assumption that they are satisfied for Key values. Given these proofs it is
established that SortOrd{X} implies SortOrd{Node{X,Y }} for arbitrary types X and Y.

The type SearchTree{Node{X,Y}} simulates, in the sense defined below, the type
CanMap{X,Y }, for arbitrary types X,Y which satisfy the assumption of CanMap. (This

30

assumption, TotOrd{X}, implies SortOrd{ X}, which in turn implies the property assumed
by the SearchTree module for its actual parameter, SortOrd{Node{X,Y }}. We may thus
conclude, without additional proof obligations, that the actual parameter of the SearchTree
module satisfies the property assumed for the formal parameter.)

1. There is a total function, often called an “abstraction function”, transforming “con-
crete” search trees to “abstract” canonic maps:

func A : SearchTree{Node{X,Y }} — CanMap{X,Y}

def A(t) == A'(infiz(t)), where

func A" : {q: Seq{Node{X,Y }} where /<q} — CanMap{X,Y}

def A'(q) == case q of ¢ —init | ¢ +n — A'(¢')[n.key— n.data] fo

(The fact that the argument ¢ is a sorted sequence shows that it would be sufficient
to use the simple version of the generator “["+—"].)

2. Let m=A(t) and m’'=A(t'). Then the functions of SearchTree simulate those of
CanMap as follows:
m=m' == infix(t) =infix(t'),
init == A(nil),
m[zx—y|] == A(add(t,(x,y)), and
m[z] == lkp(t, (z,")).data,
where the second component of the second argument to lkp is redundant. Since
the abstract generators are simulated (strongly) by concrete functions, we may con-
clude that all abstract values have concrete representatives, i.e. that the abstraction
function is “onto” its codomain.

The simulation relationship can be established by proving the criteria 2 as they stand, for
the given abstraction function. An alternative, which is somewhat simpler, is to prove
the “abstract” axioms of the CanMap module, case-free versions, translated in terms of
SearchTree functions:

1. infiz(nil) = infix(nil) ==t

2. infiz(add(t, (x,y))=infix(nil) ==

3. infix(nil)=infiz(add(t, (z,y)) ==

4. infiz(add(ty, (z1,y1)) = infiz(add(tz, (22, y2)) == ti=la Nz1=22 AN y1=12)

5. infiz(add(nil, (z,y))) == infix(add(nil, (z,y)))

6. infix(add(add(t, (r1,vy1)), (z,y))) == infiz(if z1 <z th add(add(t, (z1,y1)), (z,y))

el if x <z th add(add(t, (z,y)), (x1,y1))
el add(t, (x,y)) fi fi)

7. lkp(nil, (x, ")) ==

8. lkp(add(t, (z1,y)), (x,")) == if x=x, th y el lkp(t,(z,")) fi

The formulas 1-4 are the translations of equality axioms, 5 and 6 correspond to the redefined
generator axioms, and the last two are the translations of the inherited axioms for map
application. Proofs of no. 4 and no. 8 follow from the observation that the add applications
occurring in the left hand sides are translations of canonic maps and therefore right linear
search trees. No. 6 requires a proof of the lemma infix(add(add(t, (z1,y1)), (z,y)) ==
infix(add(add(t, (x,y)), (x1,y1)). The remaining proofs are entirely trivial. It can be shown

31

that the truth of 1-8 implies the existence of a total abstraction function satisfying the
criteria 2 above.

According to the definition of the simulation relation the type CanMap{X,Y } simulates
its supertype Map{X,Y }, where the abstraction function is the identity, and the redefined
functions in CanMap directly simulate those of Map. Since the simulation is a transitive
relation on types, it follows that SearchTree{ Node{X,Y }} also simulates Map{X,Y }.

A type is said to simulate another type partially if the simulating functions represent
approximations to the abstract ones. In particular, a semantic subtype whose abstract
value space is a proper subset of that of the supertype simulates the latter partially if the
generators and other functions are redefined. In that case redefined producer functions,
and generators, may be less defined on the subdomain than the original functions. For
instance the type TenBitNat defined at the beginning of section 5.3 is a partial simulation
of Nat.

5.6 Classes

A typed value, like the number 3, is a mathematical object represented by an immutable
data structure in a running program. The same is true for values representing large volumes
of data, like long sequence values or trees with many nodes. In an applicative environment
there is no such thing as making changes to existing data structures, so, instead one has to
create new values, may be from scratch, even for high volume structures equal to existing
ones except for small changes. There are cases where one can not afford the luxury to
ignore inefficiencies like that, but has to use an imperative approach in order to assume
more direct responsibility for the use of storage space and computing time. In particular,
it may be necessary to manipulate high volume data structures by incremental updating.

This motivates the introduction of classes, which are similar to types, except for the
following differences:

1. Whereas the generator functions of type modules give rise to immutable values, those
of a class give rise to objects whose contents or state may be subsequently changed.

2. Imperative style procedure declarations are allowed as module items of a class, with
the syntax:

proc <name> (var <varpar>, val <valpar>) ==<body>

where <varpar> is a list of typed formal variable parameters (or in/out-parameters)
and <valpar> is a typed list of formal value parameters (or in-parameters). The
latter is the default parameter kind. <body>> is a list of imperative style statements,
which may include assignment operations, procedure invocations, alternatives by if-
or case-constructs, and loop constructs.

3. assignment operations as well as parameter (argument) transmission is by pointer
copying for class objects in order to avoid unnecessary copying of high volume struc-
tures, whereas these mechanisms conceptually are by value copying for typed values.

A procedure invocation is a statement of the form call <name> (v,e), where v is a list
of variables, the actual variable parameters, and e is a list of expressions, the actual value
parameters. The net effect of this call will be a simultaneous assignment to the actual
variable parameters, v := fhame(v,€), where frame is called the effect function of the

32

procedure. Its function value is a tuple whose components correspond to the individual
variable parameters.

The state space of an object of a given class C is equal to the value space of a corre-
sponding type 1. The latter may be obtained by modifying the class module definition
as follows:

1. The initial keyword class is replaced by the keyword type.

2. All references to classes in the definition are replaced by references to the correspond-
ing types.

3. Procedure declarations are replaced by the introduction and definition of correspond-
ing effect functions.

A class C' is said to (partially) simulate a type T if its associated type T¢ is a (partial)
simulation of T'. In that case T' can be taken as a (partial) specification of C, i.e. an abstract
interface.

ABEL provides a mechanism for the internal updating of objects by defining the vari-
ables introduced by discriminators to be assignable whenever the discriminand of the case-
construct is a class object (other than a formal value parameter). The combination of
pointer copying and internal object updates may result in a quite complicated program
logic, unless the use of object expressions and assignments to object variables are restricted.
The problem is that confluent accessible pointers are object aliases which may result in dif-
ficult side effects in updating operations. There do exist restrictions, syntactic except for
the use of subscripted variables, which are sufficient to prevent aliasing by pointers, and
still allow efficient programs up to a point, see [3].

Freedom from pointer alias implies that program semantics are exactly as if classes are
replaced by their corresponding types (provided that internal updates are interpreted as
wholesale object assignments).

As an example we first define a concept of “lists” of T-elements in the form of a type
(which is nothing but our old sequence concept in disguise):

type List{T} ==
module

func nil : — List

func extend : List x T — List

1-1 genbas nil, extend

func append : T x List — List

def append(t,l) ==

case | of nil — extend(l,t) | extend(l’,t') — extend(append(l’,t),t') fo
endmodule

Notice that the append operator extends a list at the “wrong” end, and for that reason a
whole new list value must be created by the repeated use of the extend generator.

As a contrast, let us define the list concept as a class. Then the append operation
can be defined in the form of a more efficient procedure, which generates only one new
extend-object:

class LIST{T} ==
module

33

func nil : — LIST

func extend : LIST x T — LIST

1-1 genbas nil, extend

proc Append(val t : T ,var [: LIST) ==

case | of nil — | := extend(l,t) | extend(l’,t") — call Append(l',t) fo
endmodule

The type associated with this class is exactly the type List; in particular the append function
is the effect function of the Append procedure. That can be proved using standard Hoare
Logic on the body of the latter.

Although the Append procedure need not regenerate the old list, it does have to search
for the far end of it. For maximum efficiency to be obtained a pointer to the last list
element would have to be stored as part of the data structure, for instance as follows:

class FIFOLIST{T} == (first : LIST{T} x last : LIST{T'}) where
last = case first of nil — nil | others — end(first) fo
module
proc .APPEND(val t : T') == const new := extend(nil,t);
case last of nil — first,last := new,new
| extend(l,t") — I, last := new,new fo
endmodule

where end is a function locating the last element of a non-empty list. Whenever a class is
a subclass of a labeled product, we use the ad-hoc notation of a dot to the left of a local
function or procedure name to indicate an implied parameter of the class under definition.
And since a product has only one generator, we omit the case construct as usual and let
the implied argument be a tuple whose components are named as indicated by the labels.
Thus .APPEND stands for (first,last).APPEND in the procedure declaration. The
implied parameter of a procedure is by definition a var parameter; thus by this syntactic
trick the labels of the class prefix are made to behave as assignable variables, so-called
“representation variables”. The dot notation is used in procedure calls as well. Thus, for
FL: FIFOLIST the statement call FL.APPEND(a) would append the T-value a at the
far end of the list FIL. In this way subclasses of labeled type or class products are made to
resemble classes as in SIMULA 67.

Individual assignments to representation variables will in general violate the restricting
predicate of the class, if any, the so-called “representation invariant”. Therefore there is
an obligation to prove that any updating procedure maintains the invariant, and that it
is established by any generating expression. By restricting case-constructs on objects to
occur textually within the corresponding class body, the maintenance of the representation
invariant is ensured by proofs of local procedures. Notice that a notation like FL.last is
an application of a selector function, not an updatable variable. If a class is intended to
simulate an “abstract” type, it would be reasonable to disallow all external access to the
internal data structure of the objects, in order to prevent confusion of different levels of
abstraction.

Unfortunately the pointer last of our final example causes an alias on the end element of
a nonempty list. Consequently the verification of this class can not be made using ordinary
Hoare Logic. However, the user of any instance of the class FIFOLIST will be protected
from the difficulties caused by the internal alias if external access to the representation
variables first and last is impossible.

34

6 A case study

The following requirements to a lift control system with n lifts in a building with m floors
are formulated by Neil Davis of STL, England:

1. Each lift has a set of buttons, one button for each floor. These illuminate when pressed
and cause the lift to visit the corresponding floor. The illumination is canceled when
the corresponding floor is visited (i.e. stopped at) by the lift.

2. Each floor has two buttons (except low and high), one to request an up-lift and one
to request a down-lift. These buttons illuminate when pressed. The buttons are
canceled when a lift visits the floor and is either traveling in the desired direction,
or visiting the floor with no requests outstanding. In the latter case if both floor
requests are illuminated, only one should be canceled. The algorithm used to decide
which to serve should minimize the waiting time for both requests.

3. When a lift has no requests to service, it should remain at its final destination with
its doors closed and await further requests (or model a “holding” floor).

4. All requests for lifts from floors must be serviced eventually, with all floors given
equal priority (can this be proved or demonstrated)?

5. All requests for floors within lifts must be serviced eventually, with floors being ser-
viced sequentially in the order of travel (can this be proved or demonstrated)?

It is difficult to check whether the lift system is over- or under-specified. For instance, the
following two requirements are not expressed above, but seem quite obvious:

e A lift should not make unrequested stops.

e A lift should not pass a floor if there is a request on that floor for a lift in the direction
of travel.

The informal description may be understood in many ways. One may ask whether the min-
imization of waiting time, stated in requirement 2, should imply the following requirement:

e A lift may leave a floor only when approaching another floor with an outstanding
(internal or external) request. (No unuseful moves)

These observations motivate the need for a formal treatment.

We shall present an abstract specification of the lift control system described above.
All requirements (including the three additional ones) will be formalized, except that our
specification will not be concerned with priorities or minimization of waiting time. In order
to demonstrate object oriented programming with the ABEL class concept, we present
an imperative implementation of the lift system with class objects corresponding to the
hardware components of a real lift system, such as doors and buttons with associated
signals. The implementation may be improved by adding emergency buttons. Other aspects
of real lifts like “fullness” may also be added.

35

6.1 Abstract specification

In order to formalize the above requirements, we shall use (time) sequences of events,
considering events caused by a user of the lift system (InFEvents) and observable events
caused by the lift system (OutEvents). An execution may be seen as a possibly infinite
sequence of events. However, in order to avoid infinite sequences, our specification will be
expressed by means of finite, initial parts of these sequences, called histories, in the style of
[1]. Safety is expressed by specifying that each possible history r satisfies some predicate
on r. It is not obvious how to specify liveness by means of finite sequences, and neither
how to give a complete specification of the lift system.

However, it is possible to give an abstract specification of the lift system by its ready
set, i.e. the set of events which the system is ready to accept next (at a given point in
an execution) [8]. The ready set is formalized as a relation, ready, between an event-
sequence and an event, such that r ready e expresses that e is in the ready set when 7 is
the event history [14]. In order to avoid non-determinism in the specification we consider
a fixed but arbitrary execution (i.e., there is an implicit outermost universal quantifier
on the event history). For instance, (rreadyaA—rreadyb)V (rreadybA —rready a)
expresses that the lift system, after history r, may either choose (perhaps due to “internal
non-determinism”) to be ready for an a-event or a b-event, but not both.

Safety properties are expressed by specifying non-readyness; in particular P is an ex-
ecution invariant if P(e) holds and if P(r) Arreadye = P(r+e). (When rewritten as
P(r)AN=P(r + e) = —rready e, the non-readyness becomes evident.) For instance, the
predicate hist ~ defined by

def hist r == case r of ¢ — t | 7'+ e — hist 7' Ar'ready e fo

is an execution invariant, identifying the possible lift system histories.

Formulas of the form Q(r,e) = rready e express basic (one-step) liveness properties.
For instance, e € InFvent = rready e expresses that the lift system is always ready to
accept an input event. Similarly, we may express that if there are unserved requests, there
will be at least one out-event in the ready set. Other liveness properties may be proved by
well-founded induction. For instance, we may prove the liveness properties of requirements
4 and 5 as follows:

Let m(r, z) be a (worst case) progress measure of how many lift-moves may be needed
to serve a particular request z, at a point r in an execution, such that m(r,z) is always
non-negative, and m(r, z) = 0 implies that the request is served. By means of the ready-set,
we may prove that the request eventually will be served as follows:

m(r,z) = N >0 = (Ve: Eventerreadye = m(r+e,z) < N)A
(Ve : Event'erreadye = m(r+e,z) < N)A
(Je : Event’ e rready e)
where Event’ is a subset of the outevents — assuming underlying fairness.
We shall below give a specification of the ready set and define a measure which may

be used to prove requirement 5. The safety requirements stated in requirements 1 to 3 are
proved by an execution invariant (OK).

6.1.1 Description of events

It seems reasonable to consider the following input events for the lift system (caused by
the users):

36

e bl(z,y) — push the button for floor y in lift z. The button light will be turned on
unless already lit.

e bf(y,d) — push the button for direction d on floor y, where dis one of T, |. The button
light will be turned on unless already lit. A bf(y, d)-event will satisfy y =lo = d =1
and y = hi = d = | where lo and hi are two integer constants identifying the low
and high floor, respectively.

As observable output events for the lift system, it seems reasonable to consider all lift
movements, as follows:

e v(z,y,d,0) — lift z visits floor y and indicates (by appropriate lamps) that it will
move in direction d. Here, d may have the value |, which means that the lift is free
(to move up or down). The doors are open (or opening) if o is true, otherwise they
are closed (or closing). The doors will be open(ed) if either button bl(x,y) or bf (y,d)
is lit, and the two buttons will be turned off (if lit).

From the given informal specification, it is not clear whether a visiting lift should indicate
its planned direction. Without any indication, it is not always possible to determine if a
visiting lift is an up-lift or a down-lift, and a person entering will not know whether the
lift will continue in his direction. We have therefore chosen to include a parameter for the
direction in v-events.

The openness of a door is clearly observable, and is therefore included in a v-event. It
may be argued whether passing a floor without stopping and opening doors should be an
abstractly visible event. However, such an event is observable if there are lamps, either
inside lifts or outside lifts, indicating the floor position of each lift. It seems useful that
each lift indicates the current floor position so that a person pushing a button requesting
a stop at a certain floor knows whether that floor is passed already. The chosen event
language is rich enough to fully express the abstract behavior of such lift systems.

To illustrate how sequences of events can describe lift behavior, we point out some
essential ideas. A v(z,y,d,0)-event will only be allowed to follow another v(x,y’,d’,o')-
event when y is the next floor after 3’ in direction d’, or y equals ¢’ and o’ is true. (When
d is |, y must equal 3’.) For instance the history

bf (5,1), .., v(z,5,],t),v(z,5,],f)

indicates that the person pushing the down-button on floor 5 had left when lift x stopped.
Since no request appears inside the lift, it waits with closed doors. It is here assumed that
the bf (5, 1)-button is not alight. Otherwise, the history

bf(57 l)? A bf(57 T)?) v(w7 57 l?t)7v(x7 57 T?t)7 bl(x7 8)7?}('%'7 57 T? f)

indicates that the person waiting for an up-lift was served after no one took advantage of
the down-lift (according to the third additional requirement).

This seems to imply a time-out mechanism, and consequently histories, which only
express linear order in time, may seem too weak. However, by assuming that there always
is some minimal amount of time between v-events involving the same lift, histories suffice.
Without such an assumption lift users may not have any real chance to enter or exit a lift
before its door closes. The implementation will indicate where time delays are appropriate,
such that the assumption is satisfied.

37

6.1.2 The specification

We now specify the ready set of the lift system, using a type ESeq encapsulating some
helpful sequence observers, which will be defined further below. First the types of the
events are defined:

type Lift =={l..n}

type Floor == {lo..hi}

type Dir == {laI’T}

type Pos == (f : Floor x d: Dir) where — Lift Positions

—(f=lond=|Vf=hiNd=T)

type BF == Pos where d # | — bf-event

type BL ==1[: Lift x f : Floor — blevent

type V == 1[: Lift x f: Floor x d: Dir x o: Bool — v-event

type InFvent == bl : BL+bf : BF

type Fvent ==0bl:BL+bf :BF +v:V

type ESeq == Seq{Event}

module
func Q" : ESeq x Lift — V — the last v-event involving the lift
func Rbl : ESeq x BL — Bool — is there a bl-request?
func Rbf : ESeq x BFF — Bool — is there a bf-request?
func OK : ESeq — Bool — safety requirements

endmodule

type LiftHistory == r : ESeq where OK(r)

module
func " ready " : LiftHistory x Event — Bool — ready relation
def rreadye==OK(rre)
Ima i: InFvent, r: LiftHistory, bl : BL, bf: BF e

rready 1, — always ready to take input

Rbf (r,bf) = Jv: Verready v, — external liveness

ROl (r,bl) = Jv: Verready v Av.l =bl.l — internal liveness
endmodule

The lemmas can be proven from the below definition of ESeq. The last two lemmas express
that v-events will re-occur as long as there are outstanding requests; and if there are
outstanding requests inside a lift, v-events for that lift will re-occur. From this one-step
liveness one may prove that any request eventually will be served, by the inductive technique
explained above. One may use the following progress measure for a bl-request:

func m : LiftHistory x BL — Nat
def m(r,(z,y)) == case rQz of (z, f,d,0) —if f=yAothO el
2% (abs(f —y) +if dir(f,y) =d th 0 el
2xif d=17th hi—fel f-lofifi)—if othOellfififo

where dir is a function defined in type Dir as follows:

func dir : Floor x Floor — Dir — the direction from one floor to another
def dir(y1,y2)==1if yI <y2 th lelif yI >y2th | el | fi

38

letting elif ... fi denote el if ... fi fi. The definition of m expresses that the worst case
number of moves is the distance from where the lift is, f, to where the request is, y, plus
the distance from f to the top or high floor, and back, if the lift is moving away from y;
this sum is multiplied by two since it may (in the worst case) take two v-events to move
the lift one floor, and we subtract one if the door is closed (then the lift reaches the next
floor in only one move). The measure for external requests is more difficult when there are
several lifts.

We next define the functions in the type ESeq constructively, except the nd-function,
which is characterized by axioms expressing minimal requirements corresponding to the
informal specification:

type ESeq == Seq {Event }

module
func "@Q" : ESeq x Lift — V — the last v-event involving the lift
def rQz == case r of ¢ — (z, startfloor,|,f) | r+e — case e of

| v(z) — if x = z.l th z el rQz fi
| others — r@Qux fo fo

func nd : ESeq x Lift — Dir — the next direction of the lift
func nf : ESeq x Lift — Floor — the next floor the lift will be at
def nf(r,z) == (rQz).f+if (rQz).o th 0

elif (rQz).d=1th 1 elif (rQz)d=]th —1el0fi
func Rbl : ESeq x BL — Bool
def Rbl(r,b) ==caser of e = f | r+e — case e of
| v(l, f,d,0) = b# (I, f) and Rbl(r,b)
| bI(b') — b=1" or RbI(r,b)
| others — Rbl(r,b) fo fo
func Rbf : ESeq x BF — Bool
def Rbf (r,b) ==caser of ¢ - f | r-e — case e of
| v(l, f,d,0) — b# (f,d) and Rbf (r,b)
| bf (V') — b=1b" or Rbf (r,b)
| others — Rbf (r,b) fo fo
func R: ESeq x Lift x Floor x Dir — Bool — any outstanding requests?
def R(r,z,y,d) == (Rbl(r, (z,y)) V Rbf(r,(y,d))) AN\rQx # (z,y,d,t)
func OK : ESeq — Bool — safety requirements
def OK (r) ==caserof e -t |r+e—0OK (r)Acase e of
| v(z,y,d,0) =y =nf (r,x) Nd =nd(r,z) No = R(r,z,y,d) A\rQz # e
| others — t fo fo
axm 71 : ESeq, x: Lift, f,y: Floor, d,d" : Dir, o: Boole
rQz =(z, f,d,0) And(r,x) =d =
(RO, (2,9)) Ay # f = d £ LA (dir(fy) = d = & = d)) A
(& # 1 = RYf (r, (f.d))V 3y, d) :BF wdir(f,y) = d A R(r,,y,d)),
(Vz : Liftend(r,z) =]) = Va: Lifte = R(r,z,y,d)
Ima
OK (r) = (nf(r,z),nd(r,z)) € Pos
endmodule

where the constant startfloor defines the starting floor of the lifts. The axioms express
that a non-free direction may not be changed as long as there are internal requests in this
direction, that a free direction may only be chosen when there is no internal request on

39

other floors, that a chosen non-free direction must be useful wrt. some outstanding request,
and that not all lifts may choose free when there are outstanding requests. Notice that the
axioms do not require that all free lifts must move towards a bf-request. As stated by the
lemma, OK ensures that no physically incorrect move may occur.

The ESeq module is non-constructive because nd is non-constructive. Internal consis-
tency of the module is easy to show since all other functions are constructively defined, for
instance it suffices to define a constructive lift strategy as follows:

type LiftStrateqy == ESeq

module
def nd(r,z) == <keep a non-| direction when useful (wrt. internal or external requests),
otherwise take a useful direction, if any, and | if none.>
endmodule

(Such a strategy will be formalized in the implementation.) As a proof obligation one must
prove that the redefined nd-function satisfies the axioms in ESeq.

Observe that the functions "@Q", Rbl, and Rbf depend on the history r; the other func-
tions depend on the history only through these. Thus in an implementation consisting of
the current position and openness of each lift, Rbl, and Rbf as (array) variables, the history
variable may be eliminated. Even though such an implementation gives a reasonable data
structure, it is too high level in the sense that it does not produce output which is related
to the hardware of a real lift system, and it does not describe how to operate the lifts in
parallel.

6.2 Implementation outline

According to object oriented principles, we model the lifts as objects, each with its own
activity. Each lift should have a door, internal buttons (one for each floor), and a “lift
control unit” which gives signals to the lift engine and takes care of displaying the position
(floor and direction) of the lift by appropriate indicators located inside and outside the
lift. In addition, the lifts share a “floor control object”, controlling the external up- and
down-buttons.

This structure can be modeled straightforward in ABEL. We first give a sketch of
the ABEL implementation: The classes and procedures are motivated by the hardware
components indicated above, and the (observing) functions correspond to what is directly
visible for persons using the lift system. Module prefixes are not shown in order to focus
on module interfaces rather than their insides.

We next show how ABEL classes may be used to describe the hardware components,
and then build an imperative implementation of the lift system on top of these classes.

class Button ==

module
proc .push — available for users
proc .reset — turns off the light
func .ison : Bool — is the button pushed?

endmodule

class Door ==
module

40

proc .open
proc .close
func .isopen : Bool
endmodule

class LiftCtrl ==

module
proc .newdir(d : Dir) — involves displaying the new direction
proc .move — involves moving the lift
func .f : Floor
func .d : Dir — (.f,.d) is the indicated position,
endmodule — it must always be a legal Pos.

class FloorCtrl == M : IMap{BF, Button}

class Lift == d: Door x i : LiftCtrl x B : IMap{{lo..hi}, Button}
module

func init(startfloor : Floor) : Lift

proc .start(var c: FloorCtrl)
endmodule

A definition of the type IMap, initialized maps, occurs as example 2 of section 3.3. We
may now program the whole lift system:

class LiftSystem == c: FloorCtrl x L : Array{Lift}

module
func init(n : Natl) : LiftSystem == (init(off), Lift'init(lo)n)
proc .start == < for each ¢, simultaneously do call L[i].start(c) >
proc .bf (p: BF) — results in a push-call on ¢.M|[p]
proc .bl (p: BL) — results in a push-call on L[p.l].Bp.f]
endmodule

where an array is a sequence of fixed length; abstractly defined as a subclass of the sequence
type, but implemented efficiently by ad hoc means. The array length is given by the
initializing sequence expression.

The ABEL language mechanisms for parallel computation are not yet fully decided.
However, objects are naturally turned into concurrent processes by having a means to start
them simultaneously. (For instance by a cobegin-construct.) Interaction is done by calling
procedures and functions local to other (non-active) objects.

It is understood that the body of a procedure local to an object has an implicit critical
region locking the object. In the lift example, the shared ¢ object is passive and acts like
a monitor, in the sense of Hoare. When there is more than one lift, the lift system has
non-trivial aliasing to ¢, and global reasoning about the state of ¢ (except what follows
from representation invariants) can not be done by simple Hoare logic.

The users of the lift system could be modeled as user-objects calling the bl- and bf-
procedures (resulting in appropriate push-calls). Such calls correspond to abstract bl and
bf-events. The protection rules prohibit objects using the lift system to interfere with its
internal components. Thus, the given interface of the lift system allows natural usage and
prohibits misuse.

41

6.2.1 Hardware specification

A very simple piece of hardware is a flip-flop, i.e. a finite state machine with two states,
on and off, and with a flip operation changing the state. By extending the flip-flop with
turn_on and turn_off operations, both idempotent, we obtain a more high level concept, a
switch. We may see a button as a switch, letting the turn on and -off operations be software
operations and letting the flip-operation correspond to hardware signals. (Alternatively,
with somewhat more advanced hardware, the turn on and -off operations could correspond
directly to hardware signals.) A door may also be described as a switch, letting isopen
correspond to ison, close to turn_off, open to turn_on, provided its operations are taken as
signals to the door mechanism.

class FlipFlop == {off,on}

module
proc z.flip == x := case = of on —off | off— on fo
func z.ison : Bool == (xz = on)

endmodule

class Switch == x : FlipFlop

module
proc .turn_off == if .ison th call .flip fi
proc .turn-on == if = .ison th call .flip fi
endmodule
class Button == Switch with push for turn_on, reset for turn_off
class Door == Switch with open for turn_on, close for turn_off, isopen for ison, closed for off

The lift control may be modeled as a subclass of Pos (thus implementing f and d) letting
newdir and move update the f- and d-components appropriately.

6.2.2 Implementation

The following structure is an expanded version of that above, defining all remaining pro-
cedures and functions:

type Dir == {|, 1,1}
module

func ~ + " : Dir x Dir — Dir

def dl+d2==if dl=]thd2eldl fi

func —" : Dir — Dir

def —d==casedof [—]|7—]|]|]|—1fo
endmodule

type Pos == (f : Floor x d : Dir) where —(f =loNd= |V f=hiNd=1)
module

func pos : Floor x Dir — Pos

def pos(nf,nd) == if (nf,nd) € Pos th (nf,nd) el (nf,]) fi

func nextpos : Pos — Pos

def nextpos((f,d)) == pos(f +casedof | -0|1T—1]| | — —1 fo, d)
endmodule

42

class LiftCtrl == i : Pos
module

func startpos(f : Floor) : LiftCtrl == (f,])

proc .newdir(nd : Dir) == i := pos(i.f,nd); < display >

proc .move == if i.d # | th < move one floor > ; i:=nextpos(i); < display > fi
endmodule

class FloorCtrl == M : IMap{BF, Button}
module
func .ison(p : Pos) : Bool == p.d # | and M|pl.ison
proc .reset(p : Pos) == if p.d # | th call M|p|.reset fi
func .isanyon(f : Floor) : Bool == .ison(pos(f,1)) or .ison(pos(f,]))

func .useful(p : Pos) : Bool == p.d # | and
(.isanyon[nextpos(p).f] or .useful(nextpos(p)))

func .search(p : Pos) : Dir == if .ison(p) or .useful(p) th p.d el | fi

func .nextdir(p : Pos) : Dir ==if p.d =
th search(pos(p.f, 1)) + search(pos(p.f, 1))
el search(p) + search(pos(p.f, —p.d)) fi
lma
if M.nextdir(p) =] th M = init(off) el
Jp' : BF « M.nextdir(p) = dir(p.f,p'.f) N M[p'].ison fi
endmodule

class Lift == d: Door x i : LiftCtrl x B : IMap{{lo..hi}, Button}
module
func init(startfloor : Floor) : Lift == (closed, startpos(startfioor),init(off))

func .useful(p : Pos) : Bool == p.d # | and
(Blnextpos(p).f].ison or .useful(nextpos(p)))

func .search(d : Dir) : Dir == if .useful(pos(i.f,d)) th d el | fi

func .nextdir(c : FloorCtrl) : Dir == search(i.d) + c.nextdir(i)+
if i.d = | th search(]) + search(|) el search(—i.d) fi

proc .start(var c: FloorCtrl) == loop

if .useful(i) or c.useful(7)
th call d.close; call i.move
el call i.newdir(.nextdir(c)) fi;

if Bli.f].ison or c.ison(i)
th call d.open; call Bli.f].reset; call c.reset(i); < wait > fi endloop

— the waiting (some amount of time) is needed to let people enter or exit the lift

endmodule

43

The lemma about nextdir in the floor control class corresponds to the abstract mini-
mal requirements. The start-procedure repeatedly moves the lift if the direction is useful
wrt. internal or external requests, and otherwise searches for a new direction; in either case,
the door is opened when there are relevant outstanding requests.

Notice that the ABEL protection rules do not allow assignment to the components of
a class object outside the class, thus the only way to update the floor component of a lift
control object is by calling the move procedure. If correctly initialized, the lift control will
therefore always indicate the position where the lift actually is.

Also notice that the floor control contains terminating operations only. When it is
shared by several lifts (as described in the lift system class defined further above) each call
on a floor control operation must therefore terminate.

Correctness

The abstract v-events are not directly visible in the implementation. However, we may
add mythical statements updating a mythical “concrete” history, from which the abstract
history can be derived. The interesting concrete history is the sequence of signals to
the lift hardware components, i.e. the open- and close-calls to doors, the reset-calls to
buttons, as well as the push-calls caused by lift users. This history captures the lift system’s
interaction with the hardware components, and contains valuable information not present
in the abstract history.

type LPos ==1: Lift xi: Pos
type Signal == push : InFvent + reset : InEvent + open : LPos + close : LPos

The concrete history may be recorded in a mythical history variable g of type Seq{Signal}
added as a mythical component of the lift system class. For each of the mentioned calls
we extend ¢ appropriately. For instance, the call d.close inside class lift has the mythical
effect

q:=qr close(x,1)

where the lift identification x must be given as a mythical parameter to the start-procedure,
since it is not known inside the lift class. The start call inside class LiftSystem must then
have the form: call L[i].start(c,7). Similarly, the user call bl(b) has the mythical effect

q := q+ push(bl(b))
We define the abstract history as a function A of the concrete history:
func A : Seq{Signal} — Seq{FEvent}

def A(q) ==case q of ¢ > ¢ | ¢ e — case e of
| push(e) — A(d) Fe
| reset(e) — A(q')
A(d) +v(, f,d,t)

(
| open(z, (f,d))
| close(x, (f,d))

—
—

A(g) + v(, f.d.£) fo fo

func " + " : Seq{Event} x V. — Seq{Event}
def r+e==if rQel)=cthrelrrefi

All abstract v-operations are generated by the door-signals. The reset-signals have no
abstract effect since there are no other abstract events turning off button lights.

44

We must prove that A(q) satisfies the abstract specification. The safety part of the
abstract specification is proved by partial correctness (using Hoare logic and only invariant
information about shared objects) showing that the state assertion OK (A(q)) holds imme-
diately after each mythical assignment to g. Thus, OK(A(q)) must be a loop invariant.
We use

Vb : BF e Rbf(A(q),b) = c.M[b] A
V(z,y) : BLe Rbl(A(q), (v,y)) = L[z].B[y]

as representation invariant of the lift system.

The proof of the liveness part of the abstract specification requires total correctness
reasoning: To prove that for a given lift there is a v-event in the ready set, when its B is
not all off, it suffices to prove that each of its mythical g-assignments will lead to another
which will extend A(q) (assuming B is not all off). Since it is obvious that no lift can lock
the floor control, we may assume that it never is deadlocked.

The input events correspond to push-calls on the buttons. Such a call can always be
performed expediently, since all button-operations are quick. In particular, no lift object
may cause a button to deadlock. Thus, the system is always ready to accept input-events.

Acknowledgements

Stein Krogdahl and Anne B. Salvesen have given valuable comments through careful reading
of an earlier version.

References

[1] O.-J. Dahl: “ Can Program Proving be Made Practical?” In Les Founde-
ments de la Programmation, M. Amirchahy and D. Néel, Ed., INRIA, 1977

[2] O.-J. Dahl: “Object Oriented Specification.” In Research Directions in
Object-Oriented Programming, B. Shriver and P. Wegner, Ed., MIT Press,
1987.

[3] O.-J.Dahl: Verifiable Programming. To appear in The Hoare Series, Prentice
Hall.

[4] O.-J. Dahl, D.F. Langmyhr, O. Owe: “Preliminary Report on the Specifi-
cation and Programming Language ABEL.” Research Report 106, Dept. of
Informatics, University of Oslo, 1986.

[5] K. Futasugi, J.A. Goguen, J.-P. Jouannaud, J. Meseguer: “Principles of
OBJ2.” In Proceedings, 1985 Symposium on Principles of Programming
Languages and Programming, Association for Computing Machinery, 1985,
pp- 52-66. W. Brauer, Ed., Springer-Verlag, 1985. Lecture Notes in Computer
Science, Volume 194.

[6] J.V. Guttag: “The Specification and Application to Programming of Ab-
stract Data Types.” Ph. D. Thesis, Computer Science Department, Univer-
sity of Toronto, 1975.

45

[7] J.V. Guttag, J.J. Horning, J.M. Wing: “Larch in Five Easy Pieces.” Digital
Systems Research Center, Palo Alto, California, July 1985.

[8] C.A.R. Hoare: Communicating Sequential Processes. The Hoare Series, Pren-
tice Hall, 1985.

[9] S.C. Kleene: Introduction to Metamathematics. North-Holland, 1952.

[10] O. Lysne, O. Owe: “Definedness and Strictness in Generator Inductive Def-
initions.” Research Report 161, Dept. of Informatics, University of Oslo,
1991.

[11] O. Owe, O.-J. Dahl: “Generator Induction in Order Sorted Algebras.” For-
mal Aspects of Computing, 3:2-20, 1991

[12] O. Owe: “Partial Logics Reconsidered: A Conservative Approach.” Research
Report 155, Dept. of Informatics, University of Oslo, 1991.

[13] D. Prawitz: Natural Deduction. Almquist & Wiksell, Stockholm, 1965.

[14] N. Soundararajan: Personal communication.

46

