
On Practical Application of Relational Calculus

Olaf Owe
Department of Informatics

University of Oslo
Norway

May 15, 1992

Contents

1 Introduction 2

1.1 Relationship to other work . 2

2 Statically known variable space 3

2.1 Notation and definitions . 3

2.2 Some immediate results . 4

2.3 Programs as relations . 5

2.3.1 Framing . 6

3 Relationship to traditional Hoare logic 7

4 A calculus for framed relations 8

4.1 Framed refinements . 9

5 Undefined expressions 10

6 Conclusion 12

1

1 INTRODUCTION 2

1 Introduction

We use relations as a means to describe program behaviour. A program is seen as the relation
consisting of all possible pairs (a, b) such that there is a normally terminating execution from
initial state a resulting in state b. Thus, one may define the relational semantics of programs, and
one may specify programs by means of relations. By a relational calculus one may reason about
programs and specifications, and refine specifications into programs [2, 3].

Relational calculus may seem superior to traditional Hoare Logic as a formalism for reasoning
about programs, especially from a mathematical point of view, for instance “adaptation” is much
simpler — but it is unclear how to best apply this formalism on actual programs. We will focus on
practicality, by suggesting a relational language and a calculus which are useful for specification,
refinement and reasoning about actual programs. Our priming convention allows relations to be
expressed directly by means of program variables, without the use of dummy variable or state
names. We give a clear correspondence to Hoare Logic.

Programming typically focus on state changes rather than “non-changes”; and the same is often
desirable in specifications. However, in the relational calculus any non-changes must be explicitly
specified. We therefore introduce a “framing operator” which allows specification of changes in
some program variables with the understanding that other variables are unchanged. The relational
semantics of program constructs is conveniently defined by means of framed relations.

We first consider a relational calculus in which the variable space is assumed to be fixed and known.
However, in actual program development it is often the case that the set of program variables is
not fully determined. More program variables could be added when a specification/program is
refined. And different program states may have different variable spaces. It is therefore desirable
to be able to define a calculus which does not presume knowledge of the whole variable space.
Framed specifications are valuable in this setting. We develop a relational calculus for framed
relations based on an unknown and flexible variable space.

Finally we consider the case that the expression language contains partial functions. Program
reasoning is complicated by the fact that the evaluation of an expression terminates normally only
if the expression has a (welldefined) value. Our relational calculus is extended to this case.

1.1 Relationship to other work

In contrast to Hoare and He in [2, 3], we do not insist that programs define total relations; in
particular, we let the empty relation correspond to abnormal termination or non-termination. The
refinement-operator ⊆ then captures partial correctness, since the empty relation is included in
any relation. And so does the weakest prespecification operator (\) as well as the strongest
postspecification operator (/). In our framework one cannot distinguish the program ‘output 1
or abort’ from the program which only outputs 1. In total correctness reasoning it is essential to
distinguish the two, but in partial correctness reasoning it is not, since they have the same set of
(partially correct) refinements.

Another essential difference from [2] concerns refinement of so-called partial relations. A relation
is said to be total if it contains an output state for every input state, and otherwise partial.
Specifications defining partial relations frequently occur in practice, for example, the relation
{(x, x′) | x ∗ x′ = 1} is partial when the input x and the output x′ range over rational numbers.
In the framework of [2], a partial relation may be refined, but never into a program — whereas in
our framework any partial relation may be refined into a program. Consider the above example:

2 STATICALLY KNOWN VARIABLE SPACE 3

In our framework an implementation must abort for input 0; whereas in the framework of [2]
neither abort nor any other implementation satisfies the specification. Since it can be difficult to
tell whether a given specification is total or not, this is of practical importance. For this reason
[2] offers a + operator which makes any specification total, however, the mathematical complexity
added by a + application is in general non-trivial.

Even though the refinement-operator captures partial correctness, the equality relation allows total
correctness reasoning, expressing equivalence between relations, and also programs, provided the
union-operator is interpreted as “angelic (fair) choice” rather than non-deterministic (“demonic”)
choice. For such programs one may even strengthen the refinement operator so that it captures
total correctness.

2 Statically known variable space

Assume for now that the program variable space is fixed, and let v denote the total list of program
variables (in some order). A relation may then be seen as a set of pairs of input states and output
states, and may be expressed as

{(v, v′) | p}

where p is a Boolean expression in v and v′, and where v′ denotes the list of primed program
variables. A state is here seen as a list of values, one value for each program variable. (A
more expressive notion of state can be used, but this easily leads to a more complex syntax for
expressing relations.) We may abbreviate the above relation to the Boolean expression

p

provided the primed and unprimed variables are understood as above, letting an unprimed program
variable denote its input value and a primed program variable denote its output value. Thus, t
denotes the relation consisting of all possible pairs, and f denotes the empty relation. The identity
relation may be written as v′ = v, denoted I. This priming convention follows the tradition of the
Z language. For our purposes the following advantages are essential:

• We may express relations without help of other variables than the program variables them-
selves and their primed versions. In particular no “dummy” variables are needed.

• A Boolean expression without primes, say b, has the same meaning as in [2]: it specifies the
set of input and output states such that the input state satisfies b and there is no restriction
on the output state.

2.1 Notation and definitions

We use the following conventions:

x, y, v, w denote (lists of distinct) unprimed variables

e denotes (lists of) expressions over unprimed and primed variables. An expression is
said to be unprimed if it does not contain primed variables.

e′ denotes the expression e with all (unprimed) program variables occurrences primed

p, q denote Boolean expressions over unprimed and primed variables

2 STATICALLY KNOWN VARIABLE SPACE 4

V (e) denotes the set of unprimed variables which occur unprimed in e (excluding proof
or program constants)

W (e) denotes the set of unprimed variables which occur primed in e

x←e denotes the substitution of e for the variable x; e and x may be lists of the
same length, and x1, x2, .., xn←e1, e2, .., en (where the x-es are distinct variables)
denotes the simultaneous substitution of ei for xi (i = 1, .., n),

s denotes substitutions

W (s) denotes the set of variables occurring to the left of ← in the substitution s.
From now on, we consider substitutions such that W (s) is unprimed.

[s1]e[s2] denotes the expression e with unprimed variables substituted as specified
by the substitution s1, and primed variables substituted as specified (on their
unprimed versions) by the substitution s2. For instance, [x←2](x′ = x+ 1)[x←3]
denotes 3 = 2 + 1

w used as a substitution, denotes the substitution w←w
w′ used as a substitution, denotes the substitution w←w′.

Thus [v]p[v′] is the same as p, and we abbreviate [v]p[s] to p[s], and [s]p[v′] to [s]p. And e′ is the
same as [v′]e (provided there are no other variables than v).

Following [2], we introduce the following operators on relations; however, due to our priming
convention, we may define these operators directly by means of predicate calculus:

p̌ == [v′]p[v] (converse (inverse relation))
p == ¬p (complement)
p? == ∃v′ : p (domain)
p ; q == ∃s : p[s] ∧ [s]q (composition)
p \ q == ∀s : [v′]p[s]⇒ q[s] (weakest prespecification)
p/q == ∀s : [s]q[v]⇒ [s]p (strongest postspecification)
p ⊆ q == ∀v, v′ : p⇒ q (inclusion)
p v q == p ⊆ q ∧ ∀v : p? ⇔ q? (stong inclusion)
p ∪ q == p ∨ q (union)
p ∩ q == p ∧ q (intersection)

where W (s) is v. A meta-formula quantified over a substitution with a given W -set, say ∃s : p
where W (s) is w, denotes ∃z : pp where z is a list of fresh variables of the same length as w and
pp is p with all occurrences of s replaced by the substitution [w←z]. For a programs S, S? is
the condition that S may terminate normally, and for angelic programs the v-operator expresses
totally correct refinement.

2.2 Some immediate results

The / and \ operators may be used for program refinement, since p; (q/p) ⊆ q and
(p \ q); p ⊆ q follow from the above definitions. We may derive the following equivalences
concerning refinement:

2 STATICALLY KNOWN VARIABLE SPACE 5

(p1; p2) \ q ⇔ p1 \ (p2 \ q)
(p1 ∪ p2) \ q ⇔ (p1 \ q) ∩ (p2 \ q)
(p1 ∩ p2) \ q ⇔ (p1 \ q) ∪ (p2 \ q)
f \ q ⇔ t
t \ q ⇔ ∀v′ : q
q \ f ⇔ ¬(∃v′ : q)′

q \ t ⇔ t

q/(p1; p2) ⇔ (q/p1)/p2
q/(p1 ∪ p2) ⇔ (q/p1) ∪ (q/p2)
q/(p1 ∩ p2) ⇔ (q/p1) ∩ (q/p2)
q/f ⇔ t
q/t ⇔ ∀v : q
t/q ⇔ t
f/q ⇔ ¬(∃v : q)[v]

Furthermore, we derive
p;t ⇔ p?
b? ⇔ b b unprimed

The above definitions assume a fixed set of program variables (v). When the program variable
space is not yet decided, the meta variable v does not represent a known entity. Rules and
definitions using v are then impractical. However, notice that program variables not mentioned
in p or q may be added or removed from v without affecting the above equational definitions (in
Section ??). One may therefore reformulate the equations without using the assumption that the
variable space is known, and instead use the variable space locally present in p and q:

p̌ ⇔ [v′]p[v] v = V (p) ∪W (p)
p ⇔ ¬p
p? ⇔ ∃v′ : p v = W (p)
p ; q ⇔ ∃s : p[s] ∧ [s]q W (s) = W (p) ∪ V (q)
p \ q ⇔ ∀s : [v′]p[s]⇒ q[s] v = V (p),W (s) = W (p, q)
p/q ⇔ ∀s : [s]q[v]⇒ [s]p v = W (q),W (s) = V (p, q)
p ⊆ q ⇔ ∀v, w′ : p⇒ q v = V (p, q), w = W (p, q)
p v q ⇔ p ⊆ q ∧ ∀v : p? ⇔ q? v = V (p, q)
p ∪ q ⇔ p ∨ q
p ∩ q ⇔ p ∧ q

Local variables. Let the construct var x in p end introduce x as a local program variable
with scope p, and define W (var x in p end) as W (p)− x.

(var x in p end) ⇔ (∀x : ∃x′ : p)

However, if there is an outer program variable x, it is hidden inside p and we get

(var x in p end) ⇔ x′ = x ∧ (∀x : ∃x′ : p)

2.3 Programs as relations

A program is seen as the relation consisting of all possible pairs (a, b) such that there is an execution
from initial state a which terminates normally, resulting in state b. Thus a non-terminating

2 STATICALLY KNOWN VARIABLE SPACE 6

program corresponds to the empty relation (f); and also an abnormally terminating program,
such as abort, corresponds to the empty relation. And skip corresponds to the identity relation.
Non-deterministic choice corresponds to the ∪-operator. The ∩-operator corresponds to parallel
computation provided W (p) and W (q) are disjoint: p∩q may then be implemented by doing p and
q in parallel provided updating on variables in V (p, q)∩W (p, q) is done on local copies (which are
(initially) copied from and (finally) to the real ones). It would even be possible to allow W (p) and
W (q) to be non-disjoint, letting p ∩ q abort when p and q give conflicting final values of variables
in W (p) ∩W (q).

Consider programs such that the set of initial states from which there are normally terminating
executions, is disjoint from those from which there are abnormal or non-terminating executions.
Clearly, deterministic programs belong to this category, and so does non-deterministic programs
provided the ∪-operator represent “angelic choice”, in the sense that p ∪ q terminates if either p
or q terminates. Angelic choice may be implemented by concurrency, letting the first normally
terminating alternative kill the other alternatives. Thus p ∪ abort is equivalent to p, even with
respect to termination. And the above implementation of the p ∩ q also belongs to this category
when W (p) and W (q) are disjoint.

For programs restricted as above, the relational semantics captures termination aspects, since p?
expresses that p terminates normally; and total correctness reasoning is possible. In particular,
p = q means that p and q are equal in all respects, including termination aspects; and p v q
expresses that p is a totally correct refinement of q.

2.3.1 Framing

In programming, one typically focus on changes being made, and unmentioned program variables
are usually unchanged. In contrast a relation gives no restriction on changes on primed variables
not mentioned. For instance, the assignment statement x := x + 1 does not correspond to the
relation x′ = x+1 because the relation does not restrict the final values of other program variables
than x. In particular one need to know the total variable space in order to express the identity
relation.

We introduce the notation < p > to denote the relation p∧w′ = w where w is the list of program
variables not occurring primed in p, i.e., w is the total variable space except W (p). For instance,
x := x+ 1 clearly corresponds to the relation < x′ = x+ 1 >; and < t > is the identity relation.
A convenient corollary is that < p ∧ y′ = y > is equivalent to < p > when y is not in W (p).

Notice that W (< e >) and V (< e >) depend on the total variable space. Thus the equations
above for unknown variable space (Section 2.2) are not well suited for reasoning about framed
specifications. The framing operator is not really useful unless one develops a calculus for framed
relations which does not depend on V and W -sets of framed specifications.

The framing operator is natural and practical for specification purposes, as well as for explaining
the effect of statements. We give below the relational semantics of some basic program constructs:

Assignments. The simultaneous assignment w := e where e is an unprimed expression list of
the same length as w, corresponds to the relation < w′ = e >.

Tests and guards. Let b be unprimed. It follows that the relation < b > corresponds to testing
b as in

if b→ skip [] ¬b→abort fi

3 RELATIONSHIP TO TRADITIONAL HOARE LOGIC 7

And the if-statement if ... [] bi →Si [] ... fi corresponds to the relation

... ∪ (< bi >;Ri) ∪ ...

where Ri denotes the relation corresponding to the statement Si. Notice that < bi >;Ri is equiv-
alent to bi ∩Ri.

Recursion. Relations are naturally ordered by ⊆, with f as the minimum. The meaning of a
recursively defined program, or relation, is the least fixpoint, defined as follows:

µX.F (X) == limi F
i(abort)

where i ranges over the natural numbers, provided F is monotonic in the sense that p ⊆ q ⇒
F (p) ⊆ F (q), and continuous (each increasing chain has a limit). By monotonicity, we have
F i(f) ⊆ F i+1(f), and by continuity, this really is a fixpoint. It suffices that F is em quasi-
monotonic, defined as f ⊆ q ⇒ F (f) ⊆ F (q).

The relation operators and constructs introduced above are all quasi-monotonic and continuous. In
particular, the framing operator is continuous and quasi-monotonic (but not monotonic); therefore
< µX.F (X) > reduces to µX.< F (X) >, i.e., ∪i < F i(abort) >. In contrast, the framing operator
is not continuous in the setting of [2]. (And neither is the ; operator, when not restricted to
programs, as pointed out to us by Bjørn Kirkerud).

A practical proof rule for reasoning about recursion is that from F (p) ⊆ p one may conclude
µX.F (X) ⊆ p. This rule specializes to invariant-like reasoning in the case of tail-recursion.

All in all we have given the relational semantics of the programming language consisting of assign-
ments, skips, aborts, non-deterministic choice, tests, guarded commands, recursion, sequential as
well as restricted parallel composition.

3 Relationship to traditional Hoare logic

The partial correctness specification {p}S{q} of traditional Hoare logic, may be rewritten within
the relational notation as

S ⊆ {p, q}

letting {p, q} denote
∀w : p⇒ q′

where w is the list of proof-constants, i.e., non-program variables occurring in p or q (but not in
S), assuming neither p nor q contains primes. For example, we have x := x+ 1 ⊆ {x = 1, x = 2}
and also x := x+1 ⊆ {x = x0, x = x0+1} where x0 is a proof constant. Proof constants denoting
initial values are quite common in Hoare reasoning.

It is desirable to avoid proof constants when possible (especially when the total variable space is
not yet decided). By allowing primed variables in p and q, one may avoid typical proof constants.
It is then convenient to redefine {p, q} as denoting

∀w : p[v]⇒ q̌

(As before, w is the proof constants, if any). For instance, x := x + 1 ⊆ {t, x = x′ + 1}. We
still have that the Hoare sentence {p}S{q} is the same as S ⊆ {p, q} for unprimed p and q.
Furthermore, the Hoare sentence

{v = v′ ∧ p}S{q}

4 A CALCULUS FOR FRAMED RELATIONS 8

is also equivalent to S ⊆ {p, q} (p, q may now contain primes). The redefinition of {.., ..} is
superior to the first one, in the sense that an arbitrary relation p can now be expressed without
proof constants as {t, p̌} (compared to {v = v0, [v←v0]p} with the original definition). And thus,
S ⊆ p is equivalent to the the Hoare sentence {v = v′}S{p̌}. Thus, relational program refinement
corresponds directly to Hoare logic.

If proof constants are used to denote final values, say {p}S{v = v′ ∧ q}, this may be expressed as

S ⊆ {p′, q[v]}

(or as S ⊆ {p, q} with the first definition of {.., ..}).

With the above notation, all rules and axioms of traditional Hoare logic may easily be rewritten
into the relational framework. One may even simulate Hoare-like reasoning within the relational
framework, without added complications; the fact that all relational operators are defined explicitly
in predicate calculus may simplify reasoning significantly. In addition, one may prove soundness
and completeness of Hoare logic based on the relational semantics of the programming constructs.

For instance, the Hoare axiom
{[x←e]q} x := e {q}

where q and e are unprimed, can be rewritten as

x := e ⊆ {[x←e]q, q}

which can be rewritten as
< x′ = e > ⊆ ([x←e]q ⇒ [v′]q)

With the below calculus for framed relations this reduces directly to t.

4 A calculus for framed relations

We here try to develop a calculus for framed relations in the case where the variable space is
unknown. It turns out that this is possible for all relational operators except complement; < p >
obviously depends on the total variable space. The calculus is based on the partial knowledge
about the program variable space which is locally present in the relations: The primed variables
used to express a relation must be among the program variables (at that point), i.e., W (p) must
be part of W (< p >). There may be different variable spaces at different points (states) in a
program/specification.

Observe that if I denotes the identity relation, then Ǐ = (I; I) = (I \ I) = (I/I) = (I ∪ I) =
(I ∩ I) = I and I ⊆ I and I? are true. Thus, program variables not occurring in p or q do not
cause difficulties when p or q are framed: for the first group of operators we simply frame the
result. The non-trivial program variables are those which occur primed in one of p and q, but
not in both. Let the variable list x be W (p) −W (q) and y be W (q) −W (p). This leads to the
following equations where the relations are “framed”:

4 A CALCULUS FOR FRAMED RELATIONS 9

ˇ< p > ⇔ < [v′]p[v] > v = V (p) ∪W (p)
< p >? ⇔ ∃v′ : p v = W (p)
< p > ; < q > ⇔ < ∃s : p[s] ∧ [s&x′]q > W (s) = W (p) ∩W (q)
< p > \ < q > ⇔ < ∀s : [v′]p[s]⇒ (q ∧ x′ = x)[s] > v = V (p),W (s) = W (p)
< p > / < q > ⇔ < ∀s : [s]q[v]⇒ [s](p ∧ y′ = y) > v = W (q),W (s) = W (q)
< p >⊆< q > ⇔ ∀v, w′ : p⇒ q[y] ∧ x′ = x v = V (p, q), w = W (p)
< p >v< q > ⇔ < p > ⊆ < q > ∧ ∀v : p? ⇔ q? v = V (p, q)
< p > ∪ < q > ⇔ < p ∧ y′ = y ∨ q ∧ x′ = x >
< p > ∩ < q > ⇔ < p[x] ∧ q[y] >

where s1&s2 denotes the simultaneous composition of the substitutions s1 and s2, requiring that
W (s1) and W (s2) are disjoint. Notice that ˇ< p > is equivalent to < p̌ >, < p >? is equivalent to
p?, and < p > ∩ < q > is equivalent to < p ∩ q > (using the results of Section 2.2).

Proof: We first rewrite < p > and < q > as < p ∧ y′ = y > and < q ∧ x′ = x >, respectively.
Since they now have the same variable sets, we may use the original definitions above (with W (p, q)
as the variable space, v), if we ignore other program variables. And since the operators above
give identity (⊆ and ? give true) when p and q are identity, we may frame the result when other
program variables are taken into consideration (for ⊆ and ? other variables cause no problems).
Thus < p > / < q > is equivalent to < ((p ∧ y′ = y) / (q ∧ x′ = x)) > and < p >⊆< q > is
equivalent to (p ∧ y′ = y) ⊆ (q ∧ x′ = x). We show the derivations for the /-operator in detail,
the others are similar or simpler.

< p > / < q >
⇔ < (p ∧ y′ = y) / (q ∧ x′ = x) >
⇔ < ∀s : [s](q ∧ x′ = x)[v]⇒ [s](p ∧ y′ = y) > v = W (s) = W (p, q)
⇔ < ∀s : [s]q[v] ∧ x = [s]x⇒ [s](p ∧ y′ = y) > v = W (q),W (s) = W (p, q)
⇔ < ∀s : [s]q[v]⇒ [s](p ∧ y′ = y) > v = W (q),W (s) = W (q)

4.1 Framed refinements

In program refinement it is often the case that a loose, unframed specification q is (partly) refined
into a framed specification/program p. By the operators above we may do refinement in the
following ways: p ⊆ q , p; q/p ⊆ q and p \ q; p ⊆ q
It is interesting then to look at the situation where p is framed and q is not. For such situations
we derive the following rules:

< p > \ q ⇔ ∀s : [v′]p[s]⇒ q[s] v = V (p),W (s) = W (p)
p/ < q > ⇔ ∀s : [s]q[v]⇒ [s]p v = W (q),W (s) = W (q)
< p >⊆ q ⇔ ∀v, w′ : p⇒ q[y] v = V (p, q), w = W (p), y = W (q)−W (p)
< p >v q ⇔ < p > ⊆ q ∧ ∀v : p? ⇔ q? v = V (p, q)

Proof: Not included.

Let us demonstrate the usefulness of the last equations by deriving the weakest prespecification
of assignments and tests.

5 UNDEFINED EXPRESSIONS 10

Assignments. By the above relational semantics for assignments, we have that

x := e \ q

by definition is < x′ = e > \ q which using the equations of Sec. 4.1 reduces to

∀w : (w = e′)⇒ q[x←w])

which simplifies to
q[x←e′]

Taking our priming convention into account, this reflects the weakest precondition known from
traditional Hoare logic.

Tests. Let b be unprimed. The prespecification

< b > \ q

reduces directly to
b′ ⇒ q

since W (b) is empty. As guarded commands are defined in terms of tests, semicolon and union,
their prespecifications follow from the rules above.

Recursion. The prespecification
(µX.F (X)) \ q

reduces to
∪i (F i(abort) \ q)

which is equal to the limit of F i(abort) \ q when i grows.

Local variables. Let the construct var x in p end introduce x as a local program variable
with scope p, and define W (var x in p end) as W (p)− x.

(var x in p end) ⇔ (∀x : ∃x′ : p)

However, if there is an outer program variable x, it is hidden inside p and we get

(var x in p end) ⇔ x′ = x ∧ (∀x : ∃x′ : p)

In either case we have

< var x in p end > ⇔ < ∀x : ∃x′ : p >

which again shows the strength of framed specifications.

5 Undefined expressions

We now consider the case that the expression language contains partial functions, and thus that
an expression need not have a (well-defined) value in all states. A formula p representing a relation
is now reinterpreted as

{(v, v′) | p == t}

i.e., the set of all pairs for which p has a (well-defined) value, and is true. We let == denote strong
equality (equal in all respects), which is non-monotonic and therefore not part of our expression
language, whereas = denotes strict and executable equality. For instance, with our reinterpretation

5 UNDEFINED EXPRESSIONS 11

the relation x′ = 1/x does not contain any pair with 0 as input value for x; and thus defines the
same relation as x ∗ x′ = 1.

The main question to investigate now is: Do the equations above for the relational operator
generalize to the case of partial functions? In order to make these equations meaningful we adopt
the validity concept of WS logic [5, 4]; which means that a formula p is valid if it is well-defined and
true, i.e., p == t.1 The Boolean operators (⇒,∧,∨,¬) are generalized as suggested by Kleene,
and are non-strict but monotonic, and may be considered executable (using angelic choice).

As in WS we let ∆e denote the welldefinedness of the expression e, for instance ∆(x′ = 1/x)
reduces to x 6= 0, whereas ∆(x ∗ x′ = 1) reduces to t, given the usual semantics for rational
numbers. The ∆-operator is non-monotonic and not part of our expression language. It may be
defined constructively, as in WS, defining ∆(p ∪ q) as ∆p ∨ ∆q (angelic choice). Alternatively,
∆p ∧∆q reflects the welldefinedness requirement for non-deterministic demonic choice.

The relational operators defined above (in Section 4) are now redefined as follows: The three
occurrences of ⇒ in the right hand sides are replaced by the operator ⊃, defined by

p ⊃ q == (p == t)⇒ (q == t)

expressing that validity of p implies validity of q. This operator is non-monotonic, and therefore
not part of our expression language.

The above relational definitions of the programming constructs (in Section 4) generalize to the
case of possibly ill-defined expressions without modifications. For instance, the assignment x := e
is defined as < x′ = e > which in WS is the same as (∆e) ∧ < x′ = e >, which shows that the
assignment does not terminate normally when the right hand side is ill-defined.

However, the above examples of derivations of prespecifications must be redone since the underly-
ing logic is now changed. For instance, reconsider the derivations of the prespecification of x := e.
As before we have that

x := e \ q

is by definition the same as
< x′ = e > \ q

which now is equivalent to

∀w : (w = e′) == t)⇒ (q[x←w] == t)

Using WS logic this simplifies to ∆e′ ⇒ (q[x←e′] == t) which is valid if and and only if

∆e′ ⇒ q[x←e′]

is valid. This result shows that the assignment behaves like abort when e′ is ill-defined.

Similarly, we obtain that validity of < b > \ q now is equivalent to the validity of (∆b′ ∧ b′)⇒ q
which is the same as b′ ⊃ q.

1Since we are not here concerned about validity of formulas with assumption parts, we might as well have used
LPF [1].

6 CONCLUSION 12

6 Conclusion

We suggest extensions of relational calculus intended to enhance its practical applications with
respect to program reasoning. The main contribution of this paper is the use of framing mechanism
allowing flexibility in the state space or set of program variables, including the siutuation that
the set of program variables is changing when a specification or program is refined. This is for
instance relevant for object-oriented class inheritance. We develop a relational calculus for framed
relations allowing an unknown and flexible variable space.

In addition we consider the case that the expression language contains partial functions. In this
case program reasoning is complicated by the fact that the evaluation of an expression terminates
normally only if the expression has a (welldefined) value. And the presence of partial functions
affects refinement with respect to to partial and total correctness. Our relational calculus is
extended to this case.

References

[1] H. Barringer, J.H. Cheng, C.B. Jones: “A Logic Covering Undefinedness in Program Proofs.”
Acta Informatica 21 (1984), 251-269.

[2] Hoare and He: “The weakest prespecification”, Information Processing Letters, 24 (1987),
127-132, North-Holland.

[3] Hoare, Hayes, He, Morgan, Roscoe, Sanders, Sorensen, Spivey, and Sufrin: “Laws of Pro-
gramming”, Communications of the ACM, 30 (1987), 8, p. 672-686.

[4] O.-J. Dahl, O. Owe: “Formal Development with ABEL, In VDM’91: Formal Software De-
velopment Methods, LNCS 552, p. 320-362, Springer Verlag, 1991.

[5] O. Owe: Partial Logics Reconsidered. To appear in Formal Aspects of Computing.

