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Abstract

Distributed systems are challenging to design properly and prove correctly due
to their heterogeneous and distributed nature. These challenges depend on the
programming paradigms used and their semantics. The actor paradigm has
the advantage of offering a modular semantics, which is useful for composi-
tional design and analysis. Shared variable concurrency and race conditions
are avoided by means of asynchronous message passing. The object-oriented
paradigm is popular due to its facilities for program structuring and reuse of
code. These paradigms have been combined by means of concurrent objects
where remote method calls are transmitted by message passing and where low-
level synchronization primitives are avoided. Such kinds of objects may exhibit
active behavior and are often called active objects. In this setting the concept of
futures is central and is used by a number of languages. Futures offer a flexible
way of communicating and sharing computation results. However, futures come
with a cost, for instance with respect to the underlying implementation support,
including garbage collection. In particular this raises a problem for IoT systems.

The purpose of this paper is to reconsider and discuss the future mechanism
and compare this mechanism to other alternatives, evaluating factors such as
expressiveness, efficiency, as well as syntactic and semantic complexity including
ease of reasoning. We limit the discussion to the setting of imperative, active
objects and explore the various mechanisms and their weaknesses and advan-
tages. A surprising result (at least to the authors) is that the need of futures in
this setting seems to be overrated.

Keywords: Active objects; asynchronous methods; interaction mechanisms;
concurrency; distributed systems; futures; cooperative scheduling.

1. Introduction

Programming paradigms are essential in software development, especially
for distributed systems since these affect large programming communities and
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a large number of applications users. The actor model [I8] has been adopted
by a number of languages as a natural way of describing distributed systems.
The advantages are that it offers high-level and yet efficient system designs, and
that the operational semantics may be defined in a modular manner, something
which is useful with respect to scalability. The actor model is based on con-
current autonomous units (actors) communicating by means of asynchronous
message passing, and with a “sharing nothing” philosophy, meaning that no
data structure is shared between actors. The actor model offers high level, yet
efficient, constructs for synchronization and communication.

A criticism of the interaction mechanism of the actor model has been that
its one-way communication paradigm may lead to complex programming when
there are dependencies among the incoming messages. It is easy to make pro-
gramming errors such that certain messages are never handled. And it is not
straight forward to augment an actor model with support of additional mes-
sages and functionality. In the actor model one may not classify and organize
the communication messages in request messages and reply messages, and it
does not support object-oriented (OO) principles such as inheritance, late bind-
ing, and reuse (even though the original actor concept was inspired by the ideas
behind object-orientation).

To overcome these limitations, one may combine the actor model and object-
orientation, using the paradigm of concurrent, active objects and using methods
rather than messages as the basic communication mechanism, thereby support-
ing imperative programming in a natural manner. The active object model has
gained popularity and is an active research area [3]. A call of method m on a
remote object o could have the form x := o.m(€) where € is the list of actual
parameters. This opens up for two-way communication where both the method
call and the corresponding return value are transmitted by message passing be-
tween then caller and callee objects. The naive execution model is that the
caller waits while the callee performs the call, and then stores the result in the
program variable . However, this can result in undesired blocking and possibly
deadlock. Therefore non-blocking call mechanisms are needed.

One way of avoiding unnecessary waiting is provided by the future mecha-
nism, originally proposed in [2] and exploited in MultiLisp [15], ABCL [34], and
several other languages. A future is a read-only placeholder for a result that is
desirable to share by several actors, where the placeholder may be referred to
using the identity of the future. In particular, one may refer to a result even
before it is produced, and a future identity may refer to a future method result.
In languages with first-class futures, future identities can be passed around as
first-class objects like references. Futures can give rise to efficient interaction,
avoiding active waiting and low-level synchronization primitives such as explicit
signaling and lock operations. The notion of promises gives even more flexibility
than futures by allowing the programmer to refer to a computation result before
it is known how to generate it, and by which process. For instance, a promise
may be used to refer to the result of one of several futures.

A future object with its own identity can be generated when a remote method
call is made. Then the caller may go on with other computations until it needs



the return value, while the callee executes. The callee executes the called method
and sends the return value back to the future object upon termination of the
method invocation, at which time the future is said to be resolved (i.e., the
future value is available). When the caller needs the future value it may request
the future value, and is blocked until the future is resolved. A programming
language may have implicit or explicit support of futures. Consider first explicit
futures: Typically a call statement defines the future identity, say f := olm(e),
where [ is a future variable used to hold the future identity of the call (with m,
o, and € as above). Here the symbol “!” indicates the difference from a blocking
call (assuming both are allowed). When the result of the call is needed, the
caller uses a construct like get f where f is an expression giving the future
identity, for instance in an assignment x := get f. By letting futures be first-
class entities, the objects may communicate future identities and thereby allow
several objects to share the same method result, given as a future. Any object
that has a reference f to a future may perform get f. Implementation of call
requests and future operations can be done by means of message passing.

Implicit futures are similar, except that the future variable is not available
for the programmer, and the get operations are made implicitly as defined by
the semantics. The call may now look like x := o.m(€) (or say x := olm(e)
to distinguish it from that of a synchronous call, if both are desired) where
x is of the return value type, and the implicit get operations may happen
when the value of z is needed (first time after the call). This is attractive in
functional languages, avoiding the distinction between a function returning a
future and one returning the future value, or receiving a future input versus a
future value. However, implicit futures make static program analysis difficult
since the waiting points are implicit, possibly depending on dynamic factors. In
particular, certain kinds of textual analysis become infeasible.

In languages with futures, the two-way communication mechanism is re-
placed by a more complex pattern, namely that a method call generates a future
object where the result value can be read by a number of objects, as long as they
know the future identifier. A normal two-way call can be done by letting the
caller ask and wait for the future. This means that each call has a future iden-
tity, and that the programmer needs to keep track of which future corresponds
to which call. This gives an additional layer of indirectness in programming.
Our experience is that the full functionality of futures is only needed once in
a while, and that basic two-way communication suffices in most cases. Thus
the flexibility of futures (and promises) comes at a cost. Implementation-wise,
garbage collection of futures is non-trivial, and static analysis of various aspects
including deadlock detection in presence of futures is more difficult. Even if
one introduces a short-hand notation for the simple two-way call interaction,
there is still a future behind the scene, and thus all calls are typically handled
uniformly by this more expensive implementation mechanism.

Another drawback of the basic future mechanism is that once a get operation
is done, the current object is blocked as long as the future is not yet resolved.
To overcome this, one may allow polling, i.e., testing if a future is resolved or
not, without blocking, for instance used in an if-test where the branches deal



with the two cases. But polling may result in complex program structures since
it opens up for explicit program control of the possible message ordering.

Another way of avoiding blocking is the notion of cooperative scheduling sug-
gested in the Creol language [22], and the OUN language [7, 27], generalizing
the concept of guards from the guarded command language of Dijkstra [9] by
adding a notion of process suspension. Cooperative scheduling can be achieved
by a language construct, await ¢, where c is a condition, either a boolean condi-
tion or a waiting condition, such as the presence of the result of a remote method
call. If ¢ is not satisfied, the current executing method invocation (“process”) is
placed on the process queue of the object, which allows another enabled process
on the queue, or an incoming request, to continue. A process on the queue is
not enabled if it starts with an await with a condition that is not satisfied. Thus
a method invocation may passively wait in the queue while the object is active
and able to take care of other (enabled) processes. Thus cooperative scheduling
provides local synchronization control and provides a constructive approach to
the scheduling of processes internally in an object. Cooperative scheduling may
be combined with the future mechanism, for instance with first-class futures as
in the ABS language, or with non-first-class futures as in the Creol language,
where the futures are local to a process. We refer to such non-first-class futures
as local futures; and in general, we may talk about object-local and method-local
futures. Object-local futures may not be communicated to other objects, but
assignment of futures to fields and local variables is acceptable as well as passing
of futures through parameters or return values of local methods. Method-local
futures are local to a method instance (process) and may not be assigned to
fields and may not be passed as parameters or return values of method calls.

In this paper, we will focus on the interaction mechanisms in imperative,
active object languages, especially the paradigm of asynchronous call/return
without use of futures, versus the different versons of the future mechanism,
as well as cooperative scheduling and polling. The contibution of the paper
is a comparison on the different interaction mechanisms, based on a survey of
representative languages, and a unified syntactic and semantic formalization of
the various language combinations. We give a critical discussion on the pros
and cons of the various combinations of these mechanisms. As most recent
imperative languages for active objects support explicit, first-class futures, we
leave out implicit futures from our discussion. To complement the discussion, we
suggest some language improvements in the setting of asynchronous call/return
without use of futures. We compare the various interaction paradigms wrt. the
following criteria:

® erpressiveness

e cfficiency

e syntactic and semantic complexity

e simplicity of program reasoning and static analysis

e information security aspects.



The paper is organized as follows: Section[2]provides the context of the work,
giving an overview of the interaction mechanisms of a number of active object
languages, including ABCL, Rebeca, Creol, ABS, Encore, and ASP/ProActive.
A complementary communication model and language is proposed in Subsec-
tion[2.7] In order to make a comparison easier, Section [3]defines a unified syntax
and semantics for the different interaction paradigms. Then Section [4] evaluates
the different interaction mechanisms along the comparison dimensions. Finally,
conclusions are given in Section

2. Background

In this section we review some representative languages based on active ob-
jects, and give a summary of their interaction models. We limit the discussion to
imperative languages, since a majority of modern active object languages (with
some exceptions like Scala) are imperative. For each language we identify sup-
port of active and/or passive behavior and interaction mechanisms, including
synchronization mechanisms involving waiting and blocking, as well as coopera-
tive scheduling. In particular, we explain support of explicit or implicit futures
and polling mechanisms. We focus on explicit futures since the semantical issues
of these are more clearly connected to syntactic constructs. This allows us to
make a syntax-oriented, language-based comparison.

Furthermore, we look at shared futures as well as local futures. Local futures
include object-local futures, not permitted to be communicated and shared with
other objects, and method-local futures, not permitted to be stored in fields or
passed to other method invocations than the one creating the future. Local as
well as shared futures may in principle be read multiple times, but for method-
local futures the value of multiple reads is questionable. It can be statically
checked that a method-local future is read at most once, leading to a notion of
single-use, method-local futures, which gives the simplest form of futures.

To illustrate and compare the interaction mechanisms in the different lan-
guages, we use a running example. It is part of a subscriber service that was
originally made to take advantage of the benefits of first-class futures. The ABS
solution in Figure [f] is most close to the original version, and should be read
first. In this example, the server, defined by class Service, searches for news and
publishes them to subscribing clients, using proxies. The server communicates
news to the proxies by means of first-class futures, so that the server itself does
not wait for incoming news and is free to respond to any client request (apart
from doing synchronized database operations). Instead the proxies wait for the
incoming news. The proxies are organized in a list (growing upon need), letting
each proxy handle a limited number of clients.

2.1. ABCL

The integration of the actor model with object-oriented concepts was first
introduced in ABCL [34]. In this language, concurrent objects interact via
asynchronous message passing and futures. An object definition as depicted in



[object object-name
(state representation of local memory ...)
(script
(=> message patternl)
(=> message pattern2))]

Figure 1: Object definition in ABCL.

Figure[Jincludes: the object’s name, its state declaring the local object variables
(fields) and initialization, and its script including patterns of messages received
by the object, and a set of corresponding actions. Each object has its own queue
for storing the messages according to their arrival time. When an object receives
a message matching one of the declared patterns, it performs the corresponding
actions. ABCL uses first-class futures, which are explicitly created by the syntax
make-future. Moreover, a future is a queue, and all receiving objects can write to
it, but only the object which creates it, can access and check the future values,
in contrast to other languages supporting first-class futures. In fact, most other
languages implement a future object as once-writable and multiple-readable (by
many objects).
Assuming an object o sends a message m to an object o/, ABCL supports
three types of message passing [34]:
1. Past-time message passing (send and no wait):
After sending the message, the sender o immediately continues its process
without waiting for a reply or delivery. If the reply should be sent to
other objects, the (optional) reply-destination is the destination of those
objects. The syntax for this kind of message passing is:

o' <= m Qreply-destination

2. Now-time message passing (send and wait):
Object o blocks while waiting for the result from o', then assigns the result
to a program variable x. The notation for this type of message passing is:

r:= 0 <==m

3. Future-type message passing (reply to me later):
In this case, o does not need the result immediately, and instead of blocking
it can continue and later on check whether the future object contains the
result or not. In this case of message passing, the reply destination is the
specified future object. The notation for this kind of message passing is:

o <=m $f

where the future variable f is bound to the future object.

In ABCL, an object that creates a future can check its values by the operation:

ready? f



If at least one reply is stored in the future f, the value of this form is ¢ (i.e.,
true); otherwise, nil. Thus polling is supported. Moreover, the operation

next-value f options

returns the first element stored in the future f, and if the future is empty the
owner object waits until a reply arrives. And with a :remove t option the
future value is removed from the future-object. Whereas, with the :remove nil
option, it still remains in the future queue even after evaluation of this form.
The default option is :remove t.

Ezxample. Figure [2] shows a subscriber example in the ABCL language. In
ABCL, bracket forms are often used to build message patterns; and in a message
pattern, a symbol starting with a colon (:) represents a tag, and other symbols
are pattern variables. Executing an expression [object...] creates an object with
a specified behavior defined in the expression. In this language, the symbol Me
stands for the object which executes the operation in which the “Me” exists.
Moreover, by using a reply form ! form, the evaluation result of the form is sent
back as a reply to the currently processed message.

In the subscriber example, the publish call in the state definition of service
creates a cycle between service and proxy objects, since each such call leads to
a produce and indeed another publish call in the object proxy. In the object
service, since publish and detectNews calls are past-time, interleaving of other
calls (such as subscribe and unsubscribe calls) is possible between each execution
of publish or produce. In line 2, object service sends a [:publish] message to proxy.
As a response, in line 15 and 19, object proxy creates a future and appends it to
a produce message toward object service, respectively. Therefore, waiting points
for detecting news are delegated to the proxy by using futures. Object proxy owns
the future, and only this object has the access to values, while other objects can
only write to the future. In line 6, when object service receives a produce message,
it sends a past-time detectNews message to the object producer, searching for
news, with a reply destination Me. And according to an exclamation mark
!'in line 35, the reply from evaluation of detectNews is sent back to Me. In
line 6, according to the exclamation mark ! the result from the evaluation is
replied to the future variable. In line 21, object proxy first checks if the future is
available, then by the command next-value retrieves the value and multi-casts it
to clients. In line 24, if nextProxy is empty, the object proxy continues to search
for new news; otherwise, it publishes current news to clients subscribed to the
nextProxy.

2.2. Rebeca

Rebeca [31],[32] is an active object language that is more close to the actor-
based model than the other languages considered here. In this language, active
objects are called rebecs (reactive object). Each rebec is instantiated from a
reactive class and has its own thread of control. A reactive class consists of
an interface, variables, method definitions (message server) for dealing with
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[object service
(state dataBase db; int limit; [proxy <= [:publish]]; )
// proxy does the main job and initiates a produce call
(script
(=> [:produce proxy]
I[producer <= [:detectNews] @ Me]; //reply destination is Me
db <= [:logging];)

(:>“[.:subscribe]...)
(=> [:unsubscribe]...))

]

[object proxy

(state list myClients:=nil; News ns; proxy nextProxy:=nil,;
future := (make-future);)

(script

(=> [:publish]
[service <= [:produce Me] $ future];
// replies from object service saved in the future
if (ready? future){ // polling on the future
[ns := (next-value future)];
[myClient <= [:signal ns||;} // multi-cast the result
if (= nextProxy nil)
[Me <= [:publish]]
else
[nextProxy <= [:publish]];))
]

[object producer
(state News ns;)
(script
(=> [:detectNews]

! nsi=...))
]

[object myClient
(script
(=> [signal ns] ....))

]

Figure 2: A version of the subscriber example in the ABCL language.




messages and initial methods. An initial method of a rebec triggers declared
messages toward other rebecs. The receiving objects react to these messages
according to their method definitions. Communication in this model is one-way
asynchronous message passing, without shared variables, blocking receive, nor
futures. Since the communication is by asynchronous message passing, each
rebec has its own message queue, with FIFO order. Rebeca actors are isolated,
therefore their analysis and verification become feasible.

Sometimes it is necessary to have synchronous communication, thus in ex-
tended versions of Rebeca the component concept is defined. A component
encapsulates rebecs that may have internal synchronous communications [30].
External communication beyond a component is either an asynchronous broad-
cast or an asynchronous message toward another rebec. RebecaSys [28] is an-
other extended model of Rebeca supporting global variables and the wait(e)
statement. This statement temporarily stops the execution of the process. The
Boolean expression e may only contain global variables that all rebecs have ac-
cess to. Hence, the wait statement depends on the rebecs that update these
variables.

FEzxample. Figure [3|represents the subscriber example with the extended version
of Rebeca, considering futures as global variables. The initial produce message
in reactiveclass Service creates a cycle since each such message leads to a publish
message, which in turn leads to another produce message. The future variable
is a Boolean global variable that the prod rebec sets to true when it completes
a detectNews call, in line 19. The service rebec as a server asynchronously
broadcasts a detectNews message to anonymous receivers, which only one of
the rebecs providing these messages reacts to, and also sends an asynchronous
publish message to object proxy. In line 30, proxy rebec is blocked waiting for
the future to become true. Then in line 31, it sends a send message, provided in
prod rebec, to signal news to subscribed clients. It is possible to make a simpler
version in Rebeca without global variables, but we here want to illustrate how
futures can be simulated.

2.3. Creol

Creol was developed from the OUN language [7] based on the notion of
active concurrent objects. Interaction is by means of asynchronous methods,
implemented by message passing, and remote field access is not allowed. The
synchronization mechanisms include suspension, allowing passive (non-blocking)
waiting on a Boolean condition or on the arrival of a return value from another
object [23 22, 24, 20]. This allows non-blocking as well as blocking method
calls.

The visible behavior of objects is specified through interfaces. Thus meth-
ods not exported through an interface may only be used for self calls. The
behavior of objects can change dynamically between active and passive (reac-
tive) by means of asynchronous self calls. Multiple inheritance is supported as
well as dynamic code modification. Basic Creol supports method-local futures
(so-called “call labels”), i.e., futures may neither be passed as parameters nor



1| globalvariables {boolean future;}

2| reactiveclass Service() {

3| init() {Producer prod; Proxy nextProxy; self.produce(DataBase db); }
4| // initial action, starting a produce cycle
5| produce(DataBase db){

6 detectNews();

7 proxy.publish(self, prod, nextProxy); // no waiting
8 logging(){...} } // logging in a database for services
9| ...

10| subscribe(Client me){...}

11| unsubscribe(Client me){...}

12|}

13

14| reactiveclass Producer() {

15| News ns;

16| init() { future= false;} // initialization

17| detectNews(){

18 ns=.... // wait for more news

19 future= true;

20

21| send(Client myClients){

22 if (future)

23 myClients.signal(ns); } // assuming multi-casting is ok in Rebeca
24|}

25

26| reactiveclass Proxy() {

27| List[Client] myClients:=null,;

28| ...

29| publish(Service s, Producer prod, Proxy nextProxy){
30| wait(future); // wait for the future

31| send(myClients);

32| if nextProxy == null

33 s.produce();

34| else

35 nextProxy.publish();}

36| }

37

38| reactiveclass Client(){

39| News latestNews;

40| signal(News ns){ latestNews= ns;}

41|}

42

43

main {Service s(Database db); Proxy proxy;}

Figure 3: A subscriber example in the Rebeca language.
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assigned to fields. However, first-class futures are allowed in extensions of Creol.
Methods are given with the keyword op and Creol methods may have several
inputs as well as several outputs (indicated by the keyword out). Variables
are declared by the syntax var name : T = e where e is the initial value of
type T'. Creol has a small-step operational semantics defined by a set of rewrite
rules in the Maude format [I2], used for proving the soundness of analysis and
verification [I4] 10} [IT], and also providing an executable interpreter.

Communication between Creol objects is two-way, passing actual parameters
from the caller to the callee object when a method is called, and passing method
return values from the callee to the caller when the method execution terminates.

The asynchronous method call command tlo.m(€) where ¢ is a call label
(“tag”), sends a call request message to the callee o and the caller object pro-
ceeds without waiting. This call generates a unique call identity for referencing
the call, assigned to t. Passive waiting for return values is possible by means
of cooperative scheduling. Each active object has an internal process queue con-
taining the processes that are suspended, either waiting for a return value or a
Boolean condition. In addition there is an external queue for receiving method
call requests from other objects.

A process is suspended when the suspension statement await c is executed
in a state where the condition c is false. The executing process is moved to the
process queue of the object, and the object is then free to do something else, like
serving an incoming call request or continuing an enabled process in the pro-
cess queue of the object. Similarly the statement await ¢?7 suspends when the
return value for the call with the identity of ¢ has not arrived. Otherwise, the
await statement is enabled, and execution continues with the next statement.
In contrast, the command ¢?(Z) blocks while waiting for the return values, and
assigning these to the variable list Z. A label ¢ is local to the current process
and cannot be passed to other processes, nor assigned or read by other kinds of
statements. The sequence tlo.m(€);t?(Z) (abbreviated o.m(€;T)) corresponds to
a synchronous method call, blocking the processor of the current object until the
return values are available, whereas the sequence tlo.m(e); await t?(Z) (abbre-
viated await o.m(e;T)) corresponds to a non-blocking call, where await ¢7(Z)
abbreviates await t7; t?(T). The label ¢ may be omitted in a ! call statement
if that ¢ is not needed in a 7 statement. Multi-casting can be allowed by the
syntax lo.m(€) where o is a list of objects, in which case the replies cannot be
received (since there is no associated label). Note that labels (of type Label) are
not typed by the return value. Static type checking is possible by certain lan-
guage restriction (avoiding that the same label is used for several return value
types, at a given program point).

Example. The subscriber example, which originally makes use of first-class fu-
tures, must be redesigned in Creol, for instance as done in Figure [4] Here the
passing of a future is replaced by suspension, which means that the Service
object may continue with other tasks as in the version with first-class futures.
The suspended process can be compared to an added proxy-like object, while
the Prozy objects in the Creol solution are not blocked in contrast to the ABS

11
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type News = ...

interface Servicel{
with Clientl
op subscribe(out result:Bool)
op unsubscribe(out result:Bool)
with Any
op produce()
}
interface Proxyl{
with Servicel, Proxyl
op publish(ns:News)
}
interface Producerl{
with Servicel op detectNews(out result:News)

=

interface Clientl{with Any op signal(ns:News) ...}
interface DataBase{with Any op logging(...) ...}

class Service(limit:Nat, prod:Producerl, db:DataBase) implements Servicel {
var proxy:Proxyl = new Proxy(limit,this); //proxy does the main job
{!this.produce() } // initial action, starting a produce cycle

op produce(){var ns:News;
var t: Label;
t!prod.detectNews();
db.logging(...) // logging in a database for services
await t?(ns)// waiting while suspending
Iproxy.publish(ns) } // sends the value

with Clientl
op subscribe(out result:Bool) {...}
op unsubscribe(out result:Bool) {...}

}

class Proxy(limit:Nat, s:Servicel) implements Proxyl{
var myClients:List[Clientl]]=Nil; var nextProxy:Proxyl;

op publish(ns:News){

ImyClients.signal(ns); // multi-cast the result
if nextProxy=null

then !s.produce() else InextProxy.publish(ns) £i}

Figure 4: A version of the subscriber example in the Creol language.
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version with first-class futures. Note that Creol insists on typing of object
variables by interfaces, and we therefore sketch all interfaces. An interface con-
sists of a number of operations (and semantic specifications, ignored here), and
each operation has a co-interface, restricting what kind of objects may appear as
callers. For instance, subscribe has Client] as co-interface, meaning that method
subscribe may only be called by objects supporting Clientl. This implies that
the implicit caller parameter is of interface Clientl, which allows us to ensure
statically that myClients is a list of Clientl, say by passing caller to a method

op add(c : Clientl){
if length(myClients) < limit
then myClients := append(myClients, c)
else if nextProxy = null then nextProxy := new Proxy(limit,s) £i ;
InextProxy.add(c) fi}

of class Prozy, by the asynchronous call !proxy.add(caller). Thus the co-interface
ClientI is needed in the implementation of subscribe and unsubscribe in order
to obtain a type-correct program, but it is not needed for the implementation
of subscribe since caller is not used. By using the implicit caller parameter,
one does not need the explicit caller parameter (Clientl me) used in the other
solutions for subscribe and unsubscribe. For simplicity, we use the syntax {...}
rather than begin...end.

2.4. ABS

Abstract Behavioral Specification language (ABS) [21] is an object-oriented
language, inspired by Creol and JCoBox [29]. It is a concurrent programming
language based on the cooperative scheduling from Creol and the notion of ob-
ject groups from JCoBox, named Concurrent Object Groups (COG) [3]. Soft-
ware product lines with Deltas are supported, but not class inheritance. In
ABS, the unit of concurrency and distribution is the COG. Each COG includes
a group of objects, a queue, and a processor. Objects in a COG share a com-
mon heap and processor, and there is no data sharing between COGs. At most
one process (method activation) is active in a COG, while other processes are
suspended in a process pool. In other words, parallel processes are executed by
multiple threads in different COGs, but only one thread is active in a particular
COG.

Objects in different COGs call each other asynchronously. Inside a COG, ob-
jects can call each other asynchronously or synchronously. The communication
syntax is like Creol as well, using conditional await or await on a result/future.
The statement release gives unconditional suspension. The await releases the
thread if the specified condition does not hold, or if the future is not resolved
(in case of await on a future), whereas the get f statement blocks the thread
until the future f is resolved. Thus, the whole COG gets blocked. ABS futures
are explicit, first-class, and typed by a parametric type Fut [T], where T is the
type of the future value.
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data News = ...

interface Servicel{

Bool subscribe(Clientl me)
Bool unsubscribe(Clientl me)
Void produce()

interface Proxyl{
Void publish(Fut[News] fut)

=

interface Producerl{
News detectNews()
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—
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interface Clientl{Void signal(ns:News) ...}
17| interface DataBase{Void logging(...) ...}
18
19| class Service(Int limit, Producerl prod, DataBase db) implements Servicel {
2 Proxyl proxy:= new Proxy(limit,this); //proxy does the main job

21| {this!produce() } // initial action, starting a produce cycle
22
23| Void produce(){

24 Fut[News] fut := prod!detectNews();

25 proxy!publish(fut); // sends future, no waiting
2 db.logging(...) } // logging in a database

27 ..
28| Bool subscribe(Clientl me){...}
29| Bool unsubscribe(Clientl me){...}
30| }
31
32| class Proxy(Int limit,Servicel s) implements Proxyl{

o ©

w

D

33| List[Clientl] myClients:=nil; Proxyl nextProxy;

340 ..

35| Void publish(Fut[News] fut){

36 News ns := get fut; // wait for the future

37 myClients!signal(ns); // multi-cast the result

38 if nextProxy==null
39 then slproduce() else nextProxy!publish(fut) £i}
40| }

Figure 5: A subscriber example in the ABS language.
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Ezxample. Figure [f illustrates the subscriber example in ABS, making use of
first-class futures, passing a future in the publish calls rather than the news
value. In line 24, the asynchronous call creates a future identity, assigned to
fut. Then fut is passed to a proxy object in line 25. In line 36, the proxy object
is blocked until fut is resolved, after which the proxy continues to execute the
next statement. For simplicity, we omit return void at the end of the body of
a void method.

2.5. Encore

Encore [4] is a parallel programming language based on active objects with
explicit first-class futures, inspired by Creol and ABS. It is designed for multi-
core platforms and is optimized for efficient execution. Encore supports both
active object parallelism for coarse-grained parallelism, as in Creol, and paral-
lelism within an object, using parallel combinators for building high-level coor-
dination of active objects and low-level data parallelism. Encore offers high-level
language constructs for coordination of parallel computations such as building
pipelines of these computations. It offers parallel types, an abstraction of paral-
lel collections, and also parallel combinators for operating on them. The parallel
type Par T is a handle to a collection of parallel computations, and it can be
thought of as a list of futures, which will eventually produce zero to multiple val-
ues of type T. Then operations on parallel types are called parallel combinators;
accordingly, high-level typed coordination patterns, parallel dataflow pipelines,
speculative evaluation and pruning, and low-level data parallel computations
are supported by Encore [4].

Encore provides both passive and active classes (with the latter as default).
Active objects have their own thread of control, or possibly multiple threads
of control, and a FIFO message queue, and interact via asynchronous method
calls. Passive objects do not have their own thread of control, like standard
objects of Java. An object class is active by default or is declared as passive by
a keyword passive. An asynchronous method call to an active object is stored
inside the active object’s queue. And the result of this asynchronous method
call is a future. If the type of the return value is T, the returned future would
be of type Fut T. Explicit synchronization constructs for accessing a future are
get, await, and future chaining. Like Creol/ABS, get blocks an active object
until the future is resolved, and await waits for resolving the future and blocks
the current process, but not the current active object. Thus other methods of
the active object can be invoked. In the chaining construct (~~>), a closure is
attached to a future, and when resolved, the thread executes the closure, which
might result in another future, containing the result of the executed closure. A
closure is a set of computations, possibly including method calls.

Ezample. To illustrate these operations on futures, Figure 6] represents the sub-
scriber example with the Encore language. In line 7, a future with identity fut
is created as a result of an asynchronous call to the active object prod, and then
passed to the object proxy in line 8. In line 20, object proxy blocks until fut is
resolved.
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passive class DataBase{...}

class Service(limit: int, prod: Producer, db: DataBase) {
proxy:= new Proxy(limit,this); //proxy does main job
{this.produce();} // initial action, starting a produce cycle

def produce(): void{
let fut := prod.detectNews();
proxy.publish(fut); // sends future, no waiting
db.logging(...) } // logging in a database for services
def subscribe(me:Client): bool;
def unsubscribe(me:Client): bool;

}

class Proxy(limit: int, s: Service){
myClients: [Client];
nextProxy: Proxy;

def publish(fut: Fut News): void{
ns : News;
ns := get fut; // wait for the future
myClients.signal(ns); // multi—cast the result
if nextProxy==null;
s.produce();
else nextProxy.publish(fut);}

Figure 6: A subscriber example in the Encore language.

2.6. ASP/ProActive

The goal of ASP [6] and ProActive [5] is to design a transparent concurrent
programming language. ProActive is a Java library programming language [5],
which implements ASP semantics in Java and inherits many properties from
ASP. In ASP, an active object with its thread of control, its request queue, and
its passive objects is called an activity. In addition, active objects are defined
by a newActive command, and passive objects are standard Java objects. Only
active objects are accessible between activities. Method calls to active objects
are transparently turned into asynchronous calls, and those to passive objects
are turned into synchronous local calls. Moreover, futures are created implicitly
as a result of asynchronous method calls to an active object. In other words,
an asynchronous method call is stored in the request queue of the callee, and
the caller creates a future object with a unique identity, referencing this re-
quest. When a future gets resolved, a reference to the corresponding request
gets updated by the value.

ASP supports first-class futures, and its synchronization mechanism for ac-
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cessing a future is wait-by-necessity. This synchronization mechanism blocks
the thread whenever it needs to access a future value, until it is resolved. Al-
though futures in ASP are implicit, the ASP runtime system needs constructs
for implementation, update, garbage collection and synchronization of futures.
It supports an explicit synchronization primitive waitfor which triggers an ex-
plicit wait-by-necessity on a future. It also provides primitives to test whether a
future is updated or not. The primitive is denoted by awaited(a), which returns
true if a is a future and false otherwise. An extension to multiactive objects has
been made recently in [I7].

Ezample. Figure [7]shows the subscriber example with the ProActive language.
In ProActive, active objects are instantiated using the ProActive API:

B b= (B) ProActive.newActive(”B”, params, node);

It creates a new active object of type B, in which params specifies constructor
parameters, and node specifies the location to put the active object. Another
method to create an active object is by using turnActive(obj, node), which
makes an existing object (obj) active on a specified location (node). In fact, a
thread is created and an associated pending request queue. In line 5, an active
object proxy is defined by the newActive command, and in line 6 a passive object
prod is transformed to an active one by the keyword turnActive. In addition,
we assume that all object instantiations of class service is active as well. Cor-
respondingly, all method calls toward these objects are implicitly transformed
to asynchronous ones. Line 7 starts a produce cycle. In line 10, variable v is
the result of an asynchronous detectNews call toward object prod, which is an
implicit future. In line 11, this future is passed to object proxy without block-
ing. Then, in line 20, when the future value is needed to continue execution, an
explicit wait-by-necessity synchronization waitfor is applied on the future v.

Implementation strategies. To represent flow of futures and different update
strategies for implicit futures, Figure [§] is adopted from [6]. The gray arrows
with numbers show the flow of futures between activities, and the black ones,
indexed with letters, show the future references. In this example, activity -y
initiates a remote method call to activity 6 and future f; is associated to the
result of this call. Future flow number 1 corresponds to the creation of future f;
involving v and 0. Then ~ sends f; to 3, for instance as the result of a request,
flow number 2, and S forwards the f; reference to « as the result of another
request, flow number 3a. In parallel, v sends a request to o/ with f; as a request
parameter, flow number 3b. Finally, § consumes the result associated with fi,
flow number 4.

In the case of first-class futures, a future value list F,, inside an activity stores
future values calculated by itself or other activities. There are three strategies for
updating a future value: 1) no partial object forwarding, 2) eager strategy: either
forward-based or message-based, and 3) lazy strategy. The simplest strategy is
that no partial object (the objects containing future references or values) can be
forwarded between activities. In other words, futures are not first-class. This
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class Service(Int limit, Producerl prod, DataBase db) extends Servicel
implements Active {

// assuming active instantiation of object service

Object [| params= {limit,this}

Proxy proxy:= (Proxy) ProActive.newActive ("Proxy”, params, Node);
prod = (Producer) ProActive.turnActive (prod, Node);
{this.produce(); }

void produce(){
News v := prod.detectNews(); // implicit asynchronous method call
proxy.publish(v); // v can be passed without blocking

db.logging(...) }

class Proxy(Int limit,Servicel s) extends Proxyl implements Active{
Client[] myClients:=null; Proxyl nextProxy;

void publish(News v){
News ns := waitfor(v); // explicit wait-by-necessity on v
myClients.signal(ns);
if nextProxy==null;
then s.produce(); else nextProxy.publish(v);}

Figure 7: A subscriber example in the ProActive language.

strategy leads to fewer number of future references, simpler update process,
and avoids maintaining a future value list inside an activity. However, it is
too synchronized and may lead to waste of time and deadlock. For example,
according to Figure 8] while «y is waiting for a response from 4, other activities
are stuck (waste of time).

The second strategy is called the eager strategy, a future gets updated as soon
as it is resolved, thus future value lists are avoided. In the case of forward-based
strategy, when a future reference is sent to an activity, the sender is responsible
for updating its value, but not the source activity; hence the source activity
does not need to keep the future value any longer. Consequently, when there
are too many intermediate nodes, this strategy increases the delay between when
a future is resolved and when it gets updated. In Figure [§] when based on this
strategy, the future f; is first updated in +, then it is sends this value to 3, o,
and then (3 can forward this value to a. Consequently, there is a delay before
updating the future value of «.

In the case of message-based strategy, when a future is forwarded between
two activities, a message, created from the receiver or the sender activity, is
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Figure 8: Future flow in ASP [6].

sent to the source activity. Hence the source activity gets informed about them,
and when the future value is calculated, it can directly update it in all other
activities. This message-based mechanism minimizes the delay of updating. For
example, in Figure [8), when ~ sends the future reference f; to o/, either v or o’
sends a message to the source activity J; correspondingly, when the future value
is calculated in ¢ it can be immediately updated in o'

The third strategy is the lazy future update. A future gets updated only
when an activity requires it (wait-by-necessity). The activity directly asks for
the future value by sending a message to the source activity. In the lazy strategy,
a future value list is required to be kept in the source activity in order to store
the future values and update them whenever there is a request for them.

The implementation of ProActive supports several update strategies, includ-
ing no partial object forwarding and forward-based strategy [6], and Henrio et
al. have implemented the four strategies in ProActive as a middleware to study
the efficiency of different update strategies [6]. The lazy strategy is faster than
the two eager ones, since less updates are required. This strategy is suitable
for scenarios in which the number of processes requiring the future value are
considerably less than the total number of processes. In this strategy, there is
less load at the source process. However, it leads to additional delays and needs
more resources to keep the future value list inside the source process for later
updates. The eager forward-based strategy gives more delay since the interme-
diate nodes have to forward a future value to a target. As a result, this strategy
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is suitable for scenarios with small number of nodes. Eager message-based strat-
egy necessitates more bandwidth and resources at the source process, since all
other nodes communicate with it.

To complement the discussion we introduce some additional language fea-
tures and a new language called FutFree, in the next section.

2.7. A proposed future-free language with improved expressiveness (FutFree)

As we have seen, implicit futures have the weakness that the implicit oc-
currences of the get operation cannot always be identified in a context-free
manner. This makes modular reasoning and static analysis difficult. And a
weakness of the future-free paradigm, as represented by the future-free subsets
of the languages discussed above, is that there is no way of expressing that a
get operation should be performed in a given state. For the purpose of this
paper, we therefore propose a new language exploiting the future-free interac-
tion paradigm while adding a new mechanism for non-blocking waiting. The
language is an extension of the future-free subset of Creol/ABS and is called
FutFree. We do this in order to complement the comparison of languages with
and without futures.

FutFree is without call-labels, and without explicit/implicit futures, and
consists of the asynchronous call statement olm(€), the high-level future-free
call mechanisms of Creol, including the await construct, extended with a “tail”
construct to better control return value points, and a delegation mechanism to
enable simple sharing (to an object other than the caller). The tail construct
may or may not be combined with await:

[await] z := o.m(€)< s >

where the tail s is any statement list, being performed while waiting for the
future of the call to m to be resolved, and therefore s may not use (the new value
of) z. The syntax [await] denotes an optional await, allowing the statement to
suspend after s if the future is not resolved at that point. Thus, the statement
z = o.m(€)< s > will block after execution of s while waiting for the return
value to appear (if it has not already appeared). And the statement await x :=
o0.m(e)< s > will suspend after execution of s while waiting for the return value
to appear. The former statement is equivalent to f := olm(e);s;z := get f,
using ABS, and the latter is equivalent to f := olm(e); s; await z := get f.
Note that < s > may be empty or include additional calls as in for instance

[await] 2 := 0l.ml(el) < calculate e2; [await] y := 02.m2(e2) < s >; use y >

Here the first suspension point is after s, passively waiting for the last call to
complete (receiving the result in y), and the second suspension point passively
waits for the m1 call to complete. With respect to the expressiveness of this
construct, we observe that programs with nested call-get structures can be ex-
pressed without futures. In particular, one may wait for completions of several
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calls and continue when all calls have completed by letting the right brackets
(“>") stand together, as in:

[await] calll < ...;[await] call2 < ... >>

To await completions in one specific order, one would need to make the calls in
the opposite order, as in

[await] calll < ...;[await] call2 < ... >;... >

where the return value of call2 is handled before that of calll. We use await
when passive waiting is desired.

Delegation. Consider the case that a method body (say method m) ends by re-

turning the result of a call to n, as in the method body {...; z := o.n(€); return z}
where x is a local variable in the body. Here the result of the call is not used

by the current process, and it may be desirable to avoid the waiting. With

futures this could be done efficiently by returning a future, as in {...; f :=

oln(€);return f} changing the type of the return value accordingly. The same

efficiency can be achieved in the future-free setting by a form of delegation [25].

The body of m is now written as {...;delegate o.n(e)}. The statement

delegate o.n(€)

makes the current call (of m) terminate without producing a result, while dele-
gating to the remote call 0.n(€) to send a result back to the caller of m. Type
checking must ensure that the result type of n is appropriate. This gives the
same efficiency for the current process as in the solution with futures, and with-
out the need to change the return type.

FutFree is more high-level than languages with futures or call labels, since
the syntactic complication of futures/labels is avoided, and it is more expressive
than the future-free restriction of both Creol and ABS. However, FutFree does
not support non-parenthetic nesting of calls and returns, nor delegation to more
than one object.

A weakness of the tail construct is that it involves blocking at the end of
the tail. The delegation mechanism delegate o.n(€) avoids this waiting point
and still makes use of the result. If o here is this, a local continuation (i.e.,
relative to the caller) will be triggered asynchronously. This is a bit similar to a
continuation associated to a future, which could be added as a suspended process
and enabled when the associated future is resolved. Such a continuation should
then maintain the class invariant. When a method body contains a number of
continuations, there may be a need for coordination of the different activities.
Encore has solutions for this using futures [4]. A syntax for this concept of
asynchronous continuation can also be made in the future-free setting (i.e.,
without explicitly mentioning the associated future). However, we will not add
further syntax to FutFree since this can be simulated (even though less elegant).
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class Service(Int limit, Producerl prod) implements Servicel {
Proxyl proxy:= new Proxy(limit,this); //proxy does the main job
{thislproduce{}} // initial call
Void produce(){ News ns;
await ns := prod.detectNews() // no blocking
< db.logging(...) >;
proxy!publish(ns)} // send the news

}

class Proxy(Int limit,Servicel s) implements Proxyl{
List[Clientl] myClients:=Nil; Proxyl nextProxy;

Void publish(News ns){
myClients!signal(ns); // multi-cast the result
if nextProxy==null
then slproduce() else nextProxy!publish(ns)}

Figure 9: The Publishing Example rewritten in the future-free language

Ezample. In Figure [9] we show the publishing example rewritten to the new
format without futures (with changes in blue). This is essentially the same so-
lution as that in Creol, Figure but expressed without call labels/local futures.
We also assume interfaces as in the Creol. The changes are straight forward.
The Service object makes the same call to publish, but at a later time, when
the news are available. By using a suspending publish call, the Service object is
not blocked and has therefore similar efficiency as in the first version. And the
blocking that used to be in the Proxy object is removed, and thus the Proxy ob-
jects will be more responsive. This indicates that passing futures as parameters
can be avoided without loss of efficiency by using asynchronous call/return in
combination with suspension. Instead of having a responsive Service object at
the cost of blocking in Proxy objects, as in the original version, the future-free
version has a responsive Service object as well as Proxy objects, but now the
process queue of the Service object may be non-empty. Thus there is less need
for first-class futures in a future-free language with cooperative scheduling than
in one without. In general one may use the process queue and suspension rather
than blocking separate object(s) in get statements. Forwarding a future can be
replaced by a suspended process forwarding the future value. And this gives a
deadlock-free solution.

The versions in Figures [J] and [5] are similar in that the Service objects are
not blocked (apart from the logging part). And if there are no other produce
and publish calls than the ones in Service and Proxy, there will be at most
one uncompleted produce process and also at most one uncompleted publish
process, for either version. For the version in Figure [J] there is an explicit
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ABCL Rebeca Creol ABS Encore ASP FutFree

futures yes no yes yes yes no no
syntactic yes yes yes yes yes no yes
first-class yes no no yes yes yes no
cooperative no no yes yes yes no yes
polling yes no no no no yes no
dyn. creation yes no yes yes yes yes yes
passive data obj obj adt adt obj obj adt

Figure 10: Overview of future support in the selected languages.

interleaving point after the logging, whereas in the other version (in Figure [5)
this interleaving is implicit since the produce process terminates. Thus the two
versions may give rise to different executions.

2.8. A summary of active object languages

A summary of the main interaction-related features of some different lan-
guages for active objects is given in Figure In the table, the entry “futures”
is indicating whether a language supports the future implementation explicitly
or not. The entry “syntactic” shows whether the waiting points are syntactically
identified or not, in the context of a given class. For example, in ASP when a
future is passed to an activity and its value is needed inside that, it is not textu-
ally clear whether it is a waiting point or not. For Rebeca the “yes” refers to the
extension with wait. Moreover the table compares whether these languages sup-
port first-class, cooperative, polling, cooperative scheduling or not. The table
entry “dyn. creation” indicates if dynamic object creation is supported, and the
entry “passive data” indicates how temporary internal data structure is built,
either by means of (passive) objects without their own execution thread, marked
“obj”, or user-defined data types, marked “adt”.

An advantage of explicit futures is that it provides explicit (syntactic) iden-
tification of waiting points, typically by the get construct. For the category of
languages with implicit future support, we may distinguish between those with
explicit and implicit identification of waiting points.

The table summarizes the support of futures and related concepts for the dif-
ferent languages. The considered languages are chosen to give a certain variety,
all in the setting of imperative programming with active objects.

For the category of implicit futures, there is a distinction between languages
where the waiting points are syntactically given and those where they are not,
as in the case of wait-by-necessity where the usage of a variable x bound to the
result of a method call requires that the value is available. Thus sending x as a
parameter does not require that the value is there, but updating or testing the
value would normally require the value to be available. For instance, this means
that a method m(Int x){s1;y := x+1; s2} will have an implicit potential waiting
point at y := x 4+ 1 when m is called with an actual parameter representing an
implicit future (and when s; does not use ) whereas there is no such waiting

23



point when m is called with an actual parameter representing an available value.
This makes program reasoning complicated, for instance deadlock reasoning,
and modular semantics is not possible since waiting depends on external objects.
We will therefore limit the discussion to languages with explicit waiting points.

Operations on futures can be blocking, such as getting the result from a
future, suspending, or it can be asynchronous and non-blocking, such as attach-
ing a callback or a continuation to a future. For example, in AmbientTalk the
future access is a non-blocking asynchronous operation, in which actors desir-
ing a future value are registered as observers, then when the future is resolved,
its value is sent to these registered observers. An observer actor can register
a closure, a block of code, to a future that is applied when the future gets re-
solved [8]. An extended version of Encore [I3] also offers high-level non-blocking
coordination constructs operating on futures. For instance, it can apply a func-
tion on the first result of a bunch of futures and terminate the computations
associated with the other futures. It offers complex coordination, including
pipe-lining and speculative parallelism on futures, when they might be depen-
dent on other futures. To have these complex coordinated workflows, they offer
a new non-blocking asynchronous parallel abstraction ParT (or Par T'), which
is a handle to parallel computations or a data structure for collecting future val-
ues, and also offer parallel combinators to operate on. Parallel combinators are
non-blocking constructs that control and coordinate ParT collections without
blocking threads.

A recent survey [3] compares several active object languages such as ABS,
Encore, Rebeca and ASP /Proactive according to their design aspects, the degree
of synchronization, the degree of transparency and the degree of data sharing.
It identifies the design purpose of these languages. For example Creol, ABS,
and Rebeca are designed with program analysis in mind, while Encore and
ASP /ProActive are optimized for efficient execution. The degree of synchro-
nization is compared according to their synchronization primitives. This survey
compares explicit and implicit futures as a degree of transparency. The degree
of data sharing between active objects are compared as well. None of the active
object languages support data sharing, apart from futures, since they are ori-
ented toward distributed systems, where copying and sending data is more safe
and efficient.

3. Unified Syntax and Semantics

Based on the overview above, we consider the main categories of language
support for interaction mechanisms, given by

e support of first-class futures, object-local and method-local futures, and
future-free (asynchronous call/return) interaction

e cooperative scheduling or not

e polling or not (for languages with futures)
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This gives the following main categories for interaction mechanisms, where the
six first categories (those with futures) may be with or without polling: i) coop-
erative scheduling and first-class futures with ABS/Encore as representatives,
ii) cooperative scheduling and object-local futures, iii) cooperative scheduling
and method-local futures with Creol as a representative, iv) non-cooperative
scheduling and first-class futures with something in the direction of ABCL as
a representative, v) non-cooperative scheduling and object-local futures, vi)
non-cooperative scheduling and method-local futures, vii) cooperative schedul-
ing and no support of futures, with FutFree as a representative, and viii) non-
cooperative scheduling and no support of futures, with Rebeca (or the await-free
restriction of FutFree) as representative. However, basic Rebeca does not use
the call/reply paradigm.

As mentioned, we restrict ourselves to imperative languages, and assume
syntactic identification of any waiting points. In particular, to keep the discus-
sion uniform, we use the following ABS-inspired syntax for the different lan-
guage mechanisms representing the basic ways of using futures or asynchronous
call/return interaction without futures.

3.1. Syntaz

The unified syntax is given in Figure [II] We assume static type check-
ing. The different language combinations are obtained by including/excluding
polling, await, first-class, or object/method-local futures. In the case of method-
local futures, futures may not be assigned to fields nor passed as parameters or
method results. In the case of object-local futures, futures may be assigned and
passed as parameters/result but only for local methods (methods not exported
through any interface). This guarantees static control of what is legal. For first-
class future languages, futures may be assigned and passed to parameters/result
to any method (modulo static typing restrictions).

Moreover, the different language combinations are achieved by taking the
basic and future-free constructs, adding no futures, or adding futures, either
with first-class future operations (assignment and parameter passing), no first-
class future operations (other than assignment to local variables) for the case of
method-local futures, or assignments to future variables and passing of futures
in local methods for the case of object-local futures, and furthermore adding
suspension (by the await keyword) or not, and adding polling or not for com-
binations with futures. Furthermore, languages with method-local futures may
be divided further by allowing multiple-read or single-read futures. Single-read
futures depend on static constraints ensuring that each path through a method
has at most one read of a given future, whereas multiple-read languages are free
from this restriction. Thus we cover in all eighteen language combinations.

The future-free constructs (including tail) are included in all language com-
binations, however, some of these constructs can be omitted in languages with
futures since they can be expressed by means of futures. For instance, the fol-
lowing statements are inter-definable: The call [await] 2 := 0.m(€) is the same
as [await] x := o.m(€) < skip >, and the call [await] z := 0.m(€) < s > may
be simulated by means of futures by f := olm(e);s; [await] = := get f, for
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Basic constructs

T:=e
x :=new C(€) [at o]
return e

if ¢ then s [else s'] fi
while cdo s od

Future-free constructs

assignment (x a variable, e an expression)
object creation (€ actual class parameters)
creating a method result/future value
if-statement (c a Boolean condition)
while-statement

olm(e)

[await] x := 0.m(€)
[await] x := 0.m(€) < s >
delegate 0.m(e)

Basic future constructs

simple asynchronous call, non-blocking
blocking/non-blocking call

blocking /non-blocking call with tail
termination and delegation

f:=olm(e)

asynchronous call, non-blocking

[await] x := get f getting a future value

Cooperative scheduling

await ¢ conditional suspension
await f7 await on a future
Polling
f? checking if a future is resolved

Figure 11: Unified Syntax. Here f is a declared future variable and x an ordinary program
variable, s, s’ denote statement lists, and [...] denotes optional parts.

some fresh future variable f, where [await] x := get f again can be seen as a
shorthand for [await] f?;2 := get f. Furthermore, we may extend the await
notation to a conjunction of futures. We use dot-notation for suspending/block-
ing calls and ! for making an invocation request.

Polling of a future means checking if a future is resolved or not, for instance in
an if-test, say if f7 then x:=get f else ... fi. Polling may lead to com-
plicated branching structures, and is often avoided in languages with support
of explicit futures. Basic constructs are quite standard, but object creation has
as an optional part (at o) for specifying the placement of the new object. The
default is at this, i.e., the same location as the parent object.

3.2. Operational Semantics

In this part, we present (relevant parts of) the operational semantics of
the different language combinations, including future-free, method-local, object-
local, and first-class future languages, using the style of structural operational
semantics. The purpose of the operational semantics is to show the underlying
asynchronous communication between active objects at runtime. Each rule in
the operational semantics corresponds to one execution step.
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A system state is given by a configuration, which is a multi-set of objects and
messages, either invocation messages or reply messages, in addition to future
objects in the case of first-class future languages. An object is represented as

ob(o|s,a,l,q)

where o denotes the object identity, s is the list of active statements, a the
state of object fields (attributes), I the state of local variables defined in a
method (including the parameters), and ¢ the internal process queue. The
process queue is only needed in languages with cooperative scheduling. The pair
(s & 1) represents (the remaining part of) the active process, with statements s
and local state [. At suspension, this active process is moved to the process
queue, making the object idle. When idle, an object may continue with another
(enabled) process from the process queue, or start a new method invocation.
We use the syntax
invoc (0,u,m,d)to o

for an invocation message from object o to object o/ where m is the name of
the called method, u the identity of the call/future, and d the list of actual
parameters. An object will have an associated invocation queue, and also a
reply queue in the case of non-first-class future languages. We let iq(o|p)
denote the invocation queue associated with o containing messages (p) to o.

It is worth mentioning that an object identity is unique, which can be
achieved by using the parent object identity and a counter [22]. Similarly a
unique call or future identity v can be achieved by using the caller object iden-
tity and a separate counter. The counters can be represented by implicit fields
in a. In the case of first-class future languages, this identity acts as the future
identity.

The operational semantics is given by a number of rewrite rules. A rule can
be applied to a configuration if the left-hand-side matches a subset of the config-
uration (possibly reordered). If the left-hand-sides of two rules match disjoint
parts, they can be applied at the same time, reflecting concurrent behavior.
Each rule involves at most one object, reflecting that the objects are executing
independently from each other. Thus the objects execute in parallel. Non-
determinism is achieved when (at least) two left-hand-sides match overlapping
parts of a configuration.

States are given by mappings from variable names to values, and [z > d]
denotes the local state [ updated so that variable x binds to data value d (adding
such a binding if  is not bound in !). We use + for map composition with
overwriting, so that a +( is the union of map a and [, using [ for variable names
with a binding in both a and I, reflecting that the binding of a variable name
in the inner scope ! shadows any binding of that name in the outer scope a.
Therefore, a + [ represents the total state of an object as used for evaluation.
For an expression e, the notation [e],4; abbreviates the evaluation of e in the
context of a 4+ I. For a variable z, the evaluation [z],4; equals [z]; if [ has a
binding for z, otherwise [z],, i.e., the value of a variable z is found in [ if [
has a binding for x, otherwise in a. Therefore the semantics of an assignment
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statement is given by two rules; one for the case that x is a local variable and
one for the case that x is a field:

assign-local : ob(o|x:=¢;s,a,l,q)
— ob(0|s,a,l[x — [e]a-‘rlLQ)
if =z €l

assign-field : ob(o|z:=e;s,a,l,q)
—  ob(o]|s,a[zr — [e]lati], 1, q)
if x &l

Type checking ensures that = is defined in [ or a. Similarly there are two rules
for if-statement, depending on the value of the if-condition.

if-then : ob(o|if ¢ then sl else s2 fi;s,a,l,q)
— ob(o|sl;s,a,l,q)
if  [¢]gr = true

if-else : ob(o|if ¢ then sl else s2 fi;s,a,l,q)
— ob(o|s2;s,a,l,q)
if [ = false

The semantics of the call [await] = := o.m(€) is given by that of f :=
olm(e); s; [await] z := get f, for some fresh future variable f. And similarly
the semantics of the call olm(€) is given by that of f := olm(e), for some fresh
future variable f. Thus the semantics of the future-free languages is given by
means of futures at the run-time level.

The operational semantics of languages with first-class futures differs from
those with local futures or without futures, since they need a representation of
shared future objects, and we therefore consider the two classes of operational
semantics in two subsections.

8.2.1. Operational semantics of languages without first-class futures

In the case of local or no futures, we need to deal with reply messages, and
let reply (u,v) to o represent a reply message to the caller o, where u is the call
identity and v the returned value. Each object o must keep track of the received
reply messages, in a reply queue rq(o|r), where r is a queue of (u,v) pairs.
When a get f operation is executed, one must check if there is a value for f in
the reply queue. Thus the order of the reply queue is irrelevant, and the handling
of the internal process queue can be seen as non-deterministic. Call identities
are invisible to the programmer and cannot be passed to other objects (where
these call identities would be unknown). For a statement containing get f,
the future (expression) f must first be evaluated. Therefore ob(o | [await] x :=
get f;s,a,l,q) reduces to ob(o|[await]| z := get [fla+i5$,a,l,q).

Figure[T2] defines the operational semantics for local futures, with or without
suspension (ignoring all rule instances with await in the latter case), and with
polling if including polling rules similar to those in Figure (using the reply
queue for checking the presence of a future). The difference between object-local
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and method-local futures is not visible in the rules, but in the underlying lan-
guage, restricting assignment and passing of futures (in the ways mentioned).
The operational semantics for the future-free languages is obtained by replacing
future-free calls by calls with futures as explained above, and allowing/disal-
lowing suspension as desired. The syntax [await| denotes an optional await, o
and o’ denote object identities, and an object is idle when there is no active
process. In a left hand side or condition, the symbol “_” matches any term.

The async-call rule executes an asynchronous call where o is the caller invok-
ing method m of object e with € as actual parameters. This rule generates a
globally unique call identity (), which is assigned to the future variable f. The
call creates the invocation message invoc (0, u,m, [€]s1;) to [€]q4;, Where the
actual parameters € and the callee e are evaluated before sending this message.

The start rule says that when an object is idle and there is an invocation
message in its invocation queue, the object may start to execute the correspond-
ing method. It then captures the method’s body s as its active process with local
variables given by the method declaration (bound to default values), binding
formal parameters to the actual ones, and storing the caller object in the (im-
plicit) caller parameter and the call identity in the (implicit) callid parameter.
These two implicit variables are needed to execute the return statement.

The reply rule represents the case when an object o returns a value e to the
caller o’. It creates a reply message with the callid as its first argument and the
evaluation of [e],4; as the value and forwards this message back to the caller,
as given by the local variable caller. We assume each method body ends with a
return statement.

The get-reply rule describes how a reply message to an object o with label u
and return value v enters into the reply queue (rq(o|r)) of object o.

The get, suspend, await-pq rules represent query statements for retrieving
the reply. For the first two rules the query is already in the active process, and
for the third it is in the internal queue. The reply value is not removed from the
reply queue, thus multiple reads are possible. (For single-read futures it should
be removed.) When a reply is needed and the reply message is in the queue,
the response value v is fetched. The suspend rule takes care of the case when a
reply is needed in an await statement, but the corresponding reply message is
not in the queue. Then the whole process with its local variables are suspended
and placed at the end of the internal queue. The notation ¢ - z denotes that
a process z is appended to ¢q. A suspended process with the state of its local
variables are represented by a pair, written (await x := get u;s&!)), where
await x := get u;s is the suspended process with local state [.

The tail rule says that we implicitly create a fresh local variable f (like a
future) to talk about the value resulting from the method call. Then in the
next step, the async-call rule binds the f variable to a unique identity u. We
ignore here the rules for other statements such as if and while, since they are
not central to our discussion.

The rules in Figure can be used to define object-local futures as well
as method-local futures and future-free languages, restricting the language ac-
cordingly (disallowing passing of futures in non-local methods, disallowing all
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async-call :

invocation :

start :

reply :

get-reply :

get:

suspend :

await-pq :

tail :

if

if

if

ob(o]| f :=elm(e); s,a,l,q)

ob(o]| f :=u;s,a,l,q)

invoc (0, u, m, [€]qt1) to [€]lati

where w is a fresh locally unique identity

invoc (0,u,m,d) to o
iq(o'[p) 3
"|p-invoc(o,u,m,d))

olidle, a,empty, q)
o|p) L
ob(o| s, a,[caller = o, callid = u, T — d,l — ly], q)
where method m binds to m(zZ){T I;s} (with initial values Iy of [)

iq(o

iq(o| invoc(o’,u,m,d) - p)
ob(

iq(

ob(o|return e,a,l,q)
Ob(o | idle7 a, empty? q)
reply ([callid];, [€]q+1) to [caller];

reply (u,v)to o
rq(o|r)

rq(o|r - (u,v))
rq(o|r)
ob(o| [await] z :=get f;s,a,l,q)
rq(o|r)
ob(o|x :=w;s,a,l,q)
([flasi,v) €7
rq(o|r)
ob(o|await = :=get f;s,a,l,q)
rq(o|r)
b(o|idle, a,empty, q - (await z :=get [flati;5&1))

(favi, ) &

rq(o|r)

ob(o|idle, a,empty, q - (await x :=get u;s&l)-¢’)
rq(o|r)

ob(o|x :=wv;s,a,l,q-q")

(u,v) €r

ob(o| [await] z :=e.m(€) < s >; ¢, a,l,q)
ob(o| f :=elm(e); s; [await] x :=get f;s',a,l[f — nil],q)
where f is a fresh local (future) variable

Figure 12: Operational rules for local futures and future-free statements.
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passing of futures and assignments of futures to fields, and disallowing the use of
futures variables in a program, respectively). In the latter case, future variables
and the get statement are not part of language syntax. However, call identities
and get statements are implicitly generated by the rules. Asynchronous calls,
which use futures, are therefore not part of the language as seen by the pro-
grammer, but simple asynchronous call is. The rule for a simple asynchronous
call is similar to that of asynchronous call, i.e.,

ob(o|elm(e); s,a,l,q) — ob(o]|s,a,l,q) invoc(o,u,m,[€)ati)to [€]ati

where u is locally fresh as before. There is no state update since there is no
future variable involved. (In fact, one could use nil instead of w in the invocation
message to indicate that no return is needed.)

As mentioned, the rules in Figure define object-local and method-local
futures. For both these language classes we can define the versions without
cooperative scheduling by removing the process queue (pg) and removing rules
involving await statements. However, the addition of first-class futures requires
sharing of futures, which is not possible with the rules of Figure [I2] This is
considered below.

The rules for polling (given for the case of first-class futures in Figure
describe that the test f7 gives true if and only if the future is resolved/the reply
is in the reply queue.

3.2.2. Operational semantics of languages with first-class futures

In Figure we define operational semantics of first-class futures, repre-
senting a future as a global object with a unique identity (the future/call iden-
tity). We let (fut(u|)) denote an unresolved future object with identity u, and
(fut(u|v)) denote a resolved future object with value v. In this paradigm, a
future is once writable, but readable many times by objects that have a refer-
ence to it. Objects can individually and synchronously access the future object
value when resolved. Some of the rules from Figure [12] must then be modified,
as shown in Figure with primed versions of the relevant rules. The rules
invocation, start, and tail are as before and are therefore not redefined.

The async-call’ rule represents the creation of a unique future object corre-
sponding to a method call. It creates an unresolved future object with a unique
identity (details omitted). This rule creates an invocation message to the callee
as before. However, the caller identity (o) is not needed in the case of first-
class futures unless the language supports the implicit caller parameter, and one
could remove o from the invocation message in this case (simplifying both the
async-call’ and the invocation rule).

The reply’ rule says that when object o returns the value of e, it becomes
idle and the reply goes to the future object with identity u. The get’, await-pq’,
and suspend’ rules capture the cases when there is a query statement to get the
result as before, but now using the future object. In the get' rule, the query
succeeds since the reply value is resolved in the future object fut(u|v), hence if
the evaluation of [f],4; according to the local variables and object fields equals
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async-call’ : ob(o| f :=e!m(e);s,a,l, q)
— ob(o| f:=u;s,a,l,q)
fut(u])
invoc (0, u, m, [€]q+1) to [e]at:
where u is a fresh and globally unique identity

reply’ : fut(ul)
ob(o|return e,a,l,q)
— fut(u|[e]arr)
ob(o|idle, a,empty, q)
if  [callid]; = u

get' : fut(u|v)
ob(o|[await] x := get f;s,a,l,q)
—  fut(ulv)
ob(o|z :=wv;s,a,l,q)
if  [flayi=wu

suspend’ : fut(u])
ob(o|await = :=get f;s,a,l,q)
—  fut(u])
ob(o|idle, a,empty, q - (await = :=get u;s&l))
if  [flap=wu

await-pq’ : fut(u|v)
ob(o|idle, a,empty, q - (await x :=get u;s&l)-¢)
—  fut(u]|v)
ob(o|x:=v;s,a,l,q-¢)

pollingl : fut(u|v)
ob(o|if f? then sl else s2 fi;s,a,l, q)
—  fut(u|v)
ob(o]sl;s,a,l,q)
if  [flop=wu

polling2 : fut(ul)
ob(o|if f7 then sl else s2 fi;s,a,l, q)
—  fut(ul|)
ob(o|s2;s,a,l,q)
if  [flapi =wu

Figure 13: Operational rules for first-class futures.
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u, then the object can update z. For the await-pq’ rule, this query is in the
internal queue and the active process is idle, and then the object deals with
this suspended query. If the reply value is resolved, the object can update x.
For the suspend’ rule, an await statement is in the internal queue and the reply
is not resolved yet, therefore the whole process with its corresponding local
variables is suspended in the internal queue.

The semantics of polling is similar to that of get/get’ for the case that the
future is resolved, in which case the expression f? is replaced by true, and
suspend /suspend’ for the case that the future is not resolved, in which case the
expression f7 is replaced by false.

For languages without cooperative scheduling we omit pq and omit the sus-
pend’ and await-pq’ rules, and the optional await in get'. This means that we
have defined the operational semantics of all the chosen classes of languages. For
simplicity we have not considered aspects such as garbage collection of futures.

4. Evaluation

We evaluate the various mechanisms for interaction between active objects
with respect to the dimensions stated in the introduction. As mentioned we
consider imperative languages with or without futures but not implicit futures.

4.1. Syntactic complexity

We compare the different versions of the unified syntax in Figure includ-
ing related static checking aspects and also immediate pragmatic issues. It is
obvious that explicit futures require programming awareness of call identities
or futures, representing a new kind of entity, and new programming choices like
how and when to use them. Thus the notion of future variables comes with a
syntactic and pragmatic cost, especially since the addition of future variables
does not reduce the need of ordinary variables.

When a new method is declared in a language with first-class futures, one
must decide for each parameter and return value if it should be represented by
a future or not. Moreover, the passing of futures in a typed language requires
typing support of future types, as in Fut[T]. And if 7" is a subtype of T, one
may want Fut[T"] to be a subtype of Fut[T]. This means that first-class futures
and object-local futures give a more complex type system, whereas method-local
futures can be handled with a simple predefined type, say Fut. Pragmatically,
the resolving of futures of futures may lead to some confusion.

For local futures, we have seen in subsection [3.2.1]that it is possible to ensure
that futures really are object-local or method-local, as appropriate, by means of
simple language restrictions. First-class future operations reuse basic language
mechanisms and do not add further to the syntactic restrictions of a language.
For all languages with futures, one may add static restrictions to ensure that a
get operation is not done on a nil future (one that has not been associated with
a call yet), a problem which is similar to avoiding nil references. For first-class or
object-local futures, one may for instance insist that a future can only be passed
when statically not nil. For method-local futures, the situation is much simpler
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since there is no passing of futures. However, static restrictions are needed to
ensure that a get statement x := get f is type-correct when x is simply typed
by the predefined type Fut [24].

Future variables give a level of indirectness in that the retrieval of the result
of a call is no longer syntactically connected to the call, compared to future-free
languages. The connection might range from trivial (as in f := o.m(...);z =
get f) to non-trivial, for instance when the future is received as a parameter. In
the latter case a get statement in a given method may not statically correspond
to a unique call statement. This is a complicating factor in static analysis, espe-
cially modular static analysis. One may overestimate the set of call statements
that correspond to a given get statement, but this requires access to the whole
program, which is not possible in open-ended software systems.

From a pragmatic point of view, we notice that in languages with first-class
futures, the passing of futures is decided when a method is declared rather than
when it is called, i.e., for each method parameter or return value one must
decide at declaration time if it should be represented by a future or not, and
all calls made later must obey this regime. Then, too few parameters given
as futures may imply that desired passing of futures is not supported, and too
many future parameters lead to dummy future variables on the call-site and
syntactic overhead. This can be a problem in languages with first-class futures
since the need of the future mechanism depends on the calling objects. Thus
first-class future languages may not provide the desired flexibility. This is not a
problem for method-local futures since there is no passing of futures. And the
problem is rather limited for object-local futures since future passing is limited
to local methods, for which all calls appear in the class definition (but class
inheritance may reintroduce the flexibility problem).

Consider next cooperative scheduling. The await mechanism can be decided
for each call upon need, and is not pre-decided in method declarations. This
means that the same method may be called by means of blocking calls as well
as by suspending calls. This gives a high degree of flexibility. The addition of
cooperative scheduling is syntactically cheap since essentially only one keyword
(await) is needed, and type analysis is not affected. Pragmatically, the use of
suspension should reflect the need to wait for something without blocking, and
the choice between blocking and non-blocking waiting should be obvious for
a conscious programmer. However, the combination of first-class futures and
cooperative scheduling gives two different mechanisms that may be used to deal
with waiting without blocking, and the choice between them is less obvious.

Finally we consider the concept of polling. Adding polling is syntactically
cheap, essentially a new predefined function (“f?”) is added. Type checking
issues are trivial, but some language restrictions may be added to control where
polling is allowed, for instance restricting it to if-conditions (possibly allowing
Boolean expressions involving several polling checks). Pragmatically, the use of
polling gives increased programmer control. For instance, one may wait for two
results and react to them in the order they appear. This may look like

if f17 then reactl; get f2; react? else if 27 then react2; get f1; reactl fi fi.
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However, when there are more than two futures that should be handled individ-
ually, the branching becomes rather involved and with repetition of parts of the
code. Use of futures or cooperative scheduling may provide more elegant solu-
tions: With cooperative scheduling one may start one process for each future,
and let each process await the corresponding future. With first-class futures one
may pass each future to a new object taking care of the proper reaction.

All in all, we have considered syntactic complexity and immediate pragmatic
issues. We have seen that futures add more syntactic complexity and more prag-
matic complications than cooperative scheduling and polling. And first-class fu-
tures add more pragmatic complications than object-local futures, which again
add more pragmatic complications than method-local futures. Polling without
cooperative scheduling may lead to a complex programming style, whereas lan-
guages with first-class futures or cooperative scheduling are less depending on
polling.

4.2. Semantic complexity

The operational semantics (Figures|12|and , although abstractly defined,
shows that local futures and future-free languages can be handled by reply
queues (or sets) on the caller side, whereas first-class futures is handled by
shared future objects. For method-local futures, the replies can be removed
when the method instance (process) that generated the future has terminated.
This can be formalized in the semantics by including the identity of the calling
process (given by callid) in the future identity, for instance as a pair (7, j) where
i is the process identity and j the future identity relative to i. We may then
add a rule

ra(o|r - ((i,4),v) - ') ob(o] 5,a,1,q) — ra(o|r-+) ob(o|s,a,l,q) it igq

where i¢q checks whether a process with callid equal to i is in the process queue
q. In the case of single-read futures as well as future-free languages, a reply in
rq may even be removed as soon as it is read, in the rules get and await-pq (by
removing the reply message from r in the right-hand-side). This still requires
that removal is handled upon method termination, as for multiple-read local
futures, in case the future is not read. (Alternatively this could be controlled by
commands inserted in the code during static checking.) Thus for method-local
futures (both single-read and multiple-read), the reply messages can be removed
efficiently without general garbage collection. The same scheme can be used for
future-free languages.

First-class futures involve the creation of future objects. The placement of
the futures in a distributed system is not specified by the abstract operational
semantics (other than being placed somewhere in the system configuration), nor
is the removal of these objects, but could be added by rules that consider the
total system (letting futures that are no longer referred to in the system be
deleted). A more efficient implementation is possible, as discussed in subsec-

tion 44
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The notion of cooperative scheduling adds an internal process queue to each
active object, together with en-queuing and de-queuing operations. The se-
mantics of basic statements (other than call, return, get, await, polling) is not
affected by futures nor cooperative scheduling. For the considered mechanisms,
first-class futures make the most complex change of the basic operational se-
mantics, since this mechanism changes the notion of system configuration and
necessitates garbage collection of futures, while that of cooperative scheduling
is less involved, and that of polling is fairly trivial.

4.3. Ezxpressiveness

We first show that the future mechanism can be encoded in an active ob-
ject language with future-free constructs, using the asynchronous call/return
paradigm together with dynamic object creation. Given a method Vm(T x)
declared in an interface I (where V' is the type of the return value), we define
an interface for futures for this call by

=W N
—

interface Future.m {
Bool resolve() // waiting until resolved
V get() // gets the value when resolved

and an extension of this interface for the case that we allow polling:

interface PFuture_m extends Future_m{
Bool resolved() // polling
}

These interfaces are implemented by two classes, FUTURE_.m and PFUTURE_m
respectively, given in Figure[I4 A new future then corresponds to a new future
object, using the appropriate class. Thus, if f is an object of interface Future_m,
the creation of a future by

f:=new FUTURE_m(o,e)

corresponds to the call f := olm(e) in a language with futures. The call
f.resolve() corresponds to blocking while waiting for a result, and the call
x := f.get() corresponds to = :=get f in a language with futures. For f
of interface PFuturem, the call f.resolved() corresponds to the test f?. Fur-
thermore, first-class operations on f correspond to first-class future operations.
In case of cooperative scheduling, the call await x := f.get() corresponds to
await z:=get f in a language with futures, and the call await f.resolve()
corresponds to await f7 in a language with futures.

Consider the implementation of futures with polling given in Figure [[4] by
class PFUTURE.m (for a given method m as above). The call to m in the class
implementation uses await so that the future object will be able to perform
incoming calls before the future is resolved, and in this way be able to return
the appropriate result of polling requests. Thus, implementation of polling
requires suspension (or could be predefined outside the language).
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class PFUTURE.m(l o, T x) implements PFuture.m {
Bool res:= false; // is the future resolved?
V val; // the value of the future when resolved
// initial code
{await val:=o0.m(X); res:=true}// non-blocking
Bool resolved(){return res}
Bool resolve(){await res; return true}
V get(){await res; return val}

class FUTURE.m(l o, T x) implements Future.m {
Bool res := false; // is the future resolved?
V val; // the value of the future when resolved
// initial code
{val:=0.m(X); res := true} // blocking
Bool resolve(){return true} // await res is implicit
V get(){return val} // await res is implicit

Figure 14: Implementation of simulated futures with and without polling.

For the case without polling we may implement the future mechanism with-
out use of suspension, by class FUTURE.m in Figure Here we can use a
blocking call to m since nothing can be done by the future object when not
resolved. Therefore we do not need await res in the implementation since the
object cannot respond to any request when the future is not resolved. This could
lead to more efficient scheduling. Since this implementation requires only the
blocking call construct, it can be expressed in all considered languages. Thus
built-in futures are not strictly needed in languages without futures since they
can be expressed (simulated) within these languages, but polling requires sus-
pension (or similar mechanisms). In either case, the implementation of a future
uses one object with its own thread. This gives a simple high-level model of
the future mechanism. It may seem like an inefficient solution, but due to the
passiveness of the future objects, it suffices that they are given CPU time only
when there is an incoming call/reply from the environment.

Each call involving a future is implemented as an object of class FUTURE
(or PFUTURE). The future object makes the call and (eventually) receives the
return value, as well as dealing with requests about the future value. We support
polling of future values as well as blocking and non-blocking waiting primitives
for requesting the future value.

On one hand it is obvious that the addition of language features may increase
the expressive power. With our unified syntax the future-free language is a sub-
set of that for method-local futures, which is a subset of that for object-local
futures, which again is a subset of that for first-class futures. Their expressive-
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ness is accordingly. And it is clear that the addition of cooperative scheduling
adds expressive power. On the other hand we have seen that first-class futures
can be expressed in languages without first-class futures or without futures, by
means of object generation using predefined classes. Thus if shared futures are
occasionally desirable, they can be defined by means of explicit future objects
definable within the language. We have also seen that simulation of polling
requires the await mechanism (or similar).

4.4. Efficiency

In this part we compare the efficiency of active object languages, consider-
ing the amount of message exchange and complexity of the garbage collection
process. For example, in a distributed system with wireless IoT devices, the
amount of network traffic is vital, and should be taken into account. Since IoT
devices suffer from resource and power limitations, communication efficiency,
as well as space and time limitations, matter. Correspondingly, a high amount
of message passing and cumbersome garbage collection cause high resource and
power consumption, which in general should be avoided.

In active object languages, the future paradigm and the interaction mech-
anisms influence the number of communication messages and the garbage col-
lection. Consider a method result that is needed by several objects in addition
to the caller. For languages supporting the asynchronous call/return paradigm,
the network traffic consists of two messages (i.e., from caller to callee and back).
Assuming n (other) objects need the value and that the caller can reach them
indirectly, it then takes at least n messages to forward this value to them, say
n’ (n’ > n). Thus the number of exchanged messages is 2 + n’. We assume
that the forwarding is done by parameter passing, say through void methods
with no return message, and we count the number of messages needed for all
n objects to receive the value (including the forwarding), not counting other
related messages. Moreover, by using suspension one can avoid blocking the
caller.

In the case of first-class futures, the number of exchanged messages depends
on the update strategy, as mentioned in the ASP part (in subsection . We
here assume that the future object is kept on the caller side. In the eager-
forward-based strategy, the caller forwards the future reference to n objects and
forwards the future value when resolved. With the assumptions above, the
number of exchanged messages would be 2+2n’. Considering the eager-message-
based strategy or subscription scheme, the caller sends the future reference to n
objects, each object receiving the future subscribes itself to the future, and then
the future value is sent back to all of them when resolved. Hence the number of
exchanged messages would be 2 + 37/, assuming the n’ messages go to distinct
objects. In the case of lazy strategy with blocking when needed, the caller sends
the future reference to n objects, and when the value is required, they ask for
it from the future object, which sends back the value. Hence the number of
messages would be 2 +n’ + 2 n, assuming all n objects really need the value.

We see that the number of messages gets higher with the future mechanism.
In a distributed system this could cause problems. And in particular for IoT
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systems, this could lead to exhaustion of network capacity or battery time if n
is greater than 1 for a large portion of the calls.

Consider next garbage collection. The purpose of garbage collection is to
deallocate memory resources that are no longer in use at runtime. There are
different kinds of strategies for garbage collection. One is reference counting, in
which the number of references to an object (say a future object) is counted.
An object can be deallocated when the number of references to it reaches zero.
A disadvantage of reference counting is that for every object a resource must
be reserved for storing the number of references to it, and this number must
continuously be updated.

Another common way of garbage collection is reference tracing, i.e., follow-
ing all references. It distinguishes between reachable and unreachable objects,
and deallocates the latter ones. An object is reachable if it is referenced by a
variable in an (potentially) active object directly or through a chain of refer-
ences. A traditional reference tracing collector temporarily stops the program
execution when it wants to deallocate unreachable objects. This guarantees
that reachablility does not change while doing garbage collection. Halting the
program execution can be undesirable in distributed systems with active enti-
ties. In these systems, an object might be used by several distributed units,
necessitating distributed garbage collection which is complex, slow, and costly.

The given operational semantics does not include garbage collection. Futures
are typically many and short-lived, which may cause much garbage. In contrast,
the active objects are long-lived. Thus in languages without passive objects,
there is then little or no need for garbage collection other than the future objects.
Therefore the garbage collection of futures can be a problematic issue. For
the given operational semantics, a straight forward implementation of garbage
collection for first-class futures requires distributed garbage collection of future
objects, since the futures are global runtime objects, whereas object-local futures
require local garbage collection within each object, since the futures are stored
and referenced locally in each object.

As already explained in subsection [£:2] method-local futures can be disposed
without use of garbage collection, and the reply messages used in future-free
languages can be removed efficiently. And the same implementation can be
used for single-read futures.

For languages with first-class futures, the garbage collection mechanism for
futures highly depends on the future update strategy, as already discussed in
subsection 2:6] If a strategy is eager, a future is updated as soon as its value
is computed, then a local garbage collection is enough since it does not need
to be stored globally. Local garbage collection can be performed by classical
garbage collection within an object or by combining different garbage collection
techniques with static analysis approaches [6]. If an update strategy is lazy, a
future value must be kept in a future value list in the callee for potential later
requests; moreover, a future can be disseminated to many active objects, thus it
is non-trivial to decide when a future value can be removed from a future value
list. In this case, distributed garbage collection is required, which can be done
by reference counting or a combination of garbage collection mechanisms [6].
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4.5. Security/Privacy challenges

The future concept comes with a notion of future identity, but not a notion
of associated caller, callee, or creator. However, if the identity of the caller of
the associated method call is incorporated in the future identity (as indicated
in the operational semantics), it could in principle be possible to extract this at
runtime. But the object creating the value would still in general be unknown.
For instance, in the case of first-class futures, a caller may create a future corre-
sponding to a method call on o and pass the future reference as a parameter to
other objects. When the future is resolved, they obtain its value from the future
object without knowing who has created this value. In fact, for a future received
as a parameter there is in general no available static or dynamic information
about the creator. It is not known where the future value comes from, who
has generated it, or how fresh it is. This opens up for third party information
with indirect/implicit handling of private information. An object may implicitly
reveal futures with private information. However, dynamic information could
be provided by the addition of language attributes. Thus with some overhead
dynamic checking would be possible.

Static information flow analysis of the secrecy level of first-class futures is
therefore imprecise. In order to have secure information flow for first-class
futures, dynamic checking is required, which is expensive compared to static
analysis. Class-wise information flow analysis has been suggested for a future-
free version of Creol [26]. The approach is based on static declaration of secrecy
levels for each input parameter and result value of a method. This would be
difficult when allowing futures as parameters, because the set of external calls
that may result in an actual parameter is not statically given, and because the
calls in this set are not uniform with respect to secrecy levels. Static declaration
of secrecy levels must consider the worst case possibility (i.e., the highest secrecy
level), and this will easily lead to inflation of secrecy levels, something which is
not desirable since then it would severely limit statically acceptable information
passing and call-based interaction, or require dynamic checking.

In a paper by Attali et al. [1], secure information flow for the ASP language
is provided by dynamically checking for unauthorized information flows. In
their approach security levels are assigned to activities and transmitted data
between these activities. For verification, dynamic checks are implemented at
activity creation, requests, and replies. However, future references can be freely
transmitted between activities because they do not hold any valuable informa-
tion, they just hold addresses. But for updating a future and getting its value,
the secrecy level of this transmission will be performed dynamically by security
rules of a secure reply transmission.

Therefore static information flow checking of first-class futures is problem-
atic, which means that it must be compensated by dynamic checking. In this
sense, first-class futures do not promote security at the programming level.

4.6. Program reasoning
We compare the simplicity of rules for reasoning about method calls for
future-free and future-based languages, and the usefulness of these rules in prac-
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tice, considering two typical kinds of applications. The rules given below cover
future-free and future-based languages, with or without suspension and the tail
construct.

In the setting of active objects, compositional reasoning is typically based
on the notion of communication traces, often called histories [33]. The spec-
ification of an object can then be given by specifying invariants by means of
predicates over the local history, i.e., the history of events generated or ob-
served by that object. Modular reasoning about classes can be based on class
invariants referring to the fields of the class and the local history h. The class
invariant considers a given object (this) and should hold whenever the object is
idle, but may be violated when not idle [I1]. In addition, one may use pre- and
post-conditions to specify any additional properties of the methods in the class.
The Hoare triple {P} s {Q} specifies that if the program s is started in a state
satisfying the precondition P then the final state will satisfy the postcondition
@, provided the program terminates, thereby expressing partial correctness [19].
For instance, an assignment statement x := e satisfies the triple {Q%}z := e{Q},
where the notation @7 denotes textual substitution, replacing the expression e
for all (free) occurrences of the variable = in (). This assignment axiom holds
in our language setting since there is no remote field access. This rule is left-
constructive, expressing the weakest precondition. A class invariant I must hold
after class initialization and be maintained by each method of the class, as well
as between any suspension points. This allows us to rely on the invariant when
a new method is started or re-started after suspension. The triple {I} s {I}
expresses that the statement list s maintains the invariant I.

Notation. For histories, we let h/S denote projection by means of a set S5,
i.e., the sub-sequence of all the events in the set S. And we let h - z denote
the history h appended with the event z. Furthermore, < denotes the sequence
prefix relation, i.e., h’ < h expresses that b’ is an initial part (prefix) of h, and C
denotes the subsequence relation, i.e., i’ C h expresses that h’ is a subsequence
of h.

The local history h of an object o is related to the global history, H, by
the equation h = H/a(o) where a(o) is the alphabet of o (the set of events
generated /observed by 0), i.e., h is the projection of H by the events visible to
o. Compositional reasoning is then possible by conjunction of the local invari-
ants, replacing the local history h by H/«a(o), together with a “compatibility”
assertion stating the partial order between the events corresponding to mean-
ingful execution order (i.e., an event reflecting a method invocation must come
before the event reflecting the corresponding method completion), following the
compositional principle of [33].

4.6.1. Rules for future-free calls

Reasoning rules for the future-free call constructs, including call with and
without tail, are given in Figure based on [25]. In this setting we consider
two kinds of events: call events and return events. (Events reflecting the start
and end of a method execution may be considered as well, but we here focus on
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simple call {QZ,(this_m.m(a)} olm(e) {Q}
sync-call {0 # thisAVz'. Q;;?h_(thiHo.m@)_(thisw.m(am,))} x:=o.m(e) {Q}

{ =0NE =€eAP}s{Vx. QZ_(thiSH),_m(E/;w))}
{o # this A P! ))} z:=om(e) < s> {Q}

1+ (this—o.m(e

tail

await {LAIANh="h}await e{LAIAR <hAe}

Figure 15: Reasoning rules for call-related statements for future-free languages. Here L is a
local condition (not referring to fields).

the treatment of calls.) The execution of the asynchronous call olm(€) by this
object is represented by the call event this — o.m(€), and the observation by
this object of the return value v generated by object o resulting from this call
is represented by the return event this <— o.m(e;v). Thus, call statements have
side-effects on the local history, a simple call appends the local history by a call
event, and a synchronous call (with or without a tail) appends the local history
by a call event as well as a return event. In the case of a synchronous call with
a tail, the call and return events are added to the history before and after the
tail, respectively.

Rule simple call expresses that the execution of the simple asynchronous call
olm(€) has the effect of appending the corresponding call event to the local
history. Rule sync-call expresses that a synchronous call z := o.m(€) has the
effect of appending the history with both the call event and the corresponding
return event. The rules involving return events use universal quantification to
reflect that the return values are under-specified in local reasoning, and primed
variables are used to freeze pre-values of program variables that may change
(when needed in a postcondition). Since self calls have a different semantics than
remote synchronous calls, we add the restriction o # this in the precondition
of a synchronous call to o with or without tail. The call rules are all left-
constructive. In Rule tail, the return event is added when transforming the
overall postcondition @ to a postcondition of the tail, and the call event is added
when transforming the precondition of the tail to an overall precondition. The
reasoning rules can be understood by letting the call to o have the side-effect

h := h - (this — o.m(€))

on the history, where € are the actual parameters, and letting the observation
of a return have the side-effect

h := h - (this < o.m(e;v))

where v is the return value. More precisely, reasoning about the statement
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async-call  {Vf". Q1" ihisssom(sr .y | 1= 0lm(@) {Q}

get {vz'. Qi;%(thise(eym,»} x:=get e {Q}

Figure 16: Hoare style rules for futures.

[await] x := 0.m(€) < s > is the same as reasoning about the sequence
h:= h- (this = o0.m(€)); s; [await true;] x := some; h := h - (this + o.m(€; z))

where some is a locally unknown value such that {Vz.Q} 2 := some {Q}. The
tail rule (without await) can be derived from this understanding. In fact, all
call rules can be derived from this understanding when ignoring any optional
parts (await/tail s) not used. And for languages supporting suspension, rules
for await-call with or without tail can be derived as well, using the await rule.

The await rule says that the class invariant I will be maintained over suspen-
sion, even though fields may change. The history may only grow, as formalized
by the postcondition A’ < h where I’ is the history in the prestate. And since
the local state is unchanged during suspension, any local condition L, not refer-
ring to fields, is also preserved. In addition the await condition e is guaranteed
immediately after suspension. In the same way as a conditional await, an await-
call statement must ensure the invariant at the beginning of suspension, and
may assume the invariant immediately after suspension.

4.6.2. Rules for calls with futures

For languages with futures, the asynchronous call invocation is textually
separated from the result query (the get statement). Thus in the analysis of a
get statement, neither the method name (m) nor the callee are in general known
at verification time, not even in the case of local futures. Therefore neither of
these can be part of the event reflecting the completion of a get statement, in
contrast to the case of future-free languages. Instead, the future identity must
be included in the call and get events: We now let a call generate the call
event this — o.m(u,€) where u is the future identity. And we let the get event
0 + (u,v) correspond to the observation by o of the value v of future u.

The reasoning rules for calls with futures are shown in Figure [I6] based

n [I1]. Rule async-call is similar to Rule simple call, but the generated future

identity is under-specified, which explains the quantifier. Rule get expresses
that the history is appended with the corresponding get event, with an under-
specified future value. Thus this setting gives rise to events where the connection
between call and get events is made by means of the future identity, rather than
the method name. The rules for futures are therefore more indirect and complex
to apply in practice, as discussed next in Subsection [£.6.3

4.6.8. Application of the rules
We will consider two typical cases of program reasoning, namely reasoning
about method calls by means of input/output relations, and reasoning about
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the ordering of method calls, exemplified by verification of sequential ordering.

Reasoning about input/output relations. Reasoning about a method call often
deals with the relationship between the input and output values of a method
call. For a method body s;return e with parameters T and return value e, one
may specify and verify such a relationship, say R(Z,e), by verifying the Hoare
triple {true} s {R(%, e)} by ordinary Hoare analysis. However, for external calls
with futures, it is not straight forward to use such facts, since the input and
output to a call may not in general be known in a single state of the caller,
due to the decoupling of the get statement form the invocation statement. But
one may use the history. Consider the code f := olm(€);...;y := get f where
o is an external object (different from this). This gives rise to the call event
(this — o0.m(u,€)) where u is the future identity assigned to the future variable
f, and the query gives rise to the get event (this «— (u,y)) for some return value
y. We may then state

(Fu . (this — o.m(u,T)); (this < (u,y)) C h) = R(Z,y)

(for any values of T, y) expressing that R holds for the input and output values
(found in separate call and get events in h) for the same u. Therefore reasoning
from this fact involves quantifiers.

In contrast, for a synchronous call [await] y := 0.m(€), where o is different
from this, we may use the fact

(this <~ 0.m(Z;y)) € h = R(Z,y)

(for any values of T, y), and we obtain R(€,y) in the post-state of the call since
(this <= 0.m(€;y)) € h obviously holds in the post-state of the call (for y not
occurring in €). Such return events appear for synchronous calls with or without
a tail as well as for suspending calls with or without a tail. Thus reasoning about
such calls from the history can be done in the same manner, without quantifiers.

Finally, we may look at simulated futures. In this case, events are generated
from the creation of the future object o’ and from the interaction with that
object, typically through the get method. This gives one creation event, one
call event, and one return event, of which the first (the creation event) and last
are the ones needed to express an input/output relation R. Similarly to the case
of first-class futures, the identity of the future object is arbitrary. This means
that for a method m (with body as above, satisfying R), called by simulated
futures, we may state

(30" . (this — o' .new FUTURE,,(0,T)); (this < o'.get(;y)) C h) = R(T,y)

where this — o’ .new C(T) denotes the creation event of an object o' of class
C' with class parameters T. Thus the situation is quite similar to the case of
futures and involves quantifiers. Hoare-style reasoning about method calls by
means of input/output relations is therefore substantially more complicated for
languages with futures than for future-free languages. And reasoning about
simulated futures is comparable to reasoning with futures.
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Reasoning about ordering of calls. A history-based invariant may for instance
state that the remote m calls to o made by the current object are sequential, in
the sense that a new m call can only be made when the results of the previous m
calls to the same object o have been observed by the current object. To express
this in the setting of future-free languages, we may write the class invariant

Vo.#(h/{this = o.m}) follows #(h/{this < o0.m})

where follows denotes sequential connection as defined by z follows y £
(x =yVa=y+1), and # denotes sequence length, and {this — o0.m} denotes
the set of call events to o from this object for method m. (Alternatively, one
could use equality since the invariant is only required to hold when the object
is idle.)

In the case of languages for futures, the above invariant will be more com-
plicated since the method name m is not visible in the event observed at a get
statement. In this case the class invariant can be expressed by

Vo.#(h/{this = o.m}) follows #(h/{this + (u,-) | u € futures(h,o,m)})

letting futures(h, 0, m) be defined as the set of futures generated by a call event
of form this — 0.m, and letting {this <— (u, -) | ¢} be the set of all get events to
this object with future identity u such that condition c is satisfied. Clearly, it is
significantly harder to formulate the invariant in this case, and also reasoning
becomes more complicated. Proving maintenance of the invariant by a call
y := 0.m(€) is straight forward in the case of future-free languages. For instance

{1}y :=om(e) {1}
reduces to I — Vy' . I;LL»(this—)o.m(E))»(this(—o,m(E;y'))7 which is trivial for our invariant
since m is explicit in the events. In the case of languages with futures, the
reasoning becomes non-trivial, since the m is no longer explicit in the get event.
One must reason indirectly through future identities across events, possibly also
generated by different processes (on this object). This involves the u implicitly
quantified through the conditional set expression.

For simulated futures we may use the invariant

Yo .#(h/{this = _.new FUTURE,,(o,-)}) follows
#(h/{this < o'.get | o' € futures(h,o,m)})

with futures defined almost as above. Reasoning in this case is similar to the
case of languages with futures.

We may conclude that specifications and invariants are more indirect in lan-
guages with futures than in future-free ones. In particular it is harder to express
relationships between input parameters and corresponding result values. Veri-
fication conditions get more complex to prove when they depend on get events,
as demonstrated in the examples. We have also seen that the reasoning rules
for local futures and first-class futures mainly have the same complexity. Fur-
thermore reasoning about simulated futures is comparable to reasoning about
futures. Thus reasoning with a future-free language is significantly simpler than
reasoning about future-based calls and simulated futures.
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5. Conclusion

Programming paradigms are essential in software development, especially for
distributed systems since these affect large programming communities and a var-
ied range of applications. Thus, investigation and comparison of different pro-
gramming paradigms are valuable. We have focused on interaction paradigms
for imperative programming languages based on the active object model, ig-
noring implicit futures. This model has gained popularity due to its modular
semantics and natural support of concurrency and autonomy. Most of the recent
active object languages adopt the future mechanism, rather than a two-way in-
teraction paradigm. First-class futures give a possibility of sharing information
and of partially avoiding blocking. An active object that has generated a call
with a future may pass the future to a number of clients, and as long as it does
not need the future value itself, it can continue to serve clients without being
blocked. Waiting is then delegated to those clients that need the future value.
This gives a programming style that avoids deadlocking and blocking in server
objects, allowing the servers to be continuously responsive to client requests.

Cooperative scheduling for active objects is another recent mechanism that
avoids blocking and allows passive waiting. Without use of futures, a server
object can wait for the future value in a suspended (sleeping) process, avoiding
blocking, and thereby be continuously responsive to client requests, even in the
case that the server itself needs the value. In this case the clients will get the
future value when it is available (when the suspended process is enabled), and
thus waiting is also avoided in the clients as well. This means that there is
less need for futures in languages with cooperative scheduling than in those
without, even though cooperative scheduling does not provide sharing. This
means that languages with first-class futures or cooperative scheduling more
directly support propagation of method results without waiting, and are in this
respect more expressive than those without neither of these two mechanisms.

Polling has the advantage of more fine-grained synchronization control. For
instance one may await the results of a number of outstanding calls in a given
order. However, polling may lead to more complex program structure. For
instance to cover any ordering of the completions of n calls, one could end up
with n! branches. In contrast, with cooperative scheduling there could be one
suspended process for each of the outstanding calls. With first-class futures one
could delegate to n other objects (by passing futures), so that each waits for one
completion. Thus there is less need for polling in languages with cooperative
scheduling or first-class futures.

Object-local futures offer more flexibility than method-local futures, but in
the presence of cooperative scheduling one may use suspension to compensate.
In particular single-read method-local futures give several advantages in the case
of cooperative scheduling.

This leaves seven language paradigms for interaction as the most interesting:
i) first-class futures and cooperative scheduling (FF+CS), ii) first-class futures
without cooperative scheduling (FF), iii) method-local futures and cooperative
scheduling (LF+CS), iv and v) local futures with polling (LF+P), with sub-
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criteria FF+CS FF LF+P LF+CS NF+CS N

expressiveness + 0 0/0 0 0 -
efficiency - - -/0 + 0 -
synt./sem. complexity - - 0/0 0 + +
security aspects - - 0/+ + + +
static analysis - - -/0 0 + +
program reasoning - - —/- - + +

Figure 17: A simplified summary of the evaluation of the different paradigms. The case of local
futures with polling (LF+P) is split in two subcases, object-local and method-local futures.

cases for object-local and method-local futures, vi) no futures and cooperative
scheduling (NF+CS), and vii) no futures (NF). We have focused on these in-
teraction paradigms and evaluated them along the chosen criteria. For a rough
overview, some main points of the evaluation results are illustrated in Figure
Here + is better than 0, which is better than —.

With respect to expressiveness, we have seen that first-class futures can be
expressed by means of explicit object generation (using predefined classes). Thus
the need for built-in first-class futures is not so critical. Even though simulated
futures are less flexible (at least syntactically) than built-in futures, they have
the advantage that the cheaper (implementation-wise) alternatives are available
by default when first-class futures are not strictly needed. Cooperative schedul-
ing gives an expressiveness that cannot be simulated with (first-class) futures
without use of dynamic object generation and blocking. Languages with built-
in first-class and cooperative scheduling futures have the highest expressiveness
(marked as “4” in Figure whereas the ones without (only simulated ones)
have somewhat less expressiveness. Future-free languages are less expressive
than those with futures, but the addition of the tail construct results in similar
expressiveness as languages with local futures. Polling allows non-blocking pro-
gramming (while compromising program structure), and increases expressive-
ness and efficiency in the setting of local futures without cooperative scheduling.

We have seen that first-class futures require garbage collection, which is
non-trivial in the case of distributed systems. And we have seen that first-
class futures give raise to more messages than languages without. There is no
uniformly best choice of update strategy for first-class futures [16]. Different
implementation strategies may give more efficient garbage collection, but at
the cost of more internal messaging. For IoT systems this could be critical. In
contrast, cooperative scheduling adds to efficiency, and gives scheduling control.
Local future languages may sometimes lead to less waiting than in future-free
languages due to more expressive synchronization control.

We have also seen that first-class futures may cause difficulties with respect
to information security. In particular information flow analysis is problematic.
Furthermore, the notion of futures, even local futures, make program reasoning
more complex than reasoning for future-free languages, by adding a level of
indirectness in the reasoning. The considered examples show properties where
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simple reasoning in the future-free setting becomes non-trivial in the case of
futures, due to additional quantifiers. Static analysis has similar problems, and
for first-class futures this is in general more complex than for local futures. For
several kinds of static reasoning it is necessary to detect the set of calls that
corresponds to a given get statement. In the case of first-class futures this set
cannot be detected in class-wise analysis.

In general the more constructs a language has, the more expressive it is, but
on the negative side, the more complex it is wrt. syntax, semantics, security,
and analysis. This is illustrated clearly in the (somewhat oversimplified) table
in Figure [I7] There is a trade-off between these different choices depending
on the requirements in a given context, considering expressiveness, efficiency,
and simplicity. The main benefits of first-class futures are the added flexibility
and information sharing, some of which can be compensated by cooperative
scheduling. For distributed IoT programs we have argued that first-class futures
are less suited. This is also the case for information flow analysis. And if
simplicity of program reasoning is a major concern, first class, and even local
futures, raise non-trivial complications. In our treatment, the limitations of
future-free programming have been reduced by the addition of delegation and
a syntactic tail construct for calls. Consequently, future-free programming can
be attractive in a number of settings.

We have focused on imperative languages for single-threaded active objects.
The setting of multi-threaded active objects is attractive in that it may provide
higher efficiency, but its semantics is more complex. To keep our framework
simple, we have avoided the multi-threaded setting, as well as advanced coor-
dination constructs for futures, such as asynchronous continuations associated
with futures. With respect to our evaluation criteria, these constructs increase
the expressiveness and efficiency of first-class futures.
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