Image Processing Laboratory
Department of Informatics

University of Oslo

Report No. 92

XITE

X-based Image Processing Tools and Environment

Programmer’s Manual

For version 3.4

Svein Boge
June 1998




Bildebehandlingslaboratoriet
Institutt for informatikk
Universitetet 1 Oslo

Image Processin% Laboratory
Department of Informatics
University of Oslo

Tittel/Title:

XITE Programmer’s Manual

Forfatter(e)/Author(s):

Svein Bge

Rapport nr./Report no.: 92 ISBN: 82-7476-061-1  Dato/Date: June 1998

Resymé/Abstract:

XITE consists of display programs with image widget and graphical user
interface as well as more than 200 command line programs and 600 sub-
routines for image processing, all documented on-line.

The command line programs and subroutine library are written in C
and run under UNIX and Windows.

The display programs run under UNIX. They work with images of
arbitrary size and pixel type on 8-bit PseudoColor and 24-bit DirectColor
and TrueColor X11 displays. Images can be zoomed and panned, and
colortables can be selected from a menu. The main display program,
xshow, gives access to most of the other command line programs via a
menu interface which the user can customize and extend to include local
programs. Input images for the menu entries can be selected with the
mouse, and output images appear on the display.

This report describes how to write applications using the XITE routine

library and ximage toolkit.

Norske emneord/Indexing terms - Norwegian:

Engelske emneord /Indexing terms - English:

Bildebehandling Image Processing
Bildebegrep Image Concept
Bildeprogram Display Program
Vindussystemet X X Window System
Farger Colors
UNIX UNIX
C C
Windows Windows

Adresse: Address:

Bildebehandlingslaboratoriet
Institutt for informatikk
Universitetet i Oslo

Boks 1080 Blindern

0316 Oslo

epost: blab@ifi.uio.no
tlf: 22 85 24 10

Image Processing Laboratory
Department of Informatics
University of Oslo

P. O. Box 1080 Blindern

N - 0316 Oslo

NORWAY

email: blab@ifi.uio.no
phone: +47 22 85 24 10



XITE

X-based Image processing Tools and Environment

Programmer’s Manual

For version 3.4

Image Processing Laboratory
Department of Informatics
University of Oslo

Svein Boge
June 1998






Contents

1

2

Introduction 1
Compilation and linking of XITE dependent programs 1
Reading and writing BIFF images 1
3.1 Tracking the image history . . . . . . . .. .. . o L 1
Standardized command line user interface 2
4.1 On-line help with program options . . . . . . . .. .. ... ... ... 2
4.2 Message feedback from your programs to theuser . . . . . . .. .. ... ... .. 3
4.3 Message feedback from the BIFF library functions to the user . . . . . . .. .. .. 3
4.4 Piping and input/output images . . . . .. ... oo 3
4.5 Processing program options . . . . . ... Lo Lo Lo 3
Example of a main program 3
Documentation and manual pages 5
6.1 FEmacs commands for main comments . . . . .. ..o Lo L. 6
6.2 Preprocessor directive in the main comment of a main program . . . . . . ... .. 7
6.3 Specification of the manual page name . . . . . . .. ... oL Lo 7
BIFF Image Concept and File Format 7
ximage toolkit for X applications 8
Contributing to XITE 8
Portability 9
A1 Traditional Cand ANSI C . . . . . . ... 0 e 9
A.2 char versus unsigned char . . . . .. ... oL L 11
A3 Typesof functions . . . . . . . . . o 11
A4 XITE include directives . . . . . . . . . . o 12

A4l Examples . . . . oo e 13
A.5 Warnings from the compiler . . . . . . . . . . ... ... 14
A.6 Organization of header files . . . . . . . . . . . ... .. .. ... ... ... 14

References 17

iii






1 Introduction

Unfortunately, this document is still in a preliminary state.

XITE (pronounced excite) is an acronym for “X-based Image processing Tools and Environment”.
XITE is developed by the Image Processing Laboratory, Department of Informatics, University of
Oslo, Norway.

This document contains information on how to write C programs which use the XITE routine
library. There are also guidelines on how to adhere to the programming standard for XITE in case
you wish to contribute routines and programs to XITE itself, and not merely use what is already
available.

For information on how to use XITE without C programming, please refer to the User’s Manual [4].

In this text, the symbol $XITE_HOME represents the XITE home directory. This could be e.g.
/usr/local/xite, “xite or whatever your local XITE administrator or system manager chose
when XITE was installed on your system. For installation of XITE, refer to the [3, System
Administrator’s Manual].

More information on all the programs and functions mentioned in this document, can be found in
the online hypertext Reference Manual [2].

2 Compilation and linking of XITE dependent programs

The script cxite should be used to compile and link C source files which use functions and definitions
from XITE. This script knows where XITE header files and libraries are located, as well as X
Window System header files and libraries. Try the command

§ cxite -man

for help on cxite.

3 Reading and writing BIFF images

The XITE library contains several functions for reading and writing BIFF (Blab Image File For-
mat) images. The main BIFF routines are listed in table 1 on the following page. Always use the
reading and writing routines from the table when reading from file or writing images to file. These
routines will interpret correctly the special file names “~” (for standard input or standard output),
“-0” (for standard input) and “~1” (for standard output). Refer to subsection 4.4 for details on
this. The functions also swap bytes when an image is read on a platform with a different byte
ordering than the byte ordering for the platform which wrote the image to file.

3.1 Tracking the image history

There is a function lhistory which can be used to track the processing history of an image. A call
to this function will append a line to the text field of an image. This text or history field can be
printed e.g. with the program biffinfo or inside the XITE display programs.

If an image is the result of processing another image, the function Icopy_text can be used to copy
the history/text field from the old image to the new image. A subsequent call to lhistory will


http://www.mn.uio.no/ifi/english/research/groups/dsb/resources/software/xite/
http://www.mn.uio.no/ifi/english/research/groups/dsb/
http://www.mn.uio.no/ifi/english/
http://www.uio.no/
http://www.uio.no/
http://www.mn.uio.no/ifi/english/research/groups/dsb/resources/software/xite/ReferenceManual/cxite_1.html
http://www.mn.uio.no/ifi/english/research/groups/dsb/resources/software/xite/ReferenceManual/cxite_1.html
http://www.mn.uio.no/ifi/english/research/groups/dsb/resources/software/xite/ReferenceManual/Ihistory_5.html
http://www.mn.uio.no/ifi/english/research/groups/dsb/resources/software/xite/ReferenceManual/biffinfo_1.html
http://www.mn.uio.no/ifi/english/research/groups/dsb/resources/software/xite/ReferenceManual/Icopy_text_5.html
http://www.mn.uio.no/ifi/english/research/groups/dsb/resources/software/xite/ReferenceManual/Ihistory_5.html

2 Standardized command line user interface

| Function name | Effect |
Iread_image Open BIFF image file and read image.
Iwrite_image Open BIFF image file and write image.
Iread__band Read image band from open file.
Iwrite__band Write image band to open file.

lopen_image Open BIFF image file for reading and/or writing.
Iclose_image Close BIFF image file.

Imake_image Create complete image data structure, including bands and pixel value
storage. Pixel values are not initialized.

Init_image Only initialize image info and pointers. Don’t create bands.

Imake__band Create complete band data structure, including pixel value storage.
Pixel values are not initialized.

Imake__bands Allocate memory for all image bands. Pixel values are not initialized.

Init_band Only initialize band info. Don’t allocate storage for pixel values.

Init__bands Initialize all bands of image. Don’t allocate storage for pixel values.

Table 1: Main BIFF routines for image and band handling.

append to the image history.

4 Standardized command line user interface

As described in the User’s Manual [4], all XITE programs are supposed to behave consistently
when processing input arguments. The various conventions are described below.

4.1 On-line help with program options

When a program is fed one of the options ~help, ~usage, -man, ~whatis or —~verbose, the behavior
for each option should be

-help, -usage: Give a usage message for the program and terminate.

-man: Give the same as man program. The manual page is extracted from a comment written in
the program source code. This is described in section 6.

-whatis: Give a one line description of the program, and terminate. This one line description is
collected from the same comment as the one mentioned for option -man above.

-verbose: Make some programs report the actions taking place.

The above is accomplished by using the function InitMessage. This function will save the program
name and a usage text and search the command line for one of the options. The call to InitMessage
should always be one of the first statements in a program. The emacs command blab-header-P
will insert a template for a call to InitMessage (refer to subsection 6.1). It looks something like
this

InitMessage(&argc, argv, xite_app_std_usage_text(
"Usage: %s <required option>... [<optional option>...]J\n\
<inimage> <outimage>\n"));


http://www.mn.uio.no/ifi/english/research/groups/dsb/resources/software/xite/ReferenceManual/Iread_image_5.html
http://www.mn.uio.no/ifi/english/research/groups/dsb/resources/software/xite/ReferenceManual/Iwrite_image_5.html
http://www.mn.uio.no/ifi/english/research/groups/dsb/resources/software/xite/ReferenceManual/Iread_band_5.html
http://www.mn.uio.no/ifi/english/research/groups/dsb/resources/software/xite/ReferenceManual/Iwrite_band_5.html
http://www.mn.uio.no/ifi/english/research/groups/dsb/resources/software/xite/ReferenceManual/Iopen_image_5.html
http://www.mn.uio.no/ifi/english/research/groups/dsb/resources/software/xite/ReferenceManual/Iclose_image_5.html
http://www.mn.uio.no/ifi/english/research/groups/dsb/resources/software/xite/ReferenceManual/Imake_image_5.html
http://www.mn.uio.no/ifi/english/research/groups/dsb/resources/software/xite/ReferenceManual/Init_image_5.html
http://www.mn.uio.no/ifi/english/research/groups/dsb/resources/software/xite/ReferenceManual/Imake_band_5.html
http://www.mn.uio.no/ifi/english/research/groups/dsb/resources/software/xite/ReferenceManual/Imake_bands_5.html
http://www.mn.uio.no/ifi/english/research/groups/dsb/resources/software/xite/ReferenceManual/Init_band_5.html
http://www.mn.uio.no/ifi/english/research/groups/dsb/resources/software/xite/ReferenceManual/Init_bands_5.html
http://www.mn.uio.no/ifi/english/research/groups/dsb/resources/software/xite/ReferenceManual/InitMessage_3.html
http://www.mn.uio.no/ifi/english/research/groups/dsb/resources/software/xite/ReferenceManual/InitMessage_3.html
http://www.mn.uio.no/ifi/english/research/groups/dsb/resources/software/xite/ReferenceManual/InitMessage_3.html

4.2 Message feedback from your programs to the user 3

The programmer should fill in the options for the particular program. The call in InitMessage
to xite_app_std_usage_text appends a description of the standard XITE help options mentioned
above to the usage message.

4.2 Message feedback from your programs to the user

The function InitMessage is one of a collection of XITE message handling functions. They provide
a standard way of informing the user on different levels.

The function Usage should be called if the user gives illegal options or arguments, or if necessary
options or filename arguments are missing. It will print a supplied error message, followed by the
usage text which was installed by InitMessage, and finally terminate the program. The functions
Info, Message, Warning and Error will possibly print a message and possibly terminate the program,
depending on the values of various environment variables, program options and function arguments
given.

4.3 Message feedback from the BIFF library functions to the user

The functions which take care of image input/output and other tasks related to the BIFF file
format, have their own simple message system. If you want errors encountered in these file format
functions to be printed, call the function Iset_message in the main program. If you also want the
program to terminate if such an error is encountered, then call the function Iset_abort in the main
program. The emacs command blab-header-P will insert templates for calls to Iset_message and
Iset_abort (refer to subsection 6.1).

4.4 Piping and input/output images

All XITE programs should be designed in such a way that they expect file names to be given as
arguments. They should not wait for input to appear on the standard input. Rather, they should
print a usage message (with the function Usage) if a filename argument is missing. They may
be told explicitly to take input from standard input by giving the filename “-” or “-0” on the
command line. Output should be sent to standard output if the output filename is “~” or “-1".
When reading or writing BIFF images or BIFF colortables, these filenames are recognized by the
BIFF format I/O routines, such as Iread_image and Iwrite_image (refer to section 3). Therefore,
always read and write BIFF images with XITE library functions.

4.5 Processing program options

As mentioned above, some options are processed by InitMessage. Other options should be processed
by read_switch (for text options) and its cousins read_bswitch (for true/false or on/off options),
read_iswitch (for integer options) and read_dswitch (for double float options).

5 Example of a main program

A typical main program in XITE, with the ingredients from the above section 3 and section 4,
will look something like this (an excerpt from crossSection.c in the XITE source directory
arithmetic).


http://www.mn.uio.no/ifi/english/research/groups/dsb/resources/software/xite/ReferenceManual/InitMessage_3.html
http://www.mn.uio.no/ifi/english/research/groups/dsb/resources/software/xite/ReferenceManual/xite_app_std_usage_text_3.html
http://www.mn.uio.no/ifi/english/research/groups/dsb/resources/software/xite/ReferenceManual/InitMessage_3.html
http://www.mn.uio.no/ifi/english/research/groups/dsb/resources/software/xite/ReferenceManual/Usage_3.html
http://www.mn.uio.no/ifi/english/research/groups/dsb/resources/software/xite/ReferenceManual/InitMessage_3.html
http://www.mn.uio.no/ifi/english/research/groups/dsb/resources/software/xite/ReferenceManual/Info_3.html
http://www.mn.uio.no/ifi/english/research/groups/dsb/resources/software/xite/ReferenceManual/Message_3.html
http://www.mn.uio.no/ifi/english/research/groups/dsb/resources/software/xite/ReferenceManual/Warning_3.html
http://www.mn.uio.no/ifi/english/research/groups/dsb/resources/software/xite/ReferenceManual/Error_3.html
http://www.mn.uio.no/ifi/english/research/groups/dsb/resources/software/xite/ReferenceManual/Iset_message_5.html
http://www.mn.uio.no/ifi/english/research/groups/dsb/resources/software/xite/ReferenceManual/Iset_abort_5.html
http://www.mn.uio.no/ifi/english/research/groups/dsb/resources/software/xite/ReferenceManual/Iset_message_5.html
http://www.mn.uio.no/ifi/english/research/groups/dsb/resources/software/xite/ReferenceManual/Iset_abort_5.html
http://www.mn.uio.no/ifi/english/research/groups/dsb/resources/software/xite/ReferenceManual/Usage_3.html
http://www.mn.uio.no/ifi/english/research/groups/dsb/resources/software/xite/ReferenceManual/Iread_image_5.html
http://www.mn.uio.no/ifi/english/research/groups/dsb/resources/software/xite/ReferenceManual/Iwrite_image_5.html
http://www.mn.uio.no/ifi/english/research/groups/dsb/resources/software/xite/ReferenceManual/InitMessage_3.html
http://www.mn.uio.no/ifi/english/research/groups/dsb/resources/software/xite/ReferenceManual/read_switch_3.html
http://www.mn.uio.no/ifi/english/research/groups/dsb/resources/software/xite/ReferenceManual/read_bswitch_3.html
http://www.mn.uio.no/ifi/english/research/groups/dsb/resources/software/xite/ReferenceManual/read_iswitch_3.html
http://www.mn.uio.no/ifi/english/research/groups/dsb/resources/software/xite/ReferenceManual/read_dswitch_3.html
file:/local/xite/src/arithmetic/crossSection.c

4 Example of a main program

/*P:crossSection*

crossSection
Name: crossSection - Find cross sections, row or column of image
Syntax: crossSection [<option>...] <inimage> <outimage>
Description: ’crossSection’ reads a BIFF image and finds a cross-section,

row or column.

Options: &-M
cross-section maximum (default)

&-n num
pick row or column number ’num’

&-t title
Title of output image

&-s scale
Scale curve height relative to image height (default is 1.0,
which means that the curve peak will touch the top edge of the

image) .
See also: profile(1), crossSection(3)
Return value: 2 => Illegal arguments.
Author: Svein Bge
I4: crossSection.c,v 1.20 1995/01/17 14:38:52 svein Exp

*/

#include <xite/includes.h>
#include <xite/message.h>
#include <xite/biff.h>

#include <xite/readarg.h>

#ifdef MAIN

#ifndef FUNCPROTO
int main(argc, argv)
int argc;
char **argv;
#else /* FUNCPROTO */
int main(int argc, char *xargv)
#endif /+ FUNCPROTO */
{
int maxi, num;
char *title, *outFile, *options;
double scale;



Iset_message(1);
Iset_abort(1);
InitMessage(&argc, argv, xite_app_std_usage_text(
"Usage: %s [<option>...] <inimage> <outimage>\n\
where <option> is chosen from\n\

-M : Cross-section maximum (default) \n\

-n <num> : Pick row or column number <no> \n\

-t <title> : Title of output image\n\

-s <scale> : Scale curve height relative to image height\n"));

/* Standard behaviour when no arguments or options. */
if (argc == 1) Usage(1l, NULL);

/* Save the command line arguments (other than the standard XITE help options). */
options = argvOptions(argc, argv);

/* Process options. */

maxi = read_bswitch(&argc, argv, "-M");

num = read_iswitch(&argc, argv, "-n", -1);
title = read_switch(&argc, argv, "-t", 1, "");
scale = read_dswitch(&argc, argv, "-s", 1.0);

/* Check number of arguments. */
if (argc != 3) Usage(2, "Illegal number of arguments.\n");

/* Read input image argument */
img Iread_image(argv[1]);
outFile = argv[2];

/* Create IMAGE out_img and process */

/* Copy text field (image history) from input image to output image. */
Icopy_text(img, out_img);

/* Append description of current processing to image history. */
Thistory(out_img, argv[0], options);

/* Write result to file */
Iwrite_image(out_img, outFile);

return(0);

#endif

6 Documentation and manual pages

If the main comments for functions and programs are written in a particular style, a hypertext
reference manual and manual pages for the UNIX man command may be generated automatically.
Examples of such comments may be found in the file

$XITE_HOME/src/arithmetic/scale.c

A main program comment is also shown above in section 5.


file:/local/xite/src/arithmetic/scale.c

6 Documentation and manual pages

6.1 Emacs commands for main comments

You get access to emacs commands for the various types of comments by inserting the line
(load-file "$XITE_HOME/etc/emacs-header")

into your .emacs file. Next time you start emacs, you may type M-x followed by one of the
commands from the list below.

blab-header-P: Used for the main comment of a program.

Also refer to subsection 4.1, subsection 6.2 and subsection 6.3.

blab-header-F: Used for the main comment of a function. Remember to specify the header files
which are necessary to get access to the declarations required for use of this function. This
is specified in the “Syntax” part of the comment and will typically look something like

#include <xite/region.h>

if the declarations are contained in region.h under the XITE include directory (refer to
appendix A.6). Also refer to subsection 6.3.

blab-header-I: Used for the main comment in a header file.

blab-header-L: Used for the main comment of a local function, i.e. a function which is not to
be included in XITE as an independent function. No manual page will be generated in this
case. A local function is most often declared static in the C source code.

blab-header-S: Same as blab-header-8, but for shell scripts (or macros).

blab-header-H: This does not insert a comment, but adds preprocessor directives for inclusion
of some standard XITE header files.

#include <xite/includes.h> /* For _XITE_PARAMS, _XITE_CPLUSPLUS_BEGIN,
* XITE_CPLUSPLUS_END and constant names for

* header files. */
#include <xite/message.h> /* For InitMessage(), Usage(), Error(),

* Warning() etc. */
#include <xite/readarg.h> /% For argvOptions(), read_switch() etc. x/
#include <xite/biff.h> /* For Iread_image() etc. */

insert-header: Used to choose one of the commands above.

On the manual page line starting with See also:, other related XITE programs or functions of
interest may be listed. Each XITE program, function or format reference in the list should end
with (n), where n referes to a manual section number, typically 1 (for program), 3 (for routine)
or 5 (for BIFF format routine). This is necessary in order to get correct hypertext links in the
hypertext reference manual. An example is

See also: absDiff (1), signDiff (1), multiply(1), divide(1)



6.2 Preprocessor directive in the main comment of a main program 7

6.2 Preprocessor directive in the main comment of a main program

The command blab-header-P above differs somewhat from the rest in that a directive (for the
C preprocessor) is inserted in addition to a comment template. The directive contains a line with
the text #ifdef MAIN and a matching line with the text #endif. The main program (the function
main in C) and everything else which only main needs to know about, is supposed to be typed
in between these two lines. When compiling a program (refer to section 2), the option -DMAIN
must be given to the compiler. This is to avoid inclusion of the function main in the XITE library
libxite.a when the other functions are compiled and archived.

6.3 Specification of the manual page name

For the emacs commands blab-header-P, blab-header-F and blab-header-S, the first line of
the comment template will look something like

/*P :namex*

(or with F instead of P and # prepended in the case of blab-header-S). The text name will be
replaced by the text typed when prompted by the command. This is typically the name of the
program or the function which is about to be documented.

The chosen name will become the name of the manual page for the program or function. However,
name can also be specified like this

/*P:namel=name2*/

(or with F instead of P). In this case, the manual page for namel will become a link to the manual
page for name2. The actual comment for name2 must be given in the form starting with /*P:name*.
(Remember to end the link kind of specification with the character “/”, which together with “*”
terminates this comment instruction.)

On the manual page comment line starting with Name:, name2 should always be listed first when
the linking described above is used. This ensures that the hypertext reference manual, which is
generated automatically, will also be able to follow these links.

It is also possible to write several lines as shown above in one file, but with different strings for
name or namel and name?2 in each line. In this case, more manual pages will be generated, possibly
as several links to the same manual page. This is useful when several programs or functions can
be explained by the same manual page. Refer to the file $XITE_HOME/src/utils/readswitch.c
for an example. Refer to the documentation for cdoc for more information.

The automatic generation of manual pages is taken care of by the installation programs, as ex-
plained in the System Administrator’s Manual [3].

7 BIFF Image Concept and File Format

Some information about the BIFF Image Concept and File Format can be found in the User’s
Manual [1]. A detailed description is given in the BIFF Manual [5].


file:/local/xite/src/utils/readswitch.c
http://www.mn.uio.no/ifi/english/research/groups/dsb/resources/software/xite/ReferenceManual/cdoc_1.html

8 Contributing to XITE

8 ximage toolkit for X applications

ximage is a toolkit for design of X applications in XITE, using the Image and ImageOverlay widgets.
This gives the programs a common look and feel. Please refer to the Reference Manual [2] for
more information about ximage.

9 Contributing to XITE

Send an email to blab@ifi.uio.no if you want your software to be included with the XITE distribu-
tion.


http://www.mn.uio.no/ifi/english/research/groups/dsb/resources/software/xite/ReferenceManual/ximage_3.html
http://www.mn.uio.no/ifi/english/research/groups/dsb/resources/software/xite/ReferenceManual/Image_3.html
http://www.mn.uio.no/ifi/english/research/groups/dsb/resources/software/xite/ReferenceManual/ImageOverlay_3.html
http://www.mn.uio.no/ifi/english/research/groups/dsb/resources/software/xite/ReferenceManual/ximage_3.html
mailto:blab@ifi.uio.no

A Portability

XITE should compile at least on the following platforms

e Linux

e Windows

To simplify the use of XITE on various architectures, it is important to consider portability
already during program development. This becomes even more important when both 64- and
32-bits systems are available. Some hints on reducing the number of problems are described
below.

A.1 Traditional C and ANSI C

Perhaps the most important difference between traditional C (Kernighan and Ritchie) and ANSI
C, is how the function heads are defined and declared. An example of a definition in traditional
C and ANSI C respectively, is

Traditional C:

double f(a);
int a;
{
}
ANSI C:
double f(int a);

{

}
The declaration of the same function in traditional C and ANSI C respectively, is

Traditional C:

double £();

ANSI C:

double f(int a);

In ANSI C, the parameter type is specified in the declaration, so that the compiler can check for
type consistency between formal and actual parameter. This kind of declaration is called a function
prototype. (The parameter name, in this case a, can be omitted from the ANSI declaration.)



10 Portability

Since ANSI C improves type checking by using prototypes, one ought to write all programs using
ANSI C and an ANSI C compiler. However, some users do not yet have access to an ANSI C
compiler. You should therefore define and declare functions both for traditional C and ANSI C.
This can be done as shown below (the function body is the same in both cases). Here is the
definition

#ifdef FUNCPROTO
double f(int a)

#else /* FUNCPROTOD */
double f(a)

int a;

#endif /* FUNCPROTO */
{

}

and here is the declaration

#ifdef FUNCPROTO
extern double f(int a);
#else /* FUNCPROTO */
extern double £();
#endif /* FUNCPROTO */

An ANSI compiler will read the prototypes, while a traditional compiler will read the tradi-
tional code. The compiler may be forced to read the prototypes by using the compiler option
-DFUNCPROTO (although the compiler may be too old to understand this ANSI standard code).
Using the option ~-UFUNCPROTO will force it to read the traditional code.

The above conditionals for the function definitions are inserted automatically by the emacs com-
mands described in subsection 6.1.

If a program is already written in a file called filename.c, using traditional C, one may get the
ANSI C code inserted automatically by issuing the following commands

% protoize -c ’-I/local/xite/include’ filename.c
% diff -DFUNCPROTO filename.c.save filename.c > filename.c.new
% mv filename.c.new filename.c
% rm filename.c.save
% sed ’s/#else FUNCPROTO/#else \/\*x FUNCPROTO \*\//’ filename.c | \
sed ’s/#endif FUNCPROTO/#endif \/\* FUNCPROTO \*\//’ > filename.c.sed
% mv filename.c.sed filename.c

If you already have the ANSI source and require traditional C, substitute the command protoize
by unprotoize and give the two filename arguments of the diff command in opposite order.

If the source file contains a function main surrounded by #ifdef MAIN, #endif, you will need to
rerun the above with the argument -DMAIN added between the quotes of the -c option. The same
goes for other conditionally compiled segments of the source code.

If protoize is not recognized by your system, ask your system manager where you can find it
(perhaps it will be in /local/gnu/bin or /usr/local/gnu/bin/).

In XITE header files, the function declarations don’t look exactly like the declaration above with
the FUNCPROTO macro. Instead, they use an XITE macro _XITE_PARAMS to avoid declaring
the function head twice. The declaration in the header file becomes



A.2 char versus unsigned char 11

extern double f _XITE_PARAMS(( int a ));

It is important to use two sets of parentheses around the parameter list as shown above. The macro
_XITE_PARAMS is defined in the header file xite_funcproto.h which is included by includes.h
and biff.h.

A.2 char versus unsigned char

On some platforms, a char variable is really unsigned char, on other platforms it is signed char.
This means that on some platforms it may represent an integer in the range —127 to +128, on
others the range is 0 to 255.

This platform dependency may create problems for the following source code

/* The preprocessor directive inserts the declaration of getchar
* and the definition of EOF (among other things).

* getchar is a function returning an int.

*/

#include <stdio.h>

char c;

while ( (c = getchar()) != EOF ) ;

The function getchar returns a character from stdin. It is of type int to be able to return an
“illegal” character when there are no characters left, or in case of a failure. The constant EOF
represents this “illegal” character, usually the integer “—1”. On a platform where char is the same
as unsigned char, the variable ¢ will get the value 255 when getchar returns EOF. The loop will
never stop. On a platform where char is the same as signed char, the source code will work as
expected.

To avoid this problem, the variable ¢ should be defined as an int.

A.3 Types of functions

Before you use a function in a program, the type of the function should be known, otherwise an
error may occur during execution of the program. The error is due to the fact that the compiler
has been given incorrect information concerning the memory space (number of bytes) to set aside
for the returning function value.

The type of a function may be specified in one of several ways (remember that the term “definition”
is used for the source code which specifies the whole function, including head and body, while
“declaration” means that only the head is specified, i.e. the type of the function and any parameters
(the latter only for ANSI C)). In the examples below, the source code is written in traditional C.

1. The function is defined and used in the same file

(a) The definition lies above the function call. Example

double f(a); int a; { ... } /* definition */
double d;
d=£(2); /* call x/

(b) The definition lies below the function call. In this case, the function must be declared
above the function call. Example:



12 Portability

double d, £Q); /* declaration */
d=£(2); /* call */
double f(a); int a; { ... } /* definition */

2. The function is defined in one file and used in another file.

(a) The function is declared above the function call. Example:

double d, £Q); /* declaration */
d=£(2); /* call x/

(b) The function declaration may be accessed by using the directive #include above the
function call. Example:

/* Include the file file.h which contains the declaration of
* function f. */

#include "file.h" /* include declaration */
double d;
d=£(2); /* call */

(¢) The function is neither declared nor defined above the function call (not even via #in-
clude). The function is in this case assumed to be of type int. Example:

double d;
d=£f(2); /* call, assume type int */

This may cause an error if the function f is not of type int.

If the function is declared outside the file in which it is used, one should organize the source
code as in item 2b (the case with the #include directive item) above. This will ensure that the
compiler is informed about any changes in the function’s type made by the author of the function,
or differences due to platform. With ANSI C, the compiler is also informed about the types of the
function arguments. Also refer to appendix A.6.

Here are some examples of functions which people easily forget to type-specify
e malloc (defined in <malloc.h> or <stdlib.h>, depending on operating system and C dialect).

Refer to appendix A.4 (XITE include directives) on how to avoid the problem of remembering
which header file to include on a particular platform.

e strcpy and other string routines (defined in <strings.h> or <string.h>, depending on
operating system and C dialect)

e pow and other math routines (defined in <math.h>)

A.4 XITE include directives

To relieve the single programmer from needing to remember what header file to include on a given
platform, a few constants are predefined in XITE. These constants are used to grab the correct
header file. Additionally, on some platforms they declare functions which are not found in any
system header files.

Refer to appendix A.4.1.

The table below shows which constants are defined, which functions they are to be used with and
which header files they ordinarily represent (depending on machine platform).



A.4 XITE include directives

13

XITE constants

Functions

Header files

XITE_ENDIAN_H

XITE_FCNTL_H
XITE_FILE_H
XITE_FORK_H
XITE_IO_H
XITE_LIMITS_H
XITE_MALLOC_H
XITE_MEMORY_H
XITE_MKTEMP_H
XITE_RANDOM_H
XITE_STAT_H
XITE_STDARG_H
XITE_STDIO_H
XITE_STRING_H
XITE_STRTOL_H
XITE_TIME_H
XITE_TOUPPER_H
XITE_TYPES_H
XITE_UNISTD_H

"byte order"

"file usage"

"file usage"
"forking"

"file usage"
pixtyp limits
malloc, calloc,
memcpy, memchr,
mktemp

srandom, random
"file usage"
"vararg" functions
printf, scanf etc.
strcat, strlen,
strtod, strtol
clock, time
tolower, toupper
"type definitions"

<endian.h>, <sys/endian.h>
<sys/machine.h> or
<machine/endian.h>
<fcntl.h> or <sys/fcntl.h>
<sys/file.h> or <sys/io.h>
<unistd.h> and/or <vfork.h>
<io.h> or <xite/dummy.h>
<limits.h> and <values.h>
<malloc.h> or <stdlib.h>
<memory.h> or <string.h>
<stdlib.h> or <unistd.h>
<math.h> or <stdlib.h>
<sys/stat.h>

<stdarg.h> or <varargs.h>
<stdio.h>

<string.h> or <strings.h>
<stdlib.h>

<time.h>

<ctype.h>

<sys/types.h>

<unistd.h>

The constants are defined only if <xite/includes.h> (refer to subsection 6.1) is included. We
recommend inclusion of <xite/includes.h> prior to any other XITE header files. The exact
meaning of using the above constants, can be found by reading the files <xite/includes.h> and

<xite/xite_x*.h>.

A.4.1 Examples

An example is if you would like to use the function malloc. You should write the directive

#include XITE_MALLOC_H

in your program. On some platforms, this will result in the inclusion of <stdlib.h>, on others
<malloc.h> will be included.

As a second example, if you would like to use the function toupper, you write

#include XITE_TOUPPER_H

On some platforms, <ctype.h> will be included, on other platforms no system header files are
included, but tolower and toupper are declared in an XITE supplied header file.

As a third example, if you would like to use the function fprintf, you write

#include XITE_STDIO_H

This will include <stdio.h> on all present platforms, but also declare fprintf for some platforms
which do not declare this function in <stdio.h> (e.g. traditional C on sun4/sparc under SunOS

4).



14 Portability

A.5 Warnings from the compiler

The C programming language is not fully defined. Several aspects are implementation depen-
dent, i.e. different compilers may choose different solutions. One example mentioned above, in
appendix A.2, concerned whether the type char is defined as 7 bits plus a sign or as 8 bits without
a sign.

Some compilers are better than others at giving warnings about “dangerous” situations, as e.g.
the use of syntax which may give problems on a different machine platform, or with a different
compiler.

A compiler which behaves almost the same on all machine platforms, is the C compiler from gnu,
gcc. We recommend that the programs are compiled with gee and the option -Wall (equivalent to
the combination of the options -Wimplicit -Wreturn-type -Wformat -Wswitch -Wcomment) as
a check, regardless of what compiler is used during program development or to produce the final
binary executable. Refer to man gcc.

The gnu compiler, gcc, should be used to test the ANSI code as well as the traditional C code.
To compile the traditional code, add the compiler option ~-UFUNCPROTO. Additional options should
be used to check for consistency in prototypes and between ANSI and traditional C code. The
compilation script cxite (refer to section 2) will do this when given the option -gw.

In addition to gcc several machine platforms offer the possibility of using the program lint. This
is not a compiler, but a syntax checker looking for “dangerous” code. Refer to man lint.

A.6 Organization of header files

All necessary prerequisites for using an external XITE function (i.e. the function type (in tradi-
tional C) or prototype (in ANSI C), in addition to required typedefs, macros and constants),
should be declared in files which can be included with the directive

#include <xite/filename.h>

for some filename.h. We call these header files global.

Every source file which defines non static functions should include the header file which declares
these functions. In this way the compiler will detect whether the declarations seen by other
files match the definitions. Consider an example, where the file biff.c defines the function
Imake_image, which is used by several other functions and main programs. The corresponding
declaration is contained in biff.h, which is included by other source and header files. Assume
that the definition of Imake_image in biff.c is changed in terms of function or parameter types.
If we forget to update biff.h correspondingly, several other source and header files will be given
incorrect information. However, if biff . c itself includes biff.h, the compiler will inform us about
this kind of inconsistency, when biff.c is compiled.

No unnecessary files should reside in <xite/...>. Examples of unnecessary header files are those
containing macros which are of no interest to anyone who only wants to call the XITE functions.
The macros are perhaps only for internal use inside the functions. Other examples are local
constants or small utility functions. These definitions should either be placed in the source file
(and declared static if they are used only in one source file) or in one or more files local to the
pertaining source directory (if they need to be shared), so that they can be included with the
directive

#include "filename.h"


http://www.mn.uio.no/ifi/english/research/groups/dsb/resources/software/xite/ReferenceManual/cxite_1.html
http://www.mn.uio.no/ifi/english/research/groups/dsb/resources/software/xite/ReferenceManual/Imake_image_5.html
http://www.mn.uio.no/ifi/english/research/groups/dsb/resources/software/xite/ReferenceManual/Imake_image_5.html

A.6 Organization of header files 15

We call these header files local.

Files which reside globally as <xite/. . .> should be copies of files which are also found locally. In
this way all relevant code can easily be moved, copied and packaged.

All routines which are declared in global include files should have a manual page description
(otherwise they don’t deserve to be located in a global header file).

Prior to adding your source code to XITE, i.e. prior to installing your header files in XITEs include
directory, you may put them in a directory called include/xite below your own home directory
for testing. When you compile your software, use the option -I$HOME/include, to enable the
compiler to find your header files. After your software is contributed to XITE, you don’t need to
use this option.



16

Portability




REFERENCES 17

References

[1] Svein Bge. XITE - X-based Image Processing Tools and Environment — Program-
mer’s Manual for version 3.4. Report 92, Image Processing Laboratory, Department of
Informatics, University of Oslo, P. O. Box 1080 Blindern, 0316 Oslo, Norway, June 1998,
http://www.mn.uio.no/ifi/english/research/groups/dsb/resources/software/xite/ProgrammersManual

[2] Svein Bge. XITE — X-based Image Processing Tools and Environment — Reference Manual
for version 3.47. Technical report, Image Processing Laboratory, Department of Infor-
matics, University of Oslo, P. O. Box 1080 Blindern, 0316 Oslo, Norway, September 2004,
http://www.mn.uio.no/ifi/english/research/groups/dsb/resources/software/xite/ReferenceManual/(
1,8

[3] Svein Bge. XITE — X-based Image Processing Tools and Environment — System Adminis-
trator’s Manual for version 3.47. Report 91, Image Processing Laboratory, Department of
Informatics, University of Oslo, P. O. Box 1080 Blindern, 0316 Oslo, Norway, June 2004,
http://www.mn.uio.no/ifi/english/research/groups/dsb/resources/software/xite/SysAdmMan/.
1,7

[4] Svein Bge, Tor Lgnnestad, and Otto Milvang. XITE - X-based Image
Processing Tools and Environment — User’s Manual for version 3.47. Re-
port 56, Image Processing Laboratory, Department of Informatics, Univer-
sity of Oslo, P. O. Box 1080 Blindern, 0316 Oslo, Norway, June 2004,
http://www.mn.uio.no/ifi/english/research/groups/dsb/resources/software/xite/UsersManual/.
1,2,7

[6] Tor Lgnnestad. The BIFF Image Concept, File Format, and Routine Library. Report 29,
Image Processing Laboratory, Department of Informatics, University of Oslo, P. O. Box 1080
Blindern, 0316 Oslo, Norway, February 1990. 7


http://www.mn.uio.no/ifi/english/research/groups/dsb/resources/software/xite/ProgrammersManual/
http://www.mn.uio.no/ifi/english/research/groups/dsb/resources/software/xite/ReferenceManual/Contents.html
http://www.mn.uio.no/ifi/english/research/groups/dsb/resources/software/xite/SysAdmMan/
http://www.mn.uio.no/ifi/english/research/groups/dsb/resources/software/xite/UsersManual/

18

REFERENCES




79

80

81

82

83

84

85

86

87

88

89

90

91

REPORTS FROM THE IMAGE PROCESSING LABORATORY

Ingvil Hovig :
“Verktgy og metoder for komprimering av MR bilder”
Dr.Scient. (Ph.D) thesis August 1995.

@yvind Akerhaugen :
“Automatisk plassering av navn pa kart ved hjelp av simulated annealing”
Cand.Scient. (Master) thesis February 1996.

Marius Midtvik :
“Reversibel komprimering av MR bilder basert pa statisk kildemodellering”
Cand.Scient. (Master) thesis May 1996.

Tor Qyvind Didriksen :
“Linjefinning og klassifikasjon med Random Hough-transform
— en eksperimentell studie”
Cand.Scient. (Master) thesis June 1996.

Edward Allen Smith :
“Image Processing Techniques on DNA Fingerprint Images
and its Application to Genetic Similarity Analysis”
Cand.Scient. (Master) thesis August 1996.

Parviz Heydari :
“Line Following in Digitized Map”
Cand.Scient. (Master) thesis November 1996.

Ramin Gordjianfar :
“Vectorization of the Cartographic Data”
Cand.Scient. (Master) thesis November 1996.

Luren Yang and Torfinn Taxt :
“Robust Methods for Sonar Bottom Detection”
February 1997.

Christian Wladimir Hansson :
“Strukturgrammatikk — en hgyeredimensjonal grammatikk
for syntaktisk mgnstergjenkjenning av 3D objekter i bilder”
Cand.Scient. (Master) thesis December 1996.

Sverre H. Huseby :
“Video on the World Wide Web —
Accessing Video from WWW Browsers”
Cand.Scient. (Master) thesis February 1997.

Héavard Lauritzen :
“Raster til vektor konvertering ved simulert stgrkning”
Cand.Scient. (Master) thesis May 1997.

Irene Rgdsten :
“Texture Segmnetation using Moment based Features
obtained by Locally Adaptive Thresholding”
Cand.Scient. (Master) thesis May 1997.

Svein Bge :
“XITE System Administrator’s Manual”
August 1997.



	Introduction
	Compilation and linking of XITE dependent programs
	Reading and writing BIFF images
	Tracking the image history

	Standardized command line user interface
	On-line help with program options
	Message feedback from your programs to the user
	Message feedback from the BIFF library functions to the user
	Piping and input/output images
	Processing program options

	Example of a main program
	Documentation and manual pages
	Emacs commands for main comments
	Preprocessor directive in the main comment of a main program
	Specification of the manual page name

	BIFF Image Concept and File Format
	ximage toolkit for X applications
	Contributing to XITE
	Portability
	Traditional C and ANSI C
	char versus unsigned char
	Types of functions
	XITE include directives
	Examples

	Warnings from the compiler
	Organization of header files

	References

