
A Language-Based Approach to Prevent DDoS Attacks
in Distributed Financial Agent Systems

Elahe Fazeldehkordi, Olaf Owe, and Toktam Ramezanifarkhani

Department of Technology Systems / Department of Informatics, University of Oslo, Norway
{elahefa,olaf,toktamr}@ifi.uio.no

Abstract. Denial of Service (DoS) and Distributed DoS (DDoS) attacks, with
even higher severity, are among the major security threats for distributed systems,
and in particular in the financial sector where trust is essential.
In this paper, our aim is to develop an additional layer of defense in distributed
agent systems to combat such threats. We consider a high-level object-oriented
modeling framework for distributed systems, based on the actor model with sup-
port of asynchronous and synchronous method interaction and futures, which are
sophisticated and popular communication mechanisms applied in many systems
today. Our approach uses static detection to identify and prevent potential vul-
nerabilities caused by asynchronous communication including call-based DoS or
DDoS attacks, possibly involving a large number of distributed actors.

Keywords: DoS attacks; DDoS attacks; Active objects; Agent communication;
Asynchronous methods; Static analysis; Static detection; Call-based flooding.

1 Introduction
Today distributed and service-oriented systems form critical parts of infrastructures of
the modern society, including financial services. In the financial sector security and
trust are essential for users of financial services [19]. Security breaches may lead to
significant loss of assets, such as physical or virtual money, including cryptocurrencies
and bitcoins. In addition, successful attacks on services of a financial institution may
damage the trust of customers, which indirectly may hurt the institution [18]. Accord-
ing to [1,12,17], a main threat on financial institutions is Distributed Denial of Service
(DDoS) attacks. Protection against DoS/DDoS attacks is therefore crucial for financial
institutions. Slow website responses caused by targeted attacks, can imply that cus-
tomers cannot access their online banking and trading websites during such attacks.
Both network layer and application layer DDoS attacks continue to be more and more
persistent according to a report from the Global DDoS Threat Landscape Q4 2017.
Based on this report, it becomes easier and easier to launch DDoS attacks, and one may
even purchase botnet-for-hire services that provide the basis for starting a hazardous
DDoS attack. Financial institutions are recommended to monitor the internet traffic to
their websites in order to detect and react to possible threats. However, this kind of
run-time protection may slow down or temporarily shut down the websites.

Unintended attacks on customers from a financial institution may easily destroy the
customer’s trust and confidence and result in reputation damage. If customers cannot
trust an institution, they may quickly shift to a different institution, due to competition
between the many different financial institutions and service providers. Even a single



2 Fazeldehkordi, Owe, Ramezanifarkhani

Fig. 1. Distributed communication. S-Obj stands for server object and C-Obj for consumer object.

unfortunate incident of a financial service provider could be enough to influence cus-
tomers. One should make sure that the software is not harmful for the customers before
running it, and this makes static (compile-time) detection more important than in other
areas. Thus, in the financial sector static detection is a valuable complement to run-time
detection methods, and seems underrepresented.

Call-based flooding is commonly seen in the form of application-based DDoS at-
tacks [6]. To prevent DoS/DDoS flooding attacks in a manner complementary to ex-
isting approaches, we propose an additional layer of defense, based on language-based
security analysis. We focus on DDoS attacks that try to force a (sub)system out of order
by flooding applications running on the target system, or by using such applications to
drain the resources of their victim.

In this paper, we consider a high-level imperative and object-oriented language for
distributed systems, based on the actor model with support of asynchronous and syn-
chronous method interaction. This setting is appealing in that it naturally supports the
distribution of autonomous concurrent units, and efficient interaction, avoiding active
waiting and low-level synchronization primitives such as explicit signaling and lock op-
erations. It is therefore useful as a framework for modeling and analysis of distributed
service-oriented systems. Our language supports efficient interaction by features such as
asynchronous and non-blocking method calls and first-class futures, which are popular
features applied in many distributed systems today. However, these mechanisms make
it even easier for an attacker to launch a DDoS attack, because undesirable waiting by
the attacker can be avoided with these mechanisms.

We propose an approach consisting of static analysis. We identify and prevent po-
tential vulnerabilities in asynchronous communication that directly or indirectly can
cause call-based flooding of agents. More precisely, we adapt a general algorithm for
detecting call flooding [14] to the setting of security analysis and for detection of dis-
tributed denial of service attacks adding support for many-to-one attacks. The algorithm
detects call cycles that might overflow the incoming queues of one or more communi-
cating agents. Each cycle may involve any number of agents, possible involving the
attacked agent(s).

The high-level framework considered here is relevant for a large class of program-
ming languages and service-oriented systems.

Outline. Sec. 2 describes the background of the problem. Related work is discussed
in Sec. 3. The active object framework is explained in Sec. 4. Our static analysis to
prevent attacks is described in Sec. 5. Examples of possible DoS/DDoS attacks are
given in Sec. 6. The final section concludes and suggests future work.



Prevention of DDoS Attacks in Distributed Financial Agent Systems 3

Fig. 2. Distributed object communication in DDoS.

2 Overview

In distributed system communication there is an underlying distributed object system
as shown in Fig. 1. In such a distributed system, classes such as server or client classes
would be instantiated by objects, and communication is established in the form of
method calls, usually wrapped in XML or other forms. Therefore, communication in
a distributed system is implemented by method calls between objects. If there is a pos-
sibility of flood of requests to the service provider (S-Obj) from the consumer object(s)
(C-Obj) in this figure, a DoS attack is probable.

Call-Based Flooding Attacks. To launch a DoS attack, the attacker may try to sub-
merge the target server under many requests to saturate its computing resources. To
do so, flooding attacks [6,20] by method calls are effective, especially when the server
allocates a lot of resources in response to a single request. Therefore, we detect:

– call-flooding: flooding from one object to another.
– parametric-call-flooding: flooding from one object to another when the target object

allocates resources or consumes resources for each call.
In the case of call-flooding, communications are just simple requests like a simple call
without parameters or parameters that do not lead to resource consumption. Parametric-
call-flooding is when requests usually include parameters in a non-trivial manner. Such
requests usually trigger relatively complex processing on the server such as access to a
database. Parametric-call-flooding is more effective than call-flooding because it takes
fewer requests to drown the target system. However, call-flooding are more common
and easier for attackers to exploit.

Categories of Call-Based Flooding Attacks: DoS or DDoS possibilities.

one-to-one (OTO): If thousands of requests every single second come from one source
object to a target object, then it is a one-to-one (OTO) DoS attack. The intent of
the flooding might be malicious, or even undeliberate call cycles. Communication
between Client A and the victim server in Fig. 2 is an example of this attack.

many-to-one (MTO): If the incoming flooding traffic originates from many distin-
guishable different sources, then it is a many-to-one (MTO) DDoS attack. Fig. 2
shows a distribution of code between clients and a server, and proxies.

one-to-many (OTM): A one-to-many attack appears if a system makes an unlimited
number of requests to many objects simultaneously. Such an attack can be serious
since many target objects are attacked at the same time.



4 Fazeldehkordi, Owe, Ramezanifarkhani

Static Attack Detection and Prevention. For any set of methods that call the same
target method, a call cycle could be harmful. The methods might belong to the same or
different objects with the same or different interfaces. In the case of normal blocking
calls, where the caller is blocking while waiting for the response, making a flood of
requests also means receiving a flood of responses. And thus in the case of OTO, it
may cause a self DoS for the attacker. With the possibility of non-blocking calls in
a distributed setting, it is more cost-beneficial for an OTO attacker to launch a DoS,
because then undesirable blocking by the attacker is avoided. By means of futures and
asynchronous calls, a caller process can make non-blocking method calls.

The possibility of unbounded object creation, referred to as instantiation flood-
ing [8], could cause resource consumption and DoS that could be detected statically,
especially if those objects and their communication can cause flooding requests from
the bots, such as the customers in our example. It is even worse if there is instantiation
flooding on the target side of the distributed code. This can be detected by static analysis
of the target. (See the example in Fig. 10.) Our static analysis detects explicit or implicit
call-flooding. Static detection is accomplished by static analysis at compile time and
informs the programmer about the possibility of program exploitation at runtime.

3 Related work
A DoS attack, or its distributed version, happens when access to a computer or network
resource is intentionally blocked. Considering the exploited vulnerabilities, these at-
tacks might be classified by resource consumption attacks or flooding attacks, of which
the latter category is the most common [6]. In this paper, we aim to prevent distributed
code to be exploited by attackers to launch a DoS attack by detection of possible call-
based flooding in both of the target and zombie sides. To do so, we analyze the dis-
tributed code to make an additional layer of defense against DoS or DDoS attacks.

In the following, we discuss related works for preventing application-based DDOS
attacks using static detection. In the paper presented by Chang et al. [3], a novel static
analysis approach was introduced in order to detect semantic vulnerabilities in net-
worked software that might cause denial of service attacks because of resource ex-
haustion. Their approach is implemented in a tool named SAFER: Static Analysis
Framework for Exhaustion of Resources. SAFER integrates taint analysis (in order to
compute the group of program values that are data-dependent on network inputs) and
control dependency analysis (for computing the group of program statements whose ex-
ecution can affect the execution of a given statement) toward detecting high complexity
control structures that can be caused by untrusted network inputs. The tool applies the
CIL static analysis framework and combines different heuristics for recognizing loops
and recursive calls. Compared to our work the SAFER approach is oriented toward
detecting server attacks from within the server code, whereas our approach is mainly
targeting server attacks from an external attacker, or a combination of external agents.
An attacker needs to understand the code of the server in order to find weaknesses that
can be triggered by specific inputs. In contrast, our approach is detecting attacks caused
by coordination of several agents and/or servers in a distributed setting.

Another work that detects resource attacks from within the server code is presented
by Qie et al. [15]. In their toolkit, they check for possible “rule” violations at runtime.



Prevention of DDoS Attacks in Distributed Financial Agent Systems 5

This work is complementary to ours, since our work is oriented toward static detection.
Gulavani and Gulwani [7] describe a precise numerical abstract domain. This domain
can be used to prove the termination of a large class of programs and also to estimate
valuable information such as timing bounds. In order to make linear numerical abstract
domains more precise, they make use of two domain lifting operations: One operation
depends on the principle of expression abstraction. This describes a set of expressions
and determines their semantics by use of a selection of directed inference rules. It works
by picking up an abstract domain and a group of expressions, such that their semantics
are described by a group of rewrite rules, in order to construct a more precise abstract
domain. The second domain constructor operation picks up a linear arithmetic abstract
domain and constructs a new arithmetic domain that is able to represent linear rela-
tions through introduction of max expressions. Another approach to estimate worst-case
complexity is presented by Colon and Sipma [4]. These approaches [7,4], in which the
complexity of loops and recursive calls has been estimated using structural analysis, are
widely complementary to our work.

Zheng and Myers [21] propose a framework for using static information flow anal-
ysis in order to specify and enforce end-to-end availability policies in programs. They
extend the decentralized label model to include security policies for availability. This
work presents a simple language with fine-grained information security policies de-
scribed by type annotations. In addition, this language has a security type system to
reason about end-to-end availability policies. Various examples have been discussed, in
which abuse of an availability policy can represent denial of service attacks.

In a work by Meadows [13], a formal analysis has been developed in order to apply
the maximum benefit of tools and approaches that have already been used to strengthen
protocols against denial of service attack. This analysis has been done at the protocol
specification level. Also, different ways in which existing cryptographic protocol anal-
ysis tools can be modified for the purpose of operating in this formal framework, have
been demonstrated. In contrast, we do a detailed static analysis of source code both
inside and outside a server. The class of software vulnerabilities that we can detect is
more complicated than what appears just at the network-protocol specifications level.
Moreover, vulnerable sections of the source code have been identified in our work.

The current work shows how the static analysis method for detection of flooding
can be used for detection of DoS and DDoS attacks. This general idea was also outlined
by the same authors in an extended workshop abstract [16]. Moreover we here discuss
why this is particularly harmful in the financial sector, where both economic assets and
customer trust are at risk. Furthermore we simplify and adapt the static analysis method
of [14] to the setting of financial service systems, extending it to detect many-to-one
attacks involving unbounded creation of objects (as demonstrated in example 10), as
well as hidden attacks, neither of which were detected by the original method of [14].

4 Our Framework for Active Object Systems
The setting of concurrent objects communicating by asynchronous method calls com-
bines the Actor model and object-orientation, and is referred to as active objects. Active
object languages are suitable for modeling and implementing distributed applications,
letting a distributed system be modeled by a number of active objects that interact via



6 Fazeldehkordi, Owe, Ramezanifarkhani

asynchronous method calls. The active object model provides natural description of au-
tonomous agents in a distributed system, and the future mechanism provides an efficient
communication primitives [2,11], allowing results computed in a distributed setting to
be referred to and shared. Moreover, the addition of cooperative scheduling, as sug-
gested in the Creol language [10], allows further communication efficiency, by adding
process scheduling control in the programming language, and passive waiting. This is
achieved by including statements for suspension control, and letting each object have a
process queue for holding suspended processes. We consider a core language for active
objects with future-based communication primitives, inspired by Creol and ABS [9].
The objects are concurrent units distributed over a network, and their identity is glob-
ally unique. An object has a process queue, as well as a queue for incoming method call
requests, and can perform at most one process (i.e., remaining part of method call) at
a time. A process can be suspended by an await statement, allowing other (enabled)
processes to continue. When a process is ended or suspended, the object may continue
with an incoming call request or other enabled process from the process queue (if any).
The await statement allows a process to wait for a Boolean condition to be satis-
fied, or for a future value to be available. The statement is enabled when the waiting
condition/future is satisfied/available. The await statement enables high-level process
control, instead of low-level process synchronization statements such as signaling and
lock operations.

Our core language is a typed, imperative language. An assignment has the form
x := e where the expression e is without side-effects. All object variables (i.e., object
references) are typed by an interface, and an interface specifies the set of methods that
are visible through that interface. The interfaces of a class protect and limit the object
communication, and in particular shared variable interaction is forbidden. Local data
structure is made by data type declarations, indicated by data, and a functional data
type sublanguage is used to create and manipulate data values. Data values are passed by
value, while object variables are passed by reference. The language supports first-class
futures. The basic interaction mechanisms (by method calls/futures) are as follows:

– f := o!m(e) – the current object calls method m on object o with actual parameters
e. A globally unique identity u identifying the call is assigned to the future variable
f . A message is then sent over the network from the current object to object o.
When object o eventually performs the method and the method gives a result de-
fined by a return statement, that result is placed in a (globally accessible) future
with identity u, and the future u is then said to be resolved. Any process of any
object that knows u may access the future value or wait for it to be available.

– x := get f – this statement blocks until the value of the future f is available, and
then that value is assigned to the variable x. (Here f may be an expression resulting
in a future identity.)

– await c – this statement suspends if the Boolean condition c is not satisfied, and
is enabled when c is satisfied,

– await x := get f – this statement suspends if the value of f is not yet available,
and is enabled when the future is available. Then the future value is assigned to x.

The statement sequence f:= o!m(e);x :=get f corresponds to a traditional blocking
call, and is abbreviated x := o.m(e) using the conventional dot-notation. The statement



Prevention of DDoS Attacks in Distributed Financial Agent Systems 7

sequence f := o!m(e);await f ;x := get f is abbreviated await x := o.m(e) and
corresponds to a non-blocking call, since the await-statement ensures that the future
is available before the get-statement is performed. If the result value is not needed,
we may simplify the syntax to o.m(e) for blocking calls and await o.m(e) for non-
blocking calls. And if the future is not needed, f := o!m(e) may be abbreviated to
o!m(e), in which case the future cannot be accessed (since it is not stored in a future
variable).

Object creation has the syntax x := new C(e)at o, where the class parameters
behave like fields (initialized to the values of e) except that they are read-only, and the
new object is created locally at the site of object o. With the syntax x := new C(e) the
new object is located anywhere in the distributed system.

One may refer to the current object by this and to the caller object by (the implicit
method parameter) caller. Self calls are possible by making calls to this, and recursion
is allowed. Active behavior is possible by making a recursive self call in the constructor
method (given as a nameless method). By means of suspension, the active self behav-
ior may be interleaved with execution of incoming calls from other objects, thereby
combining active behavior and passive behavior. If- and while-statements are as usual.

We assume all class parameters and method parameters (including this and caller)
are read-only. This helps the static analysis by reducing the set of false positives. For
methods that return no information we use a predefined type Void with only one value,
void . For simplicity we omit return void at the end of Void methods in the examples.

5 Static Analysis to Prevent Attacks
We base our approach on the static analysis of flooding presented in [14] for detection
of flooding of requests, formalized for the Creol/ABS setting with futures. We adapt this
notion of flooding to deal with detection of DDoS attacks, which have a similar nature.
The static analysis will search for flooding cycles in the code, possibly involving several
classes. According to [14] (unbounded) flooding is defined as follows:

Definition 1 (Flooding). An execution is flooding with respect to a method m if there
is an execution cycle C containing a call statement to a method m at a given program
location, such that this statement may produce an unbounded number of uncompleted
calls to method m, in which case we say that the call is flooding with respect to C in
the given execution.

Like in [14], we distinguish between weak flooding and strong flooding. Strong
flooding is flooding under the assumption of so-called favorable process scheduling,
i.e., enabled processes are executed in a fair manner.

Definition 2 (Strong and weak flooding). A call is weakly flooding with respect to a
cycle C if there is an execution where the call is flooding with respect to C. And a call is
strongly flooding with respect to a cycle C if there is an execution with fair scheduling
of enabled processes where the call is flooding with respect to C.

Strong flooding reflects the more serious flooding situations that persist regardless
of the underlying scheduling policy. In the detection of strong flooding, a statically
enabled node is considered strongly reachable if each of its predecessor flow nodes
are strongly reachable. All statements are statically enabled, apart from get/await



8 Fazeldehkordi, Owe, Ramezanifarkhani

1. Make separate control flow graphs (CFGs) for each method. Include a node for each
call, get, await, new (for object creation), if and while statement, as well as an initial
starting and a final return node.

2. Add call edges from call nodes to the start node of a copy of the called method. In case
the call is recursive, simply add a call edge to the existing start node.

3. Identify any cycles in the resulting graph (including all copies of the CFGs).
4. Assign a unique label to each call node, and assign this label to the start and return

node of the corresponding copy of the method CFG.
5. Make put edges from the return nodes to the corresponding get/await nodes. This re-

quires static flow analysis, possibly with over-approximation of put edges.

Fig. 3. Control Flow Graph.

Consider a cycle C in the control flow graph G resulting from Fig. 3:

1. Mark all nodes in C asstrongly-reachable (SR), and the rest as (initially) not reachable.
2. From the entry point to the cycle, follow all flow and call edges in a depth-first traversal

of G and mark the nodes as weakly-reachable (WR), strongly-reachable (SR), or neither,
as defined in Def. 3.

3. If the previous step results in any changes to the SR or WR node sets, go to step 2.
4. Report flooding of call n if n ∈ (calls−comps) where calls= {n | calln ∈ WR}

and comps={n | returnn ∈ SR ∨ getn ∈ SR}.

Fig. 4. Algorithm for detecting flooding by means of calls and comps sets in a given cycle.

statements. A get statement or an await on a future/call is statically enabled if the
corresponding future/result is available, detected statically if the corresponding return
statement is strongly reachable or another get/await statement on the same future is
strongly reachable. We rely on a static under-detection of the correspondence between
return statements and futures. In the examples this detection is straight forward. With
respect to DDoS, weak flooding of a server is in general harmless unless the flooding is
caused by a large enough number of objects. Strong flooding is dangerous even from a
single attacker.

Following [14], flooding is detected by building the control flow graph (CFG) of
the program, locating control flow cycles as outlined in Fig. 3, and then analyzing the
sets of weakly reachable calls, denoted calls, and the set of strongly reachable call
completions, denoted comps, in each cycle. Flooding is reported for each cycle with
a nonempty difference between calls and comps, as explained in Fig. 4. Note that the
abbreviated notations for synchronous calls and suspending calls are expanded to the
more basic call primitives, as explained above. We assume that assignments (other than
calls) will terminate efficiently and therefore ignore them in the CFG. For each method
the CFG begins with a start node and ends with a return node (even for void methods)
– the latter helps in the analysis of method completion. We next define weakly and
strongly reachable nodes. The detection of strongly reachable nodes uses a combination
of forward and backward analysis, and is simplified compared to [14]:
Definition 3 (Weakly and strongly reachable nodes). Consider a given cycle C.
Weakly reachable (WR) nodes are those that are on the cycle or reachable from the
cycle by following a flow edge or a call edge.

A node is strongly reachable (SR) if it is in the given cycle or is reachable from
an SR node without entering an if/while node nor passing a wait node (get/await)



Prevention of DDoS Attacks in Distributed Financial Agent Systems 9

outside the cycle, unless the return node of the corresponding call is strongly reachable.
A return node is SR if there is a SR get/await node on the same future. And a node
is SR if all its predecessor nodes are SR.

We consider two versions of SR, the optimistic, where we follow call edges (as
indicated above), and the pessimistic, where we follow a call edge n only when the call
is known to complete, i.e., when n ∈ SR before following the call edge. (As above we
follow flow and put edges without restrictions.)

The optimistic version is used to find unbounded flooding under the assumption
of favorable scheduling, i.e., strong flooding. The pessimistic version is used to detect
unbounded flooding without this assumption, i.e., weak flooding. Detection of strong
flooding implies detection of weak flooding, but with less precise details about which
calls that possibly may cause flooding. If there is a call causing weak flooding wrt. a
given cycle, pessimistic detection will report this call or a call leading to this call. If
there is a call causing strong flooding for a given cycle C, optimistic detection will
report this call. Our notions of optimistic and pessimistic reachability cover a wider
class of nodes than in [14]. The soundness of [14] can be generalized to our setting.

6 Examples of Possible DoS/DDoS Attacks

An Example of Flooding Cycles. We consider here an example of a possible DoS
attack on customers caused by a financial institution. The attack may be unintended by
the institution, but may result from an update supposed to give better efficiency, by use
of the future mechanism to reduce the amount of data communicated over the network.

We imagine that the financial institution has a subscription service for customers,
such that customers can register and receive the latest information about shares and
funds, through data of type “newsletter”, here simply defined as a product type consist-
ing of a content and a date. The financial institution uses a method signal to notify the
customers about new information about shares. In the first version, each call to signal
has the newsletter as a parameter. This may result in heavy network traffic and many of
the newsletters may not be read by the customers. In the “improved” solution, each call
to signal contains a reference (by means of a future) to the newsletter rather than the
newsletter itself. However, this allows the subscription service system to send signal
calls even before the newsletter is available, and as we will see, this can cause a DoS
attack on the subscribing customers.

In order to handle many customers, a (dynamic) number of proxies are used by the
service object, and an underlying newsletter producer is used for the sake of getting
newsletters, using suspension when waiting for news. The proxies are organized in a
list (myCustomers), growing upon need. In both solutions, futures are used by the ser-
vice object to avoid delays while waiting for a newsletter to be available. In this way
the service object can continuously respond to customers. The interfaces are shown in
Fig. 5. We abbreviate “Newsletter” to “News”. Fig. 6 represents a high-level implemen-
tation of the publish/subscribe model, adapted from [5]. A multi-cast to each object in
the myCustomers list is made by the statement myCustomers!signal(ns) in line 13. If
we shift requiring the actual newsletter to have arrived, from the Proxy (as shown by the
statements ns:=get fut; myCustomers!signal(ns) in the original publish method) to the
Customer (i.e., news:=get fut in the modified Customer.signal method). This change



10 Fazeldehkordi, Owe, Ramezanifarkhani

1 data News == (String content, Int date) // a product data type
2 interface ServiceI{
3 Void subscribe(CustomerI cl) // called by Clients
4 Void produce()} // called by Proxies
5 interface ProxyI{
6 ProxyI add(CustomerI cl) // called by Service
7 Void publish(Fut[News]fut)} // called by Service
8 interface ProducerI{
9 News detectNews()} // called by Service

10 interface NewsProducerI{
11 Void add(News ns) // called when news arrives
12 News getNews()} // called by Producers
13 interface CustomerI{
14 Void signal(News ns)} // called by Proxies

Fig. 5. The interfaces of the units in the subscription example.

1 class Service(Int limit, NewsProducerI np) implements ServiceI{
2 ProducerI prod; ProxyI proxy; ProxyI lastProxy; //declaration of fields
3 { prod := new Producer(np); proxy:= new Proxy(limit,this); lastProxy:=proxy; this!produce()}
4 Void subscribe(CustomerI cl) {lastProxy:=lastProxy.add(cl)}
5 Void produce(){ Fut[News]fut :=prod!detectNews(); proxy!publish(fut)}} // sends future
6 class Proxy(Int limit,ServiceI s) implements ProxyI{
7 ProxyI nextProxy; List[CustomerI] myCustomers:=empty; //fields
8 ProxyI add(CustomerI cl){ ProxyI lastProxy:=this;
9 if length(myCustomers)<limit then myCustomers:=append(myCustomers,cl)

10 else if nextProxy=null then nextProxy:= new Proxy(limit,s) fi;
11 lastProxy:=nextProxy.add(cl) fi; return lastProxy}
12 Void publish(Fut[News]fut){ News ns :=get fut; // wait for the future
13 myCustomers!signal(ns); // multi-cast the result
14 if nextProxy=null then s!produce() else nextProxy!publish(fut) fi}}
15 class Producer(NewsProducerI np)implements ProducerI{ // Wrapper for the news producer:
16 News detectNews(){ News news; news:=np.getNews(); return news}}
17 class NewsProducer()implements NewsProducerI{ List[News] nl;
18 Void add(News ns){nl:=append(nl,ns)}
19 News getNews(){News n; await nl /= empty; n:=first(nl); nl:=rest(nl); return n} }
20 class Customer implements CustomerI{ // Consumer of news items:
21 News news; // the latest news
22 Void signal(News ns){news:=ns}}

Fig. 6. Classes providing an implementation of the subscription example.

1 class Proxy(Int limit,ServiceI s) implements ProxyI{
2 ProxyI nextProxy; List[CustomerI] myCustomers:=empty;
3 ProxyI add(CustomerI cl){ ... }
4 Void publish(Fut[News]fut){myCustomers!signal(fut); // send future, no waiting
5 if nextProxy=null then s!produce() else nextProxy!publish(fut) fi}}
6

7 class Customer implements CustomerI{ News news; ...
8 Void signal(Fut[News] fut) { news:=get fut}} // blocking wait

Fig. 7. DoS attack by a variation of the subscription example.

in the program causes flooding of customers.

Service.produce asynchronously calls Producer.detectNews (Pd), line 5 of Fig. 6
Service.produce asynchronously calls Proxy.publish (Xb), line 5 of Fig. 6
Proxy.publish asynchronously calls Customer.signal (Cs), line 6 of Fig. 7
Proxy.publish asynchronously calls Service.produce (Sp) line 6 of Fig. 7

Each iteration of this cycle generates an asynchronous call to Proxy.publish, which
again produces an asynchronous call to Producer.detectNews, which is not processed as
part of this cycle, nor is its processing synchronized call with the cycle. An unbounded
number of suspended calls to Producer.detectNews can be produced by this cycle. We
then say that the cycle is flooding. The flooding cycle identified above is harmless pro-



Prevention of DDoS Attacks in Distributed Financial Agent Systems 11

Sp 

Pd:1 

Xp:2 

Xp 

Cs:4 

Sp:5 Xp:6 

get:1 

Pd 

Ng:3 

put:5 

put:6 put:2 

put:1 

cycle	A	
calls	=	{1,2,3,4,5}	
comps	=	{1,2,3,5}	

Ng 

put:3 

get:3 await 
cycle	A	

cycle	B	

cycle	B	
calls	=	{4,6}	
comps	=	{1,6}	

Cs 

put:4 

call	edge	

flow	edge	

put	edge	

start 

call/get/
await 

put 

Fig. 8. The graph and call/comp sets for the original version of the program (Fig. 6).

Sp 

Pd:1 

Xp:2 

Xp 

Cs:4 

Sp:5 Xp:6 

Pd 

Ng:3 

put:5 

put:6 put:2 

put:1 

cycle	A:	
calls	=	{1,2,4,5}	
comps	=	{2,5}	

get:3 

cycle	A	

cycle	B	

cycle	B:	
calls	=	{4,6}	
comps	=	{6}	

Ng 

put:3 

await 

Cs 

put:4 

get:1 

call	edge	

flow	edge	

put	edge	

start 

call/get/
await 

put 

Fig. 9. The graph and call/comp sets for the modified version of the program (Fig. 7).

vided the customers are able to process their signal calls as fast as the cycle iterations.
The programmer will be warned by our algorithm about each possible flooding, and
should determine whether it is a real problem.

In contrast, the modified program version (Fig. 7) does not wait in Proxy.publish
(doing ns:=get fut) until the newsletter is produced. Instead the future is directly
passed to another asynchronous call (myCustomers!signal(fut)) in line 6 of Fig. 7
through the method Proxy.publish, this removes any progress dependency between the
cycle producing the Producer.detectNews and Customer.signal calls and the processing
of those calls. The completion of the Producer.detectNews and Customer.signal calls
does not only depend on the speed of code execution, but depend on the rate of newslet-
ter items arrivals. Practically, this flooding cycle generates a number of unprocessed
calls that quickly grows to system limits.

Applying the Algorithm to the Example. Following [14], the call and comps sets for
the two publish/subscribe versions are shown in Figures 8 and 9. Method names are
abbreviated with two letters as indicated above, letting Ng abbreviate method getNews
of interface NewsProducerI. There are two cycles in Fig. 8, i.e., cycle A and B. We have



12 Fazeldehkordi, Owe, Ramezanifarkhani

1 class Attacker(ServerI s) {
2 {this!run(); } // initialization
3 Void run() { ClientI c := new Client(); c!connect(s); this!run() }//terminate& make recursive call
4 }
5 class Client() implements ClientI{
6 Nat connect(ServerI s){
7 Nat n := s.register(); return n }// blocking call, so each client will not cause flooding.
8 }
9 class Service(DataBase db) implements ServiceI{ {...} // Initialization

10 Nat register(){Nat n :=0; if okcheck(caller) then Bool ok := db.open();
11 if ok then n:=db.add(caller); db.query(...); db.close() fi fi; return n }
12 //register requires time and resources
13 ... }

Fig. 10. Flooding by unbounded creation of innocent clients targeting the same server.

a flooding on the call to Customer.signal (Cs) in both cycles. However, this flooding
does not reflect an actual flooding since the Customer objects easily keep up with the
calls since the amount of work required by the Customer to complete a signal call is
trivial. The execution rate is restricted with respect to the actual arrival of new items
from the NewsProducer (by the blocking call in the proxies), and therefore, the rate
of produced asynchronous calls to Customer.signal by this cycle is limited. Thus this
is an example of weak flooding that is harmless. Furthermore, cycle B is not infinite
since it goes through the chain of Proxies. The modified version of the program is
shown in Fig. 9. This version is displaying strong flooding. The flooding-cycle of Pd
(Producer.detectNews) through both cycles is dangerous and will cause flooding of the
system instantly. In version 1, there is a get in cycle A that regulates the speed of this
cycle, whereas in the modified version there is no get in cycle A.

An Example of Instantiation Flooding. The example in Fig. 10 shows how a Client-
Distribution object can cause an attack by using an unbounded number of clients to
flood the same server s, due to an unbounded recursion of the run method. The initial-
ization of the attacker object of class ClientDistribution connects to a client, and the
client do the registration of the server object. The attacker may start such a communi-
cation with lots of clients to register at the same server. (For simplicity, interfaces are
omitted here.) Each client is innocent in the sense that it does not cause any attack by
itself. By finding such a vulnerability in the ClientDistribution, an attacker can cause
the flooding attack by calling run(). In addition, the non-blocking call in this method
helps the attacker because the method does not wait for the connect calls to complete,
therefore it is able to create more and more workload for the server s in almost no time.
The execution of f :=c!connect(s) causes an asynchronous call and assigns a future to
the call. Thus no waiting is involved. The run method recursively creates more and more
objects, located somewhere in the distributed network. Therefore, the attacker creates
flooding by rapidly creating clients that each performs a resource-demanding operation
on the same server. Static analysis detects such attacks by finding a call loop (in this
case inside run) which is also targeting the same server.

In this example, if the object creation in run had happened locally, an explicit in-
stantiation flooding that consumes all the resources in an object will happen, which is a
self DoS attack. However, since the object creation is distributed, the example in Fig. 10
shows an implicit attack because of targeting the same server by different clients.



Prevention of DDoS Attacks in Distributed Financial Agent Systems 13

Fig. 11. Static detection of flooding using unbounded creation.

Static Analysis of the Instantiation Example. Consider the example in Fig. 10. For the
run method of class ClientDistribution, the following cycle is detected:

the initialization of the attacker calls run
run creates a client object c
run calls c!connect(s)
run terminates and calls itself recursively in an asynchronous call.

The run call has a call edge to the flow graph of connect (call 1), and connect has a call
edge to the flow graph of register (call 2). The call to register waits for completion of
register since it is a blocking call, and the database calls (call 3) made by register wait
for the completion of these database calls. The code for the database is not given, and
therefore the analysis will be worst-case by considering the termination of such calls
non-reachable (unless indirectly found strongly reachable). The control flow graph is
given in Fig. 11. The set of weakly reachable call nodes of the cycle, i.e., calls, are
{1, 2, 3} with optimistic detection, and {1} with pessimistic detection. And the set of
strongly reachable calls, i.e., comps, is empty in both cases. This gives that the set of
potentially flooding calls, given by calls− comps, is {1} (c.connect) with pessimistic
detection and {1, 2, 3} with optimistic detection. However, in this case, call 1 does not
reflect a real flooding since each call is on a separate object, but call 2 (s.register) and
call 3 (the db calls) do. We detect strong flooding. The example may be improved by
using suspending calls (using await) on the database operations.

6.1 Modification of the Static Detection to DDoS
As seen in Fig. 2, a DDoS attack on a server is often made through many innocent
clients. This is hard to detect from the server side at runtime since each client may be-
have in an acceptable manner, and since the real attacker is hidden behind the clients.
The original detection method [14] is not oriented towards such attacks, since it is not
aware of the number of generated objects of a class. Moreover, the approach is using
as an assumption that an execution has a bounded number of objects. Nevertheless, if
applied to the example in Fig. 10, it will report a possible attack on the clients (treating
all customers as one object), but not an attack on the Service server, which is the real
attack. A draw-back is that there could be reported more false positives due to overap-
proximation.



14 Fazeldehkordi, Owe, Ramezanifarkhani

A weakness with pessimistic detection is that the connect call, but not the regis-
ter call, would be reported. Although the former call leads to the second, the detection
result is not appropriate since a harmless call is reported an not the harmful one. An-
other weakness is that the attack would not be discovered when removing the connect
call from the attacker class and instead letting the register call be caused by the init
method of class Client. (In this case the method parameter s should be transferred as
a class parameter.) The reason for this is that indirect calls due to object generation
are ignored (since by assumption there cannot be unboundedly many such calls). To
compensate these weaknesses, we make two modifications wrt. [14], described below:

First, we modify the static analysis by viewing a new C statement as a special kind
of a call statement with its own associated call number and a call edge to a copy of
the init code of class C, which again may have further calls, treated as usual. More
precisely, we treat new C as a simple call statement (like new!C(classparameters)
except that the new object is not known before the call) since the new statement does
not wait for the init to complete. This allows us to see the generation of objects and to
follow all implicit calls from the initialization code. Thus we can detect instantiation
flooding attacks depending on call indirectly caused by object initialization. We may
assume that an initialization cannot generate flooding in itself since each initialization is
on a new object. Thus the call numbers associated with object creation can be included
in comps. Furthermore, one more call on a new object cannot generate flooding on this
object (unless in a cycle after the object creation). The same goes for a finite number
of calls on a new object, if it can be detected statically that all these calls have the
same new object as callee. These calls can also be included in comps. In the example of
Fig. 10, we detect that the call c!connect is to the new Client object, and this call will
then not be reported with the improved static detection.

Secondly, since implicit calls are important in DDoS attacks, we follow all call
edges in the calculation of WR nodes, even in the pessimistic version. The resulting im-
proved static detection method can then also detect the hidden attacker in all versions of
the instantiation example, as shown below. Since the improved static detection method
depends on static detection of same callee, we briefly discuss how to incorporate this:
Two calls in the same method activation have the same callee if the callee is the same
variable, and it is either

– a read-only variable (such as a parameter),
– a local variable and there are no updates on this variable between the calls, or
– a field variable and there are no updates on it nor suspension between the calls.

The first of these calls may be an object creation x := new C(. . .), and the second a
call with x as callee (provided one of the conditions above are satisfied for x). This
suffices for the example with the two calls c := new Client() and f :=c.connect(s).
This detection could be improved in several ways. In particular, we may detect that the
actual parameter s in the latter call refers to the same object for all activations of run
since s is a read-only class parameter and the recursive run call is on the same object
(since this is read-only). This could be used in the detection algorithm to see that all
s.register calls refer to the same server s, which gives a clear indication of a DDoS
attack.
Instantiation example revisited. We reconsider the example in Fig. 10, using the im-
proved static detection algorithm. Now the create c node of Fig. 11 is represented as



Prevention of DDoS Attacks in Distributed Financial Agent Systems 15

a call, say call 0. For the original version of the example, the initialization is empty
so call 0 is considered terminating (0 ∈ comps). We get calls = {0, 1, 2, 3} where
0 corresponds to the creation of the new C object. But call 0 (c:= new Client) and
call 1 (c!connect) do not generate flooding since they are on a new object. Thus
comps = {0, 1}. This shows that there is a possibility of call flooding through call
2 (s.register) and call 3 (the db calls); and these correspond to actual attacks. For the
modified version of Fig. 10, where the register call is caused by the Client initialization,
we get a similar analysis except that there is no call 1 (c!connect) since this is incorpo-
rated in the Client initialization. Thus we get that calls = {0, 2, 3} and comps = {0}.
Here the presence of call 0 enables us to detect call 2 in the (modified) initialization
code and thereby also call 3 (and both correspond to possible flooding).

7 Conclusion
In this paper we have considered denial of service attacks, formulated in a high-level
imperative language based on concurrent objects communicating by asynchronous calls
and futures, thereby supporting asynchronous as well as synchronous communication.
The language includes mechanisms for process control allowing non-trivial process
synchronization by means of cooperative scheduling. We adapt a static detection al-
gorithm developed for analysis of flooding to this setting, in order to detect possible
denial of service attacks. This kind of static analysis is useful in the financial sector, be-
cause the aspect of trust between customers and service providers is essential, perhaps
more so than in other application areas, and therefore static detection is valuable.

We have illustrated the approach on examples of distributed systems in the financial
sector, including versions of a one-to-many attack and a many-to-one attack. In the first
example a financial institution notifies a number of subscribing customers. We have
seen that a revision of the basic notification software used by the financial institution,
intended to be more efficient, actually implies a one-to-many attack on the subscrib-
ing customers. In this example, the financial institution was responsible for the attack,
which could lead to loss of reputation and of customers. Static detection solved the
situation here since the detection is made before the program is run. The underlying de-
tection algorithm is sound for call-based coordinated attacks, provided the source code
of the objects involved in the coordinated attack is available. In the many-to-one exam-
ple, an attacker object causes an attack by using an unbounded number of clients, each
innocent, to flood the same server s, letting a new client be created in each cycle.

In this paper we have adapted a general algorithm for detecting flooding [14] to the
setting of DDoS and improved it to deal with unbounded object generation and to better
reveal hidden attacks. Our framework can deal with advanced programming mecha-
nisms including suspension and first-class futures considering distributed systems at a
high-level of abstraction. It is therefore relevant for high-level modeling and prototyp-
ing of distributed software solutions. In future work, we suggest to complement the
static checking with dynamic runtime checking since static detection methods give a
degree of over-estimation. This could give a more precise combined detection strategy.

Acknowledgments. We thank the reviewers for significant feedback. This work is supported
by the IoTSec project, the Norwegian Research Council (No. 248113/O70), and by the SCOTT
project, the European Leadership Joint Undertaking under EU H2020 (No. 737422).



16 Fazeldehkordi, Owe, Ramezanifarkhani

References
1. Ashford, W.: DDoS is most common cyber attack on financial institutions (blog

post, 2016), https://www.computerweekly.com/news/4500272230/DDoS-is-most-common-
cyber-attack-on-financial-institutions/

2. Boer, F.D., Serbanescu, V., Hähnle, R., Henrio, L., Rochas, J., Din, C.C., Johnsen, E.B., Sir-
jani, M., Khamespanah, E., Fernandez-Reyes, K., et al.: A survey of active object languages.
ACM Computing Surveys (CSUR) 50(5), 76 (2017)

3. Chang, R., Jiang, G., Ivancic, F., Sankaranarayanany, S., Shmatikov, V.: Inputs of Coma:
Static detection of denial-of-service vulnerabilities. In: 22nd IEEE Computer Security Foun-
dations Symposium (CSF’09). pp. 186–199. IEEE Computer Society (2009)

4. Colón, M., Sipma, H.: Synthesis of linear ranking functions. In: Proceedings of the 7th Inter-
national Conference on Tools and Algorithms for the Construction and Analysis of Systems.
pp. 67–81. TACAS 2001, Springer-Verlag, London, UK, UK (2001)

5. Din, C.C., Owe, O.: A sound and complete reasoning system for asynchronous communica-
tion with shared futures. J. Logical and Alg. Methods in Prog. 83(5), 360 – 383 (2014)

6. Douligeris, C., Mitrokotsa, A.: DDoS attacks and defense mechanisms: Classification and
state-of-the-art. Computer Networks 44(5), 643–666 (2004)

7. Gulavani, B.S., Gulwani, S.: A numerical abstract domain based on expression abstraction
and max operator with application in timing analysis. In: International Conference on Com-
puter Aided Verification. pp. 370–384. Springer (2008)

8. Jensen, M., Gruschka, N., Herkenhöner, R.: A survey of attacks on web services. Computer
Science-Research and Development 24(4), 185 (2009)

9. Johnsen, E.B., Hähnle, R., Schäfer, J., Schlatte, R., Steffen, M.: ABS: A core language for
abstract behavioral specification. In: Aichernig, B.K., de Boer, F.S., Bonsangue, M.M. (eds.)
Formal Methods for Components and Objects. pp. 142–164. Springer (2012)

10. Johnsen, E.B., Owe, O.: An asynchronous communication model for distributed concurrent
objects. Software & Systems Modeling 6(1), 35–58 (Mar 2007)

11. Karami, F., Owe, O., Ramezanifarkhani, T.: An evaluation of interaction paradigms for active
objects. J. Logical and Alg. Methods in Prog. 103, 154 – 183 (2019)

12. Lambert, K.: Protecting financial institutions from DDoS attacks (blog post, 2018),
https://www.imperva.com/blog/protecting-financial-institutions-from-ddos-attacks/

13. Meadows, C.: A formal framework and evaluation method for network denial of service.
Computer Security Foundations Workshop. Proceedings of the 12th IEEE pp. 4–13 (1999)

14. Owe, O., McDowell, C.: On detecting over-eager concurrency in asynchronously communi-
cating concurrent object systems. J. Logical and Alg. Methods in Prog. 90, 158 – 175 (2017)

15. Qie, X., Pang, R., Peterson, L.: Defensive programming: Using an annotation toolkit to build
DoS-resistant software. CM SIGOPS Operating Systems Review, 36(SI) pp. 45–60 (2002)

16. Ramezanifarkhani, T., Fazeldehkordi, E., Owe, O.: A language-based approach to prevent
DDoS attacks in distributed object systems. In: 29th Nordic Workshop on Programming
Theory. Turku Centre for Computer Science (Nov, 2017), (extended abstract, 3 pages)

17. Urrico, R.: DoS services: Verisign (2018), https://www.cutimes.com/2018/07/03/denial-of-
service-attacks-overwhelmingly-target-fi/?slreturn=20190713065814/

18. Wilczek, M.: Why banks shouldn’t be in denial about DDoS attacks (blog post, 2018),
https://www.globalbankingandfinance.com/why-banks-shouldnt-be-in-denial-about-ddos-attacks/

19. Zahoor, Z., Ud-din, M., Sunami, K.: Challenges in privacy and security in banking sector
and related countermeasures. Intern. Computer Applications 144(3), 24–35 (2016)

20. Zargar, S.T., Joshi, J., Tipper, D.: A survey of defense mechanisms against distributed denial
of service (DDoS) flooding attacks. IEEE Comm. Surveys Tutorials 15(4), 2046–2069 (2013)

21. Zheng, L., Myers, A.C.: End-to-end availability policies and noninterference. Computer Se-
curity Foundations, 2005. CSFW-18 2005. 18th IEEE Workshop pp. 272–286 (2005)


