The syntax of the OUN language

Olaf Owe
Department of Informatics, University of Oslo, Norway

February 21, 2002

Contents

1 The OUN language
1.1 Interface and contract definition
1.2 Class and subclass definition
1.3 Dynamic class extension L L.
1.4 Basic elements: Lists and bindings
1.5 Names e
1.6 Type Declarations
1.7 Expressions o e
1.8 Communication events oL
1.9 Basictypes
1.10 Imperative code
1.11 Executable expressions L.
1.12 Reserved words L
1.13 ASCITsymbols
1.14 Transformation oL

0 00 0O O ULUix i WWwhh =

1 The OUN language

This document defines the grammar of the OUN language (“Oslo University
Notation”), using extended BNF. The language is designed for high-level pro-
gramming and modeling of open distributed systems, with support of behavioral
specification and modular program reasoning, and was developed in the context
of the Adapt-FT project [1]. The language has similarities to the one suggested
in [3] and is explained in more detail in [5]. Distributed units are represented
by objects, each with its own (virtual) processor. Each object can handle a
number of processes, corresponding to remaining parts of method activations.
A method activation may be temporarily suspended by use of guards, with the
syntax guard — statement, allowing other enabled processes to continue. A
suspended process is enabled when its initial guard is satisfied. A method call
m(in; out) can have several in-parameters as well as out-parameters. A remote

call m(in;out) do s od will execute the statments s while waiting for the callee
o to complete the call (if different from this object).

Openness is supported by run-time class upgrades, called class extension,
allowing a class to be changed at run-time without interrupting the execution.
A class extension may modify an existing class by adding new fields and new
methods, by redefining existing methods (as well as associated behavioral spec-
ification), and by providing support of additional interfaces.

Specifications of classes and interfaces are given by invariants and pre- and
post-conditions, using predicates that may refer to the communication history
H, following [3, 6, 4]. In additon to class and interfaces specification, we allow contract
specifications for subsystems invloving several objects.

The language is object-oriented supporting single and multiple inheritance of classes
as well as interfaces, late binding, overloading, dynamic generation of objects, and en-
capsulation. Remote access to fields are not allowed and inter-object communication
is done by means of method interaction controlled by interfaces. Method interaction
is represented by two-way asynchronous communication, letting each such communi-
cation event correspond to an event in the communication history. We use arrows to
visualize the direction of the communication event.

Objects are representing concurrent units in a distributed setting, while local data
structure is defined by data types, using a syntax similar to [2, 4]. The language is
strongly typed, using co-interfaces (specified by with clauses) in order to be able to
write type-correct call-backs. We refer to [5] for further details of the language.

Notational conventions

Terminal symbols appear in bold, square brackets are used for optional parts; { something}
means that something may be repeated n times, n € N. We enclose terminal symbols
in quotations marks when necessary to avoid confusion.

1.1 Interface and contract definition

spec_interface ::=
interface interface_name ['['type_bindings’]’|[’ (’ object-bindings’)’]
[inherits interfaces]
begin
[types type_decls]
[with interface_name
{operation}|
[asm ezpr]
[inv expr]
[auziliary_part]
end

spec_contract ;1=
contract contract_-name
begin
with object_bindings
inv expr
[auziliary_part]

end

1.2 Class and subclass definition

spec_class ::=

class class_name ['['type_bindings’]’][’(Cbindings’)’]
[implements inst_interfaces]
[inherits classes]

begin
[types type_decls]
[val constant_declarations]
[var var_declarations]
[init imperative_code]

{operation == imperative_code}
{with interface_name
{operation == imperative_code}
[asm ezpr]}
[inv expr]
[auziliary_part]

end

1.3 Dynamic class extension

spec_class_extension ::=
class extension class_name
[implements inst_interfaces]

begin
{operation == imperative_code}
{with object_binding
{operation == imperative_code}
[asm ezpr]}
[inv ezpr]
[auziliary_part]
end

auziliary_part ::=
func function_sigs
[def function_defs
[axiom ezprs
[lma ezprs]

1.4 Basic elements: Lists and bindings

type_bindings
object_bindings
bindings
type_binding
object_binding
binding
var_declarations
var_declaration
constant_declarations
type_deter
operation
in_out_parameters
function_sigs
function_sig
func_bindings
func_binding
func_type
function_defs
function_def
exprs

inst_inter faces
inst_inter face
type_names

1.5 Names

inter faces
classes

inter face_name
class_-name
contract_name
operation_name
object_name
type_name

basic_type
id

identi fier
non_num
alpha_num
digit

{type_-binding,} type_binding
{object_binding,} object_binding
{binding,} binding

type_name : type_deter

object_name : inter face_name

identifier : type_name
{var_declaration,} var_declaration
binding [:= expr]

{var_declaration,} var_declaration
Data_Type | Interface

opr operation_name’(’[in_out_parameters]’)’
[in] bindings [; out bindings] | out bindings
{function_sig,} function_sig
identifier’(’ func_bindings’)’ : func_type
{func_binding ,} func_binding
identifier : func_type

type_name | event_seq

{function_def ,} function_def

expr== expr

{expr,} expr

{inst_inter face, } inst_inter face

inter face_name[’["type_names’]’]
{type_name,} type_name

{inter face_name,} inter face_name
{class_-name,} class_-name
identifier | any

identi fier

identifier

identifier

id

basic_type | identifier |
(class_name | inter face_name).identi fier
int | nat | bool | string

identi fier | id’(Cnumber’)’ | id.id

non_num{alpha_num}

al...|z|A|...|Z]-
digit | non_num | -
0|...]9

1.6 Type Declarations

type_decls = {type.decl,} type_decl
type_decl := identifier: type = type_expr
type_expr identifier

enumeration_type

tuple_type

record_type

seq-type

set_type

array-type

subtype

{’identifiers’}’
[tuple_members’]’
{tuple_member,} tuple_member
identifier : type_expr

[# field_decls#’]’
{field_decl,} field_decl

enumeration_type
tuple_type
tuple_members
tuple_member
record_type
field_decls

field_decl := identifiers : type_expr
seq_type = seq’[type-name’]’
set_type == set’[type_name’]’
array_type = array’[’number’]”’[*type_name’]’
subtype = {’binding mid expr’}’
identifiers == {identifier,} identifier
mid == |’

1.7 Expressions

expr = litteral_expr

| event_sequence

| projection_set

| rs

| id

| ’(’G:L’p”l”)’

| (class-name | inter face_name).identifier func_arguments
| (seqpdf | id) func.arguments
| expr binop expr

| unaryop expr

| if_expr

| quantified_expr

| reused_spec

litteral_expr == number | boolean | string |
Vex_exprs’]’ | {ex_exprs’}’ | (Cex_exprs’)’ | (#ex_exprs#) |
7[”]’ ‘ ’{77}’ | 7(”)7
if_expr = if expr then expr
{elsif expr then expr}
else expr endif

quantified_expr = binding_op bindings : expr
func.arguments == ’({expr,} expr’)’
binop = <|=|V|A|xor|andthen |orelse|"|+|—|/
| | % |=I<I>|<[>|#F [l head | \ | prs | in | sub
unaryop = mnot |<>|—

binding_op forall | exists
reused_spec = (class_name | inter face_name).inv |
(class-name | inter face_name).asm

1.8 Communication events

rs u= event_sequence | ['rs mid where bindings’]” |
'(rs’)’ | rsmid rs | rs* | rs s
event_sequence = empty | {event} event
projection_set = init | term | id | object_binding |
event_set | operation_set
event_set = {’{event,}event’}” | event
operation_set == {’{operation_name,}operation_-name’}” |
operation_name
init = —|object — object
term == «|object « object

it term = | object <> object

object = object_-name | me

event == init_event | term_event | init_term_event
init_event = init.operation_name[’(Cexprs’)’]

term_event term.operation_name|’(Cexprs [; exprs]’)’]
init_term_event = init_term.operation_name

1.9 Basic types

number = [-|{digit}digit
string == “{ascii}“
boolean = true | false

1.10 Imperative code

imperative_code = stms
stms = {stm ;} stm
stm u= skip | if_stm | nondet_stm | while_stm | assignm |
guarded_stm | i fany_stm | local_call |
remote_call | local var | mythical _stm
skip = skip
if_stm = if ex_expr then stms [else stms| endif
nondet_stm = begin {guarded_stm mid} guarded_stm end
while_stm ::= while ex_expr do stms enddo
assignm = ids := ex_expr
guarded_stm = ex_expr — stm
ifany-stm = if any Itest_expr then stms [else stms] endif
local_call ::= operation_name’(’ex_exprs’)’ |

remote_call

operation_name’(Cex_exprs ; ids’)’
identifier.local_call [do stms enddo]

local var ::= var identifier : type_.name = ex_expr
mythical_stm := bool_expr
ids == {id,} id

1.11 Executable expressions

ex_exprs == {ex_expr, tex_expr
er_expr = numeric_expr | bool_expr | string_expr | seq_expr |
litteral_expr | null | id | new_expr | ’(Cex_expr’)’
bool_expr 1= ex_expr bool_op ex_expr | not ex_expr | Itest_expr |
id | boolean
Itest_expr = object_binding ?

numeric_exrp
string_expr

Ex_eTpr NuMmM_op exr_erpr
er_expr + ex_expr

seq_expr = ex_expr seq-op ex_expr | seq_pdf’(Cex_expr’)’
new_expr == new class.name’(Cex_exprs’)’
bool_op = <|>|<|>|=|#] A | andthen | V | orelse | xor |
in | head | sub
num.op = +|=[/|*]|%
seqoop == H[HH
seqpdf = lIr|rr|lt|rt|#

1.12

andthen any asm axiom begin caller class contract Data Type empty def do
else elsif end endif enddo exists false forall func H if implements in inherits
init Interface interface inv lma me new null opr orelse out skip super then
true type types val var where while with

Reserved words

Types: array bool event_seq int nat seq set string
Functions and operators: head in Ir It not prs rr rt sub xor

1.13 ASCII symbols

Latex | ASCII
& <=>
= =>
v \/
A /\
I— | —
5 - |
H =1
< <=
2 >=
2 | 7=
1.14 Transformation
id == identifier [id']
id == (number’)’ [id] | .id [id']
expr == litteral_expr [expr']
| event_sequence [expr’]
| projection_set [expr']
| rs [expr']
| id [expr']
| Ceapr’)’ [eapr’
| (class_name | inter face_name).identifier func_arguments [expr’]
| (seqpdf | id) func.arguments [expr’]
| unaryop expr [expr']
| if-expr [expr']
| quantified_expr [expr']
| reused_spec [expr’]
expr’ = binop expr [expr’]
rs = event_sequence [rs'] | ’[’rs mid where bindings’]’ [rs'] | *(’rs’)’ [rs’]
rs’ = midrs [rs'] | * [rs] | rs [rs]
er_expr u= litteral_expr [ex’] | null [ex’] | id [ex'] | new_expr [ex] |
*Cex_expr’)’ lex’] | seqpdf’Cex_expr’)’ [ex'] | Itest_expr [ex'] | not ex_expr [ex’]
exr’ = num_op ex_expr [ex'] | bool_op ex_expr [ex'] | + ex_expr [ex'] |
seq-op ex_expr [ex’]
References

[1] The ADPAT-FT project homepage. http://www.ifi.uio.no/~adapt/.
[2] DAHL, O.-J. Verifiable Programming. Prentice-Hall, 1992.

[3] DaHL, O.-J., AND OWE, O. Formal methods and the RM-ODP. Tech. Rep. 261,
Department of Informatics, University of Oslo, 1998.

[4]

[5]

DaHL, O.-J., AND OWE, O. Formal Development with ABEL. In Proceedings of
Formal Software Development Methods (VDM ’91) LNCS 552, pages 320-362,
1991.

OwE, O., AND RyL, I. OUN: A formalism for open, object-oriented, distributed
sytems. Research Report 270, Department of Informatics, University of Oslo,
Norway, 1999. http://www.ifi.uio.no/” adapt/.

SOUNDARAJAN, N.; AND FRIDELLA, S. Inheritance: From code reuse to reasoning
reuse. In Proc. 5th Conference on Software Reuse (ICSR5) (1998), P. Devanbu
and J. Poulin, Eds., IEEE Computer Society Press, pp. 206-215.

