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Abstract. Distributed and concurrent object-oriented systems are dif-
ficult to analyze due to the complexity of their concurrency, communi-
cation, and synchronization mechanisms. The future mechanism extends
the traditional method call communication model by facilitating sharing
of references to futures. By assigning method call result values to futures,
third party objects may pick up these values. This may reduce the time
spent waiting for replies in a distributed environment. However, futures
add a level of complexity to program analysis, as the program semantics
becomes more involved.
This paper presents a model for asynchronously communicating objects,
where return values from method calls are handled by futures. The model
facilitates invariant specifications over the locally visible communication
history of each object. Compositional reasoning is supported and proved
sound, as each object may be specified and verified independently of its
environment. A kernel object-oriented language with futures inspired by
the ABS modeling language is considered. A compositional proof system
for this language is presented, formulated within dynamic logic.

1 Introduction

Distributed systems play an essential role in society today. However, quality as-
surance of distributed systems is non-trivial since they depend on unpredictable
factors, such as different processing speeds of independent components. There-
fore, it is highly challenging to test such distributed systems after deployment
under different relevant conditions. These challenges motivates frameworks com-
bining precise modeling and analysis with suitable tool support. In particular,
compositional verification systems allow the different components to be analyzed
independently from their surrounding components.

Object orientation is the leading framework for concurrent and distributed
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systems, recommended by the RM-ODP [26]. However, method-based commu-
nication between concurrent units may cause busy-waiting, as in the case of
remote and synchronous method invocation, e.g., Java RMI [3]. Concurrent ob-
jects communicating by asynchronous method calls have been proposed as a
promising framework to combine object-orientation and distribution in a natu-
ral manner. Each concurrent object encapsulates its own state and processor, and
internal interference is avoided as at most one process is executing on an object
at a time. Asynchronous method calls allow the caller to continue with its own
activity without blocking while waiting for the reply, and a method call leads to
a new process on the called object. The notion of futures [6, 23,30,35] improves
this setting by providing a decoupling of the process invoking a method and
the process reading the returned value. By sharing future identities, the caller
enables other objects to wait for method results. However, futures complicate
program analysis since programs become more involved compared to semantics
with traditional method calls, and in particular local reasoning is a challenge.

The execution of a distributed system can be represented by its communi-
cation history or trace; i.e., the sequence of observable communication events
between system components [8, 25]. At any point in time the communication
history abstractly captures the system state [11, 12]. In fact, traces are used in
semantics for full abstraction results (e.g., [1,27]). The local history of an object
reflects the communication visible to that object, i.e., between the object and
its surroundings. A system may be specified by the finite initial segments of its
communication histories, and a history invariant is a predicate which holds for
all finite sequences in the set of possible histories, expressing safety properties [5].

In this work we consider a kernel object-oriented language, where futures are
used to manage return values of method calls. Objects are concurrent and com-
municate asynchronously. We formalize object communication by a four event
operational semantics, capturing shared futures, where each event is visible to
only one object. Consequently, the local histories of two different objects share
no common events, and history invariants can be established independently for
each object. We present a dynamic logic proof system for class verification, fa-
cilitating independent reasoning about each class. A verified class invariant can
be instantiated to each object of that class, resulting in an invariant over the
local history of the object. Modularity is achieved as the independently derived
history invariants can be composed to form global system specifications. Global
history consistency is captured by a notion of history well-formedness. The for-
malization of object communication extends previous work [18] which considered
concurrent objects and asynchronous communication, but without futures.

Paper overview. Sect. 2 presents a core language with shared futures. The
communication model is presented in Sect. 3, and Sect. 4 defines the operational
semantics. Sect. 5 presents the compositional reasoning system, and Sect. 6 con-
tains related work and concludes the paper.



Cl ::= class C([T cp]∗) {[T w [:= e]?]∗ s M∗} class definition
M ::= T m([T x]∗) {[var [T x]∗]? s ; return e} method definition
T ::= C | Int | Bool | String | Void | Fut<T > types
v ::= x | w variables (local or field)
e ::= null | this | v | cp | f(e) pure expressions
s ::= v := e | fr := v!m(e) | v := e? statements

| skip | if e then s [else s]? fi | s; s
| while e do s od | v := new C(e)

Fig. 1. Core language syntax, with C class name, cp formal class parameter,m method
name, w fields, x method parameter or local variable, and where fr is a future variable.
We let [ ]∗ and [ ]? denote repeated and optional parts, respectively, and e is a (possibly
empty) expression list. Expressions e and functions f are side-effect free.

2 A Core Language with Shared Futures

A future is a placeholder for the return value of a method call. Each future has
a unique identity which is generated when a method is invoked. The future is
resolved upon method termination, by placing the return value of the method
in the future. Thus, unlike the traditional method call mechanism, the callee
does not send the return value directly back to the caller. However, the caller
may keep a reference to the future, allowing the caller to fetch the future value
once resolved. References to futures may be shared between objects, e.g., by
passing them as parameters. After achieving a future reference, this means that
third party objects may fetch the future value. Thus, the future value may be
fetched several times, possibly by different objects. In this manner, shared futures
provide an efficient way to distribute method call results to a number of objects.

For the purposes of this paper, we consider a core object-oriented language
with futures, presented in Fig 1. It includes basic statements for first class fu-
tures, inspired by ABS [24]. Class instances are concurrent, encapsulating their
own state and processor. Each method invoked on the object leads to a new
process, and at most one process is executing on an object at a time. Object
communication is asynchronous, as there is no explicit transfer of control be-
tween the caller and the callee. Methods are organized in classes in a standard
manner. A class C takes a list of formal parameters cp, defines fields w, initial-
ization block s and methods M . There is read-only access to the parameters cp.
A method definition has the form m(x){var y; s; return e}, ignoring type
information, where x is the list of parameters, y an optional list of method-local
variables, s is a sequence of statements, and the value of e is returned upon
termination.

A future variable fr is declared by Fut<T > fr, indicating that fr may refer to
futures which will eventually contain values of type T . The call statement fr :=
x!m(e) invokes the methodm on object x with input values e. The identity of the
generated future is assigned to fr , and the calling process continues execution
without waiting for fr to become resolved. The query statement v := fr? is used
to fetch the value of a future. The statement blocks until fr is resolved, and
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Fig. 2. MapReduce model.

then assigns the value contained in fr to v. The language contains additional
statements for assignment, skip, conditionals, and sequential composition.

We assume that call and query statements are well-typed. If x refers to an
object where m is defined with no input values and return type Int, the following
is a well-typed blocking method call: Fut< Int> fr; Int v; fr := x!m(); v := fr?.

To avoid blocking, ABS provides statements for process control, including a
statement await fr?, which releases the current process as long as fr is not yet
resolved. This gives rise to more efficient computing with futures. It is possible to
add a treatment of process release statements as a straight forward extension of
the present work, following the approach of [18]. We here focus on a core language
for futures, with a simple semantics, avoiding specialized features such as process
control. The core language ignores ABS features that are orthogonal to shared
futures, including interface encapsulation, inheritance, local synchronous calls,
and internal scheduling of processes by means of cooperative multitasking. We
refer to the report version of this paper for a treatment of these issues [19].

2.1 The MapReduce Example

In order to illustrate the usage of futures, we consider the problem of counting
the number of occurrences of each word in a large collection of documents. We
consider the computing model MapReduce in Fig. 2. MapReduce is invented
and used heavily by Google for efficient distributed computing over large data
sets [17]. It has three major steps: Map, Shuffle and Reduce. The Map phase
runs over input data, which might be a database or some files, and output key-
value pairs. The input data is split in parts so they can be processed by workers
in parallel. The second step is the Shuffle phase, which collates values with the
same key together. At last, the Reduce function is called by workers in parallel
on the shuffled data distinguished by keys.



We assume two interfaces, WorkerI and MapReduceI. The interface WorkerI
is implemented by a class Worker shown in Listing 1.1, in which the method
invokeMap takes a file and emits a list of pairs such that each word in the file
is associated with a counting number: ‘1’ in this example. For instance, if the
content of the file is ‘I am fine’, the output of invokeMap is ‘(I,1),(am,1),(fine,1)’.
The method invokeReduce in class Worker sums together all counts emitted for
a particular word. For instance, if the word “am” appears twice, invokeReduce
takes ‘(am, (1,1))’ and outputs 2.

The interface MapReduceI is implemented by class MapReduce, shown in
Listing 1.2. We here assume generic data types for sets, lists, and pairs, the
latter with fst and snd to extract the first and second element, respectively.

The input to the method mapReduce is a list of files each starts with a
filename and contains a list of words, i.e. the content of the file. Each file are
handled by a worker in parallel. To achieve concurrency, for each file the object of
MapReduce calls asynchronously the method invokeMap on the assigned worker
w. This is realized by the statement fMap := w!invokeMap(filename, content).
The function insertElement collects all the futures into a set fMapResults. Next
is the Shuffle phase. The function take randomly extracts an element from a set.
The method mapReduce waits upon each future, gets the results from each fu-
ture: mapResult := fMapResult?, and collates all the values with the same key,
i.e. word, together. For instance, ‘(I,1),(am,1),(who,1),(I,1),(am,1)’ is shuffled to
‘(I,(1,1)),(am,(1,1)),(who,(1))’. In the Reduce phase, each ‘key’ and the corre-
sponding values are handled by a worker in parallel. In the same way as the
Map phase for achieving concurrency, the first part of the reduce phase calls
asynchronously the method invokeReduce on the assigned worker w. This is re-
alized by the statement fReduce := w!invokeReduce(key, values). The function
insertElement collects all the futures into a set fReduceResults. At the very
last, the method mapReduce waits upon each future, gets the results from each

class Worker () implements WorkerI {

List<Pair<String, Int>>
invokeMap(String filename, List<String> content) {...}

Int invokeReduce(String key, List<Int> value) {...}
...

}

class WorkerPool() implements WorkerPoolI {
WorkerI getWorker() {// provides idle workers,

// or generates new workers if needed.}
}

Listing 1.1. Sketch of the classes Worker and WorkerPool.



class MapReduce(WorkerPoolI wp) implements MapReduceI {

List<Pair<String, Int>> mapReduce(
List<Pair<String, List<String>>> files) {

Set<Fut<List<Pair<String, Int>>>> fMapResults := EmptySet;
Set<Pair<String, Fut<Int>>> fReduceResults := EmptySet;
List<Pair<String, Int>> result := Nil;

// Map phase //
while (~isEmpty(files)) do

...
WorkerI w := wp.getWorker();
...
Fut<List<Pair<String, Int>>>

fMap := w!invokeMap(filename, content);
fMapResults := insertElement(fMapResults, fMap)

od;

// Shuffle phase //
while(~emptySet(fMapResults)) do

Fut<List<Pair<String, Int>>>
fMapResult := take(fMapResults);

...
List<Pair<String, Int>> mapResult := fMapResult?;
... // collates values with the same key together

od;

// Reduce phase //
while(~emptySet(keys)) do

...
WorkerI w := wp.getWorker();
Fut<Int> fReduce := w!invokeReduce(key, values);
fReduceResults := insertElement(

fReduceResults, Pair(key, fReduce)) od;
while (~emptySet(fReduceResults)) do

Pair<String, Fut<Int>> reduceResult := take(fReduceResults);
...
String key := fst(reduceResult);
Fut<Int> fValue := snd(reduceResult);
Int value := fValue?;
result := Cons(Pair(key, value), result) od;

return result;
}

}

Listing 1.2. The MapReduce class. Here the notation x := o.m(e) abbreviates
u := o!m(e);x := u? (for some fresh future u) to de-emphasize trivial usage of futures.



future: value := fValue?, and return the number of occurrences of each word in
a large collection of files.

Here the future mechanism is exploited to make an efficient implementation,
avoiding blocking calls on the workers: The Map phase is not waiting for the
workers to do invokeMap, and is storing future identities only, thereby allowing
many workers to start and work concurrently. Likewise in the loop calling in-
vokeReduce, only futures identities are recorded. Blocking is delayed to phases
where the future value information is actually needed.

2.1.1 The Intentional Reasoning about the MapReduce Example
The implementation of MapReduce must guarantee the accuracy of the out-
put. Namely, the summation of the occurrences of each word in the collection of
documents is correct. However, it is not straight forward to verify this system
property. The steps of calculation take place in different components in parallel:
the Worker objects execute either the Map phase or the Reduce phase, and the
MapReduce object shuffles the data and collects the result from the Worker ob-
jects. If we only prove the functional correctness of each class, it is not strong
enough to prove this system property. Compositional reasoning is therefore re-
quired. We need a formalism to capture the interaction (order) between the
components such that we are able to derive the system property from the local
reasoning of each components. In the end of this paper, we will present a compo-
sitional proof of MapReduce which does provide correct number of occurrences
of each word in the collection of documents.

3 Observable Behavior

In this section we describe a communication model for concurrent objects com-
municating by means of asynchronous message passing and futures. The model
is defined in terms of the observable communication between objects in the sys-
tem. We consider how the execution of an object may be described by different
communication events which reflect the observable interaction between the ob-
ject and its environment. The observable behavior of a system is described by
communication histories over observable events [8, 25].

3.1 Communication Events

Since message passing is asynchronous, we consider separate events for method
invocation, reacting upon a method call, resolving a future, and for fetching
the value of a future. Each event is observable to only one object, which is the
one that generates the event. The events generated by a method call cycle is
depicted in Fig. 3. The object o calls a method m on object o′ with input values
e and where u denotes the future identity. An invocation message is sent from
o to o′ when the method is invoked. This is reflected by the invocation event
〈o→ o′, u,m, e〉 generated by o. An invocation reaction event 〈o� o′, u,m, e〉 is
generated by o′ once the method starts execution. When the method terminates,
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Fig. 3. A method call cycle: object o calls a method m on object o′ with future u. The
events on the left-hand side are visible to o, those in the middle are visible to o′, and
the ones on the right-hand side are visible to o′′. There is an arbitrary delay between
message receiving and reaction.

the object o′ generates the future event 〈← o′, u,m, e〉. This event reflects that
u is resolved with return value e. The fetching event 〈o�, u, e〉 is generated by
o when o fetches the value of the resolved future. Since future identities may
be passed to other objects, e.g, o′′, this object may also fetch the future value,
reflected by the event 〈o′′ �, u, e〉, generated by o′′. The creation of an object o′

by an object o is reflected by the event 〈o new−→ o′, C, e〉, where o′ is the instance
of class C and e are the actual values for the class parameters. Let type Mid
include all method names, and let Data be the supertype of all values occurring
as actual parameters, including future identities Fid and object identities Oid.

Definition 1. (Events) Let caller, callee, receiver : Oid, future : Fid, method :
Mid, class : Cls, args : List[Data], and result : Data. Communication events Ev
include:

– Invocation events 〈caller→ callee, future,method, args〉, generated by caller.
– Invocation reaction events 〈caller � callee, future,method, args〉, generated

by callee.
– Future events 〈← callee, future,method, result〉, generated by callee.
– Fetching events 〈receiver�, future, result〉, generated by receiver.
– Creation events 〈caller new−→ callee, class, args〉, generated by caller.

Events may be decomposed by functions. For instance, _.result : Ev → Data is
well-defined for future and fetching events, e.g., 〈← o′, u,m, e〉.result = e.

For a method invocation with future u, the ordering of events depicted in
Fig. 3 is described by the following regular expression (using · for sequential
composition of events)

〈o→ o′, u,m, e〉 · 〈o� o′, u,m, e〉 · 〈← o′, u,m, e〉[·〈_�, u, e〉]∗



for some fixed o, o′,m, e, e, and where _ denotes an arbitrary value. This implies
that the result value may be read several times, each time with the same value,
namely that given in the preceding future event.

3.2 Communication Histories

The execution of a system up to present time may be described by its history
of observable events, defined as a sequence. A sequence over some type T is
constructed by the empty sequence ε and the right append function _ ·_ :
Seq[T ] × T → Seq[T ] (where “_” indicates an argument position). The choice
of constructors gives rise to generate inductive function definitions, in the style
of [12]. Projection, _/_ : Seq[T ] × Set[T ] → Seq[T ] is defined inductively by
ε/s , ε and (a ·x)/s , if x ∈ s then (a/s) ·x else a/s fi, for a : Seq[T ], x :
T , and s : Set[T ], restricting a to the elements in s. We use dot notation to extract
components from record-like structures, for instance 〈o→ o′, f,m, e〉.callee is o′,
and also lift the dot notation to sequences. For a sequence h of events, h/← is
the subsequence of invocation events, and (h/←).callee is the sequence of callee
elements from these invocation events.

A communication history for a set S of objects is defined as a sequence of
events generated by the objects in S. We say that a history is global if S includes
all objects in the system.

Definition 2. (Communication histories) The communication history h of
a system of objects S is a sequence of type Seq[Ev], such that each event in h is
generated by an object in S.

We observe that the local history of a single object o is achieved by restricting S
to the single object, i.e., the history contains only elements generated by o. For
a history h, we let h/o abbreviate the projection of h to the events generated
by o. Since each event is generated by only one object, it follows that the local
histories of two different objects are disjoint.

Definition 3. (Local histories) For a global history h and an object o, the
projection h/o is the local history of o.

4 Operational Semantics

Rewriting logic [31] is a logical and semantic framework in which concurrent and
distributed systems can be specified in an object-oriented style. Unbounded data
structures and user-defined data types are defined in this framework by means of
equational specifications. Rewriting logic extends membership equational logic
with rewrite rules, so that in a rewrite theory, the dynamic behavior of a system
is specified as a set of rules on top of its static part, defined by a set of equations.
Informally, a labeled conditional rewrite rule is a transition l : t −→ t′ if cond ,
where l is a label, t and t′ are terms over typed variables and function symbols
of given arities, and cond is a condition that must hold for the transition to



take place. Rewrite rules are used to specify local transitions in a system, from
a state fragment that matches the pattern t, to another state fragment that is
an instance of the pattern t′. Rules are selected nondeterministic if there are at
least two rule instantiations with left-hand sides matching overlapping fragments
of a term. Concurrent rewriting is possible if the fragments are non-overlapping.
Furthermore, matching is made modulo the properties of the function symbols
that appear in the rewrite rule, like associativity, commutativity, identity (ACI),
which introduces further nondeterminism. The Maude tools [9] allow simulation,
state exploration, reachability analysis, and LTL model checking of rewriting
logic specifications. The state of a concurrent object system is captured by a
configuration, which is an ACI multiset of units such as objects and messages,
and other relevant system parts, which in our case includes futures. Concurrency
is then supported in the framework by allowing concurrent application of rules
when there are non-overlapping matches of left-hand sides. The following context
rule, which is implicit in rewriting logic, describes interleaving semantics (letting
G, G1, G2 denote subconfigurations):

context rule
G1 → G2

G G1 −→ G G2

4.1 Operational Rules

For our purpose, a configuration is a multiset of (concurrent) objects, classes,
messages, futures, as well as a representation of the global history. We use blank-
space as the multiset constructor, allowing ACI pattern matching. Objects have
the form object(Id : o, A) where o is the unique identity of the object and A is
a set of semantic attributes, including

Cl : c the class c of the object,
Pr : s the remaining code s of the active process,
Lvar : l the local state l of the active process, including

method parameters and the implicit future identity destiny,
Flds : a the state a of the fields, including class parameters,
Cnt : n a counter n used to generate future identities,
Mtd : m the name m of the current method.

Similarly, classes have the form

class(Id : c,Par : z,Flds : a, Init : s,Mtds : q,Cnt : n)

where c is the class name, z the class parameters, a the fields, and s the initial-
ization code. The variable q is a multiset of method definitions of the form

(m, p, l, s)

where m is the method name, p is the list of parameters, l contains the local
variables (including default values), and s is the code. The counter n in the class
is used to generate object identities.



Messages have the form of invocation events as described above. And, a
future unit is of the form fut(Id : u,Val : v) where u is the future identity and
v is its value. The global history is represented by a unit hist(h) where h is
finite sequence of events (initially empty). Remark that a system configuration
contains exactly one history. The history is included to define the interleaving
semantics upon which we derive our history-based reasoning formalism.

The initial state of an object o of class C with actual class parameter values
v is denoted inito:C(v) and is defined by

inito:C(v) , object(Id : o,Cl : C,Pr : initC ,Lvar : ∅,Flds : a,Cnt : 0,Mtd : init)

where a is the initial state of the object fields given by [this 7→ o,ParC 7→
v,FldsC 7→ d]. Here ParC , FldsC , and initC , represent the class parameters,
the fields, and the initialization code of C, respectively. The class parameters
ParC are initialized by the actual parameters v, the fields FldsC are initialized
by default values d (of the appropriate types), and the initial code is ready to
be executed with an empty local state.

A system is given by a set of self-contained classes Cl, including a class Main,
without class parameters, used to generate the initial object initmain:Main(ε).
The initial configuration of a system is defined by

initCl , Cl initmain:Main(ε) hist(ε)

The operational rules are summarized in Fig. 4. The rules for skip, assign-
ment, initialized variable declarations, if- and while-statements are standard.
Note that (a; l) represents the total object state, composed by a, the state of the
fields/class parameters, and l, the state of the local variables/parameters of the
method. Lookup of a variable if left to right, i.e., l is tried before a. Expressions
e without side-effects are evaluated by a semantic function depending on the
total state, i.e., eval(e, (a; l)).

Method invocation is captured by the rule call. The generated future identity
ft(o, n) is globally unique (assuming the next function is producing locally unique
values). The future unit itself is not generated yet; it will be generated by return
from the called method.

If there is no active process in an object, denoted Pr : empty, a method call
is selected for execution by rule method. The invocation message is consumed by
this rule, and the future identity of the call is assigned to the implicit parameter
destiny. Method execution is completed by rule return, and a future value is
fetched by rule query. A query can only succeed if the appropriate future unit
is generated. A future unit appears in the configuration when resolved by rule
return, which means that a query statement blocks until the future is resolved.
Remark that rule query does not remove the future unit from the configuration,
which allows several processes to fetch the value of the same future.

In rule new, the new object gets a unique identity, ob(C, n), given by that
of the generating object and a counter, the actual class parameters are evalu-
ated, and the initialization is performed. The given language fragment may be
extended with constructs for inter object process control and suspension, e.g.,
by using the ABS approach of [18].



skip: object(Id : o,Pr : (skip; s)) −→ object(Id : o,Pr : s)

assign : object(Id : o,Pr : (v := e; s),Lvar : l,Flds : a)
−→
if v in l then object(Id : o,Pr : s,Lvar : l[v 7→ eval(e, (a; l))],Flds : a)

else object(Id : o,Pr : s,Lvar : l,Flds : a[v 7→ eval(e, (a; l))])

init : object(Id : o,Pr : (Tv := e; s),Lvar : l,Flds : a)
−→
object(Id : o,Pr : (Tv; v := e; s),Lvar : l,Flds : a)

if-else : object(Id : o,Pr : (if e then s1 else s2 fi; s),Lvar : l,Flds : a)
−→
if eval(e, (a; l)) then object(Id : o,Pr : (s1; s),Lvar : l,Flds : a)

else object(Id : o,Pr : (s2; s),Lvar : l,Flds : a)

while : object(Id : o,Pr : (while e do s1 od; s),Lvar : l,Flds : a)
−→
object(Id : o,Pr : (if e then s1;while e do s1 od fi; s),Lvar : l,Flds : a)

new : hist(h) class(Id : C ,Cnt : n)
object(Id : o,Pr : (v := new C(e); s),Lvar : l,Flds : a)
−→
hist(h · 〈o new−→ ob(C, n), C, eval(e, (a; l))〉) class(Id : C ,Cnt : next(n))
object(Id : o,Pr : (v := ob(C, n); s),Lvar : l,Flds : a)
initob(C,n):C(eval(e,(a;l)))

call : hist(h) object(Id : o,Pr : (fr := v!m(e); s),Lvar : l,Flds : a,Cnt : n)
−→
msg hist(h · msg)
object(Id : o,Pr : (fr := ft(o, n); s),Lvar : l,Flds : a,Cnt : next(n))

method : 〈o′ → o, u,m, v〉 hist(h) class(Id : c,Mtds : (q (m, p, l, s)))
object(Id : o,Cl : c,Pr : empty,Flds : a)
−→
hist(h · 〈o′ � o, u,m, v〉) class(Id : c,Mtds : (q (m, p, l, s)))
object(Id : o,Cl : c,Pr : s,Lvar : l[p 7→ v][destiny 7→ u],Flds : a,Mtd : m)

return : hist(h) object(Id : o,Pr : return e,Lvar : l,Flds : a,Mtd : m)
−→
hist(h · 〈← o, eval(destiny, l),m, eval(e, (a; l))〉)
fut(Id : eval(destiny,l),Val : eval(e,(a;l)))
object(Id : o,Pr : empty,Flds : a)

query : hist(h) fut(Id : u,Val : d) object(Id : o,Pr : (v := e?; s),Lvar : l,Flds : a)
−→
hist(h · 〈o �, u, d〉) fut(Id : u,Val : d)
object(Id : o,Pr : (v := d; s),Lvar : l,Flds : a)
if eval(e, (a; l)) = u

Fig. 4. Operational rules, using the standard rewriting logic convention that irrelevant
attributes may be omitted in a rule. Variables are denoted by single characters (the
uniform naming convention is left implicit), (a; l) represents the total object state, and
a[v 7→ d] is the state a updated by binding the variable v to the data value d. The
eval function evaluates an expression in a given state, and in is used for testing domain
membership. In rule call, msg denotes 〈o→ eval(v, (a; l)), ft(o, n),m, eval(e, (a; l))〉.

4.2 Semantic Properties

Semantic properties are stated by means of notions of validity. We define global
validity (denoted |=) and local validity with respect to a class C (denoted |=C). A
global object system initiated by a configuration initCl is said to satisfy a global



invariant property I(h), if the global history h of any reachable configuration G
satisfies I(h):

Cl |= I(h) , ∀G . initCl −→
∗ G ∧G.hist = h⇒ I(h)

where −→∗ denotes the transitive and reflexive extension of the transition re-
lation, lifted to configurations, and where G.hist extracts the history of the
configuration G.

Similarly, an object system initiated by a configuration initCl is said to satisfy
a C-local invariant property I(h) if every object o of class C in any reachable
configuration G satisfies I(h/o), i.e., the projection from global history to the
object o:

Cl |=C I(h) , ∀G, o . initCl −→
∗ G∧G.hist = h∧o ∈ G.obj∧G[o].class = C ⇒ I(h/o)

where G.obj extracts the object identities from the objects in the configuration
G.

We next provide notions of global and local well-formedness for global histo-
ries. We first introduce some notation and functions used in defining wellformed
histories. For sequences a and b, let a ew x denote that x is the last element of
a, agree(a) denote that all elements (if any) are equal, and a 6 b denote that a
is a prefix of b. Let [x1, x2, . . . , xi] denote the sequence of x1, x2, . . . , xi for i > 0
(allowing repeated parts [...]∗). Functions for event decomposition are lifted to
sequences in the standard way, ignoring events for which the decomposition is
not defined, e.g., _.result : Seq[Ev]→ Seq[Data].

Functions may extract information from the history. In particular, we define
oid : Seq[Ev]→ Set[Obj] extracting all object identities occurring in a history, as
follows:

oid(ε) , {main} oid(h · γ) , oid(h) ∪ oid(γ)

oid(〈o→ o′, u,m, (e)〉) , {o, o′} ∪ oid(e) oid(〈o′ � o, u,m, e〉) , {o, o′} ∪ oid(e)
oid(〈← o, u,m, e〉) , {o} ∪ oid(e) oid(〈o�, u, e〉) , {o} ∪ oid(e)
oid(〈o new−→ o′, C, e〉) , {o, o′} ∪ oid(e)

where γ : Ev, and oid(e) returns the set of object identifiers occurring in the
expression list e. The function fid : Seq[Ev] → Set[Fid] extracts future identities
from a history:

fid(ε) , ∅ fid(h · γ) , fid(h) ∪ fid(γ)

fid(〈o→ o′, u,m, e〉) , {u} fid(〈o′ � o, u,m, e〉) , {u} ∪ fid(e)
fid(〈← o, u,m, e〉) , ∅ fid(〈o�, u, e〉) , fid(e)
fid(〈o new−→ o′, C, e〉) , fid(e)

where γ : Ev, and fid(e) returns the set of future identities occurring in the
expression list e. For a global history h, the function fid(h) returns all future
identities on h, and for a local history h/o, the function fid(h/o) returns the
futures generated by o or received as parameters. At last, h/u abbreviates the
projection of history h to the set {γ | γ.future = u}, i.e., all events with future u.



Definition 4. (Wellformed histories) Let h : Seq[Ev] be a history of a global
object system S. The well-formedness predicate wf : Seq[Ev] → Bool is defined
by:

wf(ε) , true
wf(h · 〈o→ o′, u,m, e〉) , wf(h) ∧ o 6= null ∧ u /∈ fid(h) ∪ fid(e)
wf(h · 〈o′ � o, u,m, e〉) , wf(h) ∧ o 6= null ∧ h/u = [〈o′ → o, u,m, e〉]
wf(h · 〈← o, u,m, e〉) , wf(h) ∧ h/u ew 〈_� o, u,m,_〉
wf(h · 〈o�, u, e〉) , wf(h) ∧ u ∈ fid(h/o) ∧ agree(((h/u).result) · e)
wf(h · 〈o new−→ o′, C, e〉) , wf(h) ∧ o 6= null ∧ o′ 6= null ∧ o′ 6∈ oid(h) ∪ oid(e)

It follows directly that a wellformed global history satisfies the communication
order pictured in Fig. 3, i.e.,

∀u .∃o, o′,m, e, e .
h/u 6 [〈o′ → o, u,m, e〉, 〈o′ � o, u,m, e〉, 〈← o, u,m, e〉, [〈_�, u, e〉]∗]

Also, it ensures the uniqueness of object identifiers and future identities. We can
prove that the operational semantics guarantees well-formedness:

Lemma 1. The global history h of a global object system S obtained by the given
operational semantics, is wellformed, i.e., |= wf(h) where wf(h) is strengthened by
the two conditions fid(h) ⊆ (h/→).future and oid(h)− null ⊆ (h/

new−→).callee.

The two conditions ensure that a history may not refer to object and future
identities before generated by creation and invocation events, respectively. This
lemma follows by induction over the number of rule applications.

Well-formedness of a local history for an object o, denoted wfo(h), is defined
as in Def. 4, except that the last conjunct of the case 〈o′ � o, u,m, e〉 only
holds for self calls, i.e., where o and o′ are equal. For local well-formedness, the
conjunct is therefore weakened to o = o′ ⇒ h/u = [〈o′ → o, u,m, e〉]. If h is
a wellformed global history, it follows immediately that each projection h/o is
locally wellformed, i.e.,

wf(h)⇒ wfo(h/o)

5 Program Verification

The communication history abstractly captures the system state at any point in
time [11,12]. Partial correctness properties of a system may thereby be specified
by finite initial segments of its communication histories. A history invariant is
a predicate over the communication history, which holds for all finite sequences
in the (prefix-closed) set of possible histories, expressing safety properties [5]. In
this section we present a framework for compositional reasoning about object
systems, establishing an invariant over the global history from invariants over



the local histories of each object. Since the local object histories are disjoint
with our four event semantics, it is possible to reason locally about each ob-
ject. In particular, the history updates of the operational semantics affect the
local history of the active object only, and can be treated simply as an assign-
ment to the local history. The local history is not effected by the environment,
and interference-free reasoning is then possible. Correspondingly, the reasoning
framework consists of two parts: A proof system for local (class-based) reasoning,
and a rule for composition of object specifications.

5.1 Local Reasoning

Pre- and postconditions to method definitions are in our setting used to establish
a class invariant. The class invariant must hold after initialization of all class
instances and must be maintained by all methods, serving as a contract for the
different methods: A method implements its part of the contract by ensuring that
the invariant holds upon termination, assuming that it holds when the method
starts execution. A class invariant establishes a relationship between the internal
state and the observable behavior of class instances. The internal state reflects
the values of the fields, and the observable behavior is expressed as potential
communication histories. A user-provided invariant I(w,H) for a class C is a
predicate over the fields w, the read-only parameters cp and this, in addition to
the local history H which is a sequence of events generated by this. The proof
system for class-based verification is formulated within dynamic logic as used
by the KeY framework [7], facilitating class invariant verification by considering
each method independently. The dynamic logic formulation suggests that the
proof system is suitable for an implementation in the KeY framework.

Dynamic logic provides a structured way to describe program behavior by
an integration of programs and assertions within a single language. The for-
mula [s]φ expresses the precondition of s with φ as postcondition. The formula
ψ ⇒ [s]φ express partial correctness properties: if statement s is executed in a
state where ψ holds and the execution terminates, then φ holds in the final state.
The formula is verified by a symbolic execution of s, where state modifications
are handled by the update mechanism [7]. A dynamic formula [s1; s]φ is equal
to [s1][s]φ. A dynamic formula [v := e; s]φ, i.e., where an assignment is the first
statement, reduces to {v := e}[s]φ, where {v := e} is an update. We assume
that expressions e can be evaluated within the assertion language. Updates can
only be applied on formulas without programs, which means that updates on
a formula [s]φ are accumulated and delayed until the symbolic execution of s
is complete. Update application {v := t}e, on an expression e, evaluates to the
substitution evt , replacing all free occurrences of v in e by t. The parallel update
{v1 := e1||...||vn := en}, for disjoint variables v1, ..., vn, represents an accumu-
lated update, and the application of a parallel update leads to a simultaneous
substitution. For an update U, we have U(φ1 ∧ φ2) = Uφ1 ∧ Uφ2. A sequent
ψ1, ..., ψn ` φ1, ..., φm contains assumptions ψ1, ..., ψn, and formulas φ1, ..., φm
to be proved. The sequent is valid if at least one formula φi follows from the
assumptions, and it can be interpreted as ψ1 ∧ ... ∧ ψn ⇒ φ1 ∨ ... ∨ φm.



invoc
` ∀u . {H := H · 〈this→ v, u,m, e〉|| fr := u} [s]φ

` [fr := v!m(e); s]φ

fetch
` ∀v′ . {H := H · 〈this�, e, v′〉|| v := v′} ([s]φ ∧ ∃w . I(w,H))

` [v := e?; s]φ

new
` ∀v′ . {H := H · 〈this new−→ v′, C, e〉|| v := v′} [s]φ

` [v := new C(e); s]φ

Fig. 5. Dynamic logic rules for method invocation, future query and object creation.
I(w,H) is the class invariant.

In order to verify a class invariant I(w,H), we must prove that the invariant is
established by the initialization code and maintained by all method definitions
in C, assuming well-formedness of the local history. For a method definition
m(x){s; return e} in C, this amounts to a proof of the sequent:

` (wfthis(H) ∧ I(w,H)⇒ [H := H · 〈caller� this, destiny,m, x〉;
s; H := H · 〈← this, destiny,m, e〉](wfthis(H)⇒ I(w,H))

Here, the method body is extended with a statement for extending the history
with the invocation reaction event, and the return statement is treated as a
history extension. Dynamic logic rules for method invocation, future query, and
object creation, can be found in Fig. 5. When invoking a method, the update in
the premise of rule invoc captures the history extension and the generation of a
fresh future identity u. Similarly, the update in rule fetch captures the history
extension and the assignment of a fresh value to v, where the well-formedness
assumptions ensure that all values received from the same future are equal.
The update in the premise of rule new captures the history extension and the
generation of a fresh object identity v′, and the universal quantifier reflects non-
determinism. The prime is needed here since v may occur in e. The query rule
insists that the class invariant holds for local history, ignoring the field values of
the current state, as discussed in the soundness proof. Assignments are analyzed
as explained above, and rules for skip and conditionals are standard. We refer
to Din et al. for further details [19].

The rules for the rest of the ABS statements can be defined as substitution
rules introduced in Fig. 6. For instance, [skip; s]φ can be rewritten to [s]φ. In
rule declInit and declNoInit v′ is needed since the postcondition may talk about
a field with the same name v. If-statements without an else-branch are as usual.

5.2 Soundness

The reasoning system for statements in dynamic logic is sound if any provable
property is valid, i.e.,

` ψ ⇒ [s]φ⇒ |= ψ ⇒ [s]φ



skip [skip; s]φ = [s]φ

assign [v := e; s]φ = {v := e} [s]φ
declInit [T v = e; s]φ = [v′ := e; svv′ ]φ

decINoInit [T v; s]φ = [v′ := defaultT ; svv′ ]φ

ifElse [if b then s1 else s2 fi; s]φ = if b then [s1; s]φ else [s2; s]φ

while [while b do s′ od; s]φ = if b then (∃w . I(w,H))∧
([s′; while b do s′ od; s]φ) else [s]φ

Fig. 6. Semantical definitions for standard ABS statements. Here φ is the postcondi-
tion, s is the remaining program yet to be executed, primes denote fresh variables, svv′

is s with all (free) occurrences of v replaced by v′, and defaultT is the default value
defined for type T .

Validity of a dynamic logic formula, denoted |= ψ ⇒ [s]φ, is defined by means of
the operational semantics. We base the semantics on the operational semantics
above, as given by unlabeled transitions of the form G1 → G2.

Note that each rule is local to one object, and we write G1
o:s−−→ G2 to indicate

an execution involving only object o such that exactly the statement (list) s has

been executed by o. And we write G1

o:s

⇒ G2 if o executes s while other objects
may execute.

Definition 5 (Explicit execution step).

G1

o:s

⇒ G2 , G1 −→∗ G2 ∧G1[o].Pr = s;G2[o].Pr

G1
o:s−−→ G2 , G1

o:s

⇒ G2 ∧ ∀o′ . o′ 6= o⇒ G1[o
′] = G2[o

′]

expressing one or more transitions from the configuration G1 to G2 such that o
executes s, with or without, respectively, interleaved execution by other objects.
The notation G[o] denotes the object o of the configuration G.

We consider pre- and postconditions over local states and the local history.
Such an assertion can be evaluated in a state defining values for attributes (of
the appropriate class), parameters and local variables (of the method) and the
local history. We let [[ψ

o:s−−→ φ]]G,o express that if the condition ψ holds for
object o before execution of s by the object in configuration G, then φ holds for
o after the execution. As above, we let o:s−−→ express local execution by o, and

o:s

⇒
execution by o interleaved with other objects:

Definition 6 (Validity of pre/post-conditions over execution steps).

[[ψ
o:s−−→ φ]]G,o , ∀G′, z .wf(G′.hist) ∧G

o:s−−→ G′ ∧ loc(G, o)[ψ]⇒ loc(G′, o)[φ]

[[ψ
o:s
⇒ φ]]G,o , ∀G′, z .wf(G′.hist) ∧G

o:s
⇒ G′ ∧ loc(G, o)[ψ]⇒ loc(G′, o)[φ]



where z is the list of auxiliary variables in ψ and/or φ, not bound by G nor
G′. Here loc(G, o) denotes the local state of object o, as derived from the global
state G. The function loc : Config× Oid→ State is defined by

loc(G, o) , (G[o].Flds;G[o].Lvar) + [H 7→ (G.hist)/o]

where the resulting H ranges over local histories (i.e., in the alphabet of o), and
where this is bound to o in G as explained earlier. Thus the extraction is made
by taking the state of object o and adding the history localized to o. We let
loc(G, o)[ψ] denote the value of ψ in state loc(G, o).

It follows that local reasoning suffices for local pre/post-conditions, in the
sense that when reasoning about one object in our system, one may ignore the
activity of other objects.

Lemma 2. [[ψ
o:s−−→ φ]]G,o is the same as [[ψ

o:s

⇒ φ]]G,o

The lemma follows by induction on the length of executions, and the fact that
loc(G, o) for any G is not affected by execution steps by other objects than o,
since remote access to fields is not allowed in our language and since h/o only
contains events generated by o.

In our setting, we may understand a sequent by means of the o:s−−→ relation,
letting a dynamic logic subformula depend on a given pre-configuration G and
object o.

Definition 7 (Validity of dynamic logic sequents).

|= ψ1, ..., ψn ` φ1, ..., φm , ∀G, o .wf(G.hist)⇒ [[ψ1 ∧ ... ∧ ψn ⇒ φ1 ∨ ... ∨ φm]]G,o

[[[s]φ]]G,o , [[true
o:s−−→ φ]]G,o

[[e]]G,o , loc(G, o)[e]

[[{v := t}e]]G,o , [[ev
t
]]G,o

[[ψ ∧ φ]]G,o , [[ψ]]G,o ∧ [[φ]]G,o

[[ψ ∨ φ]]G,o , [[ψ]]G,o ∨ [[φ]]G,o

[[ψ ⇒ φ]]G,o , [[ψ]]G,o ⇒ [[φ]]G,o

[[U(ψ ∧ φ)]]G,o , [[Uψ]]G,o ∧ [[Uφ]]G,o

[[U(ψ ∨ φ)]]G,o , [[Uψ]]G,o ∨ [[Uφ]]G,o

[[U(ψ ⇒ φ)]]G,o , [[Uψ]]G,o ⇒ [[Uφ]]G,o

where e is a formula without the dynamic logic operators, and the equations for
updates are as given earlier. The application of a parallel update U , for instance,
{v1 := t1||...||vn := tn}, is for short written as {v := t}. It follows from the
definition that

[[ψ ⇒ [s]φ]]G,o = [[ψ
o:s−−→ φ]]G,o

Here o is the executing object and the object on which ψ and φ are interpreted.
Thus the formula is valid if for any object o executing s, the postcondition holds
in the poststate, provided the precondition holds in the prestate. In dynamic



logic the prestate given by G and o is fixed for the whole sequent, and therefore
the meaning of the individual operators is given in the context of G and o.

We verify an invariant I(w,H) for a class C by showing that I(w,H) is
established by the initialization of C, i.e. initC , and is maintained by all methods
in C, assuming local well-formedness. The rule is:

class

` ∃w . I(w,H · γ)⇒ ∃w . I(w,H)
` H = ε⇒ [initC ](wfthis(H)⇒ I(w,H))
` (wfthis(H) ∧ I(w,H))⇒ [bodyC,m](wfthis(H)⇒ I(w,H)), for all methods m in C

`C ∃w . I(w,H)

where bodyC,m denotes the body s of method m of C augmented with effects on
the local history reflecting the start and end of the method, namely

H := H · 〈caller� this, destiny,m, x〉; s; H := H · 〈← this, destiny,m, e〉

Lemma 3. Reasoning about statements is sound:

` ψ ⇒ [s]φ⇒ |= ψ ⇒ [s]φ

Theorem 1. The proof system for reasoning about classes is sound:

`C I(H)⇒|=C I(H)

5.2.0.1 Proof of lemma 3. We focus on the rules for statements involving
futures and object generation, and consider therefore the rules invoc, fetch and
new, as given in Fig. 5. The axioms given in Fig. 6 represent standard statements
not involving futures, and we omit the soundness proof of these.

5.2.0.2 Asynchronous method call statement
We prove that the invoc rule preserves validity. The validity of the conclusion
is |= [fr := v!m(e); s]φ. Consider now a given G and o, and let φ′ denote [s]φ.
According to Def. 7, the validity can be written as

wf(G.hist)⇒ [[true
o:fr:=v!m(e)−−−−−−−−→ φ′]]G,o

which by Def. 6 is

∀G′, z .wf(G.hist) ∧ wf(G′.hist) ∧G o:fr:=v!m(e)−−−−−−−−→ G′ ⇒ loc(G′, o)[φ′]

By the operational semantics of call and assign, we have that G′ is G with msg
andG′.hist = G.hist·msg, where msg denotes 〈o→ loc(G, o)[v], ft(o, n),m, loc(G, o)[e]〉,
and such that the object state G′[o].l is (G[o].l)[fr 7→ ft(o, n)] if fr ∈ G[o].l, and
otherwise G′[o].a is (G[o].a)[fr 7→ ft(o, n)]. Here n is the counter value of G[o]
(same as in G′[o]). Other parts of the object state are unchanged.



Thus loc(G′, o)[φ′] can be reduced to loc(G, o)[φ′ fr,H
ft(o,n),H·〈this→v,ft(o,n),m,e〉]

since loc(G, o)[〈this→ v, ft(o, n),m, e〉] = msg, and it suffices to prove

∀z .wf(G.hist)⇒ loc(G, o)[φ′
fr,H
ft(o,n),H·〈this→v,ft(o,n),m,e〉]

The validity of the premise is

|= ∀u . {H := H · 〈this→ v, u,m, e〉|| fr := u} φ′

which by Def. 7 is

∀z, u .wf(G.hist)⇒ loc(G, o)[φ′
fr,H
u,H·〈this→v,u,m,e〉]

Clearly this is sufficient to ensure validity of the conclusion, since the universal
quantifier on u covers the value given by ft(o, n).

5.2.0.3 Query statement
We prove that the fetch rule preserves validity. The validity of the conclusion is
|= [v := e?; s]φ. Consider now a given G and o, and let φ′ denote [s]φ. According
to Def. 7, the validity can be written as

wf(G.hist)⇒ [[true
o:v:=e?−−−−−→ φ′]]G,o

which by Def. 6 is

∀G′, z .wf(G.hist) ∧ wf(G′.hist) ∧G o:v:=e?−−−−−→ G′ ⇒ loc(G′, o)[φ′]

By the operational semantics of query and assign, we have that G′ is G with msg
and G′.hist = G.hist · msg, where msg denotes 〈o �, loc(G, o)[e], d〉 and such
that the object state G′[o].l is (G[o].l)[v 7→ d] if v ∈ G[o].l, and otherwise G′[o].a
is (G[o].a)[v 7→ d]. Other parts of the object state are unchanged.

Thus loc(G′, o)[φ′] can be reduced to loc(G, o)[φ′ v,Hd,H·〈this�,e,d〉]

since loc(G, o)[〈this�, e, d〉] = msg, and it suffices to prove

∀z .wf(G.hist)⇒ loc(G, o)[φ′
v,H
d,H·〈this�,e,d〉]

The validity of the premise is

|= ∀v′ . {H := H · 〈this�, e, v′〉|| v := v′} (φ′ ∧ ∃w . I(w,H))

which by Def. 7 is

∀z, v′ .wf(G.hist)⇒ loc(G, o)[(φ′ ∧ ∃w . I(w,H)) v,H
v′,H·〈this�,e,v′〉]

Clearly this is sufficient to ensure validity of the conclusion, since the universal
quantifier on v′ covers the value given by d. Note that the invariant is not required
here.



5.2.0.4 Object creation statement
We prove that the new rule preserves validity. The validity of the conclusion is
|= [v := new C(e); s]φ. Consider now a given G and o, and let φ′ denote [s]φ.
According to Def. 7, the validity can be written as

wf(G.hist)⇒ [[true
o:v:=new C(e)−−−−−−−−−→ φ′]]G,o

which by Def. 6 is

∀G′, z .wf(G.hist) ∧ wf(G′.hist) ∧G o:v:=new C(e)−−−−−−−−−→ G′ ⇒ loc(G′, o)[φ′]

By the operational semantics of new and assign, we have that G′ is G with msg
and G′.hist = G.hist · msg, where msg denotes 〈o new−→ ob(C, n), C, loc(G, o)[e]〉
and such that the object state G′[o].l is (G[o].l)[v 7→ ob(C, n)] if v ∈ G[o].l, and
otherwise G′[o].a is (G[o].a)[v 7→ ob(C, n)]. Here n is the counter value of G[C]
(same as in G′[C]). Other parts of the object state are unchanged.

Thus loc(G′, o)[φ′] can be reduced to loc(G, o)[φ′ v,H
ob(C,n),H·〈thisnew−→ob(C,n),C,e〉

]

since loc(G, o)[〈this new−→ ob(C, n), C, e〉] = msg, and it suffices to prove

∀z .wf(G.hist)⇒ loc(G, o)[φ′
v,H
ob(C,n),H·〈thisnew−→ob(C,n),C,e〉]

The validity of the premise is

|= ∀v′ . {H := H · 〈this new−→ v′, C, e〉|| v := v′} φ′

which by Def. 7 is

∀z, v′ .wf(G.hist)⇒ loc(G, o)[φ′
v,H
v′,H·〈thisnew−→v′,C,e〉]

Clearly this is sufficient to ensure validity of the conclusion, since the universal
quantifier on v′ covers the value given by ob(C, n).

5.2.0.5 Proof of Theorem 1. The theorem follows by lemma 3 above and
by proving that if one can prove `C I ′(H) by the class rule, then |=C I ′(H),
letting I ′(H) denote ∃w . I(w,H).

Consider the rule class. We may assume that the premises of the rule are
valid. By definition, the validity of I ′(H) is

∀G, o . initCl −→
∗ G ∧G.hist = H ∧ o ∈ G.obj ∧G[o].class = C ⇒ I ′(H/o)

We first prove that this holds for all C objects o in states G such that G[o].Pr =
empty. With the given operational semantics, Pr is empty for an object o when
o has finished a method, or initC , and it can only start a new method when Pr
is empty. By lemma 1 we only need to consider states with a wellformed history.
We need to show that the invariant I(w,H) holds after the initialization and is



maintained by every methods of class C, considering any interleaved execution
according to the operational semantics. The validity of the second premise gives

∀G, o .wf(G.hist)⇒ [[H = ε
o:initC−−−−→ (wfthis(H)⇒ I(w,H))]]G,o

which by lemma 2 is the same as

∀G, o .wf(G.hist)⇒ [[H = ε
o:initC
⇒ (wfthis(H)⇒ I(w,H))]]G,o

which by definition is

G
o:initC
⇒ G′ ∧ loc(G, o)[H = ε]⇒ loc(G′, o)[wfthis(H)⇒ I(w,H)]

for all states G′ with wellformed histories, and z. This states that the class
invariant I(w,H) holds after the initialization of class C, conditioned by local
well-formedness. The condition on local well-formedness follows from the global
well-formedness wf(G′.hist). The condition loc(G, o)[H = ε] follows by induction
on the length of an execution showing that no object can generate events before
its initial code has started.

Similarly, the validity of the third premise gives that

G
o:bodyC,m

⇒ G′ ∧ loc(G, o)[wfthis(H) ∧ I(w,H)]⇒ loc(G′, o)[wfthis(H)⇒ I(w,H)]

for all states G, G′ with wellformed histories, and all o, z. This states that
the class invariant is maintained by a method m of C under the assumption of
local well-formedness. As before local well-formedness follows from global well-
formedness. Thus I(w,H), and therefore also I ′(H), hold for all C objects o in
reachable states G with empty G[o].Pr.

It remains to show that the invariant also holds in states G where G[o].Pr
is nonempty. By the first premise, we have that I ′ is prefix-closed with respect
to the history. Thus all states in between those where G[o].Pr is empty will also
satisfy I ′. In order to ensure I ′ in case of nonterminating methods (or init), we
must consider loops and other sources of non-termination. For loops it suffices
to let I ′ be required at the beginning of each loop iteration, which we do require
in the while axiom. The other source of nonterminating methods is the query
statement; however, here the proof rule fetch insists that we verify I ′. Thus any
proof of that method (or init) must establish I ′ at his point. By lemma 3 we
have that I ′ is valid. We may conclude that reasoning about classes is sound.

We remark that it would be sufficient to verify I ′ for queries where the caller
of the future equals this as reasoning is local, and independent of the behavior
of other objects. But this would require notation for expressing the caller of
a future (say u.caller, defined by ft(o, n).caller = o) in the specification (and
possibly programming) language. However, the verification cost of having I ′ in
the rule for query and in the axiom for while, is not great since one is obliged to
prove I(w,H) at the end of the body.



5.3 Compositional Reasoning

The class invariant I(w,H) for some class C is a predicate over the fields w,
the local history H, as well as the formal class parameters cp and this, which
are constant (read-only) variables. History invariants IC(H) for instances of C,
expressed as a predicate over the local history, can be derived from the class
invariant by hiding fields, i.e., ∃w . I(w,H).

IC(H) , ∃w . I(w,H)

Notice that the history invariants should be prefix-closed since according to
the definition in Section 4.2 C-local invariant property must be satisfied by all
reachable states. Consequently, ∃w . I(w,H) should be weakened if needed in
order to obtain prefix-closedness. Then we assume from now on that IC(H) is
prefix-closed.

For an instance o of C with actual parameter values e, the object invariant
Io:C(e)(h) is defined by the class invariant applied to the local projection of the
history and instantiating this and the class parameters:

Io:C(e)(h) , IC(h/o)
this,cp
o,e

where IC is a prefix-closed class invariant as above, with hidden internal state
w. We consider a composition rule for a system S of objects o : C(e) together
with dynamically generated objects by S. The history invariant IS(h) for such
a system is then given by combining the history invariants of the composed
objects:

IS(h) , wf(h)
∧

(o:C(e))∈S∪ob(h)

Io:C(e)(h)

where the function ob : Seq[Ev] → Set[Obj× Cls× List[Data]] returns the set
of created objects (each given by its object identity, associated class and class
parameters) in a history:

ob(ε) , {main :Main(ε)}
ob(h · 〈o new−→ o′, C, e〉) , ob(h) ∪ {o′ : C(e)}
ob(h · others) , ob(h)

(where others matches all other events). By choosing S as {main : Main(ε)}
we may reason about a global system by means of I{main:Main(ε)}(h).

The well-formedness property serves as a connection between the local histo-
ries. Note that the system invariant is obtained directly from the history invari-
ants of the composed objects, without any restrictions on the local reasoning,
since the local histories are disjoint. This ensures compositional reasoning. The
composition rule is similar to [18], which also considers dynamically created
objects.



5.4 Soundness Proof of Compositional Reasoning

The proof rule for composition is:

composition
`C IC(h), for each C in Cl

Cl ` wf(h)
∧

(o:C(e))∈ob(h)
Io:C(e)(h)

Note that `C IC(h) is trivial for IC(h) , true, thus one may provide invariants
for a subset of the classes and using true as default invariant for the rest.

Theorem 2. The object composition rule is sound.

5.4.0.1 Proof. We show that the composition rule preserves soundness. For
each class C we may then assume |=C IC(h) which by definition is

∀G, o . initCl −→
∗ G ∧G.hist = h ∧ o ∈ G.obj ∧G[o].class = C ⇒ Io:C(e)(h)

Next we prove |= Io:C(e)(h) for all C-objects in h, i.e.,

∀G . initCl −→
∗ G ∧G.hist = h⇒

∧
(o:C(e))∈obC(h)

Io:C(e)(h)

letting obC(h) denote the set of all C-objects in h. This reduces to proving that
each C-object in G.hist is found in G.obj. This can be proved by induction on
the length of an execution. Finally by Lemma 1 we have |= wf(h); and since
conjunction commutes with validity we have |= wf(h)

∧
(o:C(e))∈ob(h)

Io:C(e)(h).

5.5 Example

In this example we consider object systems based on the classes found in List-
ing 1.1 and 1.2. In order to prove that MapReduce really does output the cor-
rect number of occurrences of each word in the collection of documents, each
class should guarantee the corresponding functional correctness. For example,
the method invokeMap does take a file and emit a list of pairs such that each
word in the file is associated with a counting number “1”. Moreover, we need
to specify class invariants which capture the concurrent interaction between the
Worker objects and the MapReduce object. For instance, the Reduce phase han-
dled by the method mapReduce will start only after the Map phase has been
completed. In this paper the functional correctness is given by assumption and
we focus on the compositional proof based on histories such that we can derived
the system property mentioned above.

Assume that the global system consists of the objects w1 : Worker , w2 :
Worker , w3 : Worker , mr : MapReduce(wp), and m : Main(mr), where the only
visible activity of m is that it invokes mapReduce method on the object mr. The
semantics may lead to several global histories for this system, depending on the



interleaving of the different object activities. For convenience, below we abbrevi-
ate the method names mapReduce to mR, invokeMap to ivM, and invokeReduce
to ivR. One global history h caused by a call to mR on mr from m is as follows:

[〈m→ mr, u1,mR, e1〉, 〈m� mr, u1,mR, e1〉,
〈mr → w1, u2, ivM, e2〉, 〈mr → w2, u3, ivM, e3〉,
〈mr � w2, u3, ivM, e3〉, 〈mr � w1, u2, ivM, e2〉,
〈← w1, u2, ivM, e2〉, 〈← w2, u3, ivM, e3〉, 〈mr �, u2, e2〉, 〈mr �, u3, e3〉,
〈mr → w2, u4, ivR, e4〉, 〈mr � w2, u4, ivR, e4〉, 〈mr → w1, u5, ivR, e5〉,
〈mr → w3, u6, ivR, e6〉, 〈mr � w3, u6, ivR, e6〉, 〈← w2, u4, ivR, e4〉,
〈← w3, u6, ivR, e6〉, 〈mr � w1, u5, ivR, e5〉, 〈← w1, u5, ivR, e5〉,
〈mr �, u4, e4〉, 〈mr �, u6, e6〉, 〈mr �, u5, e5〉, 〈← mr, u1,mR, e1〉]

It follows that the Reduce phase will starts only after the Map phase has been
completed. In addition, none of the requests sent out to the workers is uncom-
pleted when the call to mR on mr is finished. We may derive these properties
within the proof system from the following class invariants:

IWorker (H) , H 6 [〈c� this, u1, ivM, e1〉, 〈← this, u1, ivM, e1〉|
〈c� this, u2, ivR, e2〉, 〈← this, u2, ivR, e2〉 .some c, u1, u2, e1, e1, e2, e2]∗

IMapReduce(wp)(H) , H 6 [〈c� this, d,mR, e1〉, 〈this→ _,_, ivM,_〉a,
〈this�,_,_〉a, 〈this→ _,_, ivR,_〉b, 〈this�,_,_〉b,

〈← this, d,mR, e1〉 .some c, d]∗

Here we use regular expression notation to express patterns over the history,
letting | denote choice, letting superscript b specify b repetitions of a pattern,
and h 6 p∗ express that h is a prefix of a repeated pattern p where additional
variables occurring in p (after some) may change for each repetition. Notice that
the class invariant of MapReduce ensures that for each of the invocation event
in 〈this→ _,_, ivM,_〉a, there is a corresponding fetch event in 〈this�,_,_〉a
by the same future identity. Same approach is applied to 〈this → _,_, ivR,_〉b
and 〈this�,_,_〉b. These class invariants are straightforwardly verified in the
above proof system.

The corresponding object invariants for w1 : Worker , w2 : Worker , w3 :
Worker and mr : MapReduce(wp) are obtained by substituting actual values for
this and class parameters:

Iwi:Worker(h) , h/wi 6 [〈_� wi, u1, ivM, e1〉, 〈← wi, u1, ivM, e1〉|
〈_� wi, u2, ivR, e2〉, 〈← wi, u2, ivR, e2〉 .some u1, u2, e1, e1, e2, e2]∗

Imr :MapReduce(wp)(h) , h/mr 6 [〈_� mr, d,mR, e1〉, 〈mr → _,_, ivM,_〉a,
〈mr �,_,_〉a, 〈mr → _,_, ivR,_〉b, 〈mr �,_,_〉b,

〈← mr, d,mR, e1〉 .some d]∗

The global invariant of a system S with the objects, w1 : Worker , w2 : Worker ,
w3 : Worker , mr : MapReduce(wp) and m : Main(mr) is then

IS(h) , wf(h) ∧ Im:Main(mr)(h) ∧ Imr :MapReduce(wp)(h)
∧

i∈{1,2,3}
Iwi :Worker (h)



where well-formedness allows us to relate the different object histories. From this
global invariant we may derive that the Reduce phase will starts only after the
Map phase has been completed. Besides, none of the requests sent out to the
workers is uncompleted when the call to mR on mr is finished.

As a special case, we consider a system where the instance ofMain invokesmR
only once, i.e. Im:Main(mr)(h) , h/m 6 [〈m → mr, u,mR, e〉 .some u]. History
well-formedness then ensures that the cycles defined by the remaining invariants
are repeated at most once, and that variables in the patterns are connected, i.e.,
the future u in Im:Main(mr) is identical to the future d in Imr:MapReduce(wp). The
global invariant then reduces to the following:

IS(h) , wf(h) ∧ h/m 6 [〈m→ mr, u,mR, e〉] ∧
h/w1 6 [〈mr � w1, u1, ivM, e1〉, 〈← w1, u1, ivM, e1〉|
〈mr � w1, u2, ivR, e2〉, 〈← w1, u2, ivR, e2〉 .some u1, u2, e1, e1, e2, e2]∗ ∧
h/w2 6 [〈mr � w2, u3, ivM, e3〉, 〈← w2, u3, ivM, e3〉|
〈mr � w2, u4, ivR, e4〉, 〈← w2, u4, ivR, e4〉 .some u3, u4, e3, e3, e4, e4]∗ ∧
h/w3 6 [〈mr � w3, u5, ivM, e5〉, 〈← w3, u5, ivM, e5〉|
〈mr � w3, u6, ivR, e6〉, 〈← w3, u6, ivR, e6〉 .some u5, u6, e5, e5, e6, e6]∗ ∧
h/mr 6 [〈m� mr, u,mR, e〉, 〈mr → _,_, ivM,_〉a,
〈mr �,_,_〉a, 〈mr → _,_, ivR,_〉b, 〈mr �,_,_〉b,
〈← mr, u,mR, e〉]

This invariant allows a number of global histories, depending on the interleaving
of the activities in the different objects. The history h presented first in this
section satisfies the invariant, and represents one particular interleaving.

Based on the assumption of functional correctness of each class, we now can
derive that the MapReduce object does output the correct number of occurrences
of each word in the collection of documents.

6 Related Work

Models for asynchronous communication without futures have been explored
for process calculi with buffered channels [25], for agents with message-based
communication [2], for method-based communication [?], and in particular for
Java [22]. Behavioral reasoning about distributed and object-oriented systems
is challenging, due to the combination of concurrency, compositionality, and ob-
ject orientation. Moreover, the gap in reasoning complexity between sequential
and distributed, object-oriented systems makes tool-based verification difficult
in practice. A survey of these challenges can be found in [4]. Soundness of the
parallel composition rules for shared-variable concurrency and synchronous mes-
sage passing are proved in [16]. A Hoare Logic for concurrent processes (objects)
is presented in [14]. The Hoare Logic is compositional, and soundness and rel-
ative completeness are proven. In contrast to our work, communication is by
message passing rather than by futures, and the objects communicate through
FIFO channels.



The present approach follows the line of work based on communication his-
tories to model object communication events in a distributed setting [8, 10, 25].
Objects are concurrent and interact solely by method calls and futures, and
remote access to object fields are forbidden. By creating unique references for
method calls, the label construct of Creol [29] resembles futures, as callers may
postpone reading result values. Verification systems capturing Creol labels can
be found in [4, 21]. However, a label reference is local to the caller, and cannot
be shared with other objects. A reasoning system for futures has been presented
in [15], using a combination of global and local invariants. Futures are treated
as visible objects rather than reflected by events in histories. In contrast to our
work, global reasoning is obtained by means of global invariants, and not by
compositional rules. Thus the environment of a class must be known at verifica-
tion time. SCOOP [?,?] and Cameo [?] are two concurrency models for Eiffel [?]
based on the concepts of design-by-contract. Compared with our work, these two
approaches are not using histories.

A reasoning system for asynchronous methods in ABS without futures is pre-
sented in [18]. We here define a five-event semantics reflected actions on shared
futures and object creation. The semantics gives a clean separation of the activ-
ities of the different objects, which leads to disjointness of local histories. Thus,
object behavior can be specified in terms of the observable interaction of the
current object only. This is essential for obtaining a simple reasoning system.
In related approaches, e.g., [4, 21], events are visible to more than one object.
The local histories must then be updated with the activity of other objects, re-
sulting in more complex reasoning systems. Based on the five-event semantics,
we present a compositional reasoning system for distributed, concurrent objects
with asynchronous method calls. A class invariant defines a relation between the
inner state and the observable communication of instances, and can be verified
independently for each class. The class invariant can be instantiated for each
object of the class, resulting in a history invariant over the observable behavior
of the object. Compositional reasoning is ensured as history invariants may be
combined to form global system specifications. The composition rule is similar
to [18], which is inspired by previous approaches [33,34]. This work is an exten-
sion of our former paper [20]. Here we analyze a larger case study using futures,
extend the language and semantics, including object creation, branching and
looping constructs. Also, soundness proofs for class reasoning and in particular
object composition are provided.

7 Conclusion

In this paper we have considered concurrent objects communicating by means
of futures and a notion of non-blocking methods calls. This concurrency model
is different from that found in mainstream languages such as Java. We find it
interesting since it is based on high-level synchronization primitives, rather than
locks and signaling, and it allows the caller to control the waiting time by means
of different ways of calling a method, suspending, blocking, or non-blocking. In



addition it directly supports distribution, autonomy, message-based communica-
tion, and object-orientation. Thus the class mechanism is devoted to program-
ming of concurrent and autonomous objects, whereas internal data structures
are programmed by the use of data types. This concurrency model has recently
been the theme of several EU projects, including Credo, Hats, Envisage, and Up-
scale. Tool support for this concurrency model have been investigated in several
ways, including compilation of the ABS language to more low-level languages
including Java, Erlang, and Scala. The concurrency model gives rise to a clean,
compositional semantics. Compositionality is a key property for scalability, al-
lowing program units to be developed, tested, and understood, independently.
The concurrency model may be relevant for Java, extended with asynchronous
methods, and restricted so that remote access, notification, and explicit locking,
are avoided.

The focus of this paper is program reasoning, and the concurrency model is
chosen due to advantages with respect to program reasoning, while supporting
true concurrency of objects. Compositional reasoning is facilitated by expressing
object properties in terms of observable interaction between the object and its
environment, recorded on communication histories. Object generation is reflected
in the history by means of object creation events. A method call cycle with mul-
tiple future readings is reflected by four kinds of events, giving rise to disjoint
communication alphabets for different objects. Specifications in terms of history
invariants may then be derived independently for each object and composed
in order to derive properties for concurrent object systems. At the class level,
invariants define relationships between class attributes and the observable com-
munication of class instances. The presented reasoning system is proved sound
with respect to the given operational semantics. This system is easy to apply
in the sense that class reasoning is similar to standard sequential reasoning, but
with the addition of effects on the local history for statements involving futures.
In particular, reasoning inside classes is not affected by the complexity of con-
currency and synchronization; and one may express assumptions about inputs
from the environment when convenient.

The main result of this paper is soundness of the rule for composition ob-
jects running in parallel. A minor result is that sound composition requires the
query rule to have a condition related to the invariant, not found in earlier pa-
pers. We consider here global history invariants that are continuously satisfied,
in the sense that any reachable global configuration of an object system must
satisfy the invariant. The condition on the query rule would not be needed with a
weaker notion of global history invariants stating that the global invariant holds
as long as all objects are live (not blocked). Verification-wise the condition on
the query rule, is somewhat similar to a query statement releasing the processor,
as for instance the await future statement of the ABS language. Semantically,
a blocking query has the advantage that it does not change the state, whereas
a non-blocking query gives a state satisfying the local invariant. Thus the com-
bination of the query and processor release mechanisms will not add significant
verification complexity, and is also attractive from a programming perspective.



In order to focus on the future mechanism, this paper considers a core lan-
guage with shared futures. The report version [19] considers a richer language,
including constructs for inter-object process control and processor release. The
verification system is suitable for an implementation within the KeY framework.
With support for (semi-)automatic verification, such an implementation will be
valuable when developing larger case studies. It is also natural to investigate how
our reasoning system would benefit from extending it with rely/guarantee style
reasoning [16]. Assumptions about callee behavior may, for instance, be used to
express properties of return values. More sophisticated techniques may also be
used, e.g., [13, 28] adapts rely/guarantee style reasoning to history invariants.
However, such techniques require more complex composition rules.
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