
UNIVERSITY OF OSLO
Department of Informatics

OUN:
A Formalism for
Open, Object
Oriented,
Distributed Systems

Olaf Owe and
Isabelle Ryl

Research report 270

August 1999

OUN:

A Formalism for Open, Object Oriented,

Distributed Systems

Olaf Owe and Isabelle Ryl

August 1999

Department of Informatics
University of Oslo

{olaf,isabelle}@ifi.uio.no

Abstract

OUN is a notation developed within the frame of the ADAPT-FT
project. The goal of this project is to provide a platform supporting
the formal development of object oriented open distributed systems. The
purpose of this platform is to support formal reasoning and, in contrast
to most formal methods, deal with the main aspects of open distributed
systems such as mobility, flexibility, and reflection. In the platform the
notation will be used combined with UML, but is not dedicated to it.

The ultimate purpose of the platform is to enable development of sys-
tems satisfying given safety requirements. Safety reasoning is difficult
unless the constructs of the specification and design language are chosen
carefully. We therefore introduce our own language, OUN, for system
specification and design. Openness is taken into account by allowing dy-
namic addition of (sub)interfaces and (sub)classes, as well as dynamic
extension of classes. And as usual in object oriented languages, objects
may be created dynamically and their identities may be communicated.
To facilitate reasoning, we insist on static typing and static correctness
proofs. This leads to some language restrictions, compared to Corba and
Java RMI.

OUN is a trace-based notation which allows us to specify contracts,
interfaces and classes using high level object oriented concepts like multi-
ple inheritance of interfaces and classes, and allowing implementation of
several interfaces by a class. Interface specifications characterize observ-
able behavior of one object, contracts restrict the behavior of a subsystem
with two or more objects, while class specifications characterize local at-
tributes as well as internal and external behavior. The notation will take
account of synchronous as well as asynchronous communications.

It is essential that the notation is practically useful, and not only
reserved for specialists with strong mathematical background: The basic
concepts are easy-to-understand, the formulas are expressed in first order
logic and the syntax is easy-to-use.

2

1 Introduction

We are aiming at a formalism which allows us to specify and develop object-
oriented open distributed systems in a way that enables safety and liveness
reasoning about them. As much as possible, we want to include high level object-
oriented programming language concepts supporting openness, but restricted
such that reasoning is manageable. In particular, generation of proof obligations
at run-time has to be avoided. Thus, system reasoning control will be based on
static typing and static proofs, and the generation of verification conditions will
be based on static analysis of pieces of program or specification text.

We allow a form of partial compilation, such that pieces of code can be
compiled at different times and added to a running system, without restarting
or stopping it. The compilation units may build on each other in a natural way.
In particular, a compilation unit may add functionality to an old class, by means
of so-called “class extension”. Each partial compilation will generate a set of
verification conditions to be proved. The language ensures that already proven
verification conditions do not need to be reproved when adding new compilation
units, not even when dynamically extending a class with new methods, but
sometimes new verification conditions are needed.

Neither Java nor Corba are suitable for static reasoning. We therefore recon-
sider object-oriented language constructs supporting both openness and reason-
ing control. Even though the main focus of this work is at the specification level,
we choose to sketch a high level object-oriented design language supporting our
goals. In particular we present an imperative class concept allowing dynamic
extension of methods and support of new interfaces. This enables us to design
systems where old objects may communicate with newer objects through new
interfaces (as well as old super-interfaces). The language is chosen so that dy-
namic extension of classes can be implemented efficiently and without stopping
or interrupting the running system.

Due to static typing, software errors such as “method not understood” and
“illegal parameter types” may not appear at run time. (However, hardware
errors might be reflected by network errors, and objects not responding.) The
formalism ensures that proved invariants can not be violated, say, by dynamic
extensions of classes or addition of new interfaces or classes.

Objects are considered to have internal activity, running in parallel. An ob-
ject may support a number of interfaces, and this number may increase dynam-
ically. The notation offers a large degree of flexibility: several communication
paradigms can be used, operations can be redefined without severe syntactic
or semantic restrictions, unrestricted overloading of operators is allowed, multi-
ple inheritance is allowed. Finally, certain kinds of reflection is considered: for
example one may ask an object if it supports a given interface.

We suggest below a high level object-oriented language concept, supporting
the above aims, but where openness is restricted by the above aims, as well as by
implementation issues. We will here limit ourselves to consider safety properties
(corresponding to safety properties in [1] except deadlock freedom), stated by
invariants and a kind of rely-guarantee specifications similar to that introduced
in [8]. This allows us to use a rather simple semantics, based on trace sets. A
forthcoming paper will deal with liveness and deadlocks.

3

1.1 Fundamentals of the notation

At the most abstract level, the specification language allows us to specify ob-
jects, interfaces, and contracts. At the design level, the programming language
allows us to define classes. In both cases, requirement specifications consist of
invariants and assumptions about the behavior of the environment, given as
formulas on the history of the (sub)system. The purpose of this paper is to
present the main aspects of the notation and briefly indicate their semantics.
The OUN notation leans on a standard trace semantics, similar to that of CSP
(without refusals and divergences) [7], except that objects have identity.

Object variables and object parameters are typed by interfaces, even at the
design level. This simplifies reasoning, since an interface is used to describe
observable behavior of a certain aspect (role) of an object. However, at run
time a given object will belong to one class, which is fixed but may be ex-
tended dynamically by adding operations and thereby implementing additional
interfaces.

A class is said to implement an interface if all operations in the interface
are implemented in the class (with the same parameter lists, except for formal
parameter names) and if the requirement specification of the class implies that
of the interface after appropriate projection of the history (see below). When
the class of the object implements several interfaces we say that the object
supports these interfaces.

In addition there is an underlying language for defining data types, including
predefined types such as integer, boolean, character and text. This sub-language
is not discussed further; however, in the examples we will use that of [5].

1.2 Openness: Dynamic extension of programs

For a traditional sequential system it is usual to consider the program as a single
piece of program text (perhaps with an external library). An open distributed
system may be the result of several program pieces written at different times,
and perhaps at different locations. One way of achieving openness is to allow
incremental addition of code without restarting or stopping the overall system.
These program units may then depend on each other in non-trivial ways.

We consider a partial order of compilation units, reflecting their availability
in time. A unit may then depend on another one if and only if the latter is
less than the former in the ordering. For instance units developed on different
locations, at more or less the same time, may not depend on each other and are
unordered. Compilation units developed at the same location are assumed to
be totally ordered.

The kinds of system additions that might be allowed depend on the pro-
gramming language (and operating system). In particular we are interested in
concepts based on the principles of object orientation. We will not limit our-
selves to a particular existing language (even though our notions are inspired
by Java and Corba). And as already stated we will limit ourselves to language
constructs that enable us to stay within the framework of static typing and
avoiding runtime tests creating proof obligations.

We will consider the following kinds of dynamic program extensions: addi-
tion of new classes and subclasses, addition of new interfaces and sub-interfaces,
addition of new “implements” claims, addition of new operations to a class,

4

strengthening the invariant of a class by an additional conjunct. And of course,
a compilation unit may create new objects (of new and old classes), as may the
execution of an operation. These issues are described a bit more below.

Dynamic aspects

Our notion of openness is closely connected to that of object orientation:

1. New objects may be created dynamically, and their identities may be
submitted as operation parameters, allowing old objects to be aware of
newer ones, and vice versa.

2. New (sub-)classes and new (sub-)interfaces may be added to a running
system without recompiling the whole system. Thus a running system
may be extended by new classes and interfaces, as well as new subclasses
and new sub-interfaces, without stopping the running system.

Notice that the combination of 1 and 2 allows old objects to talk to new
objects of new classes through old super-interfaces.

3. Additional “implements”-claims (C implements I) may be stated in a
compilation unit when needed. In order to establish the fact that a given
class implements a given interface, one needs a syntactic check as well
as a semantic check which in general generates proof obligations. Such
a claim may be stated outside the class or interface (say, at the outmost
level of a compilation unit), allowing such relationships to be established
incrementally, even when the compilation units defining the class C and
the interface I are unordered!

For instance, this allows relating an old class to a newer interface, or an
old interface to a newer class.

4. A class may be extended by adding one or several new operations, and
the invariant may be strengthened, see above. Assuming that the run-
time system will implement such an extension by loading the code for the
operations (in the appropriate place), and then making references to them
from the object representing the class (say from a table of operations local
to the class), no restart of the run-time system is needed.

5. Operations added to a class are inherited by any (old or new) subclass.
Since classes can not be modified from other locations, and since the com-
pilation units on one location form a total order, it will not be possible to
(directly or indirectly) modify classes in conflicting ways. As will become
clear, this kind of class extension would be difficult if subclasses were to
inherit invariants.

The combination of the above allows old and new objects to communicate
trough new interfaces!

The dynamical additions and extensions are allowed in such a way that
they do not change anything to properties already proved. So the system is
incremental, the security of old parts of the system can not be violated by any
new part (provided the generated verification conditions are proved).

5

2 Basics

2.1 Histories

Objects are not static parts of a system, they evolve through interaction with
the environment. One may think of the current “state” of an object of a system
as resulting from its past interactions with the environment by way of opera-
tion calls. Accordingly, the basic concept of OUN will be the notion of finite
communication history. The local communication history of an object provides
an abstract view of its “state”.

A communication history is a sequence of events, where each event is atomic
(relative to the current abstraction level) and is related to an operation call.
There are two kinds of events: initiation that denotes the initiation of the
call of an operation, and termination that denotes the completion of the call
of an operation (and return of out-parameters to the calling object). Thus,
events recorded in the history represents initiation or termination of operations
including associated parameter values and the names of the initiator and the
receiver of the operation. They are on the form:

operation initiation: o1 → o2.m(i1, . . . , ij)
operation termination: o1 ← o2.m(i1, . . . , ij ; r1, . . . , rk)

where m is the name of the called operation and where o1 and o2 are respectively
the initiator and the receiver of the call. For an initiation event, i1, . . . , ij
denotes the in-parameter values whereas i1, . . . , ij; r1, . . . , rk denotes the in-
parameter and out-parameter values for a termination event. The record of in-
parameter values for a termination event may seem to be redundant, however,
this form of events often provides an easy way of writing specifications, ignoring
initiations. There is an underlying assumption on histories ensuring that for
each occurrence of a completion there is a corresponding initiation occurring
earlier in the history.

Events may also be seen through the viewpoint of a particular object. For
an object o, events may be considered as being inputs or outputs:

o inputs: x→ o.m(i1, . . . , ij), o← x.m(i1, . . . , ij; r1, . . . , rk);
o outputs: o→ x.m(i1, . . . , ij), x← o.m(i1, . . . , ij; r1, . . . , rk).

Note that we assume that, at the most abstract level, objects are connected
by an idealized net. However, for each object we represent “external and inter-
nal” queues by means of the information in the histories. Imperfect channels
may be modeled by separate objects.

2.2 Communication

We consider asynchronous operation calls with return. The syntactic definition
of operations is on the following form:

opr my operation (in p1 : T1, . . . , pi : Ti; out pi+1 : Ti+1, . . . , pj : Tj).

Operations may have in- and out-parameters, typed by data-types or by in-
terfaces. The keyword in is default and may be omitted. In particular, object

6

identifiers can be transmitted as parameters. Notice that the identities of the
initiator and the receiver of a call are implicit parameters, which can be ex-
ploited, both for specification and implementation purposes.

As an operation has an implicit return, the calling object receives an indi-
cation of the termination of the operation along with the values of any out-
parameters. As operations are asynchronous, and as waiting is allowed in the
implementation of the operations, both the calling and the called object can be
involved in other observable activity between the initiation and the termination
of the operation. Thus, the call of an operation is recorded in the traces on the
form:

. . . o1 → o2.m(. . .) . . . o1 ← o2.m(. . . ; . . .) . . .

Note that the definition of operations is flexible and allows us to consider
pure asynchronous communications – when the caller does not wait for the
completion indication – as well as pure synchronous communications – when
the caller waits for the termination indication.

2.3 Notational conventions

In the following, H will denote communication histories. The alphabet of H
is the set of externally observable events i.e. events o1 → o2.m(p̄) and o1 ←
o2.m(p̄) where o1 6= o2, m is an operation of some interface implemented by o2,
and p̄ denotes the parameters values.

The projection of a finite history h onto a set of events, Set, denoted h/Set,
is defined inductively by:

ε/Set = ε

(h ` x)/Set =

{
(h/Set) ` x , if x ∈ Set
(h/Set) , otherwise

where ε denotes the empty sequence and ` denotes the right append.1 We
denote by h\Set the projection onto the complementary of the set Set. In the
following, we will use the following abbreviations:

• the projection of the history onto a set of methods

H/{m1, . . . ,mn} ≡ H/{o1 ↔ o2.m(p̄) |↔∈ {→,←}∧m ∈ {m1, . . . ,mn}}

where p̄ denotes a vector of parameters values,

1Right append plays an important role in OUN object specification, for instance consider
an invariant OK(H) where the predicate OK is defined inductively on the form

OK(ε) = true
OK(h ` x) = OK(h) ∧<x is acceptable in state h>

letting h serve as an abstract representation of the state. Such a specification has a form
suitable for refinement into an imperative class implementation, as follows: In general only
certain aspects of h are relevant in the last right hand side, these may be formulated by
appropriate functions of h (also defined by induction). When refining into a class these
functions determine the actual local variables needed.

In contrast the use of left-append would be suitable for describing an object as a finite state
machine.

7

• the projection of the history onto an object o, the local history of o,

H/o ≡ H/{o1 ↔ o2.m(p̄) | ↔∈ {→,←} ∧ (o1 = o ∨ o2 = o)}

where p̄ denotes a vector of parameters values,

• the projection of the history onto an object o seen through an interface
F , denoted by H/o : F , which will be defined later.

We denote by P yx the formula obtained by substituting x for every y in the
formula P .

When writing specifications, we will use the keyword me to denote the
current object.

3 OUN-SL

The specification language allows us to specify interfaces and contracts. Classes
are not present at this level, objects are seen trough interfaces (roles). Thus,
objects having the same role (i.e. offering the same interface) can be used at
the same places without considering classes. Object variables and parameters
are typed by interfaces such that we always have static control of the allowed
operation calls. We allow objects of an interface F to be used anywhere an
object of any super-interface of F can be used. This substitutability requires a
rigorous definition of interface inheritance.

An interface contains the syntactic definitions of operations and semantic
requirement specifications. A requirement specification is a form of assumption-
guarantee specification; it may contain an invariant, which is the guarantee, and
an assumption about the behavior of the environment, and it may introduce a
number of auxiliary functions needed for specification purposes. An interface
may not depend on any class, in the sense that object parameters of an operation
are typed by means of interfaces, and not by classes. We let all interfaces have
a common super-interface, called any, which is the empty interface.

3.1 Interfaces

Using histories, two basic specification concepts are offered, the invariant for
asserting properties which each object offering an interface must satisfy, and as-
sumptions for stating minimal context requirements. An interface specification
is of the general form:

interface F [<type parameters>](<parameters>)
inherits F1, F2, . . . , Fm

begin
with x: G

opr m1(. . .)
. . .
opr mi(. . .)

asm <formula on H and any external>
inv <formula on H>

end

8

where F, F1, F2, . . . , Fm and G are interfaces. The (optional) inherits-clause
allows multiple inheritance. The defined interface F may have some parameters
(between square brackets) which can be data-types or interfaces. The additional
list of parameters (between ordinary brackets) is a list of values (typed by data
types) and object parameters (typed by interfaces) which describes the minimal
environment that an object of this interface must know at the point of creation.
The part of the environment known by an object evolves during its life, due
to information about the calling objects and object identifiers transmitted as
parameters.

The with clause defines the (minimal) interface of an object calling any of
the operations mj (j ∈ 1..i), allowing an object of interface F to communicate
with calling objects through this interface. Thus the with clause above states
that only objects of interface G may talk to objects of interface F through
the listed operations. Even though only one with clause is introduced in each
interface, an interface may have several with clauses by way of inheritance. The
interfaces that appear in the with clause of F and its super-interfaces are said
to be associated with F .

We write m in F to denote that an operation m is defined either in F or in
any super-interface of F . An operation m such that m in FG, is an operation
defined either in F or in any super-interface of F in a with G′ clause where G′

is G or any super-interface of G.

The projection of the history onto an object o seen through an interface
F is defined accordingly, i.e. H/o : F is the projection of H onto the set
of calls of operations of F received by o and the set of calls of operations of
the associated interfaces of F initiated by o. Let G1, G2, . . . , Gn denote these
associated interfaces. Then, H/o : F is defined by:

H/o : F ≡ H/{o1 ↔ o2.m(. . .) | ↔∈ {→,←} and
((o2 = o ∧m in F)

∨(o1 = o ∧ ∃i •m in Gi
F))}.

The assumption describes the behavior which external objects have to re-
spect when communicating with an object of interface F , in order for the in-
variant of the interface to be guaranteed.

Remark. Some auxiliary functions may be needed for specification purposes.
They may be defined after the invariant on the form:

func <name> == . . .

Similarly, data types may be defined as well.

3.2 Basic semantics

The control of the communications of an object is distributed between its as-
sumption – for inputs – and its invariant – for outputs. We denotes respectively
by in(H) and out(H) the longest left prefix of a trace H ending by an input
event and by an output event.

For an interface F defined without using inheritance, we have:

9

• the assumption2 asm A(H), where A is a formula, states that for any
object o of interface F , and for any external object x, the formula

Ain(H) ≡ (∀x 6= o • [Ame
o](in(H/o : F/x)))

holds.

• the invariant3 inv I(H), where I is a formula, states that for any object
o of this interface, the formula

Iout(H) ≡ [Ime
o](out(H/o : F)),

holds. Thus, the invariant restricts the communication history local to
the current object.

• The trace set of an object o of interface F is defined by the assumption
and the invariant of F :

To:F ≡ {H/o : F | Ain(H)⇒ (Aout(H) ∧ Iout(H))},

where
Aout(H) ≡ (∀x 6= o • [Ame

o](out(H/o : F/x))).

The control of assumption for traces ending by an output event ensures
that an object will not break its own assumption.

3.3 Refinement

For objects with the same alphabet, we define refinement simply by subset on
trace sets which is a standard definition of refinement, for example as in the
notion of behavioral refinement in FOCUS [3, 4] or in CSP [7]. For objects
with different alphabets, one must consider a way of relating the alphabets, for
instance by an abstraction function.

In the special case of interface refinement, a (super) alphabet may be ex-
tended by additional operations in a sub-interface. We suggest the use of projec-
tion when relating the trace of a sub-object to that of a super-interface following
[6]. An interface F ′ is said to refine an interface F , if the alphabet of each object
o of interface F is included in the alphabet of o seen through interface F ′, and
if the trace set of each object o of interface F ′ is included in the one of o seen
through interface F , that is to say:

(∀H ∈ To:F ′ •H/o : F ∈ To:F).

In the literature most refinement notions related to sub-classing [9, 10] ensure
that an object of a subclass will not give surprises when used as an object of a
superclass (“plug in” compatibility). This concept of refinement linked to “plug
in” is not peculiar to object-oriented technology, it can be found in several well-
known specification languages: for example, the operation refinement in Z [13]
and the trace refinement of action systems in [2] follow this scheme. Our notion
of refinement of interfaces does not ensure this directly, only after the relevant
projection. On the other hand if an object offering an interface gets inputs

2When not present, the assumption is supposed to be true.
3When not present, the invariant is supposed to be true.

10

beyond what is syntactically defined in a super-interface, we still require that
the object behaves as a super-interface object after projection; a requirement
which is usually not included in “plug in” compatibility. Our notion is suitable
for multiple inheritance and for describing abstract role-behavior. Even if it does
not provide “plug in” compatibility, our language is strongly typed, and no call
can be made which results in an operation not understood. Thus “plugging in”
a sub-interface object, in our setting, may not create any (new) system failures
and may not brake any invariants inherited from super-interfaces. Our form of
“plug in” compatibility is strong enough to provide semantic control, and weak
enough to allow the kind of redefinitions often used with virtual binding.

In the interface refinement, there is, once again, a need of an abstraction
function to relate interfaces (and also systems) with different alphabets. How-
ever, the exact definition of these mechanisms is outside the scope of this paper;
and the complete semantics, definition of refinement and parallel composition
are treated in another paper. Our definition suffices to deal with interface inher-
itance and interface implementation. Moreover, we only consider safety aspects,
deadlock control is not discussed (and would require a more complex semantic
treatment).

3.4 Multiple Inheritance

Multiple inheritance of interfaces may be used when defining a new interface.
The new interface may add operations as well as an invariant and an assumption.

Objects of a given interface can be used as objects of any of its super-
interfaces. So, it is essential that objects of an interface F may play the role
of an object of any super-interface of F without any additional control. Thus,
the interface F may have its own assumption and invariant but its trace set is
defined with respect to trace sets of super-interfaces.

The trace set of an object of interface F that inherits F1, . . . , Fn and whose
assumption and invariant are respectively A and I, is defined by:

To:F ≡ {H/o : F | H/o : F1 ∈ To:F1 ∧ . . . ∧H/o : Fn ∈ To:Fn∧
Ain(H)⇒ (Aout(H) ∧ Iout(H))}.

Then, it is obvious that interface inheritance is a particular case of interface
refinement: F refines each of its super-interfaces.

We have to deal with possible name conflicts in multiple inheritance. When
an interface F inherits several interfaces F1, . . . , Fn, the same operation name
m can appear in several of them. If the different versions of m have different
signatures, the problem is solved by overloading (with clauses are considered
to be part of the signature). In the other case, the operations are considered
the same (if this leads to an inconsistence of specification requirements then
the problem has to be solved by explicit renaming). An interface also inherits
the parameters of the super-interfaces. When an interface inherits two formal
parameters with the same name, they must have the same data-type (or a
subtype of it) or be both data-types or be both interfaces.

3.5 Contracts

Contracts gives a kind of “glass-box” specifications used to restrict the interac-
tion between two or more objects. A contract is expressed in the form:

11

contract C
begin

with o1 : F1, . . . , on : Fn
inv <formula on H and o1 . . . on>

end

expressing that for all (distinct) objects o1, . . . , on of the given interfaces, F1,
. . . , Fn, their “common” communication history must satisfy the given formula
P , i.e. the formula

P (H/{oi ↔ oj .m(. . .) | i 6= j∧ ↔∈ {→,←}∧m in FFij }).

must hold.
Contracts may be used at the beginning of the specification to capture the

global properties of the system. Contracts have to be respected by objects of
the involved interfaces as well as specification requirements of the interfaces.
Contracts may be split into interface specification requirements during refine-
ment.

4 OUN-SL examples

In examples it is often convenient to restrict (a projection of) the local history to
be a prefix of a set of traces, given by a regular expression. Regular expressions
are written in standard form, using blank for juxtaposition, a star for repetition
and a bar for alternatives. The keyword prs denotes “prefix of regular expres-
sion”. In regular expressions ↔ .m denotes the juxtaposition of the two events
→ .m and ← .m.

4.1 Virtual meeting

We consider a very simple virtual meeting. Participants have to register in
order to be admitted to the meeting, then they can listen to other participants.
Only one participant is allowed to speak at a given instant. Participants can
request to speak and then the manager makes them speak one at the time. We
are interested in the pattern (enter (listen | req speak listen∗ speak)∗ leave)∗)
where participants use “enter” to register, “req speak” to request for speaking
and “leave” to quit the meeting, a meeting manager uses “speak” to get the
speech of a participant, and where everybody can use “listen” the say something
to someone else.

interface Meeting-Manager
begin

with x: Participant
opr enter()
opr req speak()
opr leave()

asm (H\ {listen}) prs (↔.enter (↔.req speak ↔.speak)∗ ↔.leave)∗

inv (H/ {↔.speak, →.listen} prs
[me↔x.speak(t) →.listen(t,x)∗ | t : string, x : Participant]∗)

12

∧ (forall x : Participant : H/x prs (↔.enter (↔.listen | ↔.req speak
↔.listen∗ ↔.speak)∗ ↔.leave)∗)

end

With the assumption, we suppose that external objects will initiate speak
requests between a registration and leave. Moreover, as all the initiation events
are followed by the corresponding termination event, we require that all the calls
will be synchronous and that a participant waits after each speak request, until
he allowed to speak. The invariant ensures that a meeting manager will only
call listen and speak operations of participants which have asked to participate
to the meeting and that it will only call operation speak after a speak request
for the same participant.

interface Listener
begin

with x: any
opr listen(t : string, from : any)

end

interface Participant
inherits Listener

begin
with x: Meeting-Manager

opr speak(out t: string)
asm H\ {listen} prs (↔.enter (↔.req speak ↔.speak)∗ ↔.leave)∗

inv forall x : Meeting-Manager : (H\ {listen}/x) prs
(↔.enter (↔.req speak ↔.speak)∗ ↔.leave)∗

end

The interface “Listener” offers one operation which can be used by all the
objects of the system. There is no invariant and no assumption in this interface,
so all the traces are accepted.

In the interface “Participant” we do not assume anything about the behavior
of meeting managers, but the invariant of the interface ensures that participants
will initiate speak request between a registration and and leave, and will make
synchronous call to operations of “Meeting-Manager”, and will wait for a call
to speak after each speak request.

4.2 Readers and Writers

We will now consider the well-known example of objects controlling read and
write access to some data to illustrate the concepts of the notation.

The first interface we propose controls the read access. Concurrent read
operations are allowed, so there is no restriction concerning the use of this
interface.

interface R [T: Data-Type]
begin

with x: any
opr read(out d : T)

end

13

The second interface allows us to control the write access. Write opera-
tions are to be exclusive (this is ensured by the invariant) if each calling object
encloses its write operations by open and close operations (as required by the
assumption).

interface W [T: Data-Type]
begin

with x: any
opr open write()
opr write(d : T)
opr close write()

asm H prs (↔.open write ↔.write∗ ↔.close write)∗

inv H/← prs (←.open write ←.write∗ ←.close write)∗

end

Now, we can easily define an interface for read/write access control using
the two previous ones. Read and write access have to be exclusive too, so read
access will have to be enclose by open and close operations as write access.
Nevertheless, concurrent read accesses are still allowed.

interface RW [T: Data-Type]
inherits W

begin
with x: any

opr open read()
opr read(out d : T)
opr close read()

asm H prs (↔.open write ↔.write∗ ↔.close write
| ↔.open read ↔.read∗ ↔.close read)∗

inv #(H/ ←.open read) - #(H/ ←.close read) = 0
∨ #(H/ ←.open write) - #(H/ ←.close write) = 0

end

The invariant of interface “RW” ensures that read and write access are ex-
clusive and, since the assumption of “RW” implies the assumption of “W”, the
exclusivity of write access is controlled by the inherited invariant.

We can also remark that this example illustrates how to use synchronous
communications in OUN: as we require each operation initiation to be followed
by the corresponding termination, there is no observable activity involving the
two objects on these interfaces between these two events. The caller has to wait
until it receives the termination event.

5 OUN-DL

OUN-DL is the design language of OUN. This level is constituting a first step
of refinement where a class concept is introduced. Most of the concepts we
introduce to deal with openness and mobility will affect this level by way of
constructs like class extension. Object parameters and variables are typed by
interfaces as before. Thus, we keep static control of authorized operation calls
even though we allow class inheritance without any restriction. Notice that, as

14

we use interfaces as types, and as objects can only communicate through inter-
faces, the most important semantic check concerns the implementation claims
of classes.

5.1 Classes

A class contains the definition of some typed variables (the attributes), the
implementation of operations and, like in the case of interfaces, an invariant
and some assumptions. A class definition has the syntax:

class C [<type parameters>](<parameters>)
implements F1, F2, . . . , Fm
inherits C1, C2, . . . , Cn

begin
var v1 : V1

v2 : V2

. . .
init
<imperative-code>

with x1: G1

opr m1(. . .) == <imperative-code>
. . .
opr mi(. . .) == <imperative-code>
asm <formula on H and x1>

. . .
with xk: Gk

opr mj(. . .) == <imperative-code>
. . .
opr ml(. . .) == <imperative-code>
asm <formula on H and xk>

inv <formula on H>
end

where F1, F2, . . . , Fm and G1, G2, . . . , Gk are interfaces and C1, C2, . . . , Cn are
classes. A class may have parameters (between square brackets) which are data-
types or interfaces. The additional list of parameters (between ordinary brack-
ets) is the list of parameters (typed by data-types or by interfaces) that must by
given at the point of creation of an object of this class. A class may implement
several interfaces (F1, F2, . . . , Fm) and inherit several classes (C1, C2, . . . , Cn).
A class may also have attributes which are typed by data-types, interfaces. The
init part contains some initialization statements executed at the creation of a
object, they allow for example to give initial values to attributes and to make
some initial calls.

As for interfaces, a with clause states that only objects of the interface
mentioned in the clause may talk to objects of class C through the operations
listed in this clause. The difference is that a class may have several with
clauses.The description of the behaviors of operations, the <imperative-code>,
will be given as guarded commands on the form <guard → statements>.

15

As classes do not inherit assumptions and invariants, there may be an as-
sumption in each with clause, constraining the behaviors of objects of the in-
terface mentioned in this with clause and an invariant for the class.

The projection of the history onto an object o of class C, denoted byH/o : C
is the projection of H onto the set of calls of operations of o and the set of calls,
initiated by o, of operations of the interfaces that appear in the with clauses of
C and in the with clauses of its superclasses. Let G1, G2, . . . , Gn denote these
interfaces. Then H/o : C is defined by:

H/o : C ≡ H/{o1 ↔ o2.m | ↔∈ {→,←}∧
((o2 = o ∧m in C)
∨(o1 = o ∧m in G1 ∪ . . . ∪Gn))}.

• An invariant4 inv I(H) of a class C, where I is a formula, states that for
any object o of class C the formula

Īout(H) ≡ [Ime
o](out(H/o : C, h̄, v̄)),

holds, where v̄ refers to local variables and where h̄ refers to some class
histories that we will discuss later in subsection 5.5.

• An assumption5 asm A(H) of a class C given for an interface G, where A
is a formula, states that for any object o of class C, and for any external
object x of interface G,

Āin(H) ≡ (∀x 6= o of G • [Ame
o](in(H/o : C/x : G))),

where x of Gi means that x implements Gi or one of its sub-interfaces,
holds.

Note that the assumption of a class may not refer to local variables.

• The trace set of an object o of class C is defined by the assumptions and
the invariant of C. Let A1, . . . , Ak denote the assumptions of C given in
the with clauses associated with G1, . . . , Gk, respectively. The trace set
of o is:

To:C ≡ {H/o : C | [∀1 ≤ i ≤ k • Āi
in

(H))]

⇒ [(∀1 ≤ i ≤ k • Āi
out

(H))) ∧ Īout(H))]},

where

Āout(H) ≡ (∀x 6= o of G • [Ame
o](out(H/o : C/x : G))).

Remark. Some notations are referring to classes, H/o : C for example. These
notations are used for abbreviated writing. In a compilation unit, their meanings
are understood “at this time” (i.e. the time of compilation without considering
possible future extensions of the class). The verification conditions are generated
based on this meaning.

4When not present, the invariant is supposed to be true.
5When not present, the assumption is supposed to be true.

16

5.2 Classes Implementing Interfaces

A class may implement several interfaces. A class implementing an interface
must have operations with exactly the same signatures (or larger in-types and
smaller out-types) as in the interface (explicit renaming may be considered),
thus the object parameters of these operations must be typed by interfaces in
the class as well.

An actual parameter matches a formal object parameter if the type of the
actual parameter is the same as that of the formal parameter, or a sub-interface
of it. This ensures that an actual class of an object parameter may be any class
implementing the interface of the corresponding formal parameter, and that all
operation calls prescribed on formal parameters can be realized.

A class C implementing an interface F must satisfy the specification require-
ments of the interface, this can be expressed in terms of trace sets:

∀o : C • (∀H ∈ To:C •H/o : F ∈ To:F).

Thus, implementation of interfaces can be seen as ordinary refinement.

5.3 Class Inheritance

Multiple inheritance of classes may be used to define new classes.

A subclass may add attributes, add operations, and redefine operations.
A subclass inherits all attributes, and inherits those operations which are not
redefined. A subclass need not respect the requirement specification of the
superclass (a similar point of view is discussed and motivated in [12]). Thus,
operations may be redefined in a subclass without any syntactic or semantic
restrictions! A subclass does not inherit the requirement specifications of the
superclass, and it does not inherit their “implements” claims. Thus the list of
interfaces that a subclass implements has to be restated (and proved) again for
the subclass.

Notice that even when a subclass has no redefinition with respect to a su-
perclass, the requirement specification of the latter need not be satisfied by the
subclass, since added operations may make changes to the inherited attributes
violating the invariant of the superclass.

Subclasses may redefine operations. In order to allow the most flexible use
of redefinition, the binding mechanism follows the following scheme, similar to
that of Java: a call of an operation m which is redefined refers to the redefined
version when the (static) types of the parameters match (i.e. is the same or a
smaller in-type) those of the redefined operation. Otherwise, the call refers to
the operation as defined in the superclass.

We have to deal with the possible name conflicts in multiple inheritance.
When a class C inherits several classes, the same operation name m can appear
in several of them. If the different versions of m have different signatures, the
problem is solved by overloading. In the other case, operation conflicts are
solved by disjoint union, i.e. one must use the superclass names to distinguish
the different versions. Inherited local variables (attributes) with the same name
must have the same type, and are considered to be the same variable. A class
inherits parameters in the same way.

17

5.4 Dynamic Extension

We also consider the possible dynamic evolution of a class. Using class extension,
some operations and some interfaces can be added dynamically to a class while
maintaining the original name. A class extension has the syntax:

class extension C
implements F1, F2, . . . , Fm

begin
with x1: G1

opr m1(. . .) == <imperative-code>
. . .
opr mi(. . .) == <imperative-code>
asm <formula on H and x1>

. . .
with xk: Gk

opr mj(. . .) == <imperative-code>
. . .
opr ml(. . .) == <imperative-code>
asm <formula on H and xk>

inv <formula on H>
end

The addition of new operations create a need to update the invariant and
the assumptions. From another point of view, relations of existing objects of
the class with the environment must not be damaged by the extension, so the
specification requirement of the extended class have to respect the specification
requirements of the old class.

Let us consider a class C which we denote by Cold in the formulas and an
extension of C. Let I denote the new invariant given in the extended class, and
A1, . . . , An denote the assumptions given in the with clauses of the extended
class, associated with interfaces G1, . . . , Gn, respectively. Then, the trace set of
a object o of class C, after extension, is defined by6:

To:C ≡ {H/o : C | H/o : Cold ∈ To:Cold ∧

[∀1 ≤ i ≤ k • Āi
in

(H))]

⇒ [(∀1 ≤ i ≤ k • Āi
out

(H))) ∧ Īout(H))]},

The extension of a class leads to immediate extension of all of its subclasses.
This implicit extension of subclasses may create name conflicts, the name of
a new operation may already be used in a subclass. If the two versions of
the operations have different profiles, the problem is solved by overloading,
otherwise, the operation of the subclass is considered to be a redefinition of the
operation of the superclass.

6Note that the alphabet of each interface F implemented by Cold is included in the alphabet
of Cold which is included in the alphabet of C. So, according to the definition of To:C , it is
obvious that each interface implemented by Cold is still implemented by C.

18

5.5 Dynamic generation of objects

The dynamic generation of an object of class C is realized using the construct:

new C(. . .).

We can for example consider that an object x has an attribute o : F and
that the class C implements the interface F . Then we may have a statement
o := new C(. . .) executed by x. At the reasoning level (i.e. in the history) this
creation is reflected by the event

x→ y.new(C, . . .)

where y is the created object. This event is not considered to be observable
neither by x nor by y as it is not a call to an operation of the class C. However,
creation events are part of the life of a class. At run-time, each class is supposed
to be represented by a “class-object” which is not visible by users. Object
creations are recorded in the history of this “class-object”, the class history of
a class C is denoted by C.H. The class histories may be used in the invariants
of classes.

For reasoning purposes, all generated objects have a unique identity linked
to the state of history at their instant of creation.

5.6 Interface Testing

We say that an object o supports an interface F if the class of o implements
F . In our formalism, an object may support a number of interfaces. As classes
may be dynamically extended, implementing more and more interfaces, and
as old classes may implement new interfaces, we do not have complete static
control over which interfaces are supported by which objects. There will be a
need to test whether an object o supports an interface F (i.e. to check whether
F appears in the implementation claims of the class of o); for this we have
introduced the notation o : F? as a boolean expression in the programming
language. In addition we may wish to ask for an object offering a given interface;
this may be done in a specialized if-construct, say

if any x : F? then < may use x here > else < no such x exists > fi

which may occur in the implementation of an operation. When desirable, also
the location of x may be retrieved.

5.7 Distribution

In a distributed system we talk about a number of locations, identified by unique
names. A program unit belongs to a particular location. By naming a location,
a program unit on one location may access interfaces, and objects located on
another location. We do not allow classes to be shared between locations (since
they may be changed dynamically), however, one may copy them from one
location to another. When an interface on one location has the same name
as one on another location, we use the location name to uniquely identify the
two interfaces. No location name is needed when talking about entities on the
current location.

19

5.8 Partial compilations of the system

As already said, one way we choose to achieve openness is to allow incremental
addition of code without stopping the whole system. This means that some
new parts will be compiled separately and added to the running system. The
constructs we have proposed in our notation aim at allowing modifications of
the system without re-proving what has already been stated. Proofs generated
by addition of code will only be local and will only involve new elements of the
system: anything which has been stated must never have to be checked again.
Partial compilations can occur in several cases:

1. new interfaces or sub-interfaces are added.

2. new classes or sub-classes and possibly new objects are added.

3. some classes are extended.

In cases 1 and 2, we just add some new elements to the running system.
As long as we only consider properties of new elements, the new part is quite
“independent”. The interesting point of such an addition is the interaction
between old and new parts of the system. Old objects can only talk to new
objects through old interfaces. Because we have allowed interface inheritance in
such a way that an object of an interface can always play the role of an object
of any super-interface, the additions cannot disturb the running system.

In the third case, classes may be extended. An extension not only adds new
elements to the system but modify the capabilities of existing objects. As soon
as the new methods (or the whole class depending on the system) are compiled,
and the class extended, the old version of the class is not visible anymore. This
means that all the objects of this class, old ones as well as new ones, correspond
to the new definition of the class. The significant point is that implementation
relationships cannot be suppressed. Thus, old objects used to talk with an object
of class C through an interface I will not be affected by the extension of the
class C and will not observe the extension unless they also use new interfaces.

At the semantic level, calls to new methods of an extended object can be
observed in the local histories of objects as well as objects of new classes or new
interfaces. However, as objects communicate through interfaces, the only thing
that has to be checked is that the implementation claims are correct: the new
proof obligations only concern the new classes or new interfaces.

6 OUN-DL examples

6.1 Virtual meeting

In this first example we present a class implementing the interface Meeting-
Manager seen in subsection 4.1. The underlying language provides sets as types,
with operators to add an object to the set (+), to remove an object from the
set (-), and to test whether an object belongs to the set (in). Moreover, the
design language offers the possibility to use broadcast by sending a message to
a set of objects.

20

class Manager
implements Meeting-Manager

begin
var s : set[Participant]

t : TEXT
begin

with x: Participant
opr enter() == if x in s then . . . else s := s +x endif
opr open speak() == x.speak(t); s.listen(t)
opr leave() == s := s -x

asm (H\ {listen}) prs (↔.enter (↔.req speak ↔.speak)∗ ↔.leave)∗

inv (H/ {↔.speak, →.listen} prs
[me↔x.speak(t) →.listen(t,x)∗ | t : string, x : Participant]∗)

∧ (forall x : Participant : H/x prs (↔.enter (↔.listen |
↔.req speak ↔.listen∗ ↔.speak)∗ ↔.leave)∗)

end

Since the assumption and the invariant of the class Manager are the same as
those of Meeting-Manager, it is obvious that Manager implements Meeting-
Manager.

class CParticipant
implements Participant

begin
with x: any

opr listen(t : string, from : any) == . . .
with x: Meeting-Manager

opr speak(out t: TEXT) == . . .
asm H\ {listen} prs (↔.enter (↔.req speak ↔.speak)∗ ↔.leave)∗

inv forall x : Meeting-Manager : (H\ {listen}/x) prs
(↔.enter (↔.req speak ↔.speak)∗ ↔.leave)∗

end

Participants may talk privately with other participants of the meeting using
the operation “listen” since this operation is not dedicated to objects of interface
“Meeting-Manager”. As the registration of participants is made by the meeting
manager, a participant only knows another participant if the latter has already
spoken i.e. if its identity has been transmitted as parameter of the operation
“listen”.

6.2 Readers and Writers

We will now present some classes implementing interfaces of the subsection 4.2.
The first class implements the interface R and controls the read access to a
shared data.

class Read-Control [T: Data-Type]
implements R [T]

begin
var shared data : T
with x: any

21

opr read(out d : T) == d := shared data
end

The second class implements the interface W and controls the write access
to a shared data. The invariant and the assumption of the class are exactly the
same as the ones of the interface.

class Write-Control [T: Data-Type]
implements W [T]

begin
var shared data : T,

flag : bool := true
with x: any

opr open write() == flag → flag := false
opr write(d : T) == shared data := d
opr close write() == flag := true
asm H prs (↔.open write ↔.write∗ ↔.close write)∗

inv H/← prs (←.open write ←.write∗ ←.close write)∗

end

The third class implements read and write access control. We can reuse the
code of the read operation for example, but not the invariant and assumption
of the super-classes.

class Read-Write-control [T: Data-Type]
implements W [T], RW [T]
inherits Read-Control, Write-Control

begin
var nb readers : int := 0
with x: any

opr open read() == (flag ∨ nb readers 6= 0) → flag := false;
nb readers := nb readers +1

opr close read() == nb readers := nb readers -1;
if nb readers = 0 then flag := true endif

asm H prs (↔.open write ↔.write∗ ↔.close write
| ↔.open read ↔.read∗ ↔.close read)∗

inv (#(H/ ←.open read) - #(H/ ←.close read) = 0
∨ #(H/ ←.open write) - #(H/ ←.close write) = 0)

∧ (#(H/ ←.open write) - #(H/ ←.close write) = 0
∨ #(H/ ←.open write) - #(H/ ←.close write) = 1)

end

This class could also implement the interface “R” which has no assumption
and no invariant.

7 A larger example

7.1 A bank account

A bank offers customers the possibility to have bank accounts. Account owners
must have a personal number and are allowed to put money into accounts, take

22

money out, and consult the balance, whereas only bank clerks are allowed to
create accounts.

We have three interfaces, “Account owner”, “Account” and “Bank clerk”
and three classes implementing these interfaces. We will point out some inter-
esting aspects.

interface Account owner
begin

with x: any
opr personal number(out pn : int)

end

interface Account
begin

with x: Account owner
opr in (amount : int)
opr out(amount : int; out ok : bool)
opr balance(out b : int, ok : bool))

inv (h ` x←me.out(a,true) head H) ⇒ (bal(h/{←.in,←.out}) ≥ a)
func bal(s:sequence):int
def bal(empty) == 0,

bal(h ` ←.in(a)) == bal(h) + a,
bal(h ` ←.out(a, ok)) == if ok then bal(h) - a

else bal(h) endif
end

The invariant of the interface “Account” ensures that the balance of the
account will always be positive. We see here an example of an auxiliary function
“bal” used for specification purpose.

interface Bank clerk
begin

with x: Account owner
opr open account(out a : account)

end

class CAccount owner (n : Natural)
implements Account owner

begin
var number : int := n
with x: any

opr personal number(out pn : int) == pn := number
end

class CBank clerk
implements Bank clerk

begin

23

with x: Account owner
opr open account(out a : Account) == a:= new CAccount (x)

end

In the class “CBank clerk”, we have an example of object creation. A new
object of class “CAccount” is created using the new construct with parameter
values. Here, “x” denotes the caller of the operation “open account”. Notice
that the type of the parameter “a” is “Account” since object parameters are
typed by interfaces.

class CAccount (p : Account owner)
implements Account

begin
var bal : int := 0,

owner : Account owner := p
with x: Account owner

opr in (amount : int) == bal := bal + amount
opr out(amount : int; out ok : bool) ==

if owner = x ∧ bal ≥ amount
then bal := bal - amount; ok := true
else ok := false endif

opr balance(out b : int, ok : bool) ==
if owner = x then b := bal; ok := true
else ok := false fi

inv (h ` x←me.out(a,true) head H) ⇒
(Account.bal(h/{←.in,←.out}) ≥ a)

end

In this last class, the parameter “p” is the formal parameter corresponding
to the parameter in the new construct. We can also notice that we use dot
notation, as in “Account.bal”, to access auxiliary functions defined in other
classes or interfaces.

7.2 Savings accounts

Now imagine that a bank is growing and wants to offer its customers the possi-
bility to have a savings-account. We add two new interfaces and a class to the
system:

interface Savings account
inherits Account

begin
with x: Account owner

opr rate(out r : int)
end

interface Savings account Management
begin

24

with x: Bank
opr interest()
opr change rate(new rate : int)

end

class CSavings account
implements Savings account,Savings account Management, CAccount
inherits CAccount

begin
var account rate : int := 5
with x: Account owner

opr rate(out r : int) == r := account rate
with x: Bank

opr interest() == bal := bal + bal * account rate / 100
opr change rate(new rate : int) == account rate := new rate

inv CAccount.inv
end

The class “CSavings account” inherits from “CAccount” attributes and op-
erations but not implementation claims and specification requirements. As we
just want to make a new class by adding some new attributes and operations
without changing the meaning of old operations, we also want to keep the same
invariant. This can be done using the dot notation “CAccount.inv”; be care-
ful, this notation is just used as a shorthand and must be replaced by the
exact definition of the invariant of “CAccount” at compilation time of “CSav-
ings account”. The invariant of the class “CSavings account” will not be af-
fected by possible extension of “CAccount”.

7.3 Transfer

Now we have a running system with bank accounts and savings accounts. Some-
times, people having both kinds of accounts want to transfer money from one to
the other. So, it would be desirable to add a transfer operation to the accounts.
We will add a new interface to the system and we will extend the superclass
“CAccount”:

interface Transfer
inherits Account

begin
with x: Account owner

opr trans(amount : int; to : Account; out ok : bool)
inv (h ` x←me.trans(a,to,true) head H) ⇒

(bal2(h/{←.in,←.out,←.trans }) ≥ a)
func bal2(s: sequence):int
def bal2(empty) == 0,

bal2(h ` ←.in(a)) == bal2(h) + a,
bal2(h ` ←.out(a, ok)) == if ok then bal2(h) - a

else bal2(h) endif ,
bal2(h ` ←.trans(a, ok)) == if ok then bal2(h) - a

25

else bal2(h) endif
end

class extension CAccount
implements Tranfer

begin
with x: Account owner

opr trans(amount : int; to : Account; out ok : bool) ==
if owner = x ∧ bal ≥ amount
then bal := bal - amount; to.in(amount); ok := true
else ok := false endif

inv ((h ` x←me.trans(a,to,true)
∨ h ` x←me.out(a,true)) head H) ⇒

(Transfer.bal2(h/{←.in,←.out,←.trans }) ≥ a)
end

We extend the class “CAccount” by addition of an operation. The extended
class implements the new interface “Transfer” and its total invariant is the
conjunction of the one given in the extension and the old one.

The extension of “CAccount” is transmitted to its subclasses by way of
the inheritance mechanisms: operations are inherited but not implementation
claims and specification requirements so we have to add them. Now, if we want
to use the transfer operation for a savings account too, we have to prove that
it implements the “Transfer” interface. For instance, we can extend the class
“CSavings account”.

class extention CSavings account
implements Tranfer

begin
inv CAccount.inv

end

As already said, “CAccount.inv” refers to the invariant of “CAccount” at
compilation time of the unit we are writing so, it now refers to the invariant of
the extended class.

7.4 Account with credit line

As a final example, we now consider that the bank also wants to offer accounts
with a credit line. Such an account works like a savings account except that the
balance may be negative, and then the interest is subtracted.

We will here redefine operations, giving them a different meaning than be-
fore.

interface Account with credit
inherits Savings account, transfer

begin
end

26

interface Credit line management
inherits Savings account management

begin
end

class CAccount with credit (c : int, r : int)
implements Account with credit, Credit line management
inherits CSavings account

begin
var credit : Natural
init

credit := c; account rate := r
with x: Account owner

opr trans(amount : int; to : Account; out ok : bool) ==
if owner = x ∧ bal ≥ amount - credit
then bal := bal - amount; to.in(amount); ok := true
else ok := false endif

opr out(amount : int; out ok : bool) ==
if owner = x ∧ bal ≥ amount - credit
then bal := bal - amount; ok := true
else ok := false endif

opr interest() == bal := bal - bal * account rate / 100
inv ((h ` x←me.trans(a,to,true) ∨ h ` x←me.out(a,true)) head H)

⇒(bal2(h/{←.in,←.out,←.trans }) + credit ≥ a)
end

The class “CAccount with credit” inherits “CSavings account” and it rede-
fines three operations. Notice the use of initialization statements inside the class
(following the style of Simula).

8 Conclusions and future work

We have introduced a notation based on general principles known from formal
methods, combined with all essential object-oriented concepts, and with more
flexibility and more dynamic considerations than existing formal methods. We
insist on static typing, which means that the software will be reliable in the
sense that type errors will not occur, and operations calls to remote objects will
always be syntactically correct.

It has been essential to be able to combine static typing with a minimum of
dynamic behavior: Objects, interfaces and classes may be added dynamically,
and old and new objects may communicate by means of new interfaces (as well
as old ones). This is inspired by Java’s concept of byte code and virtual machine.

Object variables and object parameters are typed by interfaces (rather than
classes) which not only helps reasoning, but makes software more reusable,
more abstract (disallowing write-access to remote variables) and more under-
standable, and is essential in order to allow and control dynamic behavior. Thus
sub-interfaces are inheriting semantical constraints (after projection) while sub-
classes do not.

27

At the class level, we allow unrestricted redefinition of operations, possibly
violating inherited invariants. This opens up for flexible reuse of code [12] and
gives the same notion of subclassing as for instance in Java. Since reasoning and
typing are based on interfaces, and since sub-interfaces must respect interface
refinement, already proven verification conditions cannot be violated by adding
subclasses and redefining operations. (Notice that a class invariant in itself does
not create a verification condition, and a subclass violating it does not violate
any verification conditions.)

We include a form of dynamic class extension, which enables us to extend
a class dynamically, respecting inherited invariants. Together with dynamic
creation of objects and addition of interfaces, this allows non-trivial dynamic
behavior. The class extension mechanism may be seen as a controlled version of
capabilities in Corba and Java RMI, but staying inside the framework of static
typing.

As the class extension mechanism has no other syntactic restrictions than
disallowing redefinitions, a consequence is that redefinition must be semantically
unrestricted, and operations must be overloaded (since a subclass and an inde-
pendent extension of a superclass may both define operations with the same
name, either with different parameters, or the same parameters but different
semantics). Thus the object oriented concepts of our notation are both orthog-
onal (i.e. can be used with great flexibility) and are well integrated. Reasoning
control is achieved by the generation of verification conditions for each program
unit, while the language provide a guarantee that already proven verification
conditions are not violated.

This paper is focusing on safety properties only (excluding full treatment
of deadlocks) in order that the semantics is a simple as possible. Future works
will focus on other deadlock and liveness properties. To deal with these kinds
of properties, we need a stronger semantics which will increase the complexity
of reasoning.

Future works will also include extension of the language in order to deal
with essential constructs like time-outs and exceptions. Both time-out and
exceptional termination may be denoted in the traces by special, completion-like
events. A method call that raises an exception has no ”normal” termination,
but causes a message return to the calling object indicating the exceptional
termination (including its kind). This message can be recorded in the trace
by a special event matching the initiation like a normal termination. Thus,
we keep the coherence of the trace by coupling initiation and termination-like
events. This principle may also by applied to time-outs by adding another kind
of events, indicating ”termination by time-out”. However, the problem is a little
bit more complicated than in the case of exceptions, since we have to reason
about time. There is no notion of real time in OUN, but we can introduce an
approximate notion of time based on reasoning about guarded commands.

Besides these works for extending OUN, some efforts are engaged to develop
an OUN Toolkit based on the PVS [11] Toolkit (see [14]).

Acknowledgment

We are grateful for feedback from discussions with the members of the ADAPT-
FT project group. In particular, Ole-Johan Dahl, Einar Broch Johnsen, and

28

Ketil Stølen have provided valuable detailed advice concerning the manuscript.

References

[1] Alpern, B., and Schneider, F. B. Defining liveness. Information
Processing Letters 21, 4 (Oct. 1985), 181–185.

[2] Back, R. J. R., and Von Wright, J. Trace refinement of action sys-
tems. In Proc. 5th International Conference on Concurrency Theory (CON-
CUR’94) (Uppsala, Sweden, 1994), B. Jonsson and J. Parrow, Eds., vol. 836
of Lecture Notes in Computer Science, Springer, pp. 367–384.

[3] Broy, M. Compositional refinement of interactive systems. Journal of the
ACM 44, 6 (Nov. 1997), 850–891.

[4] Broy, M., and Stølen, K. FOCUS on System Development. Book
Manuscript, 1998.

[5] Dahl, O.-J. Verifiable Programming. International Series in Computer
Science. Prentice-Hall, New York, N.Y., 1992.

[6] Dahl, O.-J., and Owe, O. Formal methods and the RM-ODP. Tech.
Rep. 261, Department of Informatics, University of Oslo, 1998.

[7] Hoare, C. A. R. Communicating Sequential Processes. Prentice Hall,
1985.

[8] Jones, C. B. Developments Methods for Computer Programms – Including
a Notion of Interference. PhD thesis, University of Oxford, 1981.

[9] Lano, K., and Haughton, H. Reasoning and refinement in object-
oriented specification languages. In Proc. European Conference on Object-
Oriented Programming (ECOOP’92) (Utrecht, The Netherlands, 1992),
O. L. Madsen, Ed., vol. 615 of Lecture Notes in Computer Science, Springer-
Verlag, pp. 78–97.

[10] Mikhajlova, A., and Sekerinski, E. Class refinement and interface
refinement in object-oriented programs. In Proc. 4th International Sym-
posium of Formal Methods Europe (FME’97): Industrial Applications and
Strengthened Foundations of Formal Methods (1997), J. Fitzgerald, C. B.
Jones, and P. Lucas, Eds., vol. 1313 of Lecture Notes in Computer Science,
Springer-Verlag, pp. 82–101.

[11] Owre, S., Rushby, J., Shankar, N., and von Henke, F. Formal
verification for fault-tolerant architectures: Prolegomena to the design of
PVS. IEEE Transactions on Software Engineering 21, 2 (1995), 107–125.

[12] Soundarajan, N., and Fridella, S. Inheritance: From code reuse
to reasoning reuse. In Proc. 5th Conference on Software Reuse (ICSR5)
(1998), P. Devanbu and J. Poulin, Eds., IEEE Computer Society Press,
pp. 206–215.

[13] Spivey, J. M. The Z Notation: a Reference Manual. Prentice Hall, 1989.

29

[14] Traoré, I. The UML specification of the Integrator. Tech. rep., OECD
Halden Reactor Project, 1999.

30

