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Abstract

Wireless sensor networks consist of resource-constrained nodes; especially
with respect to power resources. Often, the replacement of a dead node
is difficult and costly; e.g. a node may be implanted in the human body.
Therefore, it is important to reduce the total power consumption of WSNs.
The major consumer of power is the data transmission process. This paper
considers nodes which cooperate in data transmission in terms of a group.
A mobile node may move to a new location, in which it is desirable for the
node to join a group. We propose a protocol to allow nodes to choose the
best group in their signal range, using coalitional game theory to determine
what is beneficial in terms of power consumption. The protocol is formalized
as an SOS-style transition system. This formalization forms the basis for
an implementation in the rewriting logic tool Maude, so the protocol can
be validated using Maude’s model exploration facilities. First, we prove the
correctness of our proposed protocol, by searching for failures through all
possible behaviors for given initial states. For these searches, the grouping is
done correctly in all reachable final states of the model. Second, we simulate
the model behavior to quantitatively analyze the efficiency of the proposed
protocol. The results show significant improvements in power efficiency.
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1. Introduction

A wireless sensor network (WSN) typically consists of sensor nodes with
sensing, computing, and communication devices. The main goal of the WSN
is to gather data from the environment and transmit it to a sink node. WSNs
are usually self-configured ad-hoc networks with mobile nodes.

The physical size of sensor nodes is very small, which introduces chal-
lenges for the design and management of WSNs. Especially, restrictions in
power resources need to be considered in order to improve the longevity of the
nodes. Data transmission is expensive, therefore, the management of com-
munication between nodes is an important factor in power efficiency of the
network. Cooperation between sensor nodes can potentially reduce the total
power consumed for data transmission in the whole network by replacing
multi-hop with traditional single-hop communication [I].

Grouping is a method to organize node cooperation in a WSN [2]. A group
has a selected node called the leader which is responsible for receiving data
from the group members and for the communication with the outside of the
group. Inside a group, nodes help each other to transmit data to the leader
using multi-hop instead of single-hop communication, thereby expecting to
reduce the consumed power.

Nodes which are close to each other may in principle communicate using
less power. By cooperating inside a group, the group’s members can decrease
their transmission power to minimum and still reach the leader. However, if
nodes do not have fixed locations, the network topology can change. Nodes
should compute the most efficient way to communicate in the network. Con-
sequently, the group structure of the network may need to evolve. In a
self-organizing network with a dynamic topology, a node which moves may
want to join a group to have a cheaper communication and the group needs
to decide whether to accept the node.

This paper proposes a new protocol to decide which group could be the
best for the node to join. The node chooses a group such that joining it is
beneficial for the node, for the group, and also whole the network. In order
to decentralize the grouping process, in the proposed protocol the nodes
choose the best group to join with respect to the total energy of the network.



Our grouping protocol needs an underlying routing protocol which finds the
cheapest route between a node and a group leader with respect to power
consumption. For this purpose, we propose a power-sensitive AODV routing
protocol to find the cheapest routing path between group members. Based
on the power-sensitive AODV, our grouping protocol applies coalitional game
theory to decide on the best group membership.

In this paper, we combine the power-sensitive AODV protocol proposed
in [3] with an extension of the grouping protocol originally proposed in [4].
This extension allows the nodes to choose the best group among different
possible groups, in contrast to the protocol in [3] where the leader is respon-
sible for deciding about the node’s membership in the group, solely based on
the local benefit of the group. Compared to the previous papers [3], 4], we use
the framework of structural operational semantics (SOS) [5] to formalize our
proposed protocol. This way a more abstract representation of the protocol
is obtained, compared to our earlier work.

Protocol analysis is traditionally based on simulation tools. Instead, we
use formal techniques to analyze our protocol. Formal techniques not only
provide a more abstract model, but make it possible to prove protocol correct-
ness in addition to simulate its behavior. Simulation-based tools can provide
useful statistical results from protocol’s behavior, but since it is practically
impossible to test exhaustively all the behaviors of networks, these tools can
not prove the correctness of a protocol. By using formal techniques, we
can inspect all reachable states of a system and prove its correctness. Al-
though the abstract formalization of the proposed protocol is given in an SOS
style, the formalization can easily be transformed into a model in rewriting
logic [6]. Consequently, the protocol can be analyzed using the rewriting
logic tool Maude [7]. We show correctness of the proposed protocol.

1.1. Related Work

Approaches to energy conservation for WSNs that have been proposed
in the literature could be categorized in three: duty cycling, data-driven,
and mobility-based approaches [8]. The duty cycling approach is concerned
with networking subsystems and sleep /wake-up scheduling algorithms. These
methods, such as in [9] 0] 1T, 12|, try to identify efficient subsets in the net-
work and schedule the activity of network nodes. The purpose of the data-
driven approach is to reduce the amount of data that is transmitted between
sensors or the sink node, and considers data compression methods [13], 14} [15].



The mobility-based method such as presented in [16], [17, 18], 19], can be cat-
egorized as mobile-sink and mobile-relay methods, depending on the type of
the mobile entity. Mobile entities can gather the data from the nodes by using
short range communication, which is an efficient way of communication with
respect to energy. A similar idea of grouping the nodes for power efficiency
is used in [20, 21]. The proposed grouping technique fits best in the duty
cycling approach, because the group members and the group leader arrange
their duties in order to cooperate with each other, and thereby conserve the
total energy of the group and the network. Our algorithm manages the du-
ties of the nodes in the network. We do not specifically use sleep/wake-up
algorithms to schedule the duties, but instead use the groups in the network
and assign different duties to different group’s roles.

Game theory is categorized in noncooperational and cooperational (coali-
tional) games. Noncooperational game theory has been used to reduce the
power consumption of sensor nodes, applying a utility function to find the
Nash equilibrium [22] 23, 24]. Coalitional game theory is applied to reduce
the power consumption in WSNs by [25], proposing a merge and split ap-
proach for coalition formation. The authors calculate the value of the utility
function for every possible permutation of nodes and find groups with the
best utility value. This is as far as we know the only previous work that
uses coalitional game theory for grouping the sensor networks. In contrast
we develop and formalize a protocol which considers nodes which may need
to join a new group, without reorganizing the entire WSN.

WSNs present interesting challenges for formal methods, due to their
resource restrictions and radio communication. This has led to research on
how to develop modeling languages or extensions which faithfully capture
typical features of sensors; e.g., mobility, location, radio communication,
message collisions. In addition, WSNs need communication protocols which
take resource usage into account. There is a very active field of research
on protocol design for WSNs. However, protocol validation is mostly done
with simulation-based tools, using NS-2, OMNeT+, and extensions such as
Castalia [20] and SensorSim [27]. In contrast to these tools, our approach is
based on formal modeling which allows to have systematic and comprehensive
investigation of model properties and correctness.

Formal techniques are much less explored in the development and anal-
ysis of WSNs, but start to appear. Among automata-based techniques, the
TinyOS operating system has been modeled as a hybrid automaton [28] and
UPPAAL has been applied to the LMAC protocol [29] and to the tempo-
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ral configuration parameters of radio communication [30]. The CaVi tool
combines simulation in Castalia with probabilistic model checking [31].

A recent process algebra for active sensor processes includes primitives
for, e.g., sensing [32]. The CREOL object-oriented modeling framework has
an extension for heterogeneous environments, which includes radio commu-
nication [33]. The Temporal Logic of Actions has been used for routing tree
diffusion protocols [34]. Maude is an expressive, high-level, reflective lan-
guage with a formal semantics based on rewrite logic. It supports a wide
range of applications efficiently, using specifications in terms of equations
describing functional data types, and rewrite rules, describing state changes.
Maude can also support meta-programming, object orientation, real time,
and probabilistic modeling. It provides an executable environment for mod-
eling, testing, and validating different applications [35] 36} [7]. Olveczky and
Thorvaldsen show how a rich specification language like Maude is well-suited
to model WSNs, using Real-Time Maude to analyze the performance of the
OGCD protocol [37]. They demonstrate that Maude can be used to detect
flaws early in high-level designs. In addition, it can be applied to develop
executable prototypes and to generate code, very quickly. It also has a wide
range of analysis tools.It is possible to debug formal partial or incomplete
specifications and also do exhaustive model-checking, or bounded model ex-
ploration. For critical systems, full formal verification using theorem proving
tools are provided. Their approach has been combined with probabilistic
model-checking to analyze the LMST protocol [38]. We follow this line of re-
search and use Maude as a tool to develop a grouping protocol [2] for WSNs.
Compared to other formal languages Maude allows infinite state systems
and variables over types with infinite value sets. For such systems bounded
breadth first search and statistical model checking are valuable.

1.2. Paper Overview

Section [2] introduces WSNs and grouping, and Section [3] coalitional game
theory. Section[]explains the power-sensitive extension to the AODV routing
algorithm. Section [5| the proposed group membership protocol based on
coalitional game theory. Section [6] presents the formalization of the protocol
in an SOS style. Section [7] discusses the Maude implementation and the
analysis of the model and Section [§] concludes the paper.



2. Grouping the Sensor Nodes

A sensor network is typically a wireless ad-hoc network, in which the
sensor nodes support a multi-hop routing algorithm. In these networks,
communication between nodes is generally performed by direct connection
(single-hop) or through multiple hop relays (multi-hop). Multi-hop ad-hoc
wireless networks use more than one wireless hop to transmit information
from a source to a destination.

Wireless sensor nodes use routing protocols to communicate with each
other and to find the path to transmit the data that is sensed from the envi-
ronment to the designated sink node (or nodes). In most of these protocols,
the nodes broadcast their data to all nodes that are within the range of their
data transmission. This range is determined by the power used for transmis-
sion. In general, sensor nodes use their maximum data transmission power
to cover a larger area and reach more nodes, both for data transmission and
for routing. For example, in the standard AODV protocol [39], a node that
moves or enters the network broadcasts a routing request package (Hello)
with maximum power to find neighbors. Due to node mobility, a node may
need a new routing path, so it rebroadcasts a routing request to its neighbors
using maximum pOwer.

When a large number of sensor nodes are placed in the environment,
neighbor nodes may be very close to each other. In this case, the trans-
mission power level for communication with a neighbor can be kept low.
Since nodes can cooperate with each other to transmit data, multi-hop com-
munication in sensor networks is expected to consume less power than the
traditional single-hop communication [I]. Furthermore, multi-hop communi-
cation can effectively overcome some signal propagation effects experienced
in long-distance wireless communication.

Grouping. Grouping is a method for cooperation between nodes, in which
nodes belong to distinct groups [2]. When nodes form a group, they help
each other to transfer data in a more organized way. Each group has a
group leader; i.e., a designated member which receives data from the group
members and communicates with other group leaders in order to route the
data to its destination. Inside the group, it is not always necessary for a
node to use its maximum transmission power. Instead, the group members
can decrease the power consumed for communication and use their minimum
transmission power to reach the group leader. The leader should be chosen



carefully to have enough energy to do its responsibilities. In this paper we do
not focus on the leader selection issue but rather on the group management.
We assume that Leaders are fixed nodes with renewable energy resource.

Sensor nodes in the real world are not designed to directly support group-
ing. We therefore assume that nodes know nothing about the grouping pro-
cess. In contrast, the group leaders are special nodes that process the in-
formation of the newly entered sensor nodes and decide about their possible
group membership. Group formation could be done by using different tech-
niques. In general, the grouping of nodes can be done based on particular
characteristics or distance. In the first case, a correlation among the sensors
could be found by using vector quantization [40]. For example, all sensor
nodes that have similar sensed data could be placed in one group. In the sec-
ond case, the sensor nodes form different groups based on the distance. With
this technique, a node’s location is the important factor for group formation,
but to have a better grouping, other factors such as interference could also be
considered for group formation. The location of the nodes can be determined
using different methods, such as GPS.

3. Coalitional Game Theory

Game theory [4I] can be used to analyze behavior in decentralized and
self-organizing networks. Game theory typically sees the nodes as players
and models the choice of strategies of self-interested players, in order to
capture the interaction of players in an environment such as a communication
network. A game consists of

e a set of players N = {1,2,....n};

e an indexed set of possible actions A = Ay X Ay X ... X A,,, where A, is
the set of actions of player ¢ (for 0 < i < n);

e a set of wutility functions, one for each player. The utility function u
assigns a numerical value to the elements of the action set A; for actions
z,y € Aif u(x) > u(y) then  must be at least as preferred as y.

Game theory can be either cooperative [41] or noncooperative [42]. Nonco-
operative game theory studies the interaction between competing players,
where each player chooses its strategy independently and the goal of each
player is to improve its utility or reduce its cost [25]. In cooperative games,
groups of players are formed, called coalitions. The players try to find a



coalition to strengthen their position in the game and make an agreement to
act as a simple entity. Coalitional games have proved useful to design fair,
robust, and efficient cooperation strategies in communication networks. In
a coalitional game (NN,v) with N players, the coalition value or utility of a
coalition is determined by a characteristic function v : 2V — R which ap-
plies to coalitions of players. Most coalitional games have transferable utility
(TU); i.e., the utility of a coalition can be distributed between the coalition
members according to some notion of fairness. However, for some scenarios
a coalition’s utility cannot be captured by a single real value, or rigid restric-
tions are needed on the distribution of the utility. These games are known
as coalitional games with nontransferable utility (NTU). In an NTU game,
the payoff for each player in a coalition S depends on the actions selected
by the players in S. The core of the coalitional game (N,v) is the set of
payoff allocations that guarantees that no player has an incentive to leave N
to form another coalition [25].

4. Power-sensitive AODV Routing protocol

We propose a power-sensitive Ad-hoc On-Demand Distance Vector (AODV)
routing protocol, based on AODV protocol [39], which is reactive; i.e., routes
are created at need. It uses traditional routing tables, one entry per destina-
tion, and sequence numbers to decide if the routing information is up-to-date
and to avoid loops. Note that power-sensitive AODV maintains time-based
states in each node; if a routing entry has not been used recently, it expires
and the node’s neighbors are notified. Route discovery is based on query and
reply cycles, and route information is stored in all nodes along the route as
route table entries. The power-sensitive AODV protocol works as follows:

1. Nodes broadcast Hello messages to detect and monitor links to neigh-
bors.

2. The route discovery process starts when a node which requires a route
to another node, broadcasts a rreq message.

3. If the neighbor which receives this message has no route entry for the
destination, or this entry is not up-to-date, the rreq is re-broadcasted
with an incremented transmission power which shows the consumed
power in the path.

4. While the rreq message is broadcasting through the network, each node
remembers the reverse path to the source node.



5. If the receiver node is the destination or it has a routing path to the
destination with a sequence number larger or equal to that of rreq, a
rrep message is sent back to the source. The route to the destination
is established when a rrep message is received by the original source
node.

6. A source node may receive multiple rrep messages with different routes.
It then updates its routing entries if the information is new in the sense
that the rrep has a greater sequence number.

Note that the AODV routing protocol counts the number of hops (the
length of the path) and finds the shortest path, while power-sensitive AODV
finds the cheapest path regarding to the consuming power of the nodes in
the path.

5. A Protocol for Deciding Group Membership

Consider the grouping problem for wireless sensor networks as a coali-
tional game. The sensor nodes are the players and the game is concerned
with whether a node should join a group or not. The goal is to reduce the
total power consumption in the network, so we need a utility function which
reflects the power consumed for data transmission and signal interference.
The utility function proposed by Goodman et al. [43] appears to be a suit-
able choice when power consumption is an important factor of the model
[44]:

R

power;

wpower;, §;) = (———)(1 - =)L, &
When applying w to a node j, power; is the power used for message transfer
by j and 6; is the signal to interference and noise ratio (SINR) for j. In
addition, R is the rate of information transmission in L bit packets in the
WSN.

Nodes can transfer data with different amounts of power. Let power™**
denote the maximum transmission power and power;”m the minimum trans-
mission power for each node j, such that 0 < power™™ < power***. When
a node j cooperates in a group, it uses power™" for message transmission,
and otherwise power}"**. Consider a network of nodes N = {1,...,n}. If all
the nodes in N cooperate, we have:

n n
Z w(power;,d) = Z w(power}”m, J)

j=1 j=1
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Without cooperation powerj" is assigned to power;. Observe that if this

utility function were applied naively, it would always be beneficial for nodes
to form a coalition, as the result of decision making is the same for every
topology of the network and every group.

However, in reality all the cooperating nodes use power in order to trans-
mit data to the group leader, so it is not sufficient to only consider the power
consumption of the original sender of data in the utility function. Although
each node uses its minimum power to transmit data, the node’s total power
usage depends on the number of messages it needs to transmit. Each node on
the route between the source node and the leader, needs to send its own data
as well as the data that it has received from the previous node. In general,
the power consumption for the intermediate nodes will increase. We modify
the utility function (Formula (1) to capture the overall power usage needed
to transmit the data from the node to the leader following a given path:

R

_)(1 — e 05%) L 2
ZneR'Pj,Leacler power;’?ln)( ) ’ ( )

u(power;, ;) = (

where the set RP; 1cqder contains all nodes in the routing path between node
J and the leader. This utility function is similar to Formula[I]except that the
power that is applied is the sum of the power consumed by all the nodes in
the routing path through which data is transmitted from the sender to the
leader.

The power consumed for routing data from a non-member to the leader
follows Goodman et al. (Formula [l)) and is based on maximum power single
hop:

WG, 05) = () (1= e O
powerj**

Using the utility function u, the leader can decide about the membership
of a new node with more realistic estimations. The result depends on the
specific topology, so coalition is not always beneficial. Consequently, it is
more beneficial for the node to follow a path through the group than to act
individually when w(j,d;) < u(j,d;) holds. To calculate the power that is
used in the cooperation, we have proposed a power-sensitive AODV routing
protocol, modifying AODV to find the cheapest path between the node and
the leader in terms of power (more details in the section[d). The leader may
then decide to add the node to its group and sends an Invitation message
to the node. A node may receive several Invitation messages from different
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leaders due to the intersection of groups. In this paper, we consider how the
node may select the best group to join, using game theory. It chooses to join
the group which is the most beneficial for the overall network.

Consider a group ¢ with leader Leader. Let M be the set of nodes which
can reach Leader with power™** and N the set of group members. Let the
accumulated group utility value g; be determined by the sum of the utility
values for communication with Leader:

JjeM JEN

The group membership protocol extends the power-sensitive AODV protocol
as follows:

1. Node j sends a Hello message with maximum power to all group leaders
within range;

2. Each group leader runs the power-sensitive AODV protocol to find the
cheapest path for j as a potential group member and evaluates the
benefit of group membership for j: ¢;(M U{j}, N) < g:(M,N U {j});

3. If membership is beneficial, group ¢’s leader sends an Invitation message
to j, including the utility values v’y = ¢;(M U {j}, N) and v’ ,, =
gi(M, N U{j});

4. Node j may receive many Inuvitation messages, which are processed
sequentially. By assumption, j is currently in group a and knows v3,
and v?,; For each invitation, j computes v, — v’y > v%., — v%;.
If this is the case, j accepts the invitation from 7 and sends a Leave
message to a with the value v2, — v%4;

5. The Leader receives an Accept message from j and updates its utility
approximation;

6. The Leader receives a Leave message with value v;, and updates its
utility approximation v to v — vj.

The core of this game is not empty and nodes can form groups. Assuming
two disjoint groups i and a with v(a U i) = 0, the core is empty [25]. In our
game tNa 7é®7 gz(M7N> = U(M7 N)7 and gi<MU {.7}>N> < gi<M7NU {]})7
which proves that the core is not empty and that no node or group of nodes
has incentive to leave the coalition.
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6. The Formal Model of the Proposed Protocol

In this section, we define a formal model of the group membership pro-
tocol as a transition system in an SOS style [5]. Transition rules apply to
system configurations. We explain the rules and auxiliary functions modeling
wireless message passing, node movement, and the routing protocol, as well
as the evaluation of the utility function. The rules are presented using the
following SOS notation:

(RULE NAME)
Conditions

conf — conf’
Here the pattern conf locally transforms a configuration to conf’ if the
Conditions hold, given a match between conf and the configuration. In
order to distinguish trivial conditions from non-trivial ones, we will use the
notation = := e when the variable z is introduced as a short-hand for the
expression e in the rule, similar to a let-construct. Mathematically x := e
can be understood as z = e.

Our rules involve one node object and at most one incoming message, as
typical for distributed asynchronous system, and each rule has a conclusion
of form

msgs node conf — mnode’ newmsgs conf

where msgs are the messages consumed by the node, newmsgs are the mes-
sages produced by the node, and node’ is the node in its resulting state.
Without the conf variable this would represent local activity of each object,
and concurrent execution could be represented by standard SOS context and
concurrency rules. However, we are modeling wireless broadcast communica-
tion and must dynamically determine which nodes are within the transition
range of a sender. Because the exact subset cannot be determined locally, we
include the entire configuration in the rules by means of the variable conf.

A system configuration is a multiset of objects and messages, where the
node objects are assumed to have unique identifiers. A node has the form of
node(o, p, e, n,l), where

e 0 is the identifier of the node,
e p is the position of the node in the form of (z,y),

e ¢ is a pair of (power, energy) where power is the power capability of
the node and energy is the total remaining energy in the node,
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e n is a tuple (routing, utility, neighbor, reqID, prev) where,

— routing is the routing table of the node,

— utility is a tuple of (u”, u°) where are the new and old utility value
of the node’s group,

— neighbor is the list of node’s neighbors
— reqlD is the sequence number of the last received request message,
— prev is the last node in the routing path,

e [ is the identifier of the node’s leader.

Figure[l|defines observer functions used to extract a node and its different
attributes from a given configuration. Messages have the general form of
msg(h, s, d), where

e £ is the header of the message which is the form of name(c), where
name indicates the message name and c is the content of the special
message,

e s is the message’s source node, and

e ( is the identifier of the message’s destination node.

6.1. Unicast, Multicast, and Broadcast

We consider three types of message passing in WSNs: unicasting, mul-
ticasting, and broadcasting. We use auxiliary functions to capture message
passing in our model. These functions are defined in Figure [2] and explained
below. In WSNs, messages are sent through the atmosphere and can only

Node(o, conf) = node(o, p, e, n,l) if node(o, p,e,n,l) € conf

Position(o, conf) = p if Node(o, conf) = node(o, p, e, n,l)
E(o, conf) =e if Node(o, conf) = node(o,p, e, n,1)
N(o, conf) =n if Node(o, conf) = node(o,p, e, n,1)
Power(o, conf) = power if E(o, conf) = (power, energy)
Energy(o, conf) = energy if E(o, conf) = (power, energy)
Routing(o, conf) =1 if N (o, conf) = (r,u,n,id, p)
Utility(o, conf) = u if N (o, conf) = (r,u,n,id, p)
Neighbor(o, conf) =n if N(o, conf) = (r,u,n,id, p)
RequestID (o, conf) = id if N (o, conf) = (r,u,n,id, p)
Prev(o, conf) =p if N(o, conf) = (r,u,n,id, p)

u” = new and u° = old if Utility (o, conf) = (new, old)

Figure 1: Observer functions on a node o in a configuration conf.
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be seen by the nodes which are in the sender’s signal range. This is cap-
tured by the function inrange which determines whether the two nodes s
and d are within transmission range given their positions p, and p;. We use
distance(ps, pq) to find the distance between two nodes s and d. In addition,
reach(power) is used in order to define the distance that a node’s signals can
be received by using transmission power power.

function inrange : (Nat x Nat) x (Nat x Nat) x Nat — Bool
inrange(ps, pa, power) = distance(ps, pg) < reach(power)

function unicast : Header x Id x Id x Configuration x Nat — Configuration
unicast(name(c), s, d, conf , power) =

if not inrange(Position(s, conf), Position(d, conf ), power)

then none else (msg(name(c), s,d))

function multicast : Header x Id x Id x Configuration x Nat — Configuration
multicast(name(c), 0,0, conf , power) = none
multicast(name(c), 0, {0’} U os, conf, power) =

unicast(name(c), 0,0, conf, power) multicast(name(c), o, 0s, conf , power)

function nodes : Configuration — OidSet
nodes(none) = ()

nodes(message conf) = nodes(conf)
nodes(node(o, e,p,n,l) conf) = nodes(conf) U {o}
nodes(conf) = ) [otherwise]

function broadcast : Header x Id x Configuration x Nat — Configuration
broadcast(name(c), o, conf , power) = multicast(name(c), o, nodes(conf) \ {0}, conf, power)

function findPower : List{Nat x Nat x Nat] x Nat — Nat
findPower(none,z) = 0
findPower((d, 0,p) nl,z) = if x = d then p else findPower(nl, )

Figure 2: Auxiliary functions for message passing in WSNs. Equations marked with
otherwise apply when no other equation match.

Unicast is modeled by a function unicast which takes a message header,
a sender id, a destination id, a configuration and the transmission power
of the message. The function returns a configuration which is empty if the
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sender and destination nodes are not within their transmission range in the
configuration. Otherwise, the function returns a message. Note that this
equation removes a message which cannot reach its destination, depending
on the positions of the nodes at sending time.

Multicast is modeled by a function multicast which is similar to unicast,
but with a set of destination identifiers and performs unicast to all destination
nodes in the set. Here, os denotes a set of object identities.

Wireless broadcasting does not have any particular destination, and the
message is sent to all the nodes in the transmission range. In order to model
the broadcast, we need to have access to all the nodes in the configuration.
The multiset of all nodes in the configuration conf is given by the function
nodes(conf). Broadcast is modeled by a function broadcast which takes a
message header, a sender id but no specific destination id, a configuration
and the transmission power of the message. The function returns a set of
messages to all the node within the transmission range of the sender.

Function findPower retrieves the power that is needed to route the data
to a special destination, from the routing table. The routing table is a list of
triples, including the destination node ID, the next node in the routing path
to the destination, and the required transmission power.

6.2. Node Movements

In most WSNs, nodes can move and change their location. Therefore, a
WSN model should provide suitable rules for changing the position of the
nodes. In our model, nodes can move freely within the area that is bounded
by predefined borders. The node movements are captured by a rule RANDOM
MOVING, given in Figure 3], which non-deterministically changes the location
of the node inside of the borders of the environment. Here, insideBorders(p')
checks if p’ is a position inside the predefined borders of the environment,
and the message Moved is a message from the node to itself to indicate that
the position is changed and that the grouping process should be restarted.
In the time of moving, the node also broadcast an UpdateRT message to
all its neighbors, to inform its movement. The neighbors which receive this
message, remove the entries in their routing table, which includes the moving
node. The UPDATE ROUTING TABLE rule captures this process. In this rule
RetriveEntries(o, routing) finds all the entries in the routing table routing
that include node o.
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(RaNnDOM MoOVING)
p#p
insideBorders(p’)
e’ := (power, energy — power
m := broadcast(UpdateRT, o, conf , power
node(o,p, e, n,l) conf — node(o,p’,€e’,n,l) msg(Moved, 0,0) m conf

7na,;c)

(UppaTE RouTiNG TABLE)
entries := RetriveEntries(o1, Routing(o, conf))
e/ := (power, energy — power™")
n' := nfrouting = routing \ entries)]
msg(UpdateRT, 01,0) node(o,p,e,n,l) conf — node(o,p,e’,n’,1) conf

(DEST-REC-RREQ)
RequestID (o, conf) < reqid
n' := n[reqID = reqid)
m := unicast(rrep(s, o, reqID, pow), 0, 01, conf , (Power(o, conf))™"™)
msg(rreq(s, o, reqid, pow), 01, 0) node(o, p,e,n,l) conf — node(o,p,e,n’,l) m conf

(REC-RREQ1)
o#d
RequestID(o, conf) < reqid
n' := n[reqID = reqid, prev = o1]
e/ := (power, (energy — power™M))
m := broadcast(rreq(s, d, reqID, (power + pow)), o, conf , power
msg(rreq(s, d, reqid, pow), o1, 0) node(o, p,e,n,l) conf — node(o,p,e’,n’,1) m conf

(REC-RREQ2)
o#d
RequestID (o, conf) > reqID
msg(rreq(s, d, reqID, pow), o1, 0) conf — conf

Figure 3: The formal model of the routing protocol (1). The variable m denotes new
messages added to the configuration. In the rules we assume that e = (power, energy)
and skip the trivial premises power := Power(o, conf) and energy := Energy(o, conf).

6.3. A Formal Model of the Power-Sensitive AODV Routing Protocol

The routing protocol discussed in Section {4]is now formalized. The main
difference between our protocol and AODV is that we find the cheapest path
instead of the shortest one. In the model, each node has its own routing
table that stores the path to each destination. For each destination, the
routing table stores the following information: the next node on the path
to the destination and the required power to send data to the destination.
When the node finds a cheaper path to a destination (a path which requires
less power), it updates its routing table and replaces the old path with the
cheaper one. The neighbors of a node are stored in a list neighbor.

The rules in Figures [3] and [] control the message propagation in the
model by receiving a route request or a route reply message and sending a
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(REC-RREP1)
(0 9)
([d oqg powerg]) € Routing(o, conf)
findPower(Routing(o, conf),d) < pow
e/ = (power, energy — power™m")
n' := n[reqID = reqid)
m := unicast(rrep(s, d, reqid, (power + pow)), o, Prev(o, conf), conf, power
msg(rrep(s, d, reqid, pow), 01,0) node(o,p,e,n,l) conf — node(o,p,e’,n’,l) m conf

min)

(REC-RREP2)
(0 # s)
([d og powerg]) € Routing(o, conf)
findPower(Routing (o, conf),d) > pow
e/ := (power, energy — power™m)
n' := n[reqID = reqid, routing = (update Routing([d o1 pow]))]
m := unicast(rrep(s, d, reqid, (power 4+ pow)), o, Prev(o, conf), conf, power
msg(rrep(s, d, reqid, pow), 01, 0) node(o, p,e,n,l) conf —» node(o,p,e’,n’,1) m conf

min)

(REC-RREP3)

(0 # 5)
([d 04 powerq]) & Routing(o, conf)
e’ := (power, energy — power™'™)

n' := n[reqID = reqid, routing = (routing U [d 01 pow])]

m := unicast(rrep(s, d, reqid, (power + pow)), o, Prev(o, conf ), conf, power
msg(rrep(s, d, reqid, pow), 01,0) node(o, p,e,n,l) conf — node(o,p,e’,n’,1) m conf

min)

(SRC-REC-RREP)
(0= 5)
n' := n[reqID = reqid, routing = (Routing(o, conf)U [d o1 pow])]
m := msg(Membership(d), o,0)
msg(rrep(s, d, reqid, pow), o1, 0) node(o, p, e, n,l) conf — node(o,p,e,n’,l) m conf

Figure 4: The formal model of the routing protocol (2). We assume e = (power, energy).

new message which is either a reply or a request. The messages rreq (route
request) and rrep (route reply) include the information of the message source
s, destination d, request id reqid and the power that is used for routing the
message pow. The notation nly = y'] denotes that the n-tuple of the node
remains unchanged except that the attribute y will change to y'. Further-
more, power™" and power™* denote the minimum and maximum power
that can be used by a node according to the node’s power value. The func-
tion findPower extracts the value of required power for data transmission
from the routing table (defined in Figure [2)).

In Figure [3 the rule DEST-REC-RREQ is enabled when node o that has
received the route request message (rreq) is the final destination. Node o
sends the route reply rrep message to the source node s through the previous
node in the route, which is node o1. The rules REC-RREQ1 and REC-RREQ2
are related to the situation that nodes receive a route request message (rreq),
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but the receiver of the rreq is not the destination. In the first rule, the request
message’s Id is greater than previously seen by the receiver so the message
is fresh. Then, the node o updates its information and broadcast it again to
find the destination of the route. In the second rule the message has been
seen before because the ID of the request message is less than the current
message 1D, so the message will be ignored.

In Figure {4 the three rules REC-RREP1, REC-RREP2, and REC-RREP3
capture the situation that nodes receive a rrep message but the receiver of
the route reply message (rrep) is not the original sender of the request. Note
that in these rules the estimated power consumption is accumulated in the
request messages by power + pow. In rule REC-RREP1, the routing table
remains unchanged because the current route to the destination is cheaper
(the smaller power value in the table). Rule REC-RREP2 changes the existing
row in the routing table because the new path to the destination is cheaper
than the current one. The function updateRouting([d o; pow]) modifies the
routing table’s entry that is related to the destination d. It updates the next
node in the routing path and the transmission power with o; and pow. In
rule REC-RREP3, no previous path to the destination exists. Therefore, a new
row is added to the routing table. The rule SRC-REC-RREP is enabled when
the original sender of the request message has received the reply message.
This rule sends a Membership message that enables another rule to make
decisions about the node’s membership in the group (see Section .

6.4. A Formal Model of the Regrouping Protocol

The transition rules of the regrouping protocol are given in Figure[5] Each
node which moves to a new location, should inform neighboring leader nodes
about its movements. This is done by broadcasting a Hello message with
node’s maximum power when the node has changed position. The START
GROUPING rule represents the Hello broadcasting (step 1 of the protocol in
Section [f]).

When a neighboring group leader receives this Hello message, a new node
has entered the group’s signal range. The function Leaders returns all the
leaders in a configuration, and Network(o;, conf) returns all the members of
the leader o.

Each message transmission reduces the node’s total energy energy with
respect to the amount of energy that is consumed for sending the message.
The leader starts the process to decide whether it is beneficial to accept
the new node as a group member based on the power usage in the result
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(STaART GROUPING)
e’ := (power, energy — power
m := broadcast(Hello, o, conf , power
msg(Moved, o,0) node(o, p,e,n,l) conf — node(o,p,e’,n,l) m conf

maz)

maz)

(Routing Pata REQUEST)
o € Leaders(conf)
01 € Network(o, conf)
e’ := (power, energy — power
m := broadcast(rregq(o, o1, RequestID (o, conf) + 1,0), o, conf, power
msg(Hello,01,0) node(o,p, e, n,l) conf — node(o,p,e’,n,l) m conf

(MEMBERSHIP DECISION)
joinGroup(f)
f = findPower(Routing(o, conf), 01)
u = Utility(o, conf)
e’ := (power, energy — power
m := unicast(Invitation(newUtility(u, f),u™), 0,01, conf, power
msg(Membership(o1),0,0) node(o, p,e,n,l) conf — node(o,p,e’,n,l) m conf

maz)

ma:ﬂ)

(GroUPING)
bestGroup(l, u1, u, Position(o1, conf), power)
u := Utility(o, conf)
e’ := (power, energy — (power™*® + power™™))
m := unicast(Accept(u1), 0,01, conf, power™") unicast(Leave(u), 0,1, conf, power
msg(Invitation(u), 01,0) node(o, p,e,n,l) conf — node(o,p,e’,n,01) m conf

mafr)

Figure 5: A formal model of the grouping protocol. We assume e = (power, energy).

path. The leader first runs the power-sensitive AODV protocol (presented in
Section with minimum power to find the cheapest path to the new node
by performing RoutingPathRequest rule (step 2 of the protocol in Section .

If a path is found, the modified AODV protocol ends by letting the
leader send a Membership message to itself. This message starts the deci-
sion making process about the node’s membership, which is captured by the
MembershipDecision rules (step 3 of the protocol in Section . The function
newUtility calculates the new value of the utility function after joining the
node, and the function joinGroup represents the computation of the utility
function (Formula , formalized as in joinGroup rule.

In joinGroup function, e is the total power consumed in the routing path,
and power™** i, rate, and pack, are constants reflecting the maximum send-
ing power, the transmission rate, and the packet size, respectively. These
constants can be seen as network parameters, and suitable values given as
parameters to the initial configuration. The output of joinGroup is a Boolean
value. The leader uses this function to decide if a new node could be added
as a member.
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function newUtility : Nat X Nat — Nat
newUtility (u, e) = u + ((rate/e) x ((1 — 2.71(0-5+0))packy)

function joinGroup : Nat — Bool
joinGroup(e) = ((rate/e) x (1 — 2.71(0-3*0ypack)y 5 ((rate/power™a®) x (1 — 2.71(0-5%1) ypacky)

function bestGroup : List[List[Nat]] X (Nat X Nat) x (Nat x Nat) X Nat x Nat — Bool
bestGroup(l,u1,u, p, power) = if inrange(l, p, power) then abs(u} — ug) > abs(u™ — u°) else true

Figure 6: Auxiliary functions for the grouping protocol.

If the leader decides to add the node, it sends an invitation message to the
node. The node may receive several invitation messages in case of multiple
groups, therefore it should choose one of membership offers that is best for
it and also the network. The Grouping rule represents the node’s behavior
after receiving the invitation. Here, bestGroup is a function which compares
the different membership offers. In this model, like the real environment,
messages are queued and received one by one. So, each time we just need to
compare two offers (step 4 of the protocol in Section .

The bestGroup function is used in the the GROUPING rule to compare the
difference between the utility that is gain by joining to the new and previous
group and accept the new offer if it increase the utility of the new group
more than the previous group. Inputs to this function are the leader [, new
utility value, current utility value, and also location and power of the node.
If the node decides to change to the new group, it will inform the new and
previous groups’ leaders by sending Accept and Leave messages (steps 5 and
6 of the protocol in Section .

An SOS formalization of a distributed agent system would normally con-
tain a context and a concurrency rule. In our SOS formalization, we cannot
add these rules directly, due to the broadcasting function which needs to con-
sider the whole configuration in order to find all nodes within reach. However,
the broadcasting mechanism is simulating the network itself, rather than the
grouping algorithm. The other parts of the algorithm would allow a context
and a concurrency rule. The implementation in rewriting logic discussed
below will solve this problem.
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7. Implementation and Analysis in Maude

In order to implement and analyze the proposed protocol, we transform
the SOS style model to rewriting logic (RL) [6], resolving the declarative
aspects of the SOS model. The rewriting logic specification can be seen
as a high-level implementation of the protocol; it can be executed on the
rewriting logic tool Maude, which provides a range of model exploration fa-
cilities [7]. In the rewriting logic, rewrite rules apply to equivalence classes
of terms. Thus, when auxiliary functions are needed in the semantics, these
are defined in equational logic, and are evaluated in between the state transi-
tions [6]. Consequently, the function definitions of our SOS model are repre-
sented by equations in the rewriting logic model, and the transition rules are
transformed into rewrite rules. If rewrite rules apply to non-overlapping sub-
configurations, the transitions may be performed in parallel. Consequently,
concurrency is implicit in RL. Conditional rewrite rules t — ¢’ 1 £ cond are
allowed, where the condition cond is a conjunction of rewrites and equations
that must hold for the main rule to apply. In the rules of our grouping pro-
tocol, the left hand sides will be subconfigurations, meaning that the rules
apply to a part of a system configuration (and therefore describe concurrent
behavior) as opposed to the SOS semantics, and the context and concurrency
rules are built-in since non-overlapping rewrites may happen simultaneously
in RL. In order to handle broadcasting, the rules doing broadcasting are for-
mulated as equations {conf} = {conf’} where { } is an operator making
a system configuration from a configuration. Thus only these equations are
locking the whole configuration, whereas all rules may be applied in parallel.
Thus the Maude version reflects the intended concurrent execution of nodes.

The Random Moving rule in Section [f] cannot be directly reformulated in
RL, because the new position p’ does not occur in the left-hand-side. There-
fore we add explicit messages (DMove(p)) to tell a node that it should move
to position p. These messages are typically part of the initial configuration.
This approach allows initial configurations to express different mobility sce-
narios controlling the movement of nodes, which is needed when testing the
protocol with Maude’s model checking facilities. With the rule DirectMoving
below a node can move directly to a desired location, i.e., changing the loca-
tion of the node in one step.

(DirecT MOVING)
msg(DMove(p'), 0,0) node(o,p, e,n,l) conf — node(o,p’, e, n,l) msg(Moved,o,0) conf
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In a more realistic model, a node can move to a desired location through a
non-deterministic path. This is implemented by the rule Moving which makes
non-deterministic but finite steps towards the desired destination, issuing a
Moved message when reaching it, thereby triggering the regrouping protocol.

(MoviING)

(MovinGg DoNE)
node(o, p, e, n,l) msg(Move(p),0,0) conf
— node(o, p, e,n,l) msg(Moved, 0,0) conf

Do # P
pl € Po + {(_170)7 (07 _1)7 (0’ 1)’ (1’ 0)}
distance(p’, p) < distance(po, p)
node(o, po, e,n,l) msg(Move(p),0,0) conf
— node(o,p’, e,n,l) msg(Move(p),o0,0) conf

For correspondence with the previous part of the paper, the rules are still
presented in SOS style. All the rules in Section [f]are transformed into rewrite
rules, resulting in a Maude implementation of the protocol. More technical
details of the Maude model could be found in [3] and [4].

Maude provides model checking tools to check desired properties of a
model and a search tool that searches through all reachable states while
checking given properties. Maude provides different tools for testing and
validating the model. It can also run the model through one path of the
state space like a simulator. For simplicity in the implementation (as well
as in the SOS model), we have assumed that there is no message loss in the
protocol (apart from messages to nodes out of range), that messages do not
expire, and that the topology of the network consists of a fixed number of
nodes, but nodes can move.

7.1. A case study

As a case study, we consider a topology with six nodes. In this topology,
the nodes b and f are leaders of different groups. We simulate our model
with different initial states. Each initial state consists of a topology of the
network and a set of node movements. In our analysis the topology was the
same for all the initial states, but the movements of the nodes were different.
The set of movements includes the following cases:

e Movement of one node in each run that is repeated for different nodes
regardless of being a normal node or leader, in the area of the same
group or to the range of another group, and also out of the range of
any group.

e Simultaneous movement of two nodes in each run. Several permuta-
tion of node movements were considered in this part of the validation,
including moving nodes to the same group or different groups.
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("a":Node | id:1l, leader:[2 1 1],neighbors:noneOids, xPos:2,yPos:2,
power:1l,utility:4, routingTable:[0 0 0], reqgid:0,01dUtility:0,energy:870 >
("b":Node | id:2, leader:[2 1 1],neighbors:("a";"e"),xPos:1,yPos:1,

power: 1,utility:0, routingTable:[0 0 0], reqgid:0,0ldUtility:0,energy:805 >
("c":Node | id:3, leader:[6 10 3],neighbors:noneOids, xPos:8, yPos:4,
power:1,utility:5, routingTable:[0 0 0], regid:1,0ldUtility:0,energy:835)
("d":Node | id:4, leader:[6 10 3],neighbors:noneOids, xPos:9,yPos:3,
power:l,utility:7, routingTable:[0 0 0], regid:1,0ldUtility:5,energy:820)
("e":Node | false,id:5, leader:[2 1 1],neighbors:noneOids, xPos:8, yPos:4,
power:1l,utility:0, routingTable:[0 0 0], regid:1,0l1dUtility:0,energy:800 )
("£":Node | 1d:6, leader:[6 10 3],neighbors:("c";"d"),xPos:10,yPos:3,
power:1l,utility:7, routingTable:([4 4 1][0 O 01), reqid:l,oldUtility:O,energy:765)

Figure 7: The final state of a Maude simulation of the protocol.

We simulated the model and analyzed the final states to find out if the
model behaves correctly. The correctness is formalized as follows:

O—=(Member(O, L) < UEnh(L) > 0) (3)

O=(Member(O, L) < (UEnh(L) > UEnh(i) Vi € Leaders(conf)))  (4)

The predicate Member(O, L) is true if node O is a member of the group of
leader L. The predicate UFEnh(L) gives the utility enhancement if the node
joins, i.e., the difference of the new utility of the group of L and its previous
utility, considering all nodes in the group which the node chooses to join.
Formula [3| means that in all states of the system, the membership of the
node in the group is accepted by the leader only when this membership is
beneficial for the group and enhances the utility. In other words, there is
no state in which the utility value decreases but the node’s membership is
accepted. Formula [4] demonstrates that if node o participates in the group
of leader [, this membership enhances the utility of this group more than the
other groups.

To exemplify, consider the scenario in which nodes ¢ and d change their
location such that node c stays and d comes within the range of the leader
f. We first use Maude to check this property by simulating the model. The
result of the simulation is given in Figure[7] In the Maude implementation,
the attributes of a node are presented in a flat manner compared to the SOS
model. However, the names should suggest the meaning. The neighbors
attribute shows the neighbor nodes that are chosen to join the group. By
inspecting the neighbors attribute of leader f, we see that node ¢ and d
are now neighbors of f’s group. For these simulations, the results showed
that the model works as expected in all the cases.
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Although we did several simulations to improve the trustworthiness of the
results, simulation can not prove the correctness of the model because it just
checks one path in the system’s state space, whereas to prove the validity
of the model all the possible paths of the state space should be checked for
failure. To achieve this goal, we search through all possible states of our
model using Maude’s search command for a number of given initial states.
The search results show that for all possible traces from the initial states
the model works correctly. For example, when node d (id=4) moves to the
position(10,3) which is closer to leader £, search proves that in all possible
final states, node d is a neighbor of leader £ and there is no case of failure.

In addition, we have analyzed the effects of the grouping protocol on the
energy consumption of the WSNs. For this purpose, Maude’s simulation
tool is used repeatedly. In the beginning of the model execution, the nodes
start sending data messages. During the execution, they can move and join
a new group. We ran simulations for two distinct scenarios, namely, when
the WSN uses the grouping protocol vs. when it does not. Our purpose is
to compare the power consumption of the nodes and the leaders, in each
separate scenario. The network’s architecture could be designed to provide
low cost communications between leaders and sink nodes, such as in MULE-
based architecture for WSNs [I7]. Therefore, we assume that the leaders use
the minimum transmission power to send messages to sink nodes.

Figure [§ and Figure [J] represent the saved energy of a sensor node and
of a leader, with (red) and without (blue) using the grouping protocol. To
generate each of the graphs in the figures, we ran 5 simulations, each sim-
ulation lasting for 1000 time units (letting one time unit correspond to one
rewrite step). In the initial configuration, an initial value is assigned to the
total energy of each node. After each message transmission, including data
messages that are sent regularly by the nodes, as well as messages that are
related to the grouping protocol, the value of total energy is modified and
captured by the graphs. The final result is the average of the results of all the
simulations. These results show that for a normal sensor node, it is always
beneficial to join a group. Even for a leader, using its minimum transmission
power for all of its communications, it is more beneficial to be in a group
than to be a separate node, sending only its own messages but using the
maximum transmission power.
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Figure 8: The remaining energy of a node. Figure 9: The remaining energy of a leader.

8. Conclusion

In this paper, we propose a group membership protocol for WSNs to
choose the best available group by each node. In this protocol, members
cooperate with each other to transmit data, in order to decrease the total
power consumption of the group and also of the network. A node may move
toward the range of several groups that have overlapping range. It should
choose the best group to join, applying coalitional game theory with respect
to the total power consumption. We present an abstract formal model of
the protocol in the SOS framework. The implementation was done by trans-
forming the SOS model of the protocol into rewriting logic, and Maude was
used to analyze its behavior for several scenarios.

In future work, we intend to build on our current Maude model as well
as extending the model to capture real-time aspects of WSNs. Furthermore,
we plan to refine the utility function used in this paper, i.e., to capture the
interference of the transmission signals of the nodes. We are also going to
study how to change the nodes’ role in a group and selecting a new leader. In
addition, we want to capture the correlation of transmitted data in order to
send them more efficiently by considering this correlation in the cooperation
of the nodes. Furthermore we plan to do probabilistic model checking in
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order to statistically show the correctness of the protocol for larger models.

Acknowledgments. The authors gratefully acknowledge valuable com-
ments from the anonymous reviewers.
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