
Confidentiality of Interactions in Concurrent
Object-Oriented Systems?

Olaf Owe1 and Toktam Ramezanifarkhani1

Department of Informatics, University of Oslo, Norway
{olaf,toktamr}@ifi.uio.no

Abstract. We consider a general concurrency model for distributed
systems, based on concurrent objects communicating by asynchronous
methods. This model is suitable for modeling of service-oriented sys-
tems, and gives rise to efficient interaction, avoiding active waiting and
low-level synchronization primitives such as explicit signaling lock opera-
tions. This concurrency model has a modular semantics and allows us to
focus on information flow at a high level of abstraction. Our approach is
formalized by a high-level language with a secrecy-type system ensuring
noninterference in object interactions. We prove soundness based on an
operational semantics incorporating runtime secrecy levels.

Keywords. Active Objects; Asynchronous Methods; Secrecy; Privacy;
Noninterference; Information Flow; Distributed Systems; Static Analysis;

1 Introduction

Programming languages can provide fine-grained control for security issues
because they allow accurate and flexible security information analysis of
program components [8]. In particular, to specify and enforce information-
flow policies, the effectiveness of language-based techniques has been es-
tablished. Secure information flows are often expressed by semantic models
of program execution in the form of a noninterference policy. Noninter-
ference stipulates that manipulation and modification of confidential data
should be allowed in programs, as long as their visible outputs do not
improperly reveal information about the confidential data. Attackers are
assumed to be able to view “low” information. The usual method for show-
ing that noninterference holds is to demonstrate that the attacker cannot
observe any difference between two executions that differ only in their con-
fidential input [7]. However, attackers may also see intermediate outputs
[1] and observe the progress of the program, e.g., absence or presence of
the next observable value, which leads to the concept of progress-sensitive
noninterference [1].
? Work supported by the IoTSec and DiversIoT projects, the Norw. Research Council.

In this paper, we are interested in service-oriented and object-oriented
systems at a high level of abstraction, and consider the setting of dis-
tributed concurrent objects communicating by asynchronous methods calls.
We focus on efficient interaction, including non-blocking calls and high-
level mechanisms for process control, suitable for modern service-oriented
systems. Our notion of noninterference reflects the non-deterministic na-
ture of interacting concurrent objects. Fields are encapsulated by objects
and remote access is forbidden. Thus, fields are non-observable, and the
(typically) illegal flows in the sense of assignment of confidential values to
non-confidential variables inside objects are not critical.

To formalize our approach we introduce a high-level imperative lan-
guage based on the chosen concurrency model. This language is derived
from the object-oriented language Creol [12]. We define an extension of
Creol called SeCreol, adding awareness of secrecy levels as well as secrecy
type information. We define an operational semantics, and prove that our
secrecy-type system is sound with respect to the operational semantics,
ensuring that every well-typed program of our language satisfies the pro-
posed non-interference property.

2 Object-Oriented Distributed Systems in SeCreol

We consider concurrent, distributed objects where each object has its own
execution thread. An object does not have access to the internal state vari-
ables of other objects. Communication is only by method calls, allowing
asynchronous and synchronous communication, implemented by means of
asynchronous message passing. In order to avoid undesirable waiting in the
distributed setting, we allow mechanisms for non-blocking method calls.
By means of a suspension mechanism, unfinished method invocations in
an object may be placed on the object’s process queue, for instance while
waiting for a response from another object. The process will be enabled
when then object receives the response. This allows flexible interleaving
of incoming calls and (enabled) suspended processes. Internally in an ob-
ject, there is at most one process executing at any time. Objects reflect
concurrent system components, while data structure inside an object is
defined by data types using functional programming.

A SeCreol program consists of a number of interfaces and classes (with
the last class being the “main” class). An interface may have a number of
super-interfaces and method declarations. A class C takes a list of class
parameters cp, defines fields w, and has an optional initialization part
followed by method definitions. Class parameters cp are like fields apart

from being initialized through the new statement. Class parameters, the
implicit class parameter this, and the implicit method parameter caller
are read-only. A class may implement a number of interfaces, and for each
method of an interface it is required that the class implements the method
such that the type and secrecy level information is respected. Additional
methods may be defined in a class as well, but these may not be called
from outside the class. All variables and parameters are typed by data
types or interfaces. Classes are not allowed as types, which means that
an object can only be seen through an interface, and therefore, remote
access to fields nor methods that are not exported through an interface is
not allowed. Thus shared variable concurrency is avoided. With respect to
security analysis, fields are then not observable, and observable behavior
is limited to interactions by means of method-oriented communication.

Expressions e and functions f are side-effect free, and e is a (possibly
empty) expression list, comma-separated. Statements include standard
constructs for assignment, skip, if, while, object generation, and sequential
composition. The simple call statement e!m(e) is like message passing; a
message is sent to the object expressed by e (the callee) indicating that it
should execute method m (when the callee is free to do this) with a list of
actual parameters e. Thus the current object is not blocked, and will not
wait for the return value. If the return value is desired by the calling object,
it may use the blocking call statement v := e.m(e) or the non-blocking call
statement await v := e.m(e). The latter call statement forces the caller
object to suspend the current process, allowing it to continue with any
enabled suspended process in its process queue or handle incoming calls.
Similarly, the conditional await statement await e suspends, placing the
current process on the process queue. This process is enabled when the
Boolean condition e is satisfied. The considered core language allows high-
level and yet efficient method-based interaction, supporting both passive
and active waiting. The operational semantics of SeCreol is given in Sec. 4.

The language is strongly typed, and a typing system can be given in the
style of [13]. A variable is typed either by an interface or by a data type,
called object variable or data variable, respectively. The runtime value of
an object variable is an object identity (or null), and that of a data variable
is a data value. Data variables are passed by value and object variables
are passed by reference (i.e., the object identity is passed by value). Note
that all object expressions are typed by an interface, except this, which is
typed by the enclosing class. In a well-typed program, we may assume that
each call is annotated by the interface/class of the callee, as in o.mI(. . .)
where I contains a declaration of m.

Secrecy Levels. We enrich the typing system with secrecy levels.
Secrecy levels range over L of basic secrecy descriptions with ordering v,
such that (L, v) is a lattice, i.e., a partially ordered set with meet (u), join
(t), a top element > and bottom element ⊥. Higher in the lattice means
more secure. A latice may be indexed by object identities for controlling
access rights. This would be essential at runtime for controlling object
secrecy; however, in our static analysis we will not use levels indexed by
identities, since there is limited static knowledge about object identities.

In a program, all declarations of fields, formal parameters, and return
values are given a secrecy level, with level Low as default (if none is speci-
fied). Local variables do not have a declared secrecy level; their level starts
as Low but may change after each statement. At runtime, objects are as-
signed a secrecy level that protects against unauthorized changes. Such a
protected part is typical in policy enforcement research [6]. The statically
assigned level of a formal data parameter represents the maximal level
of any actual parameter. The declared secrecy level of an object variable
expresses the secrecy of the object identity, which is typically low, reflect-
ing that object identities (as such) are considered non-secret, whereas the
runtime secrecy level of an object gives more detailed information, for
instance about the access rights of the object.

The static analysis is class-based, and therefore the analysis is based on
the (statically) declared levels, and not the runtime object levels. However,
the language allows specification of restrictions on the secrecy level of a
new object (as in x:=new C():Low) which determines the initial runtime
secrecy level of the generated object. At runtime an object generated by
the statement x:=new C():l will get the level l u lthis where lthis is the level
of the parent object. Note that l u lthis v lthis, ensuring that the secrecy
level of the generated object will not exceed that of the parent object. As
an object encapsulates local data and fields, these are not accessible from
outside of the object, and we do not need static control of write access to
fields of an object. In a program, the runtime secrecy level of an object
can be tested using the v operation.

In the static analysis, we consider all possibilities for levels that can
be assigned at runtime. This allows us to detect a maximal secrecy level
for each program variables at a given point in a program (see Sec. 3).

3 Secrecy-Type System

Our analysis is done class-wise, which is possible since remote access to
fields is forbidden and since all object interaction is done by methods

declared in an interface. This means that limitations on information flow
between high and low variables (such as vHigh := vLow and vHigh := vLow)
are not needed. However, we rely on level information about fields before
and after suspension, maintained in a way similar to a class invariant. The
secrecy analysis of a class only depends on that class declaration, related
interfaces, and the class parameter declaration of instantiated classes.

We assume a well-typed program and assume each method call e.m(. . .)
is augmented by annotating the method name m by the interface of the
callee e (as in e.mI(. . .)), or the enclosing class when e is this. The secrecy-
type system for classes and methods are shown in Fig. 1. The confiden-
tiality of a class definition Cl is formalized by judgments of the form

` Cl ok

expressing that the class definition obeys the confidentiality rules. And
the confidentiality of a method definition M is formalized by judgments
of the form

C `M ok

where C is the enclosing class. The confidentiality of a statement s is
formulated by considering judgments of the form

C ` [Γ, pc] s [Γ ′, pc′]

where Γ is a mapping binding variable names to confidentiality levels for
a given program point, and pc is the confidentiality level of the current
program point. As Γ and pc depends on the program point, we let the
“pre-binding” [Γ, pc] denote the bindings in the pre-state of s and the
“post-binding” [Γ ′, pc′] those in the post-state of s. Moreover, for a class
C we let the mapping ΓC represent the declared secrecy levels of fields
and class parameters, as given in the class definition, i.e., if the secrecy
level of a field w is declared as l, the binding w 7→ l is included in ΓC . The
notation Λ[I,m, i] denotes the level of the ith parameter of the method
as declared in interface I, and similarly for classes. For a class C, we let
C also denote the class constructor (initialization code). In contrast, Γ
expresses confidentiality information depending on a particular program
point. Since Γ -levels of class fields can increase and decrease, the type rules
insist that at the end of each method (and at each suspension point) their
resulting levels should not exceed the declared secrecy levels. This allows
us to assume the declared levels at method start and after suspension.

Map notation. A finite mapping M is given by a set of bindings
zi 7→ valuei for a finite set of disjoint identifiers zi, the domain. The
empty map is denoted ∅. Map look-up is written M [z]. A map update,
written M [z 7→ d], is the map M updated by binding z to d, regardless of

(S-class)
C ` Mi ok, for each Mi ∈M

` class C(cp : U){w : U
′
; M} ok

(S-method)
C ` [ΓC [y 7→ L(U), x 7→ Low], Low] s [Γ, pc]
C ` [Γ, pc] e :: l′ l′ v l Γ [w] v ΓC [w]

C ` T : l m(y : U){var x : T ; s;return e} ok

Fig. 1. SeCreol confidentiality type system for classes and methods where ΓC denotes
the declared secrecy levels for class parameters and fields, in class C, and Γ expresses
confidentiality information at a particular program point.

any previous bindings of z. Similarly M [S] denotes M updated with a set
S of (disjoint) bindings. And the map composition M +M ′ is the map M
overwritten by M ′ (on the common domain).

According to Rule S-CLASS in Fig. 1, confidentiality of each class is
satisfied, or simply is ok, if the confidentiality of each method is satisfied.
The confidentiality of a method (see Rule S-METHOD) is satisfied if its
body satisfies confidentiality, starting with the declared level bindings (for
fields and class parameters, method parameters, and local variables) and
with Low as starting pc level, and resulting in some binding [Γ, pc] such
that Γ respects the declared field and class parameter bindings levels (i.e.,
Γ [z] v ΓC [z] for each field/class-parameter z) and such that the returned
value respects the declared output level of the method. As stated before,
we check Γ [z] v ΓC [z] because the secrecy level of program variables is
allowed to be changed in different program points.

The SeCreol secrecy-type system for expressions and statements is
shown in Fig. 2 and 3, respectively. These figures present typing rules de-
scribing which secrecy type is assigned to each occurrence of an expression
and program variable. The confidentiality of expressions and right-hand-
sides rhs, given in Fig. 2, are formulated by judgments of the form

C ` [Γ, pc] rhs :: l

where l is the resulting confidentiality level of rhs. The rules check that
each occurrence of an actual parameter (or return value) respects the
declared level of the corresponding formal parameter (or method return
level), and that fields and class parameters respect the corresponding de-
clared levels at suspension points and at method returns. In our formal-
ization this is checked by premises in the rules; thus if these premises
cannot be derived, the program will not satisfy the secrecy rules. Note
that each statement may adjust Γ , but only if and while statements
may affect pc. Thus the level of variables and pc may differ at different
program points, which for example means that a call that is acceptable
at one program point, might be unacceptable at another point.

Rule S-EXP states that the confidentiality of an expression e is achieved
by Γ [e]t pc, where pc represents the context level of the current program

(S-Exp)
C ` [Γ, pc] e :: Γ [e] t pc

(S-New)
C ` [Γ, pc] ei :: li li v ΓC′ [cpi]

C ` [Γ, pc] (new C′(e) : l) :: pc

(S-Call)
C ` [Γ, pc] ei :: li li v Λ[I,m, i]

C ` [Γ, pc] e.mI(e) :: Λ[I,m] t pc

(S-SelfCall)
C ` [Γ, pc] ei :: li li v Λ[C,m, i]

C ` [Γ, pc] this.m(e) :: Λ[C,m] t pc

Fig. 2. SeCreol secure-type system for expressions and right-hand-sides.

branch. Thus a low level expression occurring in a program branch with
level pc, gets pc as its level, since it may reveal context information. We
define Γ [e] as follows: For a constant c (including null, this, void, and caller)
Γ [c] is Low (i.e., ⊥), Γ [e v e′] is High (i.e., >), and for other kinds of
expressions (including function applications) Γ [e] is defined as tv∈e Γ [v],
where v ranges over the variables textually occurring in e, and Γ [v] is
its level recorded in Γ . (For simplicity, we here ignore so-called sanitizer
functions, i.e., special functions resulting in a lower level than an input.)

Moreover, object identities are not confidential, thus object variables
are typically declared with a Low level. However, the level of such variables
in Γ is affected by the branch level pc as other program variables. Thus
the resulting level of object creation is pc as object identities as such are
considered Low. For the right-hand-side of a call or new construct, corre-
sponding to the other rules in Fig. 2, each actual parameter is required to
have a level not exceeding the declared level of the corresponding formal
parameter. The resulting level of the call’s right-hand-side is the declared
return level of the method, joined with the current context level pc. We
observe that C ` [Γ, pc] rhs :: l ⇒ pc v l, which means the rhs level is
always at least as high as pc. This can be easily proved by looking at each
case of a right-hand-side rhs in the rules.

According to the secure-type system for statements in Fig. 3, a sim-
ple call does not change Γ nor pc, but the actual parameter levels must
respect the declared levels of the corresponding formal parameters (as
above). And we have C ` [Γ, pc] skip [Γ, pc]. For an assignment, object
creation statement, or call, v := rhs, with level l for rhs, the level of
v in Γ is changed to l, which could imply a downgrade or an upgrade
(or no change) of level. The pc is not modified since such a statement is
considered efficiently terminating without any branching.

For an await statement we must ensure that the declared levels of
all fields and class parameters are respected, since the suspension may
cause other processes to continue, for which we assume these declared
levels. Levels of local variables will remain after an await statement

(S-simple-call)
C ` [Γ, pc] e.mI(e) :: l

C ` [Γ, pc] e!mI(e) [Γ, pc]

(S-rhs)
C ` [Γ, pc] rhs :: l

C ` [Γ, pc] v := rhs [Γ [v 7→ l], pc]

(S-composition)
C ` [Γ, pc] s1 [Γ1, pc1]
C ` [Γ1, pc1] s2 [Γ2, pc2]

C ` [Γ, pc] s1; s2 [Γ2, pc2]

(S-await)
C ` [Γ, pc] e :: Low
Γ [w] v ΓC [w]

C ` [Γ, pc] await e [Γ + ΓC , pc]

(S-await-call)
C ` [Γ, pc] rhs :: l
Γ [w] v ΓC [w]

C ` [Γ, pc] await v := rhs [(Γ + ΓC)[v 7→ l], pc]

(S-If)
C ` [Γ, pc] e :: l

C ` [Γ, l] s1 [Γ1, pc1]
C ` [Γ, l] s2 [Γ2, pc2]

C ` [Γ, pc] if ethen s1 else s2 fi [Γ1tΓ2, pc]

(S-While)
C ` [Γi, pci] e :: li
C ` [Γi, li] s [Γ

′
i , pc

′
i]

Γi+1 = Γi t Γ ′
i , pci+1 = pci t pc′i

C ` [Γ1, pc1] while edo sod [FIXi(Γi), pc1]

i = 1, 2, . . .

Fig. 3. SeCreol secure-type system for statements.

since local variables are not affected by other processes. We therefore use
map composition (+) in the post-state of an await to overwrite the levels
of fields and class parameters by the declared levels (ΓC). For simplicity
we consider only Low await conditions. In the case of a suspending call,
the effect of the assignment part is added after the map composition since
this assignment happens after suspension.

Rule S-IF lifts the pc level of each branch by the level of the test. This
will make all expressions occurring in both branches at least as high as
the if-test. Thereby implicit leakage is avoided. Since the static analysis
does not know which branch is taken at runtime, the resulting value of
Γ for each variable is calculated as the highest level of each branch. An
if statement without an else-branch is like an if statement with skip in
the else-branch. The treatment of while is similar to an if statement
without an else-branch, except that the static analysis cannot predict how
many times the branch is iterated. Each iteration may lift the levels in Γ
or pc. However, a loop will have a finite number of program variables and
since there is a finite number of static levels, there is a minimal fixpoint
reachable in a finite number of approximations (typically i equal to one
or two). Rule S-while reflects this fixpoint calculation.

The secrecy typing ensures that there is no flow from high values to low
values, and that values evaluated in an if-branch with a high test are high
(since they may depend on the test), and similarly for values evaluated
inside a while-loop with a high test. Thus the values of low variables in any
program state do not depend on high inputs. Furthermore, this ensures
that for each call (and return) generated by o the values of parameters

interface Passw{
Nat:Low passw(Nat:High x)// store password, return a ref number
Nat:High check(Nat:Low x)// check validity of password given ref

}
class PASSW implements Passw{ List[Nat]:High p:=empty; Nat n:=0;
Nat passw(Nat:High x){p:=append(p,x); n:=n+1; return n}// return index
Nat:High check(Nat x){Nat:High c:=0;
if p v caller and 1≤x≤n then c:=p[x]fi;
return c}//for High callers the value in p is returned (if any)

}
class TEST(Passw o){ Nat:High xh; Nat:Low xl;
Nat:High test(Nat x){ xh 7→ High . Note: all others are Low

xl := x; xl 7→ Low
x := o.check(x); x 7→ High
xh := xl; xh 7→ Low . Note: suspension is ok even with x high
await true; xh 7→ High, x 7→ High . Note: all others are Low
xh := o.passw(x); xh 7→ Low . Note: the call is ok with x high
await x:=o.check(xh); x 7→ High . Note: the call is ok since xh now is Low
return x Note: return is ok with x High, since xh v High ∧ xl v Low.

}}

Fig. 4. An example showing a password protection class and a test program. In the
latter, level changes in fields and local variables are indicated to the right in each line.

declared as low do not depend on high inputs. We provide a proof of this
in Sec. 5, based on a semantics that includes runtime secrecy levels.

Example. A small example is given in Fig. 4 to illustrate possible
changes in the levels of fields (xh and xl) and local variables (x). The im-
plementation of Passw uses an if-test to check p v caller before returning a
high value in check. A test class with non-trivial secrecy typing is added.
Here, level changes are written to the right of each line, not repeating
unchanged information. The program satisfies the rules for confidential-
ity, i.e., the program does not leak information in its explicit output and
respects field levels at return/await statements. Note that the lowering of
xh was needed to make the check call allowed, that the higher level of the
local variable x was maintained over the await (since x is local), that the
higher level of x was acceptable in the passw call, and that the high level
of x is allowed at the return point (after which x is deallocated).

4 Operational Semantics

The operational semantics is given in Fig. 5. We explain the main ele-
ments, while a more detailed explanation is given in the extended version

assign : o : ob(δ, v := e; s)
−→ o : ob(δ[v := e], s)

if-true : o : ob(δ,if b then s1 else s2 fi; s)
−→ o : ob(δ, pcs := push(pcs, l); s1; pcs := pop(pcs); s)

if δ[b] = truel

if-false : o : ob(δ,if b then s1 else s2 fi; s)
−→ o : ob(δ, pcs := push(pcs, l); s2; pcs := pop(pcs); s)

if δ[b] = falsel

while : o : ob(δ,while b do s1 od; s)
−→ o : ob(δ,if b then s1; while b do s1 od fi; s)

new : o : ob(δ, v := new C(e) : l; s)
−→ o : ob(δ[v := o′, s)

o′ : ob(δC [this 7→ o′, cp 7→ δ[e]], initC)
where o′ = (fresh, o.level u l), for a globally fresh reference fresh

simple call : o : ob(δ, a!m(e); s)
−→ o : ob(δ[nextId := next(nextId)], s)

msg o→ δ[a].m(δ[nextId, e])

call : o : ob(δ, [await] v := a.m(e); s)
−→ o : ob(δ, a!m(e); [await] v := get δ[nextId]; s)

start : msg o′ → o.m(u, c)
o : ob((α|β′), idle)

−→ o : ob((α|(β[caller 7→ o′, callId 7→ u, y 7→ c])), s)
where m is statically bound to (m, y, β, s) in the class of this

return : o : ob(δ,return e)
−→ o : ob(δ, idle)

msg δ[caller]← δ[this].(δ[callId], δ[e])

query : msg o← o′.(u, c)
o : ob(. . . [await] v := get u . . .)

−→ o : ob(. . . v := c . . .)

await : o : ob(δ,await b; s)
−→ o : ob(δ, s)

if δ[b] = truel

continue : o : ob((α|β′), idle)
−→ o : ob((α[PQ 7→ rest])|β), s)

if deq(α[PQ], α) = ((β, s); rest)

suspend : o : ob((α|β), s)
−→ o : ob((α[PQ 7→ enq(α[PQ], (β, s))], ε), idle)

if s starts with await

Fig. 5. Operational rules reflecting small-step semantics of SeCreol with secrecy levels.

[16]. A runtime configuration of a system is a multiset of objects and mes-
sages (using blank-space as the binary multiset constructor). Each rule
in the operational semantics deals with only one object o, and possibly
messages, reflecting that we deal with concurrent distributed systems com-
municating asynchronously. When a subconfiguration C can be rewritten
to a C′, this means that the whole configuration . . . C . . . can be rewritten
to . . . C′ . . ., reflecting interleaving semantics. Each object o is responsible
for executing all method calls to o as well as self-calls. An object has at
most one active process, reflecting a method execution, and a sequence of
suspended processes organized in a process queue PQ. Remote calls and
replies are handled by messages. Objects have the form

o : ob(δ, s)

where o is the object identity, δ is the current object state, and s is a
sequence of statements ending with a return, representing the remaining
part of the active process, or idle when no active process. A message
has the form

msg o→ o′.m(e)

representing a call with o as caller, o′ callee, and e actual parameters, or

msg o← o′.(u, d)

representing a completion event where d is the returned value and u the
identity of the call. The operational rules reflect small-step semantics. For
instance, the rule for skip is given by o : ob(δ,skip; s) −→ o : ob(δ, s),
saying that the execution of skip has no effect on the state δ of the object.
A while loop is handled by expanding while b do s od to if b then s; while
b do s od fi upon execution of the while-statement. The semantics of an
if-statement without an else-part is equivalent to if b then s else skip fi.

The operational semantics uses some additional variables, like PQ for
holding the process queue and nextId for generating unique identities for
calls. These appear as fields in the operational semantics. Furthermore,
this is handled as an implicit class parameter, while callId and caller ap-
pear as implicit method parameters, holding the identity of a call and its
caller, respectively. The operational semantics uses an additional query
statement, [await] get u, for dealing with the termination of call/await
call statements. The query get u is blocking while waiting for the method
response with identity u, and await get u is a suspending query.

The state of an object is given by a twin mapping, written (α|β), where
α is the state of the field variables (including PQ, nextId) and class param-
eters cp (including this), and β is the state of the local variables and formal
parameters (including callId and caller) of the current process. Look-up in

a twin mapping, (α|β)[z], is simply given by (α + β)[z]. The notation
α[z := e] abbreviates α[z 7→ alpha[e]], and the notation (α|β)[v := e] ab-
breviates if v in β then (α |β[v 7→ (α|β)[e]]) else (α[v 7→ (α|β)[e]] |β),
where in is used for testing domain membership.

The process queue PQ is the queue of suspended processes, of form
(β, s)). The operations enq(PQ, p) and deq(PQ,α) are used to add a
process p to the queue, and to select an enabled process (if any) from
the queue, respectively. The latter results in the sequence (p;PQ′) of the
selected enabled process p and the remainder of the queue PQ′ (depending
on the specific scheduling policy), or the empty sequence empty if no
process is enabled. A process (β, s) is enabled if it starts with an enabled
statement. A conditional await is enabled if the condition evaluates to
true (in state α|β), and an await call statement is not enabled unless
reduced by the query rule. All other statements are enabled.

The given language fragment may be extended with constructs for
local (stack-based) method calls, e.g., by using the approach of [12].

Runtime Secrecy Levels.We here explain the secrecy aspects of the
operational semantics. We assume a program that has passed the secrecy
typing, and therefore the operational semantics does not include explicitly
checks for confidentiality errors during reduction. However, we prove that
any secrecy level obtained at runtime is less or equal to the one calculated
by the static secrecy typing. This property, called secrecy soundness, is
formalized in the next section. This guarantees that the static secrecy
level checks will be satisfied at run-time, even when based on the runtime
secrecy levels. And non-interference is then proved.

At runtime the evaluation of an expression e gives a secrecy tag l, in
addition to a (normal) value d. We let the tagged value dl denote this
result, and let c denote tagged values. We let dl.tag be l. If this value is
assigned to a program variable v, the binding v 7→ dl is added to the state.
The state of an object is given by a twin-mapping as above, but the values
of variables are now bound to tagged values. Thus the values appearing
in the extended semantics are all tagged. Each object identifier has the
form of a pair (oid, l) where oid is a normal object identifier and l is the
secrecy level of the object. We refer to the secrecy level of an object o by
the meta-notation o.level, letting (oid, l).level be l. For data values c, we
define c.level by c.tag. The secrecy semantics uses an additional variable
pcs in each method, reflecting the context secrecy level of enclosing if- and
while-branches. (pcs is local since it must be retrieved after suspension.)
And pcs is a stack of levels reflecting the levels of the enclosing if- and
while-branches, such that the top of the stack is the innermost branch.

The evaluation of an expression e in a state δ is denoted δ[e], where
the value is evaluated ignoring tags, and the tag is defined by level(pcs)ti
vi.tag, where tivi.tag is the join of the tags of all variables occurring in e,
and where level(pcs) is the join of all levels in the stack pcs. This assumes
strictness of all functions in the language, i.e., the level of f(c) is simply
tici. The special expression e v e′ is evaluated by δ[e].level v δ[e′].level
and with tag as defined above. (Other kinds of non-strict functions are
for simplicity ignored here.) The runtime secrecy level of a variable v
in an execution state will be less or equal to that of the static level in
a corresponding program point. There are several reasons for this. For
instance, there can be many calls to the same method, some with actual
parameters of less secrecy level than for other calls. And at the start of a
method, the static analysis will assume the declared secrecy level for fields,
whereas at runtime the levels might be less. Similarly, any expression may
have a lower level at runtime since the variables involved might have a
lower level than in the static analysis.

5 Theoretical Results

In order to relate runtime states to those of the static secrecy typing, we
use statement labels. Following [15], each basic statement and each if- and
while-condition in a given program is tagged by a unique statement label
(i.e., statement number) n appearing as a superscript (when needed).

The result of the secrecy analysis can be captured by a mapping SL
(Static Level) such that SL(C, n) gives the binding environment of the
pre-state of statement n in class C. Thus SL(C, n)[v] is the level stati-
cally assigned to variable v in this state by the secrecy typing analysis,
and SL(C, n)[pc] is the level statically assigned to pc in this state. If an
execution reaches a configuration where a C object is about to execute a
basic statement sn, and similarly for another execution, we say that the
two pre-states of n are low equal if the values of all variables v such that
SL(C, n)[v] is Low are equal in the two pre-states.

In the operational semantics, the level information at time t (i.e., the
number of execution steps) in an execution is captured by a function
RT (t) returning the executing object (of form o : ob(δ, s)) such that
RT (t).class is its class, and RT (t).label is the label of the statement to
be executed, and RT (t)[v] is the secrecy level of variable v, i.e., the level of
δ[v]. Similarly, RT (t)[pc] is the level of pc in this state, and RT (o)[pcs] is
the level of the stack pcs given by tipcs[i] where i ranges over all indexes in
the stack. The following theorem ensures that the evaluation of variables

and expressions at runtime gives levels that are less or equal to those of
the static analysis.

Theorem 1 (Soundness). At any time t in an execution where the ac-
tive object RT (t) is of the form o : ob(δ, sn; s) of class C, then

(i) the levels of δ are less or equal to the corresponding ones in SL(C, n),
i.e., δ[v] v SL(C, n)[v] for all program variables v and level(δ[pcs]) v
SL(C, n)[pc].

(ii) if C ` [Γ, pc] e :: l and δ[e] = dl′ for an expression e, then l′ v l.

Proof. We use induction on the time t, and may assume that the con-
clusion holds up to a given time t and must ensure that it holds in the
next state. We first note that (i) implies (ii) because the static level of an
expression e is given by the join of the static levels of all variables in e and
of pc, whereas the runtime level of e is given by the join of the runtime
levels of all variables in e and of level(δ[pcs]). By (i) the latter cannot
exceed the former since the runtime level of each variable v cannot exceed
the static level of v, and since the runtime level of pcs cannot exceed the
static level of pc.

It remains to show that (i) holds in the next state. Consider all basic
statements that modify the state (of the active object). For an assignment
v := e the new runtime level of v is the runtime level of e evaluated in the
current state. This level is less than the static level of e by (ii), thus the
conclusion holds in this case. Similar arguments apply to all assignment-
like statements, such as new and call statements, in which cases the assign-
ment to the implicit and unobservable object variable nextId is unprob-
lematic. The operational rules for skip and return give no state change.
The operational rules for continue and suspend give a twin state where
fields are not changed. In the case of suspend, the local state is empty
(ignoring the PQ which is not a program variable), and in the case of
continue, the local state is reset to an old state, for which we may use the
induction hypothesis. The rules for if and while give a next state (after
evaluating the condition) that is the same as before except that the pcs
level may be raised. We need to show level(δ[pcs]) v SL(C, n)[pc]. This
follows by (ii) since the condition is evaluated in the object state of time
t. The discussion of the rule for await is similar. �

In our context of message-based systems, we define non-interference by:

Definition 1 (Non-interference). Non-interference means that if two
executions reach the pre-state of a basic statement sn with configurations

C1 and C2, respectively, such that C1 =Low C2, then the observable output
resulting from execution of sn on the two configurations, will be the same.

The output of a basic statement s is the message (msg) generated by
the operational rule for s, if any, and otherwise empty. The observable
part of a message is the values of parameters/method results declared as
Low in the method declaration (as detected by the secrecy-type analysis).

Theorem 2 (Non-interference). A program that is secrecy-type correct
will satisfy non-interference.

Proof. We consider all basic statements. The ones generating output
are the call statements and the return statement. The output of a call
statement is given by the rule for simple call, and the observable output
is the values of the parameters of m for which the declared level is Low.
Since this parameter information is static, the sublist of Low parameters
have the same length for two executions. Consider a call statement with
label n of a given class C. Each parameter expression ei of a low parameter
has a static level l, which by Theorem 1 must be less than the runtime level
l′ of the evaluation of RT (t)[ei] for any execution at time t, where RT (t)
has an active object of the given class and with label n. Since the states of
the two executions are low equal, the values of any expression with a low
runtime label must be the same since only low variables are used on the
evaluation (otherwise the runtime label could not be low). Therefore the
value of each such ei must be the same in the two executions. Similarly,
the values of any return expression e evaluated in different pre-states
of the same statement n are equal if the resulting runtime level is low,
provided the two pre-states are low equal. Since static low level implies
runtime low level, the two pre-states give the same observable output. The
above discussion applies also to object identities since the only observable
relation over object identities with low output is equality.

The argument above can be extended to new statements and any ba-
sic statement. It follows that the new state of all variables is low equal
for two executions after a basic statement since each basic statement is
deterministic (apart from generated object identities). Thus we have also
shown that low equality of states is preserved by all basic statements. �

Note that the code if b then o!m1() else o!m2() fi leaks the outcome of the
if-test to object o. To deal with such implicit leakage, one may define a
stronger notion of non-interference involving communication events. This
is studied in [17] defining interaction non-interference and showing that
this can be enforced by static analysis involving communication traces.

6 Related Work

A number of complications arise from the different concurrency and com-
munication models [19,3]. For imperative concurrent programs, the multi-
thread, shared variable, and channel-based paradigms have been studied
[18]. These paradigms give non-trivial privacy challenges. For instance the
channel paradigm gives intricate timing leaks, based on observations of
channel size [18,4]. In our paradigm, an object’s process queue and queue
of incoming calls are encapsulated and are non-observable (as well as their
size). There are several works on static checking of noninterference for ac-
tive objects communicating by asynchronous methods, including [10,11]
and work based on [9], but with different goals, assumptions, and re-
sults ([9] with other forms of noninterference). Kammüller [11] considers
a functional language with futures, with a different treatment of methods.
To preserve confidentiality, we have considered Multilevel Security(MLS)
which is a well-established concept for confidentiality while the goal of
multilateral security in [10] is useful to satisfy complex and very different
sets of policies in distributed computer systems. The multilateral security
of [10] is relevant for our operational semantics. In our setting, instead
of the traditional concept of public and private methods in [11], we use
interfaces to control visibility of methods. Moreover, our approach is not
dependent on the concept of futures. In addition, in [11] remote method
calls are considered side-effect free which guarantees that no information
from the caller side is leaked. Therefore, although secure down-calls are
supported in [11], interaction noninterference is not preserved.

Our paradigm is based on a simple, compositional semantic model,
which gives flexible analysis of program variables, including fields and
communicated values, and of synchronization mechanisms, thereby re-
ducing the amount of false positives. Scheduling-related primitives are in-
cluded in our high-level language; this enables further static analysis than
in [3]. Compared to [3], we consider more high-level concurrency constructs
such as asynchronous calls and suspension mechanisms. A complementary
work on SeCreol [17] focuses on indirect leakage caused by observations
of network traffic, where enforcement of network-level non-interference is
handled by means of static trace analysis. It assumes a similar secrecy typ-
ing system, but without including an operational semantics with secrecy
levels nor a soundness proof of the secrecy typing.

While most of the related work aim at preventing traditional progress-
insensitive non-interference, we are considering progress-sensitive non-
interference, where an attacker can indirectly observe the progress of an

object, caused by e.g. process termination or suspension (assuming termi-
nation proofs of while loops). Another aim of that paper is minimizing the
Trusted Computing Base (TCB) by not trusting the compiler and using
Proof-Carrying Code (PCC). Moreover, [3] and [11] prevent all flows from
secret to public variables, while in our setting this is not necessary. In
addition, for explicit flows, we also consider interaction between objects
such as if secret then call fi for different method calls.

Dynamic checking of runtime access control, which has been done in
the Java virtual machine and the .NET runtime systems, provides useful
guarantee especially in the application of dynamic code involvements like
mobile code. For example, in [2] static permissions are assigned to classes
based on code origin, and when untrusted code calls trusted code, then
the permission is checked using the run-time stack, while our approach is
static. However, we aim at an extension to runtime checks in future work.

7 Conclusion

We have considered a model for concurrent object-oriented systems suit-
able for distributed service-oriented systems. The concurrent objects may
communicate confidential and non-confidential information, restricting
confidential information to method parameters/returns declared as safe
for confidential information. The language is high-level and includes pro-
cess control and suspension, without explicit signaling and locking opera-
tions. Objects are imperative and non-deterministic. We introduce a type
and effect system and prove a noninterference property, as well as sound-
ness of the secrecy typing system. Due to hiding and encapsulation, we
do not impose unnecessary restrictions on information flow inside objects.
The language has a compositional semantics and supports compositional
program reasoning [5]; and the process control mechanisms include primi-
tives typically part of an operating system. This allows class-wise secrecy
analysis that goes beyond what is normally possible by static checking.
The absence of futures simplifies the analysis. As shown in a complimen-
tary work [16], one can deal with implicit leakage caused by network level
observations of observable aspects of communicated messages.

The Creol concurrency model is adopted by the ABS language [14], and
the work here can be extended to ABS by considering object groups, which
impose concurrency restrictions, and futures, which may give rise to im-
plicit information leakage. We have presented a more high-level language
without (explicit) futures and object groups, which simplifies the formal-
ization. We are initiating an implementation based on a Creol interpreter
in Maude. The ABS tool support will be used for an ABS implementation.

References

1. A. Askarov, S. Hunt, A. Sabelfeld, and D. Sands. Termination-insensitive noninter-
ference leaks more than just a bit. In Proc. 13th European Symposium on Research
in Computer Security: Computer Security, ESORICS, pages 333–348. Springer, 2008.

2. A. Banerjee and D. A. Naumann. Stack-based access control and secure informa-
tion flow. Journal of functional programming, 15(02):131–177, 2005.

3. G. Barthe, T. Rezk, A. Russo, and A. Sabelfeld. Security of multithreaded pro-
grams by compilation. In European Symposium on Research in Computer Security,
pages 2–18. Springer, 2007.

4. D. Devriese and F. Piessens. Noninterference through secure multi-execution. In
Security and Privacy (SP), 2010 IEEE Symposium on, pages 109–124. IEEE, 2010.

5. C. C. Din, J. Dovland, E. B. Johnsen, and O. Owe. Observable behavior of dis-
tributed systems: Component reasoning for concurrent objects. Journal of Logic
and Algebraic Programming, 81(3):227–256, 2012.

6. U. Erlingsson. The Inlined Reference Monitor Approach to Security Policy En-
forcement. PhD thesis, Cornell University, Ithaca, NY, USA, 2004. AAI3114521.

7. J. A. Goguen and J. Meseguer. Unwinding and inference control. In IEEE Sym-
posium on Security and Privacy, pages 75–75, 1984.

8. N. Heintze and J. G. Riecke. The SLam calculus: Programming with secrecy and
integrity. In Proc. of POPL ’98, pages 365–377. ACM, 1998.

9. S. J. Hodges and C. B. Jones. Non-interference properties of a concurrent object-
based language: Proofs based on operational semantics. In Object orientation with
parallelism and persistence. Kluwer Academic Publishers, p. 1-22. 1996.

10. F. Kammüller. A Semi-Lattice Model for Multi-Lateral Security. Data Privacy
Management DPM’12, ESORICS. p. 118-132, LNCS vol. 7731, Springer, 2012.

11. F. Kammüller. Confinement for Active Objects. International Journal of Advanced
Computer Science and Applications (IJACSA), 6(2), 2015.

12. E. B. Johnsen and O. Owe. An asynchronous communication model for distributed
concurrent objects. Software and Systems Modeling, 6(1):35–58, Mar. 2007.

13. E. B. Johnsen, O. Owe, and I. C. Yu. Creol: A type-safe object-oriented model
for distributed concurrent systems. Theoretical Computer Science, 365(1–2):23–66,
2006.

14. E. B. Johnsen, R. Hähnle, J. Schäfer, R. Schlatte, M. Steffen. ABS: A Core
Language for Abstract Behavioral Specification. Formal Methods for Components
and Objects (FMCO 2010), LNCS vol. 6957, pages 142-164, Springer, 2010.

15. F. Nielson, H.-R. Nielson, and C. L. Hankin. Principles of Program Analysis.
Springer, 1999.

16. O. Owe and T. Ramezanifarkhani. Static enforcement of confidentiality of in-
teractions in concurrent object-oriented systems. Technical report, Dept. of In-
formatics, Univ. of Oslo, Norway, 2017. (An extended version of this paper.)
http://heim.ifi.uio.no/olaf/Papers/SeCreolReport.pdf

17. T. Ramezanifarkhani, O. Owe, and S. Tokas. A secrecy-preserving language for
distributed and object-oriented systems. submitted, March 2017.

18. A. Sabelfeld and H. Mantel. Static confidentiality enforcement for distributed
programs. In Static Analysis - International Symposium, SAS 2002, volume 2477
of LNCS, pages 376–394. Springer, 2002.

19. A. Sabelfeld and A. C. Myers. Language-based information flow security. IEEE
Journal on Selected Areas in Communications, 21:5–19, Sept. 2003.

