On Rewriting Terms with Strict Functions
and Error Propagation

Olaf Owe
Department of Informatics
University of Oslo

September 1990

Abstract

Partial functions play an essential role in the semantics of programs
as a means to formalize non-terminating computations and computa-
tions terminating in an exception or error situation. However, when
properly formalized, partial functions and errors often complicate un-
derlying formalisms and reasoning systems. In this paper we focus on
term rewriting systems, and discuss how partial functions and error
propagation may be treated. In particular, we will be interested in
strict functions because they arise from various implementation tech-
niques. Reasoning with rewrite systems about such functions is non-
trivial in the presence of errors due to the non-strict parameter passing
semantics inherent in rewrite systems. In particular, rules formalizing
strictness easily destroy rewrite rule confluence. We show how to me-
chanically extend rewrite rule systems so that strict parameter passing
is imposed and so that convergent reasoning about terms which may
turn out to be erroneous, becomes possible. Integration of non-strict
functions will also be possible.

Contents
1 Introduction
2 Limitations of order sorted rewriting

2.1 Definite Errors
2.2 Strong Convergence

Guarded Rewriting

CONTENTS

4 Extensions
4.1 Semantically Constrained Functions . . .
4.2 Non-strict and Strict Functions Combined

5 Conclusions

10
10
10

11

1 INTRODUCTION 3

1 Introduction

Partial functions play an essential role in the semantics of programs as a
means to formalize non-terminating computations and computations termi-
nating in an exception or error situation. However, when properly formal-
ized, partial functions and errors often complicate underlying formalisms and
reasoning systems. In this paper we focus on term rewriting systems, and
discuss how strict partial functions and error propagation may be imposed.

Examples of partial functions are division, subtraction on natural num-
bers restricted to natural results, pop- and top-operations on a stack, and
push on a bounded stack. Consider the terms

r#0=z/r=1
r>y=x—y>0
top(pop(push(push(s,z),y))) where s is a bounded stack

How can we rewrite such terms? In the two first terms the conditions should
enable the result true. But what should the result be if the conditions are
omitted?

A rewrite system [?] consists of a set of rules of form a = b where each
variable occurring in the right hand side b must also occur in the the left
hand side a. A term t reduces to t’ by a rule a = b if ¢’ is obtained from ¢ by
replacing an occurrence of an instance of a by the corresponding instance
of b. The transitive reflexive closure of the “reduces-to” relation is denoted
—. If each term t reduces to a unique irreducible term ¢’ in finite steps, we
say that the system is convergent, and we say that ¢’ is the reduction of t.

Earlier approaches have dealt with partial functions in different ways. A
simple approach [?] is to leave error situations unspecified. Rules may then
freely be instantiated with terms that may contain errors. However, ob-
taining convergence is often difficult in the presence of error situations. For
instance, the rules %0 = 0 and (z/y)*y = x are not confluent, since (x/0)*0
can be reduced to both 0 and . One may avoid this kind of non-confluence
using a conditional rewrite system, where each rule has a condition ensuring
that all its applications of partial functions are welldefined; for instance the
latter rule may be conditioned by y # 0. An irreducible term may then (to
some extent) give an indication of possible error situations, but could just
as well indicate unknown semantics. Therefore reasoning about presence of
error is limited.

One may achieve a certain degree of reasoning about presence of error
situations and error propagation by adding a special symbol error (or sev-

1 INTRODUCTION 4

eral) indicating an error situation. (For the purpose of rewriting it could
be considered a constant.) Rules with explicit occurrences of error in the
right hand sides, but not in the left hand sides, identify error situations.
Rules with occurrences of error in the left hand sides and with error as
the right hand side identify error propagation. Again confluence can eas-
ily be destroyed with such rules. For instance, the rules /0 = error and
(x/y) * y = x are not confluent. Strict error propagation rules of the form
f(..,error,..) = error cause confluence problems even with a conditional
system, because rewrite systems allow non-strict (and even non-monotonic)
parameter passing semantics. For example, consider the rules

zx0=0
x/0 = error

The term (2/0) %0 reduces uniquely to 0. But confluence is lost when adding
the propagation rule

€error x r = error

Error propagation even affects the boolean operators. Consider the rules
(for conjunction and negation)

T AT =x
—error = error
zA—x = false

The term error A —error can be reduced to both error and false.

The problems demonstrated above may be summarized as follows: The
parameter passing semantics inherent in rewrite systems may easily give
rise to operators which are non-strict and even non-monotonic (with respect
to the flat ordering with error as the least element); for instance, the rule
x —x = 0 [z : Int] makes integer subtraction non-monotonic; and the
term 1/0 — 0/0 reduces to error — error (given 2/0 = error), and then to
0. Rewrite rules are often intended for instantiation of variables by defined
values only. Strange results and loss of confluence then arise when such rules
are instantiated with terms containing errors. One avoids these problems
if instantiation is restricted to “defined values”; this gives strict parameter
passing semantics. Under certain restrictions one may enforce strict pa-
rameter passing if rewriting is restricted to bottom-up (inside-out); but the
reasoning power over terms with variables is drastically reduced.

With the approach of Ordered Sorted Algebra (OSA) [?, ?, ?] one may
define a partial order between sorts; partial functions may (in many cases)

1 INTRODUCTION 5

then be treated as total functions on the appropriate subdomains — and
therefore conditions on the rules are not needed. By introducing functions
(and constants) with subsorts as codomains, one may by sort analysis some-
times conclude that a term is syntactically wellformed, which implies that
it is semantically welldefined (has a welldefined value) in a certain sense (in
the initial algebra). The reverse is not true in general, i.e. there are non-
wellformed terms who are welldefined (for a given set of rules). However, all
such terms (and more) can be made wellformed after insertion of so-called
retracts (which corresponds to coercion between subsorts of a common sort).
Sometimes such applications of retracts may be removed by repeated type
analysis after some rewriting steps (when no longer needed to ensure well-
formedness). We say that a wellformed term is strongly wellformed if it
contains no retracts, otherwise weakly wellformed.

A weakness is that reasoning about presence of errors is limited, since
it is usually required that all rules are strongly wellformed. Strictness can
then be ensured by insisting that only strongly wellformed terms of sort S
may substitute an S-variable in a rule instantiation. One may then reduce
only strongly wellformed (sub)terms. Even though retracts may sometimes
be removed (as before), little reasoning can be done in general about terms
which do not always have a welldefined value. (See section 2.)

Alternatively one may avoid retracts by introducing so-called error super-
sorts, which ranges over error values as well [?, 7]. By so-called stratification
one may in a systematic manner introduce the supersorts needed. Supersort
rules may be applied to weakly wellformed terms, but since (most) user de-
fined rules are restricted to the subsorts of welldefined values, the problems
discussed above reappear. As suggested in [?] one may give the user the re-
sponsibility of providing explicit (sub)sort information of certain subterms,
so that the relevant subsort rules apply. However, this approach has some
serious draw-backs: It is non-trivial to decide which subterms to explicitly
sort, and by which subsorts. Since the subsort claims will not be checked,
the approach opens for the possibility of writing meaningless and logically
inconsistent specifications. Finally, the approach assumes strictness of all
functions. In practice, one may want at least some predefined functions to
be non-strict (for instance an if-construct).

We shall show a different way of handling welldefinedness, by introducing
guards. This allows all reductions possible with weakly wellformed rule
instantiation, without any help from the user, and therefore the reasoning
power is significantly increased. As in OSA the variables of the user-defined
rules are understood to range over welldefined values only, and propagation

2 LIMITATIONS OF ORDER SORTED REWRITING 6

rules are implicitly given. Thus rules need not be carefully conditioned.
The guards ensure convergence, and a strict semantics, and do also provide
a separated analysis of welldefinedness aspects. It is not required that all
functions are strict, one may introduce non-strict functions such as an if-
construct.

For convenience, the presentation below will start from order sorted al-
gebra with retracts rather than error supersorts.

2 Limitations of order sorted rewriting

In order sorted algebra it is usually required that the rules are sort decreas-
ing, i.e. that the sort of a right hand side is the same as, or a subtype of,
the sort of the corresponding left hand side. And an order sorted substitu-
tion must respect sorts, in the sense that a variable of sort S may only be
replaced by a term of sort S (or smaller). In addition the term should be
strongly wellformed, in order to avoid undesired semantics, as shown by the
following example:

Example 1. Given that division of Int (Integer) and NZ
(NonZero) is Int, f of NZ is NZ, 0 is Zero, Zero and NZ are
subtypes of Int, and given the rule z/x =1 [z : NZ]. The
non-wellformed term

f(0)/1(0)

becomes after sort analysis

f(rnz(0))/f(rnz(0))

where ryz denotes a retract into NZ. The term would reduce
to 1 if x of the rule is instantiated to the weakly wellformed
NZ-term f(rnz(0)). (The same result would occur for the term
f(v)/f(y) [y: Int].) This reduction is clearly undesirable and
illustrates why strong wellformedness is required.

The next example shows how this requirement greatly limits the reductions
possible on weakly wellformed terms.

Example 2. Bounded stacks (BS) of elements (EL) with the
usual operations may be defined as follows:

2 LIMITATIONS OF ORDER SORTED REWRITING 7

empty : — ES

push : NF « EL— NE
pop : NE — NF

top: NE — EL

pop(push(s,x)) [s: NF,x: EL]

s
top(push(s,x)) = x

where NE (non-empty, bounded stacks) and NF (non-full, bounded
stacks) are subsorts of BS, and ES (empty stacks) is subsort of
NF.

The term top(pop(push(push(s,z),y))) [s: NF; x,y: EL] be-
comes, after sort analysis,

top(rng (pop(push(rnr(push(s, z)),y))))

which is irreducible. And so are all instances of this term. It
would be desirable to remove the outermost retract, which obvi-
ously cannot cause an error; and then be able to show that the
term equals

top(ryr(push(s,x)))

However, this is not possible in OSA since both terms are irre-
ducible.

We write S < S’ if S is a proper subsort of S’, and the subsort relation
is extended to products of sorts in the obvious way.

A profile f : D— S is said to be a subprofile of another, if the latter
has the form f: D'— S and D < D' and S < §’. A profile is f : D— S
is redundant by f : D'— 8" if D < D’ and S’ < S. For instance the
profile push : ES * EL — NFE is redundant by, but not a subprofile of, push :
NF % EL— NE (and given ES < NF).

2.1 Definite Errors

One may not reason about presence of errors in OSA. Even terms like
pop(empty) and x/0 are treated as weakly wellformed ones. In order to
detect definite errors, we add the assumption that the least greatest lower
bound of two types in the subtype graph corresponds to intersection of the

2 LIMITATIONS OF ORDER SORTED REWRITING 8

value sets, as suggested in [?]. Throughout the paper we assume that this
assumption is satisfied, and we use the term strong order sorted algebra to
denote order sorted algebra where the satisfaction concept is strengthened
to accommodate our assumption. The intersection of sorts N is then syn-
tactically computable and is defined as the greatest lower bound, adding
as the bottom type, corresponding to the empty set. Two sorts T, T'T" are
said to be disjoint if 7NTT is . Notice that the subsort graph need not
be closed with respect to union of value sets.

For instance, the sorts NZ and Zero of example 1 are now interpreted
as disjoint. Example 2 should be enriched with another sort, say NEF,
less than both NE and NF, otherwise NE and NF would be interpreted as
disjoint sorts. We believe that disjointness of subsorts is usually known in
practical program specification; then our assumption does not cause other
complications than identifying the existence of certain subsorts.

We add the rule:

rr(t) = rearr(t) [t TT]

which shows that all retracts between sorts not directly related can be re-
moved (by rewriting). A retract of form 7“@(..) represents a definite error. It
follows that retracts between disjoint sorts must fail and represent definite
erTors.

Intersection of sort-products is defined in the obvious way; and we define
the intersection of two f-profiles, say f: D—S and f: D'—S" as f: DN
D’ — SNS’. For any set of profiles ¥ we may derive a regular and monotonic
set of profiles ¥’ by taking the closure with respect to this intersection, and
removing redundant profiles. If the set ¥/ contains a profile f : D — () with D
non-empty, we say that the set is syntactically inconsistent (since it cannot
be modeled), as in [?].

The following rules for reasoning about definite errors, are obviously
satisfied:

ro(t) = error
f(..,error,..) = error for each (strict) function argument

where the explicit error may be regarded as a (failing) retract into the
empty sort. A system R extended with these rules is denoted Rerror. The
extension preserves convergence, since no other rules mention error and
since strongly wellformed terms never reduce to error.

In Rerror one may reason with terms that contain definite errors, but
reasoning with weakly wellformed terms which do not reduce to error, is as

2 LIMITATIONS OF ORDER SORTED REWRITING 9

limited as in R; i.e. if ¢ reduces to t' in Rerror, and t’ is not error, then
t also reduces to ¢’ in R. For instance, the term x/0 can be reduced to
error (given the syntax of example 1), since 7yz(0) reduces to ry(0) and
then to error. On the other hand, the term x/x [z : Int] becomes x /7 Nz (z)
as before.

2.2 Strong Convergence

A function specified by the profile f : D — S normally has function values
in any specified subsort S’ of S for some arguments in D (otherwise the
first profile could be improved), i.e. the function satisfies f : D' — S’ for
some subproduct D’ of D. However, in order to express such a D’ one may
need to introduce subsorts. Introduction of subprofiles (and subtypes) is
quite natural and important when refining specifications. One may expect
that addition of such subtypes and subprofiles (in a conservative manner)
do not destroy convergence. = However, a weakness of the OSA-concept
of convergence is that one may loose convergence, both termination and
confluence, by adding such subprofiles:

Example 3. (Loss of confluence)
Given f : Int — Int, + : Int x Int — Int and Nat < Int, and the
rules

fle+y)=xz+y [,y : Int]
flz) =z+42z [z : Nat|

This system is convergent, but confluence is lost by adding the
profile + : Nat * Nat — Nat.

Example 4. (Loss of termination)
Given g, h, f : Int — Int and Nat < Int, and the rules

h(f(z)) = g(f(x)) [,y : Int]
9(2) = h(2) [z : Nat]

This system is convergent, but termination is lost by adding the
profile f : Nat — Nat.

It seems useful to have a stronger notion of convergence which allows re-
finement of syntactic information (through adding subprofiles and subsorts
in a conservative manner), without loss of convergence.

2 LIMITATIONS OF ORDER SORTED REWRITING 10

Definition. A syntactic refinement of a strongly order sorted rewrite
system R is an extension obtained by adding new subsorts and subprofiles
such that the rules remain sort decreasing, and no inconsistent profile can
be derived, and (naturally) such that the extended subsort graph is closed
with respect to intersection of value sets, without modifying N on R-sorts.
It is natural to require that added subsorts do not change the greatest
lower bound of R-sorts (it is sufficient that each new subsort have only one
direct supertype among the old ones), since otherwise the closure of the
extension of the closure of R may differ from the closure of the extension of
R, and thus the extension would add non-trivial semantic information. !

Definition. We say that R is strongly convergent if every syntactic refine-
ment of R is convergent.

One may prove strong convergence without looking at possible refine-
ments: R is strongly convergent if and only if R is convergent when retracts
are allowed in unification of a term with a variable (which gives more su-
perpositions to consider). And the concept of strong convergence causes no
additional concern regarding the termination issue provided the termination
proof is based on a simplification ordering which does not depend on subsort
information. 2

Notice that if R is strongly convergent then Rerror is also. Examples 1
and 2 above are strongly convergent, but obviously not 3 and 4 (the indicated
refinements are syntactic).

Example 5. Given that Nat is a subsort of Int and + : Int x
Int — Int, the two rules

0<uxz = true [z : Nat]
0<(z+y)=-z<y [,y : Int]
form a convergent system, but not a strongly convergent one,

since convergence is lost when adding the subprofile 4+ : Nat *
Nat — Nat.

1One could also require that no original R-profile becomes redundant (in a certain
sense) in order to disregard extensions of more serious nature. However, this would not
influence the results to come.

20ne could allow a precedence order of the function symbols by ordering overloaded
versions of a function according to the subsort order on the codomains, provided there is
no overlap with other functions.

3 GUARDED REWRITING 11

3 Guarded Rewriting

In the following we show how to extend a strongly order sorted rewrite
system R into a stronger one, denoted R, which is capable of non-trivial
reasoning with non-welldefined terms.

We consider a strongly convergent system R with wellformed and sort
decreasing rules. We add the rule

rs(t)=te S|t

(t is of any sort connected with S), introducing two new operators: | (for
guarded terms) and € S (for membership in sort S). The operator | binds
weaker than any other (except =), and associates to the right. With this
rule one may remove all retracts, and the resulting term may be considered
strongly wellformed! The guarded term d|t may be understood as “if d then
t else error”. This motivates the following rules (schemas):

fldlt,.)=d| f(..,t,..) for all (strict) R-functions f, including retracts
dlld2|t =dlnd2 |t

(The first rule schema should be extended to handle all combinations of one
or more guarded arguments.) The two first rules ensure that inner occur-
rences of | can be removed. Notice that the OSA requirement of strongly
wellformed instantiation implies that inner occurrences of retracts must be
removed first. In the resulting conjunction of guards, guards corresponding
to inner retracts will appear before those corresponding to outer retracts.
These rules could be performed efficiently during the sort analysis in an
inside-out manner. (The two occurrences of ¢ introduced by the first rule
could be represented once if terms are represented by a graph structure
rather than a tree structure.)

Clearly we may let a guard ¢t € S allow t to be used as a strongly
wellformed S-term inside the guarded (sub)term, since truth of the guard
implies success of the retract. This means that ¢ may safely be used for
instantiation when applying a rule inside the subterm. In fact, after all
retracts are turned into guards and all guards are moved outermost, all
matching of rules can safely be done without the requirement of strong
wellformedness! Therefore all reductions on the original term with weakly
wellformed instantiation, can be done to the the guarded term, and the
results would be the same, except for the guard, which gives a result in
accordance with strong instantiation. For instance the term f(y)/f(y) [y:

3 GUARDED REWRITING 12

Int] from the example above now results in y € NZ | 1, expressing that the
term is 1 when y is NZ and otherwise error.
The following rules restrict the € S predicate for each sort S:

tes =teSNT [t:T]
tel = false

The first follows from the assumption of intersection-closure. 3 In order
to apply the first rule as often as possible, we let the sort analysis take
advantage of other guards, say t' € T, where t’ is a subterm of ¢: the rule
applies if it can be found that ¢ is of sort T" when using the fact that ¢’ is of
sort T".

Example 6. Consider again integers Int with the subtypes
NZ (non-Zero), Nat (non-negative naturals), Neg (non-positive
negatives), where Zero is a subtype of Nat and Neg, and where
Natl is a subtype of NZ and Nat, and where Negl is a sub-
type of NZ and Neg. Negation has the profiles — : Int — Int,
— : Nat — Neg, — : Neg— Nat, — : NZ — NZ, the (truncated)
square-root function has the profile sqrt : Nat — Nat, multiplica-
tion * : Int* Int — Int, and division as before. Consider the term
sqrt(z) * sqrt(—x)/z, which becomes z € Nat A —x € Nat Nx €
NZ | sqrt(x) = sqrt(—z)/z in which the second guard may be
simplified to —z € Zero and then to —x € () and finally to false.
Thus the whole term is recognized as a definite error.

Occurrences of true and false in guards are simplified as follows:

truelt =t
falselt = false | O

where O is a new constant, considered strongly wellformed of any sort (i.e.
of sort). Intuitively, O may be understood as the unknown (or as “don’t
care”); and false|O represents an error. The O ensures uniqueness in the

case of false guards.
4

$Without this assumption, the rule would be t € S = true [t : S] which corresponds
to the OSA removal of retracts. Notice that this rule reduces t € SAt€ T tot € Sif S
is a subsort of T'.

4When non-strict functions are considered: It may be unified with any term ???

3 GUARDED REWRITING 13

Let R* denote the rewriting system consisting of the original R-rules,
the explicitly added rules, and the following rules for A.

true Nt =1
false Nt = false
tAL =1

Rather than rewriting modulo commutative, associative rules for A, a simple
sorting of its arguments suffices, for instance with respect to term length,
and secondly lexicographical ordering (provided this does not conflict with
rules for A in R).

Lemma 1. Assume R is strongly convergent for strongly wellformed terms.
Then R™ is also strongly convergent.

Lemma 2. The R'-reduction of a weakly wellformed term is strongly
wellformed, and it may not contain error.

R* is an extension of R in the sense that the two systems have the same
strongly wellformed irreducible reductions:

Lemma 3. Assume R is strongly convergent, and let ¢’ be the R-reduction
of t. If ¢ is strongly wellformed, it is also the R*-reduction of ¢. Otherwise,
the RT-reduction of ¢ has the form d|t”” where #” may be obtained from ¢ by
R ignoring the requirement of strongly wellformed instantiation, and then
removing any remaining retracts by the rules above. The resulting guard
will be implied by d.

The guard d expresses the condition that ¢ is welldefined in the sense
that d can be reduced to true for exactly those instantiations for which ¢
has a strongly wellformed R-reduction. And d expresses strict parameter
passing semantics in the following sense:

Lemma 4. Reduction to error in Rerror implies reduction to false|O in
R*. Furthermore, RT and Ryror give the same reductions when the rule
error = false | O is added to the latter system.

Notice that error propagation rules may be included even for € and | (in
both arguments), showing that these function are strict as well. However,
the rules error | t = error and error € S = error can never be applied
since errors may not occur in guards. And the rule (d | error) = error in
not needed because of error = false | O.

Example 7. Consider the bounded stack system of example 2
(with NEF). The (previously irreducible) term

top(rne (pop(push(ryp(push(s,z)),y)))) [s: BS]

4 EXTENSIONS 14

now reduces to
push(s,x) € NF |

which may be read as: if push(s, z) is inside NF then x else error.
This reduction result is also obtained for the term top(r yp(push(s, z))),
which shows that the two top-terms are equal.

Consider example 1. The term xz/x [z : Int] now reduces to
x € NZ | 1. (And the term z/0 [z : Int] reduces to false | O.)

The system RT offers reasoning about (the definedness and the value
of) weakly wellformed terms by means of only strict functions and strict
operators (including |, € and A). Even though | may be interpreted by
a non-strict if-construct, R ensures that both arguments of | always are
strongly wellformed, and hence | may be defined as strict. In the next
sections we extend our system to cater for semantically constrained functions
and non-strict functions.

4 Extensions

4.1 Semantically Constrained Functions

We may extend the system above to handle (strict) functions defined on
semantically constrained domains, such as minus on natural numbers (letting
x — y be defined for naturals z,y if and only if y < x). The sort analysis
may handle such functions like retracts, inserting the constraint as a guard.
For instance the (sub)term a — b becomes after parsing b < a | a — b where
a — b is considered strongly wellformed; after this parsing all subterms may
be considered strongly wellformed. As before further reductions are possible
even if the constraint cannot be reduced to true or false.

Constrained functions may occur in a rule if the guards (constraints)
obtained by sort analysis of the right hand side are contained in those of the
left hand side. Such a rule may only be instantiated when the constraints
of the instantiated left hand side are satisfied, or occur as guards to the
(sub)term being reduced. In our system this is always the case, since the
sort analysis has produced the necessary guards!

A similar discussion applies to the use of retracts in right hand sides.

The results above generalizes to the case of constrained functions, if we
require constraints to be strongly wellformed terms. Convergence of guards
requires that constraints converges, which is implied by convergence of R.

5 CONCLUSIONS 15

4.2 Non-strict and Strict Functions Combined

The results above may be extended to systems with both strict and non-
strict functions. For instance it may be desirable to allow an if-then-else
construct with only the first argument strict.

For non-strict argument positions, we must of course remove the cor-
responding rules prescribed above defining strict propagation of errors and
guards; and instead provide propagation rules of form

flodt,.)=g f(..,t,..)

where d and ¢ are variables and where the guard g is a strongly wellformed
term containing strict arguments and d (and guarded non-strict arguments).
This implies that all guards can be collected outmost and that the resulting
guard is properly protected against (internal) errors. For instance, for the
non-strict arguments of the if-construct we need

if(a,dbe) —a=d|if(a,b,c)
if(abdlc) =-a=d|if(a,b,c)

(which requires rules for = and =). For convergent analysis of guards, we
now need rules reducing all propositional tautologies to true. However, it
suffices with two valued propositional logic since any error occurrence in a
guard is properly protected. For instance, the guard of if(y < z,sqrt(z —
y),sqrt(y —z)) [z,y: Nat] is (y <z=y < o)A ((y <2)=2z <y)
which reduces to true with appropriate rules for (two-valued) = and <.

The semantics of non-strict operators may be defined by ordinary rules
(without guards), which may be applied as usual. These rules have no
critical pair with the propagation rules, and therefore the two sets of rules
can be developed independently, which makes the convergence issue easier.
For many practical purposes a fixed set of non-strict functions suffices. Then
a convergent set of predefined rules could be developed, such that they would
not cause superpositions with later rules provided the latter ones do not
contain non-strict functions in their left hand sides.

5 Conclusions

We have focused on rewriting of weakly wellformed terms. A non-welldefined
term ¢ may be rewritten to a guarded term of form d|t’ where d is a boolean
term expressing the welldefinedness of ¢, and where ¢’ equals ¢ when d is

REFERENCES 16

satisfied. Neither d nor ¢ contain errors. This form of guarded rewriting
may be used to reason about partial functions, both syntactically and se-
mantically constrained, and which allows rules for strict error propagation.
In particular, we have developed restrictions that ensure strong convergence.
Integration of non-strict functions is also possible.

Our approach gives significantly stronger reasoning about non-welldefined
terms than the OSA approach with retracts and the one with error super-
sorts. In contrast to the use of error supersorts our method allows unre-
stricted rewriting of partly erroneous terms.

We have shown our ideas using OSA, but the results are not limited to
OSA. In sorted algebra all partial functions must be handled as semantically
constrained functions, letting the guard introduce the constraint.

In addition we have found a notion of strong confluence, which has proved
to be useful.

References

[1] R.J. Cunningham, A.J.J. Dick: “Rewrite Systems on a Lattice of
Types” Acta Informatica 22, 149-169, 1985.

[2] K. Futasugi, J.A. Goguen, J.-P. Jouannaud, J. Meseguer: “Principles of
OBJ2.” In Proceedings, 1985 Symposium on Principles of Programming
Languages and Programming, Association for Computing Machinery,
1985, pp. 52-66. W. Brauer, Ed., Springer-Verlag, 1985. Lecture Notes
in Computer Science, Volume 194.

[3] M. Gogolla: “Algebraic specifications with partially ordered sorts and
declarations.” Forchungsbericht 169, Universitdt Dortmund, Abteilung
Informatik, 1983. Revised version: Partially ordered sorts in algebraic
specifications. In: B. Courcelle, editor, Proceedings of the Ninth Collo-
quium on Trees in Algebra and Programming, pages 139-153, Cambridge
University Press, 1984.

[4] J.A. Goguen, J. Meseguer: “Order-Sorted Algebra I: Equational Deduc-
tion for Multiple Inheritance, Polymorphism, and Partial Operations.”
SRI International, 1988.

[5] J.A. Goguen, T. Winkler: “Introducing OBJ3.” SRI International, SRI-
CSL-88-9, 1988.

REFERENCES 17

[6]

[7]

[10]

J.V. Guttag, J.J. Horning, J.M. Wing: “Larch in Five Easy Pieces.”
Digital Systems Research Center, Palo Alto, California, July 1985.

Knuth & Bendix: “Simple Word Problems in Universal Algebras.” In
Computational Problems in Abstract Algebra, Pergamon Press, New
York, 1970.

0. Owe, O.-J. Dahl: “Generator Induction in Order Sorted Algebras.”
Formal Aspects of Computing, vol. 3, pp. 2-20, 1991.

G. Smolka, W. Nutt, J.A. Goguen, J. Meseguer: “Order-Sorted
Equational Computation.” SEKI-Report SR-87-14, Universitat Kaiser-
lautern, Fachbereich Informatik, 1987. Revised version in: H. Ait-Kaci
and M. Nivat, editors, Resolution of Equations in Algebraic Structures,
Volume 2, pages 297-367, Academic Press, 1989.

H. Comon: “Equational Formulas in Order Sorted Algebras.” In:
M.S. Paterson, editor, automata, Languages and Programming, 17th
International Colloquium, Warwick, England, Proceedings, LNCS 443,
pages 674-688, Springer Verlag, 1990.

C. Kirchner, H. Kirchner: “Constrained Equational Reasoning.” Centre
de Recherche en Informatique de Nancy, 1989.

