
App for Increasing Patient
Adherence To Medical Therapy

Jonathan Aanesen

Thesis submitted for the degree of
Master in Programming and System Architecture

60 credits

Department of Informatics
Faculty of mathematics and natural sciences

UNIVERSITY OF OSLO

Spring 2021

App for Increasing Patient
Adherence To Medical

Therapy

Jonathan Aanesen

© 2021 Jonathan Aanesen

App for Increasing Patient Adherence To Medical Therapy

http://www.duo.uio.no/

Printed: Reprosentralen, University of Oslo

Abstract

Adhering to medical therapy is a significant ongoing issue within the health sec-
tor. For patients with heart failure, it is vital for them to take their beta-blocker
medication as it significantly reduces stress on their heart by lowering their heart
rate. With the technological advances in recent years and the increased number
of wearable smart devices which can measure resting heart rates, this thesis aims
to create an application using Apple Watch smartwatches and iPhone smart-
phones to monitor and warn heart failure patients if they have forgotten to take
their medicine.

In order to develop the application, we identified three functional require-
ments which the application would be dependent on: (i) fetching heart rate, (ii)
dispatching notifications and (iii) running in the background. The requirements
were researched with regards to their respective frameworks and limitations and
then used during development to find an approach that would work for the appli-
cation. The functionality was then combined to create a complete application,
which was further configured and tuned for user-testing.

To verify if the application developed was working as intended, including if
it had any potential for a real scenario, four participants tested the application
for a duration between two and ten weeks. The participants participated in
semi-formal interviews where they were asked questions about their experiences
with the application and if the application fulfilled its purpose. The interviews
indicated that the application worked as a minimum viable product by achiev-
ing the intended functionality and showed great promise for actual patients.

The results indicate that it is possible to develop mHealth applications for
smartphones and smartwatches, which uses real-life, real-time resting heart rate
data to increase patient adherence to medical therapy. Despite the application
developed only was tested on healthy participants, the thesis lays the foundation
for further development and research to tailor the app for actual patients.

i

ii

Acknowledgements

I would like to thank my supervisor, Professor Jens Johan Kaasbøll, along with
my co-supervisor Ole Jørgen Kaasbøll, for their invaluable help throughout the
work on this thesis. I especially want to thank them for their engagement and
motivation for the project and for allowing me to work on their idea. It has
been inspiring and motivating working with two such competent supervisors. I
wish them all the best in the future, with special regards to the continuation of
this project.

I would also like to thank my father for always being there for me, especially
for his unconditional support, encouragement and care during my years as a
student. In addition I would like to thank my twin-brother for being my best
friend through life and a person I always can lean on.

Lastly, I would like to thank the rest of my family and friends for their love
and support.

iii

iv

Contents

Abstract i

Acknowledgements iii

List of Figures ix

List of Source Codes xi

I Introduction and Background 1

1 Introduction 3
1.1 Medical Background and Motivation 3

1.1.1 Heart Failure . 3
1.1.2 Beta-blockers . 3
1.1.3 Adherence . 4
1.1.4 Wearable Heart Rate Monitors 4
1.1.5 Motivation . 5

1.2 Problem Statement . 5
1.3 Research Method . 6

1.3.1 Analytical Phase . 6
1.3.2 Development Phase . 7
1.3.3 Testing Phase . 7
1.3.4 Documentation Phase . 7

1.4 Thesis Overview . 8

2 Technical Background 9
2.1 Apple’s App Store Ecosystem . 9

2.1.1 Apple Watch . 10
2.1.2 iPhone . 10

2.2 Frameworks . 11
2.2.1 HealthKit . 11
2.2.2 User Notification . 14
2.2.3 WatchKit . 17
2.2.4 EventKit . 17
2.2.5 Limitations . 18

2.3 Environment . 20
2.3.1 XCode . 20
2.3.2 TestFlight . 20

v

2.3.3 Swift . 21
2.3.4 SwiftUI & App Delegate 21

II Design and Development 23

3 Analysis and Design 25
3.1 Requirement Analysis . 26

3.1.1 Stakeholders . 26
3.1.2 Mobile Platform . 26
3.1.3 Privacy . 26

3.2 Modular Design . 27
3.2.1 Functionality-Specific Applications 27
3.2.2 MedRem App . 32

3.3 Data Structure . 33
3.3.1 Data management . 34

3.4 User Interaction & Experience 34
3.4.1 Apple UI Guidelines . 35
3.4.2 User Notifications . 35
3.4.3 User Interface . 36

4 Development 39
4.1 Resting Heart Rate App . 39

4.1.1 Flow . 39
4.1.2 Class Diagram and View 40

4.2 Notification App . 41
4.2.1 Flow . 41
4.2.2 Class Diagram and View 41

4.3 Background App . 42
4.3.1 Flow . 42
4.3.2 Class Diagram and View 43

4.4 MedRem . 44
4.4.1 Flow . 44
4.4.2 SwiftUI Views . 45
4.4.3 Internal Architecture . 45
4.4.4 In-app Notifications . 47
4.4.5 Reminders . 48

III Evaluation and Conclusion 51

5 Evaluation 53
5.1 Experiment A: Reading Heart Rates 53

5.1.1 Testing . 53
5.1.2 Results . 54

5.2 Experiment B: Dispatching Notifications 54
5.2.1 Testing . 54
5.2.2 Results . 54

5.3 Experiment C: Running Background-Tasks 55
5.3.1 Testing . 55

vi

5.3.2 Results . 55
5.4 Experiment D: The MedRem App 56

5.4.1 Testing . 56
5.4.2 Results . 57

5.5 Experiment E: Performing User-Tests 58
5.5.1 Preliminary Testing, Early Results & Feedback 59
5.5.2 Testing . 59
5.5.3 Interview . 60
5.5.4 Observations . 60
5.5.5 Discussion . 63
5.5.6 Conclusion . 64

5.6 Summary of Results . 64

6 Conclusion 67
6.0.1 SPARK Application . 68

6.1 The Perfect Scenario . 69
6.1.1 Nightstand Charging . 69
6.1.2 Boundary Value Set By Healthcare Provider 69
6.1.3 Apple Watch Set-Up . 70
6.1.4 iPhone Set-Up . 70
6.1.5 Keeping the Application in the Background 71
6.1.6 Not Using Other Smart-Watches 71

6.2 Future work . 71
6.2.1 Beta-blocker Research . 72
6.2.2 Reminder to Wear Apple Watch 72
6.2.3 CareKit & ResearchKit 73
6.2.4 Privacy and Security . 73
6.2.5 Custom Watch Face or Complication 74
6.2.6 Onboarding . 74
6.2.7 UI Improvements . 75
6.2.8 Family alert . 76

Appendices 83

A Source Codes 83
A.1 MedRem . 83
A.2 Resting Heart Rate App . 83
A.3 Notification App . 83
A.4 Background App . 83

B Interview Guide 85

C SPARK Application 87

vii

viii

List of Figures

2.1 Screenshot of TestFlight app . 20

3.1 MedRem App modules . 27
3.2 Heart Rate App . 28
3.3 Resting Heart Rate App . 28
3.4 Normal Notification . 29
3.5 Notification with actions . 29
3.6 Actions of the notification . 29
3.7 iOS App . 30
3.8 WatchOS App . 30
3.9 Notifications delivered from the Background App 31
3.10 Corner, circular and rectangular complications 32
3.11 Data transfer in MedRem . 33
3.12 Warning and reminder notifications 36
3.13 Comparison of MedRem (left) and Apple Health (right) 36
3.14 MedRem user interface . 37

4.1 Flow-diagram of Heart Rate App 39
4.2 Class diagram and UI view of Heart Rate App 40
4.3 Flow-diagram of Notification App 41
4.4 Class diagram and UI view of Notification App 41
4.5 Flow-diagram of Observer query prototype 42
4.6 Class diagram of Background App 43
4.7 Swift UI View setup . 45
4.8 Class communication diagram . 46
4.9 Action notification . 47
4.10 Normal notification . 47
4.11 Notification actions and in-app alert 48
4.12 Reminder shown in Reminders app 48
4.13 Reminder notification actions and in-app action sheet 49

ix

x

List of Source Codes

1 Statistical Collection Query . 13
2 Observer Query . 14
3 Function for scheduling notifications 16
4 Function for scheduling reminders 18
5 Usage of an observable object . 22

xi

xii

Part I

Introduction and
Background

1

Chapter 1

Introduction

1.1 Medical Background and Motivation

1.1.1 Heart Failure

In patients suffering from heart failure, the heart is unable to pump the blood
sufficiently to support the needs of the body. Initially, this causes difficulties in
breathing when patients exercise. However, the disease is progressive, symptoms
gradually worsen, and the 5-year survival for patients suffering from heart failure
is only 50-75%. As the incidence is as high as 200-250/100.000 (Dunlay, Roger,
and Redfield 2017), it is clear that heart failure remains a major public health
challenge.

1.1.2 Beta-blockers

One of the few effective treatments available that can slow down the progres-
sion of heart failure and reduce mortality is what is known as beta-blockers.
Beta-blockers reduce the mortality of heart failure by 25-30% (Kotecha et al.
2017). Beta-blockers work by inhibiting the over-stimulation of adrenaline and
adrenaline-like (adrenergic) substances present in patients suffering from heart
failure. Adrenergic stimulation leads to activation of beta-receptors (hence the
name beta-blockers is utilized for the class of medicines that antagonize the
effect of adrenergic agonists at the beta-receptors). Adrenergic stimulation in-
creases the heart rate, which is therefore often elevated in patients suffering
from heart failure. As may be expected, beta-blocker therapy consequently af-
fords a decrease in the heart rate (HR) of a magnitude of approximately 12
beats/minute (ibid.), (Kocianova et al. 2017). Interestingly, the mortality rate
of patients suffering from heart failure is also closely correlated to the HR that
the patients are able to achieve through the use of beta-blockers (hazard ratio of
1.16 per 10 beats/min increase)(Kotecha et al. 2017). Hence, HR is a measure
of beta-blockers usage and an independent predictor of mortality in heart failure
patients.

3

1.1.3 Adherence

Although beta-blockers are widely recognized to reduce mortality in patients
suffering from heart failure, patient adherence (i.e. the level at which patients
take medication as prescribed) is not 100%. In fact, a general rule-of-thumb
is that up to 1/3 of patients take none of the prescribed medication or deviate
a lot from the prescribed dose (Osterberg and Blaschke 2005). For instance,
it is common for patients to take “drug holidays”. In the case of heart failure
therapy, this is supported by real-world data demonstrating that the ability to
achieve the targeted dose of beta-blockers may not even exceed 50% (Corletto
et al. 2018). Furthermore, a European multi-centre trial demonstrated that
the probability of achieving the treatment target was highly dependent on the
country the patient resided in (Ouwerkerk et al. 2017), thus indicating that
adverse effects of the medication were not responsible for the poor adherence.
Indeed, it was reported that the beta-blockers’ adverse effects were the reason for
not achieving the targeted dose for only 25% of the patients not achieving their
target beta-blocker dose (ibid.). Thus, a large potential remains for extracting
more benefit of beta-blocker therapy for patients suffering from heart failure by
simply increasing adherence. As beta-blockers are now generic, i.e. no longer
patent-protected and hence inexpensive, simple methods to increase adherence
has the potential to translate into large public health gains in a cost-effective
manner. Considering that the Norwegian list price for the latest approved, i.e.
patent-protected, therapy for heart failure: sakubitril-valsarten - Entresto tm, is
≈17000 NOK/year and that the cost of a beta-blocker is ≈1700 NOK/year, the
potential for getting more benefit out of a set healthcare budget is substantial.

1.1.4 Wearable Heart Rate Monitors

One way to increase patients’ adherence to their prescribed therapy is by sending
reminders by text messages to the patients’ phones. However, this has only con-
vincingly been shown to be effective if there is an element of interaction with the
patient, i.e. the patients have to reply (Wald, Butt, and Bestwick 2015). Fur-
thermore, text messages are general and not tailored to the individual person.
Donevant et al. (2018) did a targeted exploration of literature related to out-
comes in mHealth studies. The study involved comparing what kind of features
the targeted studies had implemented to how effective they were. Comparing
the different studies’ results would tell if the interactive and passive features im-
plemented caused statistically significant outcomes (SSO) and could therefore
be considered a behaviour changing technique (BCT). Of the studies with SSO,
68.7% of these contained a combination of both passive and interactive features.
This result signals that the most efficient way to make a mHealth app into a
BCT is to use both passive and interactive features.

Recently, smartwatches with heart rate monitoring capability have started
to become more widely available. The combined incorporation of accelerome-
ters and gyroscopes in the watches enables accurate quantification of the resting
heart rate (HR). Of the commercially available HR monitors, the Apple watch
has been reported to be the most accurate (Wallen et al. 2016), (Wang et al.
2017), (Shcherbina et al. 2017). As beta-blockers directly affect the resting-HR,
smartwatches allow for tailored interaction with the user based on the resting-
HR at any given day. Furthermore, smartwatches are mass-produced and very

4

cheap compared to medical devices produced solely for clinical settings. Hence
smartwatches may represent a very cost-effective means of a personally tailored
interaction aimed at increasing patient adherence to beta-blocker therapy. Fur-
thermore, by implementing commercially available smartwatches, one may avoid
the social stigma otherwise associated with a visible device broadcasting one’s
poor health.

1.1.5 Motivation

The motivation for this thesis is to research, develop and test an minimum viable
product (MVP) in the form of an app for iPhone and Apple Watch. The app is
to monitor, interact with and warn patients whenever their resting heart rate
indicates that they might not have taken their beta-blockers as prescribed. The
app should have a simple user interface and primarily function as a background
application. The app should be a low-maintenance application that the patient
does not need to interact with, except for the warnings. The app should dispatch
warnings while running in the background, making the process effortless for the
patients. Concerning this thesis, the term ”warning” will be used to describe
the interactable notifications meant to warn or alert the patient.

1.2 Problem Statement

Considering how many people in the world suffer from heart failure and the
public health burden it represents, the proportion of heart failure patients who
do not adhere to their prescribed morbidity and mortality lowering therapy is
alarming. The Apple Watch provides a cheap and ingenious way of constantly
monitoring the patients’ heart rates. Including the Apple platform’s various
frameworks makes it an untapped source of possible patient follow-up solutions
from their medical care providers.

As for the current situation, there are no regulatory approved devices aimed
at increasing heart failure patients’ adherence based on individual, real-time
sensor data. There exist applications to remind patients to take their medicines
at given times daily. However, the application proposed in this thesis will fo-
cus on actively reminding them whenever they have not taken their medication
based on real-time, real-world data. In the long run, the use of the suggested
device may also entail improved adherence even in the absence of the device
due to altered daily habits. In the end, the proposed application will hopefully
strengthen the patients’ adherence to medical therapy, reduce the public health-
care burden and prolong the patients’ lives and their quality of life by doing so.
(life: reduced mortality; quality of life: reduced morbidity, i.e. reduced fatigue,
shortness of breath, hospital admissions (during exacerbations)).

The scope of the thesis will revolve around one common goal, which is to
develop a working MVP of the proposed application. The usability of the MVP
will be determined through experiments and user-testing.

With regards to architecture, primarily three functional requirements have
been identified to achieve the desired functionality. During research and devel-
opment of the application, these three requirements will be in focus:

1. Fetching Heart Rate
The app must read the users’ resting heart rate from the Apple Watch.

5

2. Dispatching Notifications
The app must be able to dispatch notifications to the patient. The no-
tifications will be used to warn the patient and request answers through
some way of interaction.

3. Running in Background
The app must be able to run in the background, such that the patient
does not have to have it open at all times or open it often for monitoring.
The application should be maintenance-free for the users.

In addition to these requirements, the application will need a simple and
self-explanatory user interface where the user can configure and set up the ap-
plication.

The thesis will discuss solutions and potential changes regarding the dif-
ferent requirements and discuss learnings from the user testing about possible
improvements in future versions.

1.3 Research Method

The research method of this thesis can be characterized as Design-Based Re-
search, which is described in (Ma and Harmon 2009). The method is derived
from (Reeves 2000), who came up with Development Research. Development re-
search is described by Reeves as a research process that consists of the following
four steps:

1. Analysis of Practical Problems by Researchers and Practitioners

2. Development of Solutions with a Theoretical Framework

3. Evaluation and Testing of Solutions in Practice

4. Documentation and Reflection to Produce ”Design Principles”

These steps are a recursive process, where the different steps are refined over
time through problems, solutions and methods (Ma and Harmon 2009).

However, in design-based research, the process is iterative, allowing the de-
velopment research to be carried out over one or more iterations. The method
proposed by Ma and Harmon uses the same four-step framework as Reeves, but
adds additional details or sub-tasks to each step. For the sake of this thesis,
each step will be categorized into phases: (i) analytical phase, (ii) development
phase, (iii) testing phase, (iv) documentation phase. Below, each phase will be
described with a brief explanation of how this thesis’s work fits the respective
phase in Design-Based Research.

1.3.1 Analytical Phase

The analytical phase covers the first step: ”analysis of a practical problem by
researchers and practitioners”. For this step, I, as the author and developer for
this thesis, function both as a researcher and practitioner, in addition to my two
supervisors who came up with the idea for the thesis. Ma and Harmon came
up with two sub-tasks that would help the analytical phase:

6

1. Identifying a Practical Problem

2. Reviewing the Literature to Determine the Significance of the Problem

Both these sub-tasks have already been discussed and elaborated in section
1.1: Medical Background and Motivation. This phase was conducted at the
very beginning of the work on this thesis. The phase laid the background for
precisely what kind of application would need to be developed, the targeted
problem, and how to approach it.

1.3.2 Development Phase

For the development phase, Ma and Harmon came up with five sub-tasks:

1. Conceptualize a solution within a theoretical framework

2. Determine the role of research in developing the solution

3. Identify the purpose and research questions for a development iteration.

4. Identify development methods

5. Develop a prototype that serves the research purpose

We go through technical background, analysis, design, and development for
this phase of the research to fulfil all the sub-tasks. By the end of the phase, we
will have a working prototype that serves the research purpose. We will have
elaborated on possibilities, limitations, and external factors regarding the three
functional requirements defined in section 1.2: Problem Statement.

1.3.3 Testing Phase

For this phase, Ma and Harmon identified three sub-tasks:

1. Identify research methods

2. Gather and analyze data to answer research questions

3. Draw conclusions and determine research findings

In this thesis, several experiments were conducted to ensure the functional
requirements were upheld and that the application would serve the research
purpose. The experiments can be divided into two types of evaluations: (i)
software testing against functional requirements and (ii) user-testing. The data
analyzed were qualitative data gathered from interviews conducted during the
user-testing. At the end of the phase, the different results and feedback from
the experiments are discussed as well as a conclusion for the thesis.

1.3.4 Documentation Phase

For the last phase, Ma and Harmon proposed two sub-tasks:

1. Synthesize design principles for developing the proposed solution

2. Synthesize guidance for conducting design-based research.

7

The last phase of the research will primarily consist of writing this thesis to
document the various findings revolving around the concept, design, frameworks,
and the proposed application. The thesis will also include a chapter outlining
potential future work to guide any work based on this thesis.

1.4 Thesis Overview

Chapter 2: Technical Background gives a detailed background of everything re-
lated to the technical part of the thesis. The chapter gives an overview of the
devices in focus and the various frameworks used, and how the application will
be developed and distributed.

Chapter 3: Analysis and Design describe the process of how the application
is to be developed with regards to design and architecture. The chapter dis-
cusses solutions to each functional requirement, as well as data structures and
user interfaces.

Chapter 4: Development introduces diagrams with regards to flow, architec-
ture and interface. The section describes how the applications work internally
through descriptive class diagrams and externally by addressing the respective
SwiftUI Views.

Chapter 5: Evaluation presents the experiments conducted, along with their
results and observations. The chapter emphasizes the results, especially from
the user-testing.

Chapter 6: Conclusion summarizes the research results in this thesis and presents
a section describing the best way to use the proposed application. The chap-
ter concludes the thesis by describing potential future work, which can be used
for a continuation and proposes several solutions to problems observed during
testing. It also proposes additional functionality which can further enhance the
application and user experience.

8

Chapter 2

Technical Background

2.1 Apple’s App Store Ecosystem

Apple is a widely known tech company that designs, develops and sells consumer
electronics, computer software and online services. Mostly known for the Mac
and iPhone, the company have a wide variety of products such as the iPhone,
MacBook, iPad, iPod, AppleTV and AirPods.

An ecosystem is defined as a biological community of interacting organisms.
In the digital world, this can be seen as actors that co-create value on a digital
platform. (Hein et al. 2019)

Apple’s developer documentation and the App Store Connect functions as
an application programming interface (API) for developers to develop and dis-
tribute applications and features to the App Store. The App Store functions
as an interface for consumers who take advantage of the increasing amount of
applications and functionality on the platform. Apple as a company gets an
advantage from the increasing popularity of their products, as well as a per-
centage of sales distributed through the App Store, a highly controversial and
legally contested feature of the Apple ecosystem. The App Store also supports
distribution to the various Apple platforms like iOS, iPadOS and MacOS, con-
necting them through the App Store. The company ↔ developer ↔ consumer
relationship is what makes the Apple App Store ecosystem, where each actor
benefit from the other.

The Apple platform revolves around everything that has to do with Apple
and their products. Apple products have applications and functionality specifi-
cally developed to make their products work better together, making users stay
within the platform. One example of how Apple benefits from their platform
through sales of accessories is the sale of AirPods, which has almost doubled
each year since its launch in late 2016. From 60 million AirPods sold in 2019 to
114 million in 2020, the AirPods contribute over $10 billion to Apple’s revenue
alone (Curry 2021). Because Apple removed the headphone jack on their new
iPhones, users now also purchase the Apple AirPods to listen to music wire-
lessly. Even though newer generation iPhones still support headphones with an
adapter through the Lightning port, Apple facilitates the shift towards wireless
by removing the auxiliary port and offering their own wireless headphones. The
Apple Watch creates additional functionality for the iPhone and is seen as a tool

9

to enhance the users’ experience by performing simple tasks without touching
their phone. Infrastructures such as iCloud, combined with AirDrop, AirPlay
etc., which work interchangeably between different Apple devices, strengthen
the platform. Apple’s platform is strengthened because devices within the plat-
form are designed to interact seamlessly straight out of the box. It provides a
barrier for third parties and a competitive advantage for Apple’s own products.

2.1.1 Apple Watch

The Apple Watch is a smartwatch developed by Apple and initially released in
2015. The Apple Watch has since then had 6 new versions released. Continuing
to grow in popularity, ”Apple Watch outsold the entire Swiss watch industry
in 2019”, having shipped over 30 million units (Kharpal 2020). The Apple
Watch works as an accessory or companion to Apple’s iPhones, allowing it to
replace or accommodate applications on the iPhone and in the most recent
eSIM versions replace the basic phone features of the iPhone. The watch has
an integrated speaker, microphone, screen and multiple sensors making it also
an independent device that can be used for various purposes such as a health
monitor or a workout companion. It comes with different pre-installed features
such as high and low heart rate notifications, irregular rhythm notifications and
fall detection. It is also noteworthy that the ECG feature introduced with Apple
Watch 4 has received FDA approval as a medical device thus decisively marking
the entry of Apple into the heavily regulated healthcare industry. These health-
related apps are powerful and great regarding emergencies and monitoring of a
persons’ health. The proposition of this thesis builds on top of these features
and takes it one step further by directly integrating the use of the Apple Watch
features with a medical intervention, not just a monitoring feature.

High and low heart rate notifications

A feature on the Apple Watch allows the user to set an upper and lower threshold
for your heart rate when you have been inactive for the last 10 minutes. If the
threshold is met, the user will receive a notification.

Irregular rhythm notifications

The watch can monitor and discover abnormal heart rhythms, including heart
attacks. A case study was made with 419 297 participants over 8 months,
where 2161 participants received notifications of an irregular pulse. It turned
out that 84% of the notifications made by this feature, was concordant with
Atrial Fibrillation (Perez et al. 2019).

2.1.2 iPhone

The iPhone is a smartphone developed by Apple. Steve Jobs introduced the first
generation iPhone in 2007, and the latest generation (iPhone 12) was released in
late 2020. The iPhone has in total sold over 2.2 billion devices and had a 23.4%
market share in the last quarter of 2020, making it one of the most popular
smartphones out there (Scarsella et al. 2021).

10

2.2 Frameworks

Apple frameworks function as building blocks in software development for the
various Apple devices that exist. The frameworks provide different distinctive
functionality, allowing applications to extend their functionality beyond the de-
vices’ default framework. Having separate frameworks for different functionali-
ties allows the code to be modularized. Modularization allows an application to
stay minimal, only being enlarged by the different frameworks it imports. This
is a common front-end development architecture which is widely used and can
for example be seen in JavaScript projects using Node package manager (NPM)
such as React, Vue and Angular.

2.2.1 HealthKit

The HealthKit store is designed as a common repository between applications
on the Apple platform, focusing on health-related data such as activities and
sensor data. The HealthKit framework facilitates an extensive amount of data
types and multiple ways for developers to use the data in their applications.
(Apple Inc. 2020)

Permission

Many frameworks on the Apple platform requires permission by the user to
be used. The HealthKit framework does not require just one permission but
individual permissions for each type of health-related data being read or written.
Apple has specific guidelines for how and when applications should ask and
check for the users’ permission. Usually, the permission-request screen is to be
displayed the first time a user opens the application. The permission should
be checked every time the application tries to access or store data using the
framework. (Apple Inc. 2021b)

User Privacy

Health records stored on Apple devices such as the iPhone or Apple Watch are
encrypted in the devices’ HealthKit database, called the HealthKit store. If the
user has chosen to synchronize the Health data between devices with iCloud, the
data transfer has end-to-end encryption using two-factor authentication. The
data is always transferred directly between the user device and iCloud, which
means Apple does not have access to anyone’s data unless they are enrolled in
Apple’s Improve Health Records program. This program allows the user to share
anonymous health data with Apple to further develop, improve and understand
the Health Records feature. The user is always in complete control of their own
data, where they can choose what data to be stored, how it is stored, who to
share it with, and they can delete it at any time. (Apple Inc. 2019). The only
exception to this control is that the data is always stored on Apple’s servers,
and the user cannot decide the location where their data is stored as it’s part
of Apple’s cloud architecture, meaning the data is most likely redundant, being
backed up in multiple data centres on several continents.

It is difficult to know if the data stored on iCloud for the users’ behalf is
secure from Apple’s access to it themselves. We can only trust that they keep

11

the data as confidential as they declare, considering that Apple would likely be
liable for substantial financial penalties if the data was to leak.

Queries

We can use three different methods to access data from the HealthKit Store:
direct method calls, queries, and long-running queries. Direct method calls are
mainly for accessing characteristic data and does not give access to anything
else. However, the queries and long-running queries are more advanced and
have multiple types to return different data from the HealthKit store.

We have eight different query types, where three of them support long-
running. Those, in particular, can be programmed to either return data once
or keep running so our app does not need to request data every time it wants
to update, but rather have an update handler for a long-running query which
will automatically update the application every time the query has an update.
There are four different long-running queries, where three of them can run as
normal queries. The observer query is the last one that is only long-running
and is highly relevant to the application developed in this thesis. The observer
query monitors the HealthKit Store and alerts the application when specified
data samples are added, updated or changed. This long-running query also
supports alerting while the application runs in the background, providing the
ability always to have up-to-date data in our application.

More details about the two relevant queries used in this thesis:

• Statistical Collection Query
The statistical collection query is useful for performing multiple statistics
queries over time intervals.

This query can be initialized by providing a quantity type, quantity sample
predicate, options, anchor date and interval components. The quantity
type is what health data type the query will return. The quantity sample
predicate allows you to limit the results returned by the query, but leaving
it blank makes it return all possible results. The options allow us to define
statistical calculations performed on the data and to define how the data
is merged from different sources. Within the options we can for example,
ask for the discrete average, which returns the calculated average quantity
of the results. Anchor date defines when the time intervals begin. At last,
there are interval components, which define how long an interval lasts.
This can be a specific amount of minutes, hours, days or even weeks.

After initializing the query, a result handler must be set. It is in the results
handler where we handle any errors with the query or handle the resulting
data sets. There can also be set a statistical update handler that allows
the query to be long-running, calling the update handler every time there
is a change in the defined data set. (Apple Inc. 2021j)

An example of a simplified statistics collection query can be seen in Listing
1. Here the query and results handler is defined, then executed in the
HealthKit store.

• Observer Query
The observer query is useful for being notified when specific data types
are added or changed in the HealthKit store.

12

func fetchRestingHeartRates() {

let calendar = NSCalendar.current

let anchorComponents = calendar.dateComponents(

[.day, .month, .year, .weekday], from: NSDate() as Date)

let anchorDate = Calendar.current.date(from: anchorComponents)

let interval = NSDateComponents()

interval.day = 1

let endDate = Date()

let startDate = calendar.date(byAdding: .day, value: -6, to: endDate)

let quantityType =

HKObjectType.quantityType(

forIdentifier: HKQuantityTypeIdentifier.restingHeartRate)

let query = HKStatisticsCollectionQuery(

quantityType: quantityType,

quantitySamplePredicate: nil,

options: .discreteAverage,

anchorDate: anchorDate,

intervalComponents: interval as DateComponents)

query.initialResultsHandler = {

_, results, error in

let statsCollection = results

var values: Array<Double> = []

var dates: Array<Date> = []

statsCollection.enumerateStatistics(

from: startDate, to: endDate) { statistics, _ in

if let quantity = statistics.averageQuantity() {

let date = statistics.startDate

let value = quantity.doubleValue(for: HKUnit(from: "count/min"))

values.append(value)

dates.append(date)

}

}

// Update app variables

}

healthStore.execute(query)

}

Listing 1: Statistical Collection Query

The observer query is instantiated with a quantity type, an optional predi-
cate and an update handler. After the query has been instantiated, there is
a possibility to enable background delivery for it. Background delivery can
be enabled by calling the HealthKit store with ”.enableBackgroundDeliv-
ery” and supplying the quantity type and a frequency to it. By enabling
background delivery, the update handler will be called from the back-
ground every time the specified quantity type has a new or changed value

13

at the specified frequency. We can choose between immediate, hourly,
daily and weekly for frequencies. Having frequency set to immediate does
not guarantee that the update handler will be called immediately. Rather
it means that the update handler will be called sometime after, but as
soon as the device allocates the resources to do so. (Apple Inc. 2021h)

An example of a simplified observer query can be seen in Listing 2. Here
the quantity type is supplied to the observer query. After the observer
query has been instantiated, we enable background delivery and execute
it in the HealthKit store.

func startObserver() {

let quantityType = HKObjectType.quantityType(

forIdentifier: HKQuantityTypeIdentifier.restingHeartRate)

let query = HKObserverQuery(sampleType: quantityType, predicate: nil) {

_, completionHandler, error in

// Handle error

// Update application here

completionHandler()

}

healthStore.enableBackgroundDelivery(

for: quantityType, frequency: .immediate) { _, error in

// Handle error

}

healthStore.execute(query)

}

Listing 2: Observer Query

2.2.2 User Notification

User Notification is Apple’s framework for handling and displaying different
types of notifications. There are two main ways notifications can be generated:
local notifications and remote notifications (push notifications). Local notifi-
cations are created locally on the users’ device, while remote notifications are
generated remotely and sent to the device through the Apple Push Notification
service (APNs). Local notifications allow the developer to create the notification
content and conditions locally to use information from the app. Push notifica-
tions enable the developer to push generic notifications to the user without
having the app do any of the work.

Permission

Because notification-based interactions are considered disruptive, the app must
obtain permission from the user to dispatch notifications. This is done by ac-

14

cessing the User Notification Center and requesting authorization for the notifi-
cation options desired. The most common notification options are badge, sound,
alert, carPlay, criticalAlert, provisional and announcement. Where carPlay is to
deliver notifications to a carPlay system in a supported vehicle, and announce-
ment is to allow Siri to read out messages over AirPods. A regular notification
usually uses a badge, which updates the application badge by putting a red dot
on it. It also uses sound to notify the user auditory and alert to display the
standard notification pop-up, with or without actions.

If the user does not permit the app to deliver notifications, the last option
is to use a provisional notification. This notification type is delivered silently to
the user as a trial on how a notification from the app can be useful to the user.
The provisional notification is also displayed with two actions allowing the user
to give notification permissions to the app or keep them off.

When requesting authorization from the User Notification Center, the user
notification framework will check if the application already has permission from
the user. If not, it will prompt the user with a dialogue box where they can
choose to allow it or not. It is recommended to make the authorization request
in context with the functionality of the application. Meaning if the user does
something on the app that schedules a notification, it is smarter to make the
request at that time, so the user is prompted and gets a feeling of the notifi-
cation’s purpose. This is recommended rather than automatically requesting
authorization on the first launch. (Apple Inc. 2021a)

Notification Structure

Notifications are represented as a notification request, which is an object made
up of three components:

1. Identifier
An unique string that allows the notification to be identified.

2. Content
The notification content is an object which contains all visual information
regarding the notification, such as title, subtitle, text, actions and badge
number. The content is where the notification is designed and given shape.

To add actions to a notification, the actions must be pre-determined and
registered in the notification center as a notification type or category.
When scheduling the notification, the category identifier is set in the con-
tent, which makes sure it will be delivered with the defined actions. To
accommodate the notification actions, there must also be defined action
selection handlers to perform the tasks associated with the actions.

3. Trigger
The notification trigger is what decides when a notification is to be pub-
lished on the device. Three main different triggers can be used: time
interval, calendar or location where time interval allows for publishing a
notification a set amount of time after being scheduled. Calendar trigger
allows for a specific date and time the notification is to be published. Fi-
nally, the location trigger allows a notification to be triggered when the
device enters or leaves a geographical region. In addition to taking time,

15

day or region, the trigger also has the option to repeat the trigger, mean-
ing a notification can be delivered every day at a specified time by only
scheduling it once.

func ScheduleNotification() {

let content = UNMutableNotificationContent()

content.title = "Notification title"

content.body = "Notification body"

content.sound = UNNotificationSound.defaultCritical

// Create the trigger as a repeating event.

let trigger = UNTimeIntervalNotificationTrigger(

timeInterval: 1, repeats: false)

// Create the request

let identifier = UUID().uuidString

let request = UNNotificationRequest(

identifier, content, trigger)

// Schedule the request with the system.

let notificationCenter = UNUserNotificationCenter.current()

notificationCenter.add(request) { error in

if error != nil {

// Handle any errors.

NSLog("Error")

} else {

NSLog("Success")

}

}

return

}

Listing 3: Function for scheduling notifications

In Listing 3 there is a code snippet of how basic notifications are created
and scheduled using the User Notification framework. In this example, the
notification content is defined first, containing a title, body and sound. Then
the time interval trigger is defined with the value Double: 1, which is passed
to the function. A universally unique identifier is then created along with the
content and trigger, which are then passed into a UNNotificationRequest.
The request is then scheduled through the User Notification Center, and the
rest is handled there. (Apple Inc. 2021k)

Notification Types

There exist primarily three types of notifications: Normal notifications, action-
able notifications and silent notifications. Normal notifications are the standard
type of notification that displays a title and body while triggering a sound.
These notifications can be interacted with by pressing on them to open the

16

associated application. Actionable notifications are very similar, but they pro-
vide ”actions” or options for the user to interact with the application without
opening it. This is done by swiping on the notification when displayed, then
selecting one of the pre-defined actions. The silent push notifications are also
called background push notifications. They work by having a push notification
server send an empty or ”silent” notification to the device, which wakes up the
associated application and allows it to perform any non-UI related operations
in the background.

Delivery

The notification center handles notifications and is the central object for manag-
ing notification-related activities for apps or app extensions. When scheduling
a notification, the notification center makes sure the app has authorization from
the user and will deliver the notification according to the trigger. The notifi-
cation center also handles the notification when delivered and any actions the
notifications may have. The notification center also gives the ability to cancel
scheduled notifications using the identifier, which is useful if the user, for ex-
ample, deletes a reminder or a variable that triggered the notification request
changes before the notification is delivered.

2.2.3 WatchKit

WatchKit is Apple’s framework providing the infrastructure for developing watchOS
applications. The framework handles everything necessary for applications to
run on Apple Watch devices and adds a seamless experience for Apple Watch
development. (Apple Inc. 2021q)

2.2.4 EventKit

EventKit is Apple’s framework providing access to calendar and reminder data.
Similar to HealthKit, there is an EventKit Store which applications can access
through this framework. This framework can create, retrieve, update and man-
age different types of events such as calendar events, reminders and alarms.
(Apple Inc. 2021g)

Reminders app

In addition to the calendar, Apple has its own Reminders application, which
the user can use to create reminders, sub-tasks and alerts. Through the Even-
tKit framework API, applications can create these types of events in the user’s
reminders app. (Apple Inc. 2021e)

In Listing 4 there is an example of how a reminder for the Reminders app can
be created from an application. The function takes an integer as a parameter to
specify how many hours till the reminder is to be scheduled. The time interval
can be set as a specific time or date, but in this example, it is set as the number
of hours from the current date. The function then gets the users calendar for new
reminders and sets up a new EventKit Reminder (EKReminder). The reminder
is then provided with the calendar, a title and priority. A time interval is created
with the hours parameter, and this is then used to set up an EventKit Alarm

17

func scheduleReminder(hours: Int) {

guard let calendar =

self.eventStore.defaultCalendarForNewReminders() else { return }

let newReminder = EKReminder(eventStore: eventStore)

newReminder.calendar = calendar

newReminder.title = "Reminder title"

newReminder.priority = 1

let timeInterval = 60*60*hours

let alarmTime = Date().addingTimeInterval(Double(timeInterval))

let alarm = EKAlarm(absoluteDate: alarmTime)

newReminder.addAlarm(alarm)

let dueDate = Date().addingTimeInterval(Double(timeInterval))

newReminder.dueDateComponents =

Calendar.current.dateComponents(

[.year, .month, .day, .hour, .minute, .second], from: dueDate)

try! eventStore.save(newReminder, commit: true)

}

Listing 4: Function for scheduling reminders

(EKAlarm), which also is supplied to the reminder. A due date is also created
from the time interval, which is supplied to the reminder before it is stored in
the EventKit store.

2.2.5 Limitations

Before creating and developing a functional application performing the desired
tasks, we must also identify some fundamental limitations of background pro-
cessing on iOS and watchOS devices.

Background fetch

When applications are permitted to background fetch, it is the system that
decides which applications get time and when. The applications are decided
upon according to how much the applications are used and at what time they
are usually used. For example, if you regularly read a news app during your
lunch break, the system will most likely allow the news app to background fetch
around half an hour before you would usually open it. This way, the application
has fetched new content in preparation for the user to open it, such that the
user will not have to wait for new content to be displayed or loaded in.

18

Battery state

The battery state of the device affects how much background processing is per-
mitted. The battery has three different states: Sufficient battery, low power
mode and time to recharge. When the phone is in time to recharge, it uses
as little power as possible to ensure that the phone stays alive until it is being
recharged. Only a handful of processes are allowed background execution time,
and our app will not be able to check the HealthKit Store or publish notifica-
tions when in this mode. When the phone is in low power mode, the user has
chosen to conserve battery and decide which applications should be prioritized.
Here our application will function only if the user has decided it to be a prior-
ity. When the phone has sufficient battery, the applications run as normal, and
the operating system decides the background execution allocation. Depending
on how many applications want to use background execution and how extensive
these executions are, it creates variability on how often our application can fetch
data and schedule notifications.

HealthKit Access

A fundamental issue encountered while researching and prototyping is that the
devices do not have access to the HealthKit store in a locked state. For example,
the Apple Watch can write to the HealthKit Store while being worn, but the
iPhone cannot detect a resting-HR change before the user unlocks the phone.
Despite the app running in the background on the iPhone, it will only trigger
notifications based on the resting-HR whenever the device becomes unlocked.

Notifications

If the application can only retrieve HealthKit Store data when the iPhone is
unlocked, then the notifications will most likely only be delivered on the iPhone
device unless the user manages to lock their iPhone before the notification is
delivered. Only then will the notification be delivered on the Apple Watch.

Background Running

A smaller yet notable limitation to the functionality is that the users must open
the app once before they can receive notifications. Of course, the application
must have been opened initially to give permission for notifications, reminders
and to read health-related data. Still, now and then, the system may terminate
the application, making it useless. If the app is terminated by the user or system
and not opened afterwards, it will not be able to run background tasks and,
therefore, not detect changes in the users’ resting heart rate. The iPhone keeps
the application in the background after a restart, but updates may terminate
all applications or require permissions to be reacquired.

Other Wearable Heart Rate Monitors

A not huge but noticeable limitation is that the Apple Watch is not the only
device capable of determining resting-HR values and supplying them to the
HealthKit store. This means that other health-related devices the user might
have can store values to the HealthKit store, which the proposed application will

19

read. Because of the Apple Watches previously mentioned accuracy in section
1.1.4, it would be unlucky for a user to have another smart device distort the
already accurate results of the Apple Watch. This limitation is directed to the
users being limited to what smart devices they can use, and the recommended
use-case will be discussed later in section 6.1.

2.3 Environment

When discussing an application’s technical background, it is also important
to mention the various tools used in a developing environment to create said
application. This section will give a brief explanation of the different tools and
languages used to develop the different applications proposed in this thesis for
the Apple platform.

2.3.1 XCode

Figure 2.1: Screenshot of TestFlight
app

Xcode is an Integrated Development Environ-
ment(IDE) developed and distributed by Apple
to develop applications for their various prod-
ucts. Xcode provides everything you need to
create, test, deploy and distribute applications
for the various operating systems used in Apple
devices. The IDE is complete with everything
a developer may need, such as full documenta-
tion of the various frameworks with examples,
simulators, previews and much more (Apple Inc.
2021r). It is also said that ”arguably, without
such a powerful, refined, integrated development
environment(IDE), the thriving ecosystem that
is the App Store would not exist as it does to-
day”(Knott 2014).

2.3.2 TestFlight

When distributing applications in the App Store
ecosystem, all applications are uploaded to the
App Store Connect. This is where developers
can manage their applications in the form of
product pages, in-app purchases, test, submit
and manage releases, and much more. Testflight
is part of the App Store Connect, which concerns
the testing of the application. It is a framework
designed to help developers distribute test ver-
sions and obtain feedback to discover bugs and
crashes. If an application distributed through
Testflight crashes, the developer can check in
Xcode for info about the crash occurrence. This

makes bug fixing a lot easier as Xcode will specifically tell you what happened
with which values for the crash to happen.

20

When the developer of an application adds testers to TestFlight, they get an
invitation email guiding them to download the TestFlight app. In the TestFlight
app, the testers have the possibility to download applications they are invited
to test, as well as sending beta feedback to the developers. Figure 2.1 displays
the MedRem Test application’s page in the TestFlight app. (Apple Inc. 2021n)

2.3.3 Swift

Swift is the new main programming language used for developing applications
in Xcode. It was first introduced in 2014 at the Apple Worldwide Developers
Conference (WWDC14). Before Swift, another programming language called
Objective-C was the primary language. It is a general-purpose, object-oriented
language that mainly is an extension to the programming language C with
messaging capabilities. Swift, on the other hand, is a general-purpose, multi-
paradigm, compiled programming language. It is a modern programming lan-
guage that requires less code to perform the same tasks as in Objective-C. The
simple syntax and Python-like structure make it simple to pick up for beginners.
Still, it is such a powerful programming language that experienced developers
loves it.(Apple Inc. 2021l)

2.3.4 SwiftUI & App Delegate

SwiftUI is a user interface framework developed to create user interfaces across
all Apple platforms easily. The framework is straightforward to use and has
many built-in features making 5 lines of code into the most simplistic and beau-
tiful user interface. The cross-platform compatibility with the bundle of features
it handles for the developer automatically, like Dark Mode, makes it truly one of
the most powerful UI frameworks available. In WWDC20, Apple introduced its
own app lifecycle to SwiftUI. Previously the app lifecycle was managed through
an AppDelegate in the UIKit framework and required some tedious configura-
tion to perform default behaviours. Still wanting to simplify this process, Apple
added a new type of lifecycle in SwiftUI. Developers still have the possibility to
use the AppDelegate in projects with SwiftUI, as more complicated function-
ality requires more specific configuration, which the AppDelegate can provide.
The new SwiftUI app lifecycle improves the development experience of simpler,
straightforward applications and is very easy to understand. (Apple Inc. 2021m)

In Swift with SwiftUI, when a class is of the observable object type, it be-
comes an object with a publisher that emits before the object changes. This
observable object can be instantiated in the App’s environment as a StateOb-
ject. A structure of the View type can create an environment object variable
that expects to find the given object and use its published variables. The en-
vironment object will then invalidate the View every time the object changes,
which will refresh the view with the newly updated data. The variables which
are to be read by the View has to be declared with the Published attribute
for the observable object to publish its changes. An example of the minimum
required code to make this work can be seen in Listing 5.

This way of state management is handy. It facilitates the communication
between objects and views, allowing the data handling to be managed in the
object and the projecting of said data in the views.

21

import SwiftUI

class DataModel: ObservableObject {

// Publishes variable to the object

@Published var seenVariable = "Hello, World!"

}

@main

struct App: App {

// Instantiates the observable object in the environment

@StateObject var dataModel: DataModel = DataModel()

var body: some Scene {

WindowGroup { TabView {

ContentView().environmentObject(dataModel)

} }

}

}

struct ContentView: View {

// Looks for a DataModel object in the environment

@EnvironmentObject var dataModel: DataModel

var body: some View {

// Displays DataModel's seenVariable

Text(model.seenVariable)

}

}

Listing 5: Usage of an observable object

22

Part II

Design and Development

23

Chapter 3

Analysis and Design

The motivation of this thesis is to create an application that can supplement
the prescribed medication beta-blocker. The application is to monitor and com-
pare the recorded values to individual pre-defined set points, warn patients if
the recorded value exceeds the set-point, and remind them to take their pre-
scribed beta-blocker therapy. The final application developed in this thesis is
called MedRem, an abbreviation of Medicine Reminder. MedRem monitors the
patients resting-HR throughout the day with data from the Apple Watch and
acts upon these findings between set intervals of the day.

The motive behind the application is to create an MVP, to prove the concept
of an application supplementing a medicine to follow up the medical therapy
adherence. The application provides an interface that displays the relevant data
it uses, as well as multiple notifications used for communicating with the user.

In the introduction of this thesis, it was described three functional require-
ments which will be used to develop the application: (i) Fetching HR/Health-
data, (ii) Dispatching notifications, and (iii) Background Application.

The reason the application is based on these three functional requirements
is that:

• MedRem has to be able to check the users resting heart rate to determine
if the user has taken their medicine or not.

• MedRem must deliver different types of notifications to the users to warn
them if the recorded resting-HR values exceeds the pre-defined set-point
and especially interact with the users.

• MedRem has to run in the background and do the two previous tasks
while doing so. This is required such that MedRem is maintenance-free,
and the users do not have to interact with it unless they receive a warning
or are re-configuring the app.

In this chapter, we will get a detailed look at MedRem from a planning and
architectural perspective. We will dig into how we separate the development for
the functional requirements, recombine them in MedRem, and generally how
the application is otherwise designed and structured.

25

3.1 Requirement Analysis

3.1.1 Stakeholders

There are four identified stakeholders for the MedRem application:

1. Patients
The primary user of the application who interacts and benefit from it.

2. Care providers
The secondary user might not use the application directly but benefit from
their patient using the application. They are meant to help their users set
up the application and follow up on them occasionally.

3. Society
In a real-world setting, the care provider may be more or less incentivised
to improve patient outcomes (e.g. compensated depending on patient
outcomes or target achievements) and hence more or less of a stakeholder.
While this is not currently the case in Norway, Norway represents a minute
fraction of the total number of heart failure patients. For society as a
whole, any method/intervention that reduces mortality and particularly
morbidity is a benefit, thus making society an ultimate stakeholder.

4. Developers
The developer is a contributing stakeholder who develops, maintain and
distribute the application.

3.1.2 Mobile Platform

The various applications developed throughout this thesis are to be devel-
oped for mobile environments only. Some applications also need to support a
wearable-mobile environment, working as standalone applications or as a com-
panion for a mobile device. Because the applications are to be developed for
mobile and possibly wearable platform, they must account for battery con-
sumption, processing power and other limitations by which mobile devices are
restricted.

3.1.3 Privacy

The application proposed in this thesis will read and use the users resting heart
rate. Besides, the application will use these values to dispatch notifications and
reminders to warn the user. As explained under section 2.2.1 considering the
users’ privacy and safety, the health data is not stored directly in the app but
through Apple’s HealthKit repository and fetched by the app whenever needed.
The users must also give specific consent to HealthKit for the application to
read their resting-HR. They must also give consent to the User Notification and
EventKit frameworks for receiving notifications and reminders.

26

3.2 Modular Design

3.2.1 Functionality-Specific Applications

To split up the application functionality into sections that can be tested inde-
pendently of each other and get familiar with the different frameworks’ usage,
a decision was made to divide the app into three smaller applications initially.
These three applications concern their own batch of functionality and function
as modules or building blocks for the final application: the MedRem app.

In the following modules, there will be references to both module and appli-
cation. The application is the standalone app developed for testing the module
functionality, and the module is referred to as everything regarding the desired
functionality of that module. For instance, when recombining the modules into
the MedRem app, the code regarding the module’s functionality is copied from
the different applications to the MedRem app.

Figure 3.1: MedRem App modules

Heart Rate Module

This module’s main purpose is to figure out the required steps to use the Apple
HealthKit framework. Using this framework is not entirely straight forward
because additional permissions are required from the app and physically from
the user. Because of this, when trying to tap into the framework, the application
must check the framework for available data, then it must check that the user
has given consent for the type of data the application is trying to read/write.

To test applications using HealthKit, it is best to test with an actual device
rather than the simulator. If using a simulator, the HealthKit Store must also

27

be filled with ”fake” data, which the module can then retrieve through the
framework. This makes it a bit more difficult to develop, considering the final
application is not meant only to display data but react according to how the
HealthKit data changes.

Figure 3.2: Heart Rate App

The heart rate app created was developed for
WatchOS. However, there would be no difference be-
tween the application’s functionality if it was devel-
oped solely for iOS. In fact, the code would be iden-
tical considering the functionality part, where only a
tiny bit of the user interface styling would be differ-
ent. This is because of the Apple HealthKit frame-
work, which stores the users’ health data in one com-
mon repository which applications can tap into given
the users’ consent. As long as a user has an Apple
Watch paired with an iPhone, the application could
function normally on the iPhone. The watch will
provide the HealthKit repository with the heart rate
data our application is interested in using. That way,
the only use of the Apple Watch would be to read
the users heart rate and supply it to the HealthKit

store.
For this module, the main functionality was accomplished using an edited

version of the example in Listing 1. The edited version used HealthKit’s Sample
Query instead of the Statistical Collection Query to get the most recent heart
rate value from the HealthKit store.

Resting Heart Rate Module

Figure 3.3: Resting Heart Rate
App

Using an Apple Watch device to test the application
physically gave insight into how data is stored, how
frequent and what values the application can fetch.
After reviewing the health data stored in Apples’
Health app, it turned out that the resting-HR data
is set as one value for the entirety of the day, instead
of values for different time points, which is how the
regular heart rate is stored. The resting-HR value is
updated throughout the day according to heart rate
values that can be classified as sedentary or resting.
Because of relevancy, the resting-HR value is what
contains meaning for the end-product. Therefore,
the application was changed so that it would display
today’s resting-HR level and the previous seven days
to be easier to compare and find out if the HR is
elevated. This can be seen in Figure 3.3 with data

retrieved from the HealthKit store during testing. The module was mainly
revised for the code to be relevant and re-usable for the final application.

For this version, the main functionality was accomplished using the exam-
ple from Listing 1. The main difference between the two versions is that this
improved version uses a statistics collection query to retrieve the resting-HR
values for the last 7 days. This allows the application to display the different

28

days of data. Besides, the main reason for the different queries is how the HR
and resting-HR data is stored. resting-HR is stored as one value for each day.
While normal HR data is stored as one value for each time point it has a value
registered, making the different queries fetch data according to these differences.

Notification Module

The notification app will be developed for an iPhone with a paired Apple Watch.
The iPhone can be used as a notification controller, and the Apple Watch will
be used to display notifications and testing. This way, the iPhone app can have
multiple buttons for different notifications that we want to test, and the watch
will hopefully display these correctly.

There are two main types of notifications: local notifications and remote
notifications (also called push notifications). Local notifications create the no-
tification content and condition such as time or location, which triggers the
delivery to the user locally. Remote notifications are generated by a server
through the Apple Push Notification service (APNs). This allows developers
to push notifications to the user without having the app do any work. The
applications in this thesis will focus on local notifications.

Figure 3.4: Normal Noti-
fication

Figure 3.5: Notification
with actions

Figure 3.6: Actions of the
notification

In the same way, HealthKit needs permission to store and read health-related
data for the user. User notifications also require special permission prompted
the first time the user opens the application. To keep delivering notifications
without encountering errors, the app must therefore check if the user has given
permission every time it starts up, as the user can go into settings and remove
this permission at any time.

If the watchOS app has an iOS companion app like this example, the system
will determine where the notification is to be delivered. This means that if the
user is using their iPhone when the notification is delivered, the notification will
be displayed on the iPhone. While when the iPhone is not in use, the notification
will show up on the Apple watch instead. However, if the application is only
for the Apple Watch or triggered by the Apple Watch, it will only be delivered
on the watch. This must be accounted for further in the development process,
considering how the application should communicate with the user.

You can see two different notification types tested in the three figures above,
one regular notification, which only displays an alert with some text (Figure

29

3.4). Simultaneously, the other one has the same but includes three different
action buttons that allow the user to interact with the application through the
notification (Figure 3.5 & 3.6).

Figure 3.7: iOS App

Figure 3.8: WatchOS App

The last version of the app was developed with a user interface for both
watch and phone (Figure 3.7 & 3.8), where each had a button that would trigger
a normal notification. The phone application also had a button that would
trigger a notification with actions. Because the notification is handled by the
notification center, a default configuration of notifications is that they will not be
delivered if the application that triggered them is in the foreground. This means
that without a special configuration in our application, the notification will not
show up by only pressing the button. Because our goal is to trigger notifications
with an app running in the background, this special configuration will not be
needed for testing purposes. The notifications will display in the simulator as
long as the simulator changes the active app or turns off the simulator screen
within 5 seconds of pressing the buttons. This is because the notifications in
this example are programmed to be delivered after 5 seconds. By exiting the
application, the notification can be delivered normally as the application is no
longer in the foreground.

30

Background Module

Figure 3.9: Notifications delivered from
the Background App

The initial plan for the background module is
to test the boundaries of background activity
on both WatchOS and iOS to give a clear pic-
ture of what is possible when it comes to our
desired app functionality. This is a difficult
task because the devices decide what hap-
pens with the background applications and
allocate resources unpredictably. It is impor-
tant to explore different ways to achieve the
desired background functionality to find the
one best suited for the use case.

The first attempt of achieving the back-
ground functionality will be to use existing
HealthKit queries, allowing us to run long-
running queries in the background. These
queries allow the application to update
whenever a new set of a specified data type
is stored or modified in the HealthKit store.

Backlog

Due to the success in testing the background observer query and the time limita-
tions, the following conceptual background functionalities were not developed,
implemented or tested. During the research, a few different ways one could
potentially acquire the desired background functionality were discovered. The
most prominent solution was developed first to create an MVP in the short-
est amount of time. Fortunately, the first solution developed was satisfactory,
resulting in the following conceptual background functionalities not being de-
veloped during the work of this thesis.

1. Background App Refresh/Background Fetch
Using background fetch to acquire background execution time has been
partially implemented as it is what the observer query uses when enabled
for background delivery. However, there was an idea to have the back-
ground fetch happen without a running query in the background. By
doing this, the application could potentially check manually for new val-
ues every time it received a background fetch and then act upon those.
(Apple Inc. 2021o)

2. Background Push Notifications
The second idea was to have a remote push notification delivered to all
devices with the app at regular intervals during the day. When an ap-
plication receives a background push notification (an empty notification),
it is granted background execution time to update or refresh its content.
The app will stay up to date without the user having to update its content
every time using it manually. The plan here was to have the application
fetch the HealthKit data and act upon those by dispatching a local notifi-
cation. This variant would work similarly to the background fetch, apart
from forcing the background execution by receiving a background push

31

notification. This would be more reliable than ”waiting” for a potential
background fetch to occur. (Apple Inc. n.d.)

3. WatchOS Complication

Figure 3.10: Corner, circular and rectangular complications

The third idea would regard the Apple Watch, where the user can have
complications on their watch face. The complications can display infor-
mation or function as a quick way to open the desired app. The initial
idea here was to display the resting-HR and show a warning sign with lots
of color when the resting-HR was over the set boundary. This, however,
could work in addition to the already developed application, as it is a
small tool for the watch face and allows for an extra way of interacting
with our application. (Apple Inc. 2021d) The different types of complica-
tions can be seen in Figure 3.10. In the applications WatchKit Extension,
there can be found a file called ”ComplicationController.swift”. This file
is where the developer can configure, design and implement the various
complications. By having support for all the different complication types,
the application allows the users to choose whichever watch face they like
while still having the same functionality. Some complications are bigger
and have the possibility to display more information to the user, but hav-
ing the support for all variants would benefit the user in the best way as
it leaves room for flexibility to their preferred watch face.

3.2.2 MedRem App

The MedRem application will be primarily built up by the existing functionality
developed in the previous modules. Each module concerns one set of functional-
ity from a given framework. The MedRem application combines these modules
to achieve the desired MVP. The structure of the final application will be using
the modules as displayed in Figure 3.1.

32

Figure 3.11: Data transfer in MedRem

In addition to each of the three initial
modules regarding one set of functionality,
the MedRem application also includes a new
module with functionality from the Even-
tKit framework. This module allows the
MedRem app to schedule reminders through
Apple’s Reminders app.

MedRem will be developed with a com-
panion WatchKit app for the Apple Watch.
This companion app will only copy the
HealthKit functionality to display the same
data on the iPhone app. The companion
app will have no other function than pro-
viding the patient with the opportunity to
view their data on the watch instead of the
phone. We look away from the companion
app for the rest of the thesis as it is only an
additional user interface and does not con-
tribute to the application otherwise. The
flow of which data is stored, transmitted and
then read by the MedRem application is as
follows:

1. Apple Watch continuously reads HR
values throughout the day. When it
has read enough resting/sedentary val-
ues, it will create or update the resting
HR for the user.

2. The values read by the Apple Watch is
stored in the HealthKit store as long
as the device is unlocked and the user
has given permission for it to do so.

3. MedRem will read the resting HR val-
ues from the HealthKit store whenever
it is notified of a change.

Thus, the application’s flow depends on the HealthKit store being updated and
not on the Apple Watch directly, as displayed in Figure 3.11.

3.3 Data Structure

The different data used in MedRem are stored as variables in an observable ob-
ject named UserData. This object is instantiated in the App’s environment such
that the different views have access to use and display the different variables.
While the health-related data is always fetched from the HealthKit store, some
settings data has to be stored on the device for the application to remember its
state between sessions. The following variables are stored in the UserDefaults
key store:

33

1. Trigger boundary
Variable of the type Double. Used to check if the current resting-HR value
is elevated or not.

2. Dynamic boundary
Variable of the type Boolean. Used to determine if the trigger boundary
should be dynamically adjusted when the user has a false alert.

3. Dynamic boundary Gap
Variable of the type Double. The gap value is used to determine how
much the trigger value should adjust dynamically when the user has a
false alert.

4. Warning dates
Array of Date objects. Implemented for testing and future use to show logs
when the user has been alerted and is not currently used in the application.

3.3.1 Data management

The only personal data that is temporarily stored to display information in the
application and notifications are the users’ resting heart rate. The resting heart
rate is stored as one value each day, where only the last 7 days’ values are stored.
There is no way to determine who this set of resting heart rates belongs to. The
data is not to be considered as critical and in need of encryption because it
is only temporarily stored while the application is open, and cannot be used
to identify the user personally. The data is fetched from the HealthKit store,
which is already encrypted for the users’ privacy. The app also temporarily
stores settings as variables that the user configures within the application. iOS
apps use a class named UserDefaults to store data locally across launches of
apps. This class will be used to store important data such as the settings and
logging information. UserDefaults is an insecure repository stored in an open
plist binary format, where you only need a key to retrieve a stored variable.
Thus, only the settings and non-personal information is stored there, while the
application will fetch the HR data from the HealthKit store every time it needs
it.

3.4 User Interaction & Experience

Before developing a specific application, one should consider, plan and design
the user interface beforehand such that the development phase becomes more
of an implementation of the UI with minimal testing. When designing the user
interface, one must also consider how the application is to be interacted with and
experienced by the user. In this design phase, three different key elements are
taken into consideration: how it’s used, how it looks, and how it’s experienced.

However, the user interface for the MedRem application is not as important
because it is not the app itself that is the key element communicating with the
user since the app is meant to run in the background. The user notifications
are the key communicating elements of the application, which also requires
interaction from the user through actions.

34

3.4.1 Apple UI Guidelines

In addition to documentation of the various frameworks and tools Apple has,
they provide the ”Human Interface Guidelines”. The human interface guidelines
is an extensive set of guidelines on how every framework to every component
is recommended to be used. The guidelines provide different design principles
on forming the user interface and recommended app architecture. For iOS, the
guidelines provide 6 main design principles to maximize impact and reach:

1. Aesthetic Integrity
The app’s appearance and behaviour should integrate with its function.

2. Consistency
The app should incorporate features and behaviours in ways people expect.

3. Direct Manipulation
Items in the app should be affected immediately when the user interacts
with them.

4. Feedback
The apps interactive elements should provide feedback to the user, for
example, making sure the user knows what element is selected by high-
lighting it.

5. Metaphors
The app’s behaviour should reflect on gestures that are familiar to the
user. For example, changing a page should be done by a flick or swiping
behaviour, mimicking the action of physically changing a paper page.

6. User Control
Making the user feel like they are in control, but also warn about dangerous
consequences. For example, confirming destructive actions and providing
fallback possibilities.

(Apple Inc. 2021i)

3.4.2 User Notifications

The MedRem application uses primarily two different notifications. One for
warning the user about their resting-HR, and the other to ask if they want a
reminder for later if they have, in fact, forgotten their medicine.

For the warning notification, it is important to grab the users’ attention
and display important information to inform them about its occurrence. The
notification is displayed in Figure 3.12. The text tells the user about their
current resting-HR value and their boundary value and then asks them if they
have remembered their medication. The notification has to be direct and make
the user understand why they have been warned. This is achieved by telling the
users about their current values.

The reminder notification asks if the user would like a reminder to take their
medicine at a later occasion, perhaps because they are unable to take it at that
current time. The key element of this notification is the actions that come with
it, where the user is prompted to choose between receiving no reminder to how
many hours until they would like to be reminded. The notification actions will
then schedule a reminder through the EventKit framework.

35

Figure 3.12: Warning and reminder notifications

3.4.3 User Interface

The user interface of the MedRem application is designed to reflect on the
human interface guidelines. The final design of the implemented user interface
can be seen in Figure 3.14. The screenshots of the application provided further
in this thesis will be split 50/50 between dark and light mode to display the
application supporting both appearances. Apple made Dark Mode available for
iOS 13.0 and later, updating their UI guidelines to recommend supporting the
new system-wide appearance. (Apple Inc. 2021f)

Figure 3.13: Comparison of MedRem (left) and Apple Health (right)

Since the application is meant for the background, there is no need for a
unique and bespoke user interface. Apples Health app has been a major source
of inspiration for how the user interface was designed, as shown in Figure 3.13.
In the same way Apples Health app displays each health type and value in a
SwiftUI GroupBox view, the MedRem app does the same with the boundary
value, current resting-HR, weekly average resting-HR and the resting-HR values
of the last 7 days. Having a similar interface as Apples Health app enforces the

36

second design principle in Section 3.4.1: Consistency, making the application
more familiar and intuitive.

The settings page is found when pressing the boundary value GroupBox
which has the ”Edit” sign in the top right corner. This page also consists of
group boxes that are slightly different, containing text inputs and a toggle.
These text inputs and toggle are used as variables in the application. The users
can change them, and when saving their changes, they are prompted with a
warning, verifying if they are sure they would like to change their boundary
settings. This is done to enforce the 6th design principle in Section 3.4.1: User
Control.

Figure 3.14: MedRem user interface

37

38

Chapter 4

Development

The background of app development is figuring out how to make the app look
the same as the design and make it function in the way intended. This chapter
will look at how the different applications use the various frameworks and data
structures to create the desired functionality.

4.1 Resting Heart Rate App

4.1.1 Flow

Figure 4.1: Flow-diagram of Heart Rate App

The heart rate app flow is simple, where most of the flow describes how
health data is retrieved from the HealthKit Store using queries. First, to use
the HealthKit framework, the app must check for permission from the user. If
permission is given, the app can then execute a query in the HealthKit store.
The store then returns the requested data in the query’s result handler, where

39

the stored variables are updated to the new fetched ones. The user interface
then updates the screen values because they have changed. The flow is identical
to both versions of this app, where the only difference is what query is used.

4.1.2 Class Diagram and View

Figure 4.2: Class diagram and UI view of Heart Rate App

ContentView is not a class but a structure. In swift, the major difference
between structs and classes is that structs do not support inheritance, type-
casting and deinitializers. The ContentView struct is the main view responsible
for initializing the content and layout in the user interface. For this task, the
two needed functions are created as nested-function inside the ContentView for
simplicity.

V-1 Constant used in the query to specify the quantity type returned.

V-2 Access point to the HealthKit store. Used to dispatch queries.

V-3 Variable to store the last resting heart rate.

V-4 List variable used to store the last seven days’ resting heart rates.

V-5 View body of the app. This is where the interface is implemented. The
blue arrow lines indicate text components in the interface using the ap-
pointed values. The onAppear(start) action calls the F-1 (start) function
upon the appearance of the view. Here used as a simple way of initializing
the application.

F-1 Start function. Calls for authorization of HealthKit and calls F-2 when
the user gives permission.

F-2 Start heart rate query function. It is very similar to Listing 1 and includes
a statistics update handler allowing the application to keep receiving up-
dates from the HealthKit store every time a value in the scope is updated

40

or added. The function initializes a statistics collection query with initial
results and statistics update handlers which updates V-3 and V-4, then
dispatches the query with V-2 (the HealthKit store).

4.2 Notification App

4.2.1 Flow

Figure 4.3: Flow-diagram of Notification App

The notifications app’s flow is quite simple, as it mainly demonstrates the flow
of any notification (Figure 4.3). In this example, the app requests authorization
from the user when it initially opens instead of when the notification is sched-
uled. There is no particular reason for this other than that the final app will be
using this way of requiring authorization from the user.

4.2.2 Class Diagram and View

Figure 4.4: Class diagram and UI view of Notification App

The same as in section 4.1.2, due to the app’s limited functionality, it uses
nested functions because a proper class hierarchy is not needed for structuring.

V-1 View body of the app. This is where the interface is implemented. The
onAppear action calls the F-1 function upon the appearance of the view.
Here used as a simple way of initializing the application.

41

F-1 Notification handler function is responsible for requiring the users’ per-
mission on startup to receive notifications from the app.

F-2 Notification dispatching function that takes a timeInterval: Double as a
parameter. Similar to Listing 3, but with a timeInterval parameter added
for flexibility in testing.

A-1 Button action. The Blue arrow indicates the F-2 function being called
when the button is triggered. As indicated in the text, the action calls
the function with timeInterval: 5.0 to have the notification delivered 5
seconds later.

4.3 Background App

4.3.1 Flow

Figure 4.5: Flow-diagram of Observer query prototype

Simply implementing the background functionality would be difficult to test and
verify. Therefore the background app uses functionality from the two previous
applications. A flow diagram of this application can be seen in Figure 4.5. The
application’s main flow is the column on the right, which describes the events
leading to a notification being dispatched. The left side concerns the actual
application on the phone with setup, including authorizing User Notification-
and HealthKit frameworks and the application instantiating the background
observer query. This flow is very similar to the two Heart Rate apps’ flow,
except for using a different query.

Whenever a new resting heart rate value is stored or the existing value
is updated, the HealthKit framework will trigger the observer query’s update

42

handler. The update handler will then call for a statistics collection query that
updates the app’s existing variables. If the resting heart rate is, in fact, changed,
it will schedule a notification in the notification center. The notification is
then supposed to be dispatched, and it is possible to verify if the background
functionality is working or not.

4.3.2 Class Diagram and View

This application has the same user interface as the Resting Heart Rate App and
has some identical elements in the class diagram.

Figure 4.6: Class diagram of Background App

V-1,2,3,4,5 the same as in Figure 4.2.

F-1 Start function. Initializes the application by calling F-4 to authorize the
required HealthKit permissions, and F-5 to authorize the use of User
Notifications. When the required permissions are obtained, the function
starts the observer query by calling F-2.

F-2 Start observer query function. This function initializes an observer query
with a completion handler which calls the F-3 function to fetch the ob-
served change in resting heart rate.

F-3 Run heart rate query function. Almost identical to Listing 1, but also
checks the fetched HR and calls F-6 with the required parameters to
dispatch a notification.

F-4 Handles permission to read/write health-related data, specifically in this
example: resting heart rate.

F-5 Handles permission to display notifications.

F-6 Notification dispatching function. Similar to the one in section 4.2.2, but
with two additional parameters: title: String, body: String.

43

A-1 Red line illustrates F-1 calling F-4 and F-5.

A-2 Green line illustrates F-2 calling F-3 every time the observer query is
triggered.

4.4 MedRem

The MedRem application was, in the first instance, developed as a slim MVP
to begin testing. It used the previously explained functionalities and combined
them with a new and improved user interface. The demo was the first app to be
tested on people other than the developer to discover bugs and gain feedback
for further improvement.

After an initial round of feedback during the ongoing user testing, a second
improved version was developed to address critical issues and add functionality
that would cause major improvement to the user experience. The two major ad-
ditional functionalities which were added to the second version will be explained
later in sub-section 4.4.4 and 4.4.5.

4.4.1 Flow

The completed demo application flow is very similar to the Background App
because it also uses the functionality from the Heart Rate app and the Notifi-
cation app to test if it is working. However, in the MedRem application, the
amount of notifications dispatched has to be limited by certain parameters. The
current flow of how a notification ends up being dispatched is as follows:

1. User unlocks phone which allows the device to access the HealthKit Store

2. If there is a new resting heart rate value, the background observer query
will be triggered and call its update handler.

3. The update handler calls for a statistical collection query to retrieve the
new value(s).

4. The values in the app is then updated with the new ones. And the app
checks:

• If the most recent resting heart rate value is valid.

• If the resting heart rate is higher than the set boundary.

• If the time is between 14:00 and 20:00.

• If it is at least 10 minutes since the last notification was dispatched.

5. If the previous parameters pass, the app schedules an actionable notifica-
tion to warn about the possibility that the user has forgotten to take its
medication, based on the resting heart rate value.

After the notification has been dispatched, it is up to the user to react to
the notification’s actions. If the user answers yes to whether they have taken
their medication, the boundary value will be increased to adjust because of a
”false” warning.

44

Figure 4.7: Swift UI View setup

4.4.2 SwiftUI Views

The UI of the MedRem app is created using the SwiftUI framework. As dis-
played in Figure 4.7, the main page’s view is only built up by four GroupBox
views inside a navigation view with an assigned title. Each of the GroupBox
views is provided with a label and content. We have used Apples Label structure
for the label, allowing us to create a label with an icon. The content section of
the GroupBox allows for more flexibility, where it is possible to assign custom
styles. In Figure 4.7 there is one style used for the first three GroupBoxes, which
displays one HR value with a unit type, and one style for the final GroupBox,
which displays 7 days and their respective HR values. On the right side of the
screenshot, it is written the respective UserData values used by the different
view components.

4.4.3 Internal Architecture

Even though the MedRem application has almost the identical flow of the Back-
ground App, MedRem is more complicated structured internally. The app is
divided into 6 different main sections, as displayed in Figure 4.8:

1. AppDelegate
The main controller of the application. Because of the background run-
ning query and authorization handling, the app uses an AppDelegate to
handle the app lifecycle. The AppDelegate initializes the app by doing the
authorization handling and starts the different HealthKit queries to fetch
information to the app and begin the background functionality. The Ap-
pDelegate has instances of the Health, Notification and Event-handlers
such that it can authorize the different frameworks and manage their
behaviours. In addition to these responsibilities, the AppDelegate also

45

Figure 4.8: Class communication diagram

handles the different actions a user can perform through an actionable
notification.

2. HealthHandler
The health handler is the class where everything related to the HealthKit
framework is handled. It consists of primarily three functions concern-
ing authorizing HealthKit, executing observer- and statistical collection
queries.

3. NotificationHandler
The notification handler is the class where the notification related part
of the application is, apart from handling the actions defined in the ac-
tionable notifications. This class has functions for dispatching the different
notifications used by the application and authorizing the User Notification
framework to be used by the application.

4. EventHandler
The event handler handles authorization of EventKit and schedules re-
minders to the Reminders app.

5. UserData
The brain of the application is the UserData class. This is where all app-
and HR-related data is temporarily stored and handled. UserData is also
an observed object which allows the various views and functions in the
application to access the different user data. As well as being central stor-
age of information, the class also decides to dispatch notifications based
on the incoming data.

6. ContentView
ContentView works as the face of the application. Because MedRem does
not use the SwiftUI-lifecycle, it has a SceneDelegate which assigns Con-
tentView as the root view. As the root view, ContentView has to handle
navigation and the appearance of the app. Because the app is purposed
for background use, the app has a simple user interface with very few

46

items and views to handle for navigation. The main navigation in the app
is between the main page and the settings page.

How the different sections communicate is illustrated through the arrows
A-1 to A-6 in Figure 4.8. The arrows indicate the following:

A-1 This communication line mainly regards the AppDelegate using its ob-
jects of the respective classes to authorize the different frameworks and
functionality.

A-2 AppDelegate accesses various functions in UserData to reflect changes
made from notification action answers.

A-3 HealthHandler communicates with UserData by supplying it with new
resting-HR values every time the observer query triggers, as well as when
the application is launched.

A-4 ContentView and the various sub-views has instances of the environment
object of UserData, using it to display the different values throughout the
application.

A-5 UserData checks the values it is supplied with from the health handler,
and if the right parameters pass, it will schedule a notification through
the notification handler.

A-6 Dependent on whether the user responds to the app through the notifica-
tion actions or in-app actions, the AppDelegate or ContentView will use
the event handler to schedule a reminder for later if the user asks for it.

4.4.4 In-app Notifications

Figure 4.9: Action notification Figure 4.10: Normal notification

When a notification with actions is delivered to the user, it looks the same
as a regular notification. This can be seen by the non-existent difference in
Figure 4.9 and Figure 4.10. If the title and body of these two notifications were
identical, the only way to tell them apart would be to swipe on them to display
the actionable notification actions. Because it can be difficult to know when
to swipe on a notification to see actions, most users only press the notification,
which opens the associated application.

Therefore it was decided to implement a way for the application to prompt
the user inside the application, and not just through a notification. This way,
the user can interact with the alert even though the user might have dismissed
the first notification or accidentally clicks the notification instead of swiping

47

on it. The implementation of this can be seen in Figure 4.11 where both the
notification and in-app notification are displayed next to each other.

This functionality is achieved by setting a boolean value in UserData called
notifyQuestion. In the apps’ main view, an alert is added whenever the noti-
fyQuesiton boolean is true. Whenever the app decides to dispatch a notification
to alert the user, the notifyQuestion boolean is set to true so that the user will
encounter the alert in-app if they accidentally click the notification instead of
swiping it. If the user interacts with the notification, the notifyQuestion boolean
is set to false such that the user will not encounter the same question twice.

Also, there is another boolean: remindQuestion, which is set to true when-
ever the user interacts with the notifyQuestion-alert. This is done so that an
action sheet(right side of Figure 4.13) will pop up after the alert to ask if the
user wants a reminder later.

Figure 4.11: Notification actions and in-app alert

4.4.5 Reminders

Figure 4.12: Reminder shown in Re-
minders app

Considering a scenario where the patients
cannot immediately take the medication af-
ter being alerted, it was decided to imple-
ment a way for the application to again re-
mind the patients after a set amount of time
decided by the patient. It is possible to
schedule a reminder in Apple’s Reminders
app through the EventKit framework. Using
this framework, MedRem can schedule a re-
minder for the patient and give them options
to choose between 1-4 hours to be reminded
again to take their medicine. This way, when
the patient is unable to take medicine after

being warned, the patient can choose to be reminded a time later when they
are hopefully back at home or in a situation better suited to take the missed
medication dose. The reminder notification and the in-app notification can be

48

seen in Figure 4.13, while the actual reminder stored in the Reminders app can
be seen in Figure 4.12.

This functionality is achieved by scheduling a second notification or in-app
action sheet when the patient has interacted with the first notification/alert.
Doing this, the patient will immediately, after interacting with the first notifi-
cation/alert, be prompted with the new question, whose action will schedule a
reminder through the EventKit framework.

The only catch about this functionality is that the patient must have the
Reminders app installed on their device. The decision to use EventKit for this
functionality instead of a normal notification was made because it is a reminder,
and notifications from MedRem should be used for alerts and warnings only.

Figure 4.13: Reminder notification actions and in-app action sheet

49

50

Part III

Evaluation and Conclusion

51

Chapter 5

Evaluation

Experiments in this chapter are conducted to evaluate the final application’s
different modules and the final application in its entirety, and how users have
perceived it. The test strategies explain how the modules are tested and how
they are expected to perform.

5.1 Experiment A: Reading Heart Rates

This experiment was conducted on the resting heart rate app, testing the mod-
ule to deliver the desired functionality of retrieving HR data from the HealthKit
store. The goal of the experiment is to find a satisfactory way of reading and
storing resting heart rate values in the application and discover different bound-
aries related to the frameworks needed to achieve this functionality.

5.1.1 Testing

The heart rate app and the resting heart rate app’s core functionality were easy
to test in the experiment as very little had to be done to see different results.
The application was primarily developed with the example from Listing 1 and
with certain changes to the quantity type and the query type to see how good
results the app gets from the HealthKit store.

The first testing of this functionality was done with the heart rate app,
using a sample query to fetch a snapshot of the latest heart rate values in the
HealthKit store and displaying the latest. The app should then display the
user’s current heart rate at the time the user opened the application.

Further, the app was changed to use a statistical collection query with an
update handler. Displaying the same value as before, but having the update
handler to update the visual value in the user interface every time the value
changes.

The next part of the testing was done by changing the statistical collection
query to fetch the last 7 days worth of resting heart rates. The UI was changed
to show the 7 values, including the one for the current day.

53

5.1.2 Results

Being a rather simple functionality, in the end, it is important to have the
correct value displayed to use it as a parameter later. The first part of the
test was done to figure out in the simplest way how to retrieve any value from
the HealthKit store. Being successful at retrieving the heart rate, the app was
then progressed to a more advanced query with more options for fetching more
specific values, including an update handler allowing the value to be updated
automatically. Again successfully retrieving the value and having it updated by
itself, the query was changed to fetch resting heart rates. The resting heart rate
value is the more interesting result of the test. Because regular heart rates are
stored as values for each time point they are registered, it was easy to assume the
resting heart rate would be the same, just at a rarer frequency. However, that
was not the case. The testing showed that the resting heart rate was stored
as one value for each day that had a resting heart rate stored. Meaning the
resting heart rates are stored as a maximum of one value per day and not per
time point where the value is registered. The value of the day is then updated,
making it important for the application to check for updates continuously.

5.2 Experiment B: Dispatching Notifications

This experiment was conducted on the notification app. The goal of the experi-
ment was to test the different notifications and options available. That includes
figuring out how to create, dispatch, and manage notifications and how the no-
tifications behave on iOS and WatchOS. The notification module is important
to understand as it works as the communication part of the final application.
Testing different types of notifications and understanding how these are con-
figured simplifies adapting and customizing the notifications for the MedRem
application.

5.2.1 Testing

The notification app is a minimalistic application for both iOS and WatchOS,
where each version contains buttons to trigger a notification dispatch. On the
iOS version, it was also added a button to trigger an actionable notification.
The testing was done by pressing the button to trigger the notification delivery
and then exiting the app or turning off the screen to have the notifications ap-
pear. The notifications were also configured with different payloads and trigger
conditions to find the best-suited type for the MedRem app.

5.2.2 Results

This experiment gave insight into how notifications are dispatched and deliv-
ered. The normal and actionable notifications were delivered just as predicted.
However, the actionable notifications required more configuration to handle the
actions triggered by the user. This configuration was difficult to get right at first
because it requires a notification delegate to intercept the action response and
act on it accordingly. The actionable notifications came along successfully after
some research and attempts. Adding the possibility for repeating notifications
could be the solution of reminding the user to take their medicine at a later

54

time. Because it is possible to cancel a scheduled notification, it would be a
viable approach as a reminder. However, this would require more UI configu-
ration to allow the user to cancel their scheduled reminder notification, and it
would require the app to keep track of notifications being scheduled, cancelled
or delivered. Having tested this possibility, it was decided to keep notifications
as on-time events with actions and rather implement a solution using EventKit
for the reminder. Having tested and reconfigured the application to satisfaction
marked the finish of this module.

5.3 Experiment C: Running Background-Tasks

This experiment is the last experiment focusing on one module/functionality
particularly, and not a combination of modules. It is, however, tested through
the use of other modules. It is difficult to test if an app or functionality is running
correctly in the background. Therefore this module, as explained earlier, uses
the two previous application to test if it works.

5.3.1 Testing

The testing of this module was done using a HealthKit observer query, as ex-
plained in Section 2.2.1 is a long-running query that can keep going in the
background, even when the application is closed. This query is used to detect
changes in HealthKit store data, specifically the resting heart rate of the user
in this example. Whenever the resting heart rate value changes, the observer
query should be triggered, which should trigger a statistical collection query
to fetch the new resting heart rate. When the new resting heart rate value is
fetched, the statistical collection query’s completion handler should dispatch a
notification stating that the user has a new or changed resting heart rate value.

This module can be tested in the XCode simulator by filling resting-HR
values into the Health app. Whenever a new value is added, the applications
observer query should be triggered as an observed value is changed or added. If
the application is not immediately granted the background execution to dispatch
the notification, it is possible to force it by using the ”Simulate Background
Fetch” tool in XCode. Whenever activating this option, the application will be
granted background execution time. If the applications observer query has been
triggered, it will then fetch the values and dispatch notifications.

To test the application for real-life purposes, it was also tested on a real
iPhone device connected to an Apple Watch. This part of the test was the most
important because the simulator testing would prove the concept to work, but
how well the solution would apply to real-life had to be tested physically.

5.3.2 Results

The physical testing of the application gave insight into how rarely the resting
heart rate value is updated and that there is no way to predict if the application
is granted background execution when the observer query is triggered. Similarly
to simulator testing, the Health app on the physical iPhone device can be used
to enter manual data, which can trigger the observer query. Also, it was not
guaranteed that the notification would show immediately, as the app running

55

in the background only was immediately granted background execution about
half of the times. The other times when the app did not receive background
execution time immediately, it could take between 5 minutes and a few hours
before the application was finally granted the background execution time. This
testing proved that the app would be able to deliver notifications eventually.

To test the background execution’s viability, the app was tested over a longer
period without altering the resting-HR data through the Health app. The test-
ing was conducted by wearing the Apple Watch for at least 12 hours per day
and checking if the application could deliver notifications at least once per day,
preferably sooner in the day rather than later. Considering the resting-HR value
only being updated a handful of times per day, the application needed to detect
and notify about most of these changes in a reasonable amount of time. Despite
the testing of manually adding resting-HR values to the Health app gave little
motivation for the application to work in a real-life setting, the application did
dispatch several notifications each day. The results were even without the in-
teraction of the notifications or the application, proving the app could run in
the background frequently enough for the module to work in the final applica-
tion. The success of the background functionality marked the completion of this
module.

5.4 Experiment D: The MedRem App

This experiment can be seen as an acceptance test before the user testing.
The test was conducted to check if all the different modules worked with each
other and that the application behaved as expected before the application was
distributed to testers. Because the modules previously explained have been
tested separately, the main focus of this experiment is to test the combination
of the modules and any new additions to the app.

The experiment is the first to test an application with a particular user
group, consisting of both a patient and their care provider. This means the
testing has to discover if the app is perceived correctly in the way it is supposed
to be used and not just test if the application works as intended.

5.4.1 Testing

To verify that the application is ready for user testing, the three previous mod-
ules’ main functionality has to be tested through the MedRem app. In addition
to these, the app must be tested more thoroughly, making sure that notifications
are only dispatched when the right criteria are present.

The MedRem app is very similar to the previous experiment considering the
main difference is a user interface, minor functionality, and parameters used
to decide whether to warn the patient. Similar to the previous experiment
testing the background execution, the MedRem app was tested first through
the XCode simulator and later on a real device for a few days. The test covers
two main areas: user experience and functionality. The user experience part of
the testing is conducted on the user interface to see if it looks as it is supposed
to and that the user interface’s different elements are interactable in the way
intended. This also includes interacting with the notifications and deciding how

56

well they are perceived, considering the text formulation and information put
into the notification body.

The application’s functionality testing should primarily focus on the main
goal of the app; to warn the patient whenever their resting heart rate is above
the set boundary/threshold. Also, considering other parameters such as the
time of day and the time since the last notification was dispatched. Because of
these parameters, the notifications are only supposed to be dispatched within a
time frame, meaning the test must make sure the notifications can only dispatch
within the time frame. Also, notifications should only be dispatched when the
patient’s resting-HR is above the set threshold.

5.4.2 Results

The user experience part of the application was simple to verify because it could
be tested by the developer simultaneously as it was implemented. Also, the ap-
plication’s interactable parts were tested during the implementation, making
sure the implemented code performed as intended. During testing, it was dis-
covered that some items of the user interface did not scale properly on different
iPhone devices, as the range of iPhone models uses very different screen resolu-
tions. This was uncovered when testing the MedRem app on different simulated
devices through XCode. The most probable cause for this first being uncovered
during the acceptance testing was that the user interface was primarily focused
on the developers iPhone 11. Instead of running the application on a simulator,
the developer can load it instantly to their own device to test and interact with.
Thus, some minor parts of the user interface were not tested to scale properly
and later fixed after these results.

The MedRem app was in the same way as the background module, simple to
test in the simulator. By providing the Health app fictive test data and chang-
ing the different settings in the MedRem app, the warning notifications would
either be triggered by the resting-HR change, or the simulator could simulate a
background fetch, enabling the application to do its checks and potentially trig-
ger the notification. A limitation to the testing was discovered due to the time
frame notifications can be dispatched. Because of this time frame, the testing
must also be conducted within this time frame to yield the results. For testing
purposes, the time frame was altered during the simulator testing to test the
application at any given time of the day. Apart from these two minor issues,
the simulator testing proved the application to work as intended.

The application was also tested on an actual device for a longer period of
time. By setting the boundary value/threshold to an unrealistically low value,
the app should dispatch warnings every time the resting-HR value is updated
within the given time frame. This worked better than expected. Having the
warning appear a few times each day also allowed for testing the dynamic bound-
ary, increasing the boundary value/threshold if the patient claimed to have taken
their medicine. Though after a random amount of hours, the application would
crash. The application’s crash reports in XCode can tell where in the code
the application crashed. Apparently, sometimes the statistics collection query
would return without a result. In the code of this first version of the application,
the results handler of the statistics collection query was told to terminate the
application if it returned with an error. Changing the application to ignore the
error and not update anything if it occurred fixed this issue.

57

Overall the application seemed to work as intended, and after fixing the
minor issues encountered, it was decided that the application was ready for
user-testing.

5.5 Experiment E: Performing User-Tests

One crucial part of the application is that it should be simple to understand
and easily adapted by patients and their care providers. Also, to test if the
application works as an MVP, this experiment was conducted to determine how
well the app is received by patients and external users. The application was
distributed to four external testers, who wore Apple Watches and indirectly
tested the app between two and ten weeks. The four testers were picked to
receive helpful feedback quickly. As the purpose of the application is to work as
an MVP, it was more important to test the application generally than specifically
for patients with heart disease. For example, testing the application with users
who understands it can give valuable feedback for the application in general,
while later testing the application on patients would serve purposeful for the
actual use-case of the application. This test is conducted to receive feedback
which will prepare the app for testing real patients.

None of the participants in this experiment was sick, suffered from heart
disease or were prescribed beta-blocker medicine. All testing was completed by
having the app react to the user’s normal heart rate and simulate a heightened
heart rate by lowering the resting heart rate threshold/value for the application
to dispatch warnings.

To get a broader understanding of how well the app was perceived, the four
users can be divided into two different age groups, where two of the participants
were in their 30s and the other two in their 60s. The importance here is to see if
both age groups are able to understand the application and use it properly, even
though it’s a very hands-off application. It was also important to test the appli-
cation on the elder age group as they are in the age range the application would
target in a commercial setting. The participants have different professions; civil
engineer, researcher, professor and adviser. Having different backgrounds helps
to diversify how the application is tested and interacted with. Furthermore, two
of the participants, who were in different age groups, were already acquainted
with the concept because they were the ones who came up with the idea for this
thesis. Using the concept creators of the application as testers, with two extra
external testers who are unacquainted with the concept, gives a broader pool
of observations because the observations from the concept creators will verify
how the application relates to the concept and their projection of the solution.
In contrast, the last two participants’ observations will verify how externals
perceive the application.

The four participants have different iPhone models, and the least experienced
participant has used an iPhone device for 8 years. This means the participants
are well known with the Apple platform and should navigate the application
with little help.

The app was distributed through the TestFlight framework, as explained
in section 2.3.2. The framework allows the application to be installed on the
participants’ devices normally as it would be through the App Store. Also, the
framework gives the participants an option to send feedback to the developer,

58

enabling them to share crash data and provide screenshots with descriptions
directly to the developer.

This experiment consists of two test phases and an interview part. The test
phases are divided into preliminary testing and normal testing. The application
was updated and improved between the two phases to encounter key issues
discovered during the preliminary testing. This will be further discussed in the
sections below. In the interviews, the participants were asked the same questions
to get an overview of their overall experience of the application and how they
tested it. The interviews gave valuable feedback, which will be discussed later.

5.5.1 Preliminary Testing, Early Results & Feedback

The preliminary testing was conducted on the two younger participants because
only they had Apple Watches available at the time and could begin early testing.
Later for the second phase, one of the preliminary participants’ Apple Watch
was lent to a third participant, and the developer’s Apple Watch was lent to
the final participant. This first test phase was primarily conducted to find out
how others perceived the MedRem application, and if external participants could
make the application crash and provide feedback on any ”missing” functionality
or something that was not working as well as it could have.

After two weeks, the two participants said in a short non-formal meeting
that the application was working well but had a few areas they felt were lacking
or missing. The two primary areas were receiving in-app notifications and the
possibility to be reminded at a later time. Both of these functionalities were
developed and added to the application and is discussed previously in section
4.4.4 & 4.4.5.

5.5.2 Testing

The application was distributed to the four participants through TestFlight.
The two who already had it installed received an update through the framework
such that everyone had the latest version of the app installed. Through the
TestFlight app page seen in Figure 2.1, the participants were provided with the
following description:

Paired Apple Watch required
Open the app, give the required permissions.
When in the dashboard, it should be filled with resting heart rate data
from the previous week. At the top, you should set a boundary that will
decide whether notifications are delivered or not.
Without using the app, see if you get notifications throughout the day.
If something looks off or is wrong/unsatisfactory, you should take a
screenshot and use the ”Share Beta Feedback” when you try to share
the screenshot. Also, you can use the ”Send Beta Feedback” link in
TestFlight to explain your troubles.

Also, the participants were instructed the following:

• Wear the Apple Watch at all times during the day and charge it while
sleeping

59

• Test different threshold/boundary values to check if the application is
dispatching notifications when it is supposed to.

• Try different answers to notifications, reminders and see how the app
reacts accordingly.

• Try not to open the application except when changing settings, such that
the background functionality can be tested over a longer period.

5.5.3 Interview

Each participant took part in a 10-minute interview consisting of a range of
questions to get their thoughts on the application with regards to the applica-
tions: current state, usability, concept, and appearance. The participants were
also asked questions about how they tested the application and about factors
that could have impacted their test results. The interview guide can be seen
in Appendix B. Because the interview followed a semi-formal structure, not
all questions got a definitive answer, but having the participants talk around
the different topics gave enough indication of the participants’ impressions and
thoughts. Following this section, each topic of questions will be clarified sepa-
rately, along with their observations.

5.5.4 Observations

During the interviews, some observations were made on the different topics.
These observations will be explained further in this section.

Testing Methods and External Factors

This question topic regarded how the participants tested the application, as in
what features they tried, how did they adjust the boundary/threshold values
and other factors such as how they wore the Apple Watch and if they had a
tendency to take it off for different occasions. These questions were important
because they set the background for why the participants may have had certain
results.

The consensus between the participants for this topic was that everyone had
adjusted the boundary value/threshold to some extent, receiving notification
and testing the primary functionality of receiving warnings. The participants
also charged the Apple Watch while sleeping and wore it from they woke up
until they went to bed, apart from one exception.

All but one of the participants tried the new feature that lets the application
make a reminder in Apple’s Reminders app, which notifies the user after a set
time. An issue encountered here was when one of the participants removed
unused applications to free up space and deleted the Reminders app, making
the missing feature crash the application.

A difference between some of the participants could be seen in who used
watches daily before the experiment. Two of the participants did not daily wear
watches, which resulted in them being more disturbed by the Apple Watches
notifications and annoyance from wearing it in general. One of the participants
ended up taking off the Apple Watch while working on computers, resulting in
the resting-HR value not being updated before later in the afternoon. Other

60

participant said they would take the watch off while taking a shower or for a
short period of time, but that would not have a great impact on the resting-HR
value in the same way as leaving it off for hours while working at the computer.

Another issue encountered during testing by one participant is that the par-
ticipant sometimes forgot to unlock the Apple Watch while wearing it. This
resulted in the Apple Watch not being able to write data to the HealthKit
store before it was unlocked, which could be sometime later in the day as the
participant was not used to wearing it.

One of the participants experienced odd resting-HR readings with unnatural
low values. The assumption made here was that this phenomenon could be
caused if the user wore the Apple Watch too loosely, as the participant had
improved readings after being instructed to tighten the watch band.

Current state

Questioning the participants about the current state of the application was
achieved by asking questions such as how their overall impression of the ap-
plication was, if it worked as expected and if there is anything they feel the
application lacked.

For the applications current state, the consensus between the participants
was that it is a simple application, which serves its purpose as an MVP. All the
participants said the application works as they expected, especially considering
that it is primarily meant to run in the background. When a participant was
asked how usable the app is and if it covers a need, the participant said:

”I think it does. I think it covers a need. If you’re not able to get
this out of the Apple Watch itself, I think this works very well as a
supplement for medicines.”

A few areas of improvement came up when the participants were asked if
something was lacking with the application. These were the following:

• Bespoke motivational messages to engage the user and make it easier to
grab their attention.

• Warnings to be clearer, with sound, vibration and alerts on both iPhone
and Apple Watch devices.

• More information and a log stating when and why warnings had been
dispatched.

• App on iPhone to remind the user/patient to wear the Apple Watch if the
user/patient was not wearing one.

• A participant thought it could be an advantage to have the opportunity
to have warnings delivered at one specific time during the day, such that
the patient would know what was wrong immediately when receiving the
warning.

• Application to check more thoroughly before dispatching a warning to
limit the number of false warnings.

61

• History of how the patients resting-HR value has changed over time. Pos-
sible to check resting heart rates from larger periods of time and graph
these to see the medicine’s effect. This feature could be usable, especially
for the patient’s health care provider, but problematic in a data/GDPR
sense.

Usability / User Experience

To get a grasp of how usable the application is for its purpose and if the partic-
ipants have had a good experience testing the app, the participants were ques-
tioned about how simple it was to use the app, interact with different warnings
and use the app in general. They were also asked if they thought the appli-
cations was usable in its current state and if they think it covers a need for
patients with different heart conditions.

For the user experience, the consensus between the participants was that it
is a very simple application to use due to its limited amount of functions and
uses. Though for one of the participants who was unfamiliar with wearing a
watch, it was more difficult to getting used to wearing the watch comfortably.
The users also thought that the notifications were clear, well understood and
was dispatched at reasonable times. Especially after the update that was pub-
lished from the preliminary testing, the preliminary testers who then updated
the app from the first version was pleased with how the application facilitated
the notification actions in the app if they only pressed the notification. All par-
ticipants said the app worked as they expected and dispatched warnings when
it should have, proving its usability.

One of the participants also said:

”I really like how the threshold value is changed when I answer that
I have taken my medicine, and if I haven’t, the app provides me with
new options to help me with reminders. I think the app serves its
purpose if the purpose is to make patients take their medicine.”

Only one of the participants ended up not trying to have a reminder set for
later. However, the other participants who used this feature were pleased and
thought it worked well.

Appearance / User Interface

Because the application is an MVP, the user interface is not as important as the
functionality. Therefore the participants were questioned on what they think of
its appearance and how important they think the application’s appearance is.
A consensus between the participants was that they did not really pay attention
to the user interface. They thought it was simple and fit the application’s needs
in a good way. Two of the participants pointed out that the user interface was
good because it did not interrupt the application’s usability and that the less
they need to scroll, the better. Another participant said it looks good, but there
is no need for it to look good because the functionality and interaction are in
the notification warnings.

The participants were also asked about how important the looks of an appli-
cation is for them. Two of the participants answered that they thought it was
important that applications look simple and are readable. Another participant

62

said the MedRem app should look more clinical to tell the user it’s a medical
supplement, but the looks of applications were not that important otherwise.

5.5.5 Discussion

One of the issues encountered during the testing was that the app would crash
if Apples Reminders app were uninstalled from the device. The downside with
this functionality is that the user needs two applications installed for it to work
properly. The upside is that the MedRem app uses existing frameworks on the
Apple platform and that the Reminders app handles the reminders. This makes
the MedRem app more lightweight and simplified the development needed for
the functionality. The fix for this issue would be to implement the app to check
for the Reminders permission to be given and that it’s able to use the EventKit
framework without any errors. If the framework does not throw any errors, it
can provide the reminder option to the user.

As mentioned in section 5.5.4, two of the users were not used to wearing
watches daily. When it comes to the core need of the MedRem application, the
Apple Watch is only used for reading the patients resting-HR. If the user has no
other reason than the MedRem app to wear the Apple Watch, it can be easily
seen as more of an annoyance than a tool, as the application passively uses it.
Therefore, the MedRem application is more suited to people who are used to
wearing a watch or who has other benefits from wearing a Apple Watch device
on a daily basis.

Another Apple Watch issue was that the users could forget to unlock it when
initially putting it on in the morning or that the user forgot to wear it in the
first place. A solution for implementing the functionality required to notify
the patients that they are not wearing the Apple Watch will be described in
Future Work section 6.2.2: Reminder to Wear Apple Watch. In the same way,
MedRem will remind the patient to wear the Apple Watch, and it will also
trigger a reminder if the patient has forgotten to unlock the Apple Watch. This
is because the solution is based on checking if there is existing HealthKit data
stored by the Apple Watch on the same day, and if the Apple Watch is locked,
it will not have had the permission to write new data to the HealthKit store.

A participant came up with the idea to provide motivational messages in the
warnings, meaning if the patient were to receive a warning, it would tell them
a fact or a motivational message to grab their attention and motivate them to
remember to take their medicine. Having bespoke, informative and motivational
messages is an ingenious way of playing mind tricks on patients, almost guilt-
tripping them into remembering to take their medicine. This proposition will
be described in Future Work section: 6.2.7: Motivational Messages.

Another participant wanted the warnings to be more profound or easier
to notice than a regular notification. The User Notification framework only
allows the application to define the sound of its notifications. The MedRem app
is set to defaultCritical, which is one of the most recognisable notification
sounds available. However, if the patient has their iPhone in silent mode, the
notification will not be permitted to make any sounds. Unfortunately, there is
no way to bypass this. A solution could be to recommend the patient only to
allow notifications from a handful of applications, including MedRem, such that
the patient is more alerted on all notifications rather than none.

Having warnings dispatched only at a specific time came up during the

63

interviews. Of course, this is both a viable and doable solution, embracing
the fact that patients would probably know the nature of the notification before
opening it, considering the time it is dispatched. In the current version of
MedRem, applications are not allowed to be dispatch earlier than 13:00 because
Apple HealthKit uses some hours before it provides a resting-HR value close
to its daily average. The resting-HR values always begin as higher values and
are later updated and calibrated correctly. This solution makes it so that users
are likely to be warned by the application not so long after 13:00 if they have
a higher resting-HR that day. Thus, there might not be a need to implement
this functionality because MedRem is already likely to dispatch warnings in the
same time span.

As mentioned in section 3.4.3, the design of the application is inspired by
Apples Health app. The decision was made to give the MedRem app more of
a familiar feeling as a health application and to use less time to figure out a
bespoke user interface. In the interviews, the participants were very consistent
in saying they did not pay much attention to the user interface, indicating that
the user interface was simple and well understood. Often a good design is what
people do not tend to notice. The feedback from the interviews pointed out
that none of the participants had really thought about the interface, proving
the interface works well for the application.

5.5.6 Conclusion

To summarize, the experiment was conducted on four participants by supplying
them with the application through Testflight. Also, through TestFlight, the
users were provided with a short description of what they should do, and they
were instructed on how they should test the application verbally. The test was
designed to evaluate the application from a user perspective. By exposing the
application to a broader user base, the test would give greater insight into how
it works in a real scenario.

In conclusion, the participants’ answers in the interviews gave a lot of insight
into how the MedRem app is used and gave valuable suggestions for improve-
ments. Overall the participants thought the app worked as an MVP, and the
functionality worked as expected. There were no big incidents or fatal bugs dis-
covered during the testing, and the areas of improvements have been discussed
above. Some of these improvements will be discussed for future work.

5.6 Summary of Results

Various experiments were conducted in this chapter. The experiments con-
sisted of testing each module or batch of functionality separate in standalone
applications in the same way the MedRem app was developed. Each module’s
experiment would then verify the integrity of the functionality it intended to
contribute with for the MedRem app. The MedRem app was also tested through
an experiment, essentially being an acceptance test before the user-testing. In
the final experiment, the application was distributed to four users who thor-
oughly tested and used it for a few weeks and then gave feedback through a
semi-structured interview. In this section, we will go through the main findings
of the experiments.

64

Both experiment A and B, two rather simple experiments testing very straight
forward functionality based on parts of the code that were difficult to figure out
and get right. The problematic part of the development was using the associated
frameworks correctly to get the right outcome. These experiments were impor-
tant to verify that the code delivered the desired functionality. The experiments
successfully retrieved the resting-HR from the HealthKit store and delivered lo-
cal notifications through the User Notification framework. They then proved
that the modular codes were ready to be re-used for the MedRem app.

Experiment C could be seen as testing the baby steps of the MedRem app.
Since the functionality that was to be tested in the module was difficult to test,
it used functionality from the previous experiments to verify its own function-
ality. The experiment gave a lot of insight into how the MedRem app would
have to be tested further down the line, switching between testing on simula-
tors and real-life devices. This experiment was the most important experiment
conducted during development, as the results could have changed the outcome
of the MedRem app in terms of background functionality. Thankfully the de-
veloped functionality was satisfactory and was re-used in the MedRem app.

Experiment D worked as an acceptance test, checking all functionality and
discovering all possible bugs before the application was considered ready for
external user-testing. Minor bugs were discovered during this experiment which
was later corrected before the app was considered ready for external testing. The
experiment relied heavily on insight gained from Experiment C, which allowed
the application to be tested in simulators and in real life.

The final experiment E: Performing User-Tests, was conducted over 3 months
with four participants. A preliminary testing phase with two participants was
conducted to gain quick feedback and add important functionality, which would
have otherwise been difficult to test for the users. An example of this was
the actionable notifications being difficult to interact with unless the user knew
specifically to swipe on the notification. The main phase of the testing was
conducted on all four participants for a duration between two and ten weeks,
ending in an interview where the developer could question them regarding us-
ability, functionality, user experience and the concept. The interviews resulted
in suggestions on additional functionality that could have been developed for
the application. Still, as an MVP, the application was working as intended,
where all of the participants would have recommended it to someone suffering
from heart disease.

65

66

Chapter 6

Conclusion

In this thesis, we have addressed an ongoing issue with heart failure patients
not adhering to their medical therapy. This thesis’s motivation is to create an
application that would supplement the patients’ medical therapy. The applica-
tion should remind the patient to take their medicine when forgotten, based on
their resting heart rate, which the application monitors. To approach the issue
on hand, we came up with three functional requirements that would set the
application’s basic functionality. In addition to these requirements, the thesis’s
goal was to develop an MVP of the application, which would serve its purpose
to see if it is possible to create an application that can remind patients to take
their medicine based on their resting heart rate.

Thorough research was concluded to determine how to develop iOS and
Apple Watch applications, structure the application and what frameworks to
use. During the development phase, it was decided to split the functional re-
quirements into separate modules to develop the functionality in a sandbox
environment, meaning no other part of the application would interfere with the
functionality in focus. After successfully developing the three modules, they
were combined and configured with a user interface to become the MedRem
application.

Evaluation of MedRem was achieved through five experiments; (A) Reading
Heart Rates, (B) Dispatching Notifications, (C) Running Background-Tasks,
(D) The MedRem App, and (E) Performing User-Tests. Experiment A, B, and
C were experiments conducted to verify the functional requirements separately.
At the same time, D tested all the functional requirements focusing on the appli-
cation working as a whole. Experiment E was conducted on four participants for
two to ten weeks and was the most crucial experiment because of the feedback
received during its interviews.

The results from the experiments can conclude that the MedRem applica-
tion developed in this thesis does indeed work as intended. Considering the
many obstacles and limitations discovered during the research and development
of the MedRem app, its outcome is better than expected. The background func-
tionality almost sat a significant stop for the whole application. The feedback
received from the user testing, in particular, can verify that the application
shows promise for its usability and how patients with actual heart conditions
could adapt it.

As a mHealth application aimed at increasing medical adherence for heart

67

disease patients, the application incorporates one behaviour changing feature
of interactively warning patients through notifications. Considering the study
mentioned in section 1.1.4 by Donevant et al. (2018), the applications with
the most percentage of statistically significant outcomes were the ones that
combined both passive and interactive features. As the MedRem application
has not been tested on actual patients, we can only assume it will have a similar
effect as other studies using the same type of interactive features. The upside of
MedRem is that it uses real-time, real-life resting-HR data, which can be used to
further enhance the user experience by creating bespoke interactions using the
patients’ health data. Following the trend of also implementing passive features
in MedRem can provide a higher potential of success, particularly for making
the app change behaviours and increase medication adherence.

To further guide any research related to this thesis, we have laid the ground-
work explaining how the application is structured and developed from a design
and architectural standpoint. We have discussed multiple solutions to each func-
tional requirement, emphasizing the background functionality as it is the most
challenging requirement to meet. The results from the experiments verify the
goal and functional requirements of the thesis and bring valuable insight into
further improvements and functionalities for the application and concept. For
the final part of the thesis, we will dive into future work by explaining different
findings and proposing conceptual solutions to them, respectively.

6.0.1 SPARK Application

In Appendix C: Spark Application, we submitted an application for the potential
of future funding to continue to develop and research the MVP created in this
thesis. Some of the comments/concerns/questions raised in the feedback were
introduced because at the time of application, the app was still in the early
stages of development. Some of these comments can now be addressed by the
results obtained from the experiments.

The feedback states that HR measurements are noisy, and thus a clear and
robust strategy is needed to avoid false positives. For the MVP developed
in this thesis, the app uses the patient’s resting HR value determined by the
HealthKit framework on the Apple Watch. The resting-HR has shown to be
relatively stable with little variance as long as the patient/user has worn the
Apple Watch for the same amount of time throughout the day. By providing a
dynamic boundary, the app can find a threshold at which the resting-HR should
not trigger false positives. This is considering that most have a 5 BPM resting-
HR variation, where some deviations are not problematic, but demonstrates that
long-term measurement combined with accelerometers to decide resting-HR is
in effect quite a powerful technique to personalize the feedback, and likely much
better than rare in-office measurements during a doctor visit.

In addition, the feedback stated that there is very limited proof of the tech-
nology. The applications developed in this thesis should be enough proof that
it is possible to create a valid application, which is usable and covers an unmet
need. Though the MedRem app is still limited and needs further development
to be relevant for actual patients, emphasising how the patients’ resting-HR
differs if they do not take their medicine in 24 hours. This is further discussed
in Section 6.2: Future Work.

For the last point regarding data-collection, we have in this thesis discussed

68

how to retrieve health-related data from the HealthKit store through various
queries. For the current application, privacy and GDPR are handled by Apple,
as the health data is only used and displayed by the app but not distributed.
If the data is to be collected in the future in a health information system or a
database, the privacy aspects would need to be re-visited.

6.1 The Perfect Scenario

This section is about what scenario the application developed in this thesis
would be best used and adapted. Due to the many limitations discovered during
the work of this thesis, the way the application is used should be limited by
certain factors to keep it working as intended. Also, because people are different
and may adapt technology and habits in particular ways, it is essential to define
a recommended use case for the application. Therefore comes the following
recommendations:

6.1.1 Nightstand Charging

The most basic requirement for the application to function is that both the
Apple Watch and iPhone are charged. It is recommended to have the chargers
on the nightstand so that the user can charge while sleeping every night, which
will result in the users always having enough power during the day.

The second reason for this is to make the user have a routine, where the first
thing they do in the morning is to put on the Apple Watch, and the last thing
they do is put it to charging. Because the resting-HR is updated throughout the
day and the initial value is often much higher than the last, it is important to
be consistent when the user wears the Apple Watch. Being consistent allows the
data being compared to a boundary to be as accurate as possible, minimizing the
chance of giving false alerts. This recommendation should be simple to adapt
as most people are used to wearing watches, and by charging on the nightstand,
the Apple Watch will be able to last the entire duration of the day.

6.1.2 Boundary Value Set By Healthcare Provider

To set the best calibrated boundary value for the user, it is recommended that
the user has used an Apple Watch device regularly for at least the last 7-14
days while consistently either on or off their beta-blocker medication for that
duration. By wearing the Apple Watch device consistently for 7-14 days, it is
easier to determine what boundary value the user should have, which determines
when they should be alerted.

If the user has just been prescribed beta-blockers but has been wearing
an Apple Watch device consistently, the user, with the collaboration of their
healthcare provider, can set a boundary between 4-7 BPM lower than their 7-14
day average.

If the user has been on a beta-blocker medication for the period while wearing
an Apple Watch device consistently, the user, with the collaboration of their
healthcare provider, can set a boundary between 4-7 BPM higher than their
7-14 days average.

69

The boundary will then be somewhere between the user’s HR value when on
and off the medicine, making sure the application will trigger an alert when the
user has forgotten their medicine. When setting a calibrated boundary value
with a healthcare provider, it can be wise to decrease the dynamic boundary
gap value to a small decimal number or turn it off. This is a precaution for
the boundary not to be dynamically over-compensated and end up outside the
patient’s HR scope, resulting in no alerts being triggered even when the user is
on their medicine. Alternatively the app my have a toggle for turning off the
dynamic boundary after a set amount of changes.

If the user sets the boundary value up without the help of a healthcare
provider, it can be recommended to set it to the average resting-HR value while
having a higher dynamic boundary gap. Every time the user receives a false
alert, the boundary value will adjust until the user no longer receives a false
alert. If the boundary value is 10-12 BPM above than their 7-14 day average,
the value is outside of the scope and should be reset to be re-calibrated.

6.1.3 Apple Watch Set-Up

The Apple Watch comes without special configuration, loaded with multiple
applications and features trying to interact with the users through notifications.
Because the application proposed in this thesis is not meant to be a distraction
for the user in their daily life, the change to an Apple Watch can be sudden for
someone who is not used to wearing a smart device. Various applications on
the Apple Watch dispatch multiple notifications during the day, which can from
time to time be very distracting. For the perfect scenario, it is recommended
to disable all types of notifications that the user is not interested in. Thus the
Apple Watch will not be a distraction to wear and the MedRem warnings will
be more noticeable.

The second reason it is recommended to make the Apple Watch less of a
distraction is that the Apple Watch functions as an HR and motion sensor,
providing resting-HR for the proposed application. The Apple Watch should
not be an obstacle for the user as the main purpose is to warn the user when
needed and not be a distraction otherwise.

6.1.4 iPhone Set-Up

It can be recommended to limit the number of applications allowed to dispatch
notifications to the user on the iPhone. The iPhone is the device that receives
notifications from the MedRem application. Having too many notifications ap-
pear constantly can make it difficult to notice the MedRem warning notification
if buried between other notifications. This limitation should be considered be-
cause the MedRem notifications need to grab the users attention.

In addition to limiting notifications, for the MedRem app to function prop-
erly, the user is required to have Apple’s Reminder app installed. This app is
installed on all iPhone devices by default, but it is also one of the default applica-
tions that the user can delete. Therefore it is important that the users have not
deleted the Reminder app, such that the MedRem app can schedule reminders.
These setup requirements imply that the device (app + watch + phone) ideally
should be set up together with a healthcare provider knowledgeable of these
aspects.

70

6.1.5 Keeping the Application in the Background

Because of a previously mentioned limitation in section 2.2.5, it is important
for the user to be aware that the application must be kept in the background
for it to work. Because the system may terminate the application, or if an
update terminates it or requires new permissions, the user will every now and
then be required to reopen the application to reauthorize permissions or run it
in the background. One can imagine that in a commercial setting, a reminder
to restart the app after a software update pushed by Apple will be sent to every
user from a central location.

6.1.6 Not Using Other Smart-Watches

Another previously mentioned limitation in section 2.2.5 is that multiple devices
can access the HealthKit store. If the user has multiple smart-watches or, for
example, has a sports watch used for running, golfing, hiking etc., the other
watch is also able to write resting heart rate values to the HealthKit store.
The result of having multiple data in the store is that the value read by the
application will be the average of those. For example, if the user has a Garmin
golf watch, which the user uses from time to time while playing golf, the resting
heart rate value will be altered every time the user synchronizes the Garmin
watch with their iPhone, as most of the Garmin watches do not synchronize
continuously. Also, if the user only wears the other device while performing
sports activities, the value is bound to be much higher than it is supposed to
because it has not had a chance to measure a proper resting-HR value. Only
devices with accelerometers which are able to determine resting-HR will affect
the application.

In other words, the use of another device in addition to wearing the Apple
Watch daily will confuse the proposed application in two particular ways:

• Extra resting-HR values will distort the Apple Watches value at arbitrary
days where the user synchronizes other values. This will result in highly
volatile day-to-day readings, making it difficult to determine a proper
average to base the alert boundary on.

• High resting-HR values from sports activities will ”sabotage” specific days
resting-HR values and possibly trigger the alert because of high values.

Therefore it is recommended when using the proposed app not to use any
other smart-watch. If the user has to use another watch that cannot be sub-
sidised with an Apple Watch application, the user must make sure the smart-
watch does not have access to write resting-HR values to the HealthKit store.

6.2 Future work

Throughout this thesis, there have been several observations to areas of im-
provement that can be made to the MedRem application. Even though the
application fulfils the set requirements, there are potential possibilities for fur-
ther developing this prototype into a finished product. A further developed
prototype could be used to perform a clinical study, which will be useful for

71

commercializing the application in the future. The sections below are proposi-
tions of future work which can aid in the continued development of this concept.

6.2.1 Beta-blocker Research

The next step to further improve the MedRem application would be to develop
it into a version aimed at actual patients. This will require further research
regarding the beta-blocker medication on how it affects the patients resting-HR.
The study should also find out specific differences to commonly prescribed beta-
blockers in the form of dosages, frequency of dosages and how long the effect of
a dosage lasts. This information will be valuable in the further configuration of
a threshold/boundary value or algorithm which can accommodate differences in
the beta-blockers and discover abnormalities.

6.2.2 Reminder to Wear Apple Watch

During user testing, a proposition was to have the possibility to be reminded
by the phone through a notification if the user was not wearing their Apple
Watch. Also, because the Apple Watch requires a PIN-code to be unlocked
when initially put on, the users would, from time to time, put it on but not
unlock it for several hours resulting in it not having access to write data to the
HealthKit store. If no data is written to the HealthKit store, the application
cannot detect changes in resting-HR and will be useless.

Unfortunately, Apple’s wrist detection API is not available to the public,
making it a bit more difficult than just requesting the API to get an answer on
whether the Apple Watch is currently being worn or not. Because the iPhone
alone can determine steps or movement, a proposed way to implement this
feature would be to check after a given point in time if the user has moved but
not registered any HR values. If the user has current HR values in the HealthKit
store, they are wearing the watch properly and have not gotten a resting-HR
value yet. However, if there are no current HR values from the watch, but there
are movement data on the phone, it can be interpreted as the user is out and
about but not wearing their watch or wearing it properly. This can be achieved
by registering a background observer query for steps, and every time it fires to
check if:

• The time of the day is reasonable to assume the user is awake.

• There is no resting-HR value stored for the day.

• The amount of steps has been updated/increased in the last hour.

• There is no current HR value stored for the last hour.

If these checks are fulfilled, the application should notify the user to remind
them to put on or wear their Apple Watch properly.

Considering geo-location data may also aid in assessing whether the user is
likely to be home or at work or another location where the user spends significant
amount of time and is likely to have the watch available, but not on. This may
also be timed to, e.g. 30 min after initiation of movement (as detected by the
phone) following night-time to ensure that the reminder is likely to be sent to
the user before the user leaves his/her place of residence.

72

6.2.3 CareKit & ResearchKit

To further develop this prototype into a fully commercial product for the health
sector, I, as the prototype developer, recommend implementing the app using
the CareKit and ResearchKit frameworks. CareKit is an open-source framework
developed by Apple to help to develop health-related apps. This framework
makes it simple to create custom health apps for specific needs of treatment,
progress, medicines, connect users with their care providers, etc. ResearchKit
is another Apple framework used to perform medical studies, simplifying the
distribution of applications and surveys to clinical subjects.

If the MedRem application was to be integrated with CareKit, it could sim-
plify connecting the patients with their care providers. Creating one application
for the user, which is to monitor, remind and alert them while integrating func-
tionality for the user to send their data directly to their care provider. The
care provider would then have the data needed to give their patients a proper
assessment without being there physically, also being aware of how often the
patients receive alerts.

Integrating ResearchKit into the application or creating a sibling application
with ResearchKit would give a potential benefit with regards to performing
clinical studies, surveys, retrieving data and receiving proper feedback on the
application. (Apple Inc. 2021c)

Looking back to Section 1.1.4: Wearable Heart Rate Monitors, we men-
tioned a study that compared different features of mHealth applications aimed
at changing a patients behaviour towards medical adherence (Donevant et al.
2018). Even though the study emphasized the differences between passive and
interactive features, the consensus of the article would tell that the applications
with the highest rate of significant outcomes were the ones who used a good
combination of both types of features. One example in the study was an ap-
plication that served as a mobile diary where the patients could log when they
took their medicine. This application also included SMS-reminders, though the
reminders were generic and not personalized to the patients real life data.

The CareKit framework provides many possibilities for various features to be
seamlessly implemented in the MedRem app. Seeing the outcomes of Donevant
et al.’s study, it can be recommended to further implement both passive and
interactive features by combining MedRem with CareKit functionality. The
combination would work as a specialized patient follow-up application that can
interact with the patient using customized and bespoke notifications regarding
their own real-life data while also providing other features such as an electronic
diary and uploading data to their healthcare provider.

6.2.4 Privacy and Security

If the application is to be developed and perhaps integrated with various health-
care systems, several factors must be accounted for regarding security. For the
MedRem application, the app only uses the users’ data that they willingly store
on the device. If a future version of the app were to relay the data or informa-
tion to different healthcare systems, it must comply with local data protection
regulations. These regulations differ between countries, meaning the application
must be developed for a set country specifically. For example, all Norwegian
patient data must be stored on servers in Norway and not in other countries. If

73

the app were to be developed for several countries, the app must be developed
differently security-wise to comply with the various regulations caused by the
geographical differences. Security is a costly process for medical research as it
is expensive to stay compliant with different laws.

6.2.5 Custom Watch Face or Complication

As mentioned in section 3.2.1, a possible functionality improvement was to im-
plement the use of complications. However, if we were to take it a step further,
we would create our own bespoke watch face for the users, making the applica-
tion communicate with the user more clearly through the Apple Watch instead
of the iPhone. This can be achieved by using Apple’s Watch Connectivity frame-
work, which is a framework allowing applications on iPhone and Apple Watch
to communicate with each other (Apple Inc. 2021p). This framework would
allow the MedRem application to update a complication on the Apple Watch.

Considering a scenario where the user wears the Apple Watch primarily
for the MedRem application, a bespoke watch face/complication would be more
useful for communication. Besides, it would declutter the Apple Watch interface
so that it is not excessive to the user. Therefore, using the Watch Connectivity
framework, the application can update the watch face/complication to display
certain data next to time. For example, having the Apple Watch display a
normal watch when the data is normal and giving it a look which grabs the
users attention if the data is above the boundary.

6.2.6 Onboarding

Because MedRem is a specialized application with a particular purpose, it is im-
portant that it is used and set up properly. The patient should be going through
the onboarding process with a healthcare provider, allowing the patient to un-
derstand how the application works and making the healthcare provider decide
on the different variables used in the application. An onboarding process is a
great way to help the patient and healthcare provider discover the application
and set it up correctly the first time the application is launched. This will
happen simultaneously as they are prompted with the different authorization
windows and alerts, making it a natural part of the first time set-up.

The onboarding screens can be a series of navigation views, having each view
link to the next, or be a flat list of pages with page control, allowing the patient
or healthcare provider to swipe between the pages. An example of the pages
can be the following:

1. Greeting page
A page showing a greeting that is simultaneous to the various authoriza-
tion pop-ups. This page should also tell the patient that they should be
in the presence of a healthcare provider when setting up the application
and not proceed without one.

2. Information page
A page briefly explaining who the app is designed for and what it does.

3. Set-up page
A page allowing the healthcare provider to plot in the patients’ bound-

74

ary threshold and configuration for the app such that the application is
finished set-up before the patient enters the actual application.

4. Disclaimer page
A page containing a simple disclaimer explaining that there are limitations
to the application and it does not guarantee correct warnings 100% of the
time.

After the patient and care provider has gone through these pages, they
should be directed to the main application. The onboarding process should not
be displayed again unless the user somehow manages to delete the applications
stored data. This can be implemented by storing a boolean variable in the
UserDefaults key store, telling if the application has gone through the onboard-
ing process before or not. Every time on launch, the application will display the
onboarding navigation views if the variable is not set.

Another addition to the onboarding can be an update-onboarding. It is
similar to the first onboarding, but only a simple page view tells the patient
what is new with the application after an update. This can be implemented
by storing the last version the user had an update-onboarding page shown, in
the UserDefaults repository. If the application suddenly has had an update, the
correct update-onboarding page should be displayed. The variable should be
updated when the patient dismisses the update-onboarding page.

6.2.7 UI Improvements

There have been discovered multiple areas of improvement regarding the user
interface of the MedRem app. This section will explain and propose solutions
or improvements to new and existing components making the user interface.

Logging

A partially implemented feature in the code is the ability to log when warnings
have been dispatched. It is implemented to the extent where it saves the warning
date objects to the UserDefaults key store under the key warningDates, but there
are no UI elements that use the data. To take full advantage of this data, a
page or component in the UI of the MedRem app should be made to display the
different occurrences of the warnings. The ability to see a more detailed history
of warnings can help care providers follow up on their patients.

Graphs

Currently, the UI only shows the last 7 days of resting-HR values. An improve-
ment to this would be to create a horizontally scrollable graph that allows the
user to see their data way past the seven days it currently displays. The statis-
tical collection query used can easily be modified to fetch all stored resting-HR
values, making the implementation of this feature only dependent on a View
component which can display the values in a user friendly and intuitive way.
It is secure to fetch and graph the resting-HR data in the app because we can
directly plot the data from the query and do not need to permanently store it.

75

Motivational Messages

The warning notifications dispatched by the application are very generic. There-
fore it was proposed to have the notification shuffle between motivating messages
to engage the user. For example, whenever a notification is dispatched, it can
say Adhering to your medical therapy will prolong your life! Your resting heart
rate is above your set threshold, have you remembered your medicine today?.
Different messages can attract the user’s attention more effectively and moti-
vate the user to take their medicine so that they are less likely to forget.

6.2.8 Family alert

The age group for the MedRem app is in the higher age span of adults. Therefore
in most cases, the users/patients have a caring family who would like to have an
insight into whether their parent is adhering to their medical therapy. It could
be beneficial to implement functionality for alerting close family or household
members whenever the app thinks the users have not taken their medicines.
This way, not only the application and a care provider can follow up with the
patient, but also the family close to the patient. On the other hand, this feature
would need extensive security measures and a thorough disclaimer considering
the increased risk of data leaks and confidentiality with regards to the patient.
For now, this proposed feature is only conceptual, as it would require more
research to determine the viability of it.

76

Bibliography

Apple Inc. (Feb. 2019). About the privacy and security of your health records.
url: https://support.apple.com/en-us/HT209519 (visited on 10/20/2020).

— (2020). About the HealthKit Framework. url: https://developer.apple.
com/documentation/healthkit/about_the_healthkit_framework (vis-
ited on 09/29/2020).

— (2021a). Asking Permission to Use Notifications. url: https://developer.
apple.com/documentation/usernotifications/asking_permission_

to_use_notifications (visited on 01/12/2021).
— (2021b). Authorizing Access to Health Data. url: https://developer.

apple.com/documentation/healthkit/authorizing_access_to_health_

data (visited on 01/12/2021).
— (2021c). CareKit. url: https://www.researchandcare.org/carekit/

(visited on 02/04/2021).
— (2021d). Complications. url: https://developer.apple.com/design/

human-interface-guidelines/watchos/overview/complications/ (vis-
ited on 01/11/2021).

— (2021e). Creating Events and Reminders. url: https://developer.apple.
com/documentation/eventkit/creating_events_and_reminders (visited
on 01/22/2021).

— (2021f). Dark Mode. url: https://developer.apple.com/design/human-
interface - guidelines / ios / visual - design / dark - mode (visited on
02/23/2021).

— (2021g). EventKit. url: https://developer.apple.com/documentation/
eventkit (visited on 01/22/2021).

— (2021h). Executing Observer Queries. url: https://developer.apple.

com/documentation/healthkit/hkobserverquery/executing_observer_

queries (visited on 01/12/2021).
— (2021i). Human Interface Guidelines. url: https://developer.apple.

com/design/human-interface-guidelines/ (visited on 02/23/2021).
— (n.d.). Pushing Background Updates to Your App. url: https://developer.

apple.com/documentation/usernotifications/setting_up_a_remote_

notification_server/pushing_background_updates_to_your_app.
— (2021j). Reading Data from HealthKit. url: https://developer.apple.

com/documentation/healthkit/reading_data_from_healthkit (visited
on 01/11/2021).

— (2021k). Scheduling a Notification Locally from Your App. url: https://
developer.apple.com/documentation/usernotifications/scheduling_

a_notification_locally_from_your_app (visited on 01/13/2021).

77

Apple Inc. (2021l). Swift. url: https://developer.apple.com/swift/ (visited
on 02/04/2021).

— (2021m). SwiftUI. url: https://developer.apple.com/xcode/swiftui/
(visited on 02/05/2021).

— (2021n). TestFlight. url: https://developer.apple.com/testflight/
(visited on 02/08/2021).

— (2021o). Updating Your App with Background App Refresh. url: https:

//developer.apple.com/documentation/uikit/app_and_environment/

scenes/preparing_your_ui_to_run_in_the_background/updating_

your_app_with_background_app_refresh (visited on 01/11/2021).
— (2021p). Watch Connectivity. url: https://developer.apple.com/documentation/

watchconnectivity (visited on 02/04/2021).
— (2021q). WatchKit. url: https://developer.apple.com/documentation/

watchkit (visited on 04/05/2021).
— (2021r). Xcode. url: https://developer.apple.com/xcode/ (visited on

02/04/2021).
Corletto, Anna et al. (2018). “Beta blockers and chronic heart failure patients:

prognostic impact of a dose targeted beta blocker therapy vs. heart rate
targeted strategy”. In: Clinical Research in Cardiology 107.11, pp. 1040–
1049. doi: 10.1007/s00392-018-1277-4.

Curry, David (Mar. 2021). Apple Statistics (2021). url: https://www.businessofapps.
com/data/apple-statistics/ (visited on 04/22/2021).

Donevant, Sara Belle et al. (2018). “Exploring app features with outcomes in
mHealth studies involving chronic respiratory diseases, diabetes, and hyper-
tension: a targeted exploration of the literature”. In: Journal of the Amer-
ican Medical Informatics Association 25.10, pp. 1407–1418. doi: 10.1093/
jamia/ocy104.

Dunlay, Shannon M, Veronique Lee Roger, and Margaret May Redfield (Oct.
2017). Epidemiology of heart failure with preserved ejection fraction. url:
https://mayoclinic.pure.elsevier.com/en/publications/epidemiology-

of-heart-failure-with-preserved-ejection-fraction.
Hein, Andreas et al. (2019). “Digital platform ecosystems”. In: Electronic Mar-

kets 30.1, pp. 87–98. doi: 10.1007/s12525-019-00377-4.
Kharpal, Arjun (Feb. 2020). Apple Watch outsold the entire Swiss watch indus-

try in 2019. url: https://www.cnbc.com/2020/02/06/apple-watch-
outsold-the-entire-swiss-watch-industry-in-2019.html#.

Knott, Matthew (2014). Beginning Xcode. Apress.
Kocianova, Eva et al. (Dec. 2017). “Heart rate is a useful marker of adherence to

beta-blocker treatment in hypertension”. In: Blood Pressure 26.5, pp. 311–
318. doi: 10.1080/08037051.2017.1346458.

Kotecha, Dipak et al. (June 2017). Heart Rate and Rhythm and the Benefit of
Beta-Blockers in Patients With Heart Failure. url: https://www.ncbi.
nlm.nih.gov/pubmed/28467883.

Ma, Yuxin and Stephen W. Harmon (2009). “A Case Study of Design-Based
Research for Creating a Vision Prototype of a Technology-Based Innova-
tive Learning Environment”. English. In: Journal of Interactive Learning
Research 20.1. Copyright - Copyright Association for the Advancement of
Computing in Education 2009; Document feature - Diagrams; ; Last up-
dated - 2010-06-08, pp. 75–93. url: https://www-proquest-com.ezproxy.

78

uio.no/scholarly-journals/case-study-design-based-research-

creating-vision/docview/211211726/se-2?accountid=14699.
Osterberg, Lars and Terrence Blaschke (2005). “Adherence to Medication”.

In: New England Journal of Medicine 353.5. PMID: 16079372, pp. 487–
497. doi: 10.1056/NEJMra050100. eprint: https://doi.org/10.1056/
NEJMra050100. url: https://doi.org/10.1056/NEJMra050100.

Ouwerkerk, W et al. (June 2017). Determinants and clinical outcome of up-
titration of ACE-inhibitors and beta-blockers in patients with heart failure:
a prospective European study. url: https://www.ncbi.nlm.nih.gov/

pubmed/28329163.
Perez, Marco V. et al. (2019). “Large-Scale Assessment of a Smartwatch to

Identify Atrial Fibrillation”. In: New England Journal of Medicine 381.20,
pp. 1909–1917. doi: 10.1056/nejmoa1901183.

Reeves, Thomas C. (2000). “Enhancing the Worth of Instructional Technology
Research through ’Design Experiments’ and Other Development Research
Strategies”. In: Annual Meeting of the American Educational Research As-
sociation. url: http://it.coe.uga.edu/~treeves/AERA2000Reeves.pdf.

Scarsella, Anothony et al. (Jan. 2021). Smartphone Shipments Return to Posi-
tive Growth in the Fourth Quarter Driven by Record Performance by Apple,
According to IDC. url: https://www.idc.com/getdoc.jsp?containerId=
prUS47410621.

Shcherbina, Anna et al. (May 2017). Accuracy in Wrist-Worn, Sensor-Based
Measurements of Heart Rate and Energy Expenditure in a Diverse Cohort.
url: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5491979/.

Wald, David S., Shahena Butt, and Jonathan P. Bestwick (2015). “One-way
Versus Two-way Text Messaging on Improving Medication Adherence: Meta-
analysis of Randomized Trials”. In: The American Journal of Medicine 128.10.
doi: 10.1016/j.amjmed.2015.05.035.

Wallen, Matthew P. et al. (2016). “Accuracy of Heart Rate Watches: Implica-
tions for Weight Management”. In: Plos One 11.5. doi: 10.1371/journal.
pone.0154420.

Wang, Robert et al. (Jan. 2017). “Accuracy of Wrist-Worn Heart Rate Moni-
tors”. In: JAMA Cardiology 2.1, p. 104. doi: 10.1001/jamacardio.2016.
3340.

79

80

Appendices

81

Appendix A

Source Codes

The complete source codes with XCode project files have been uploaded to
different repositories on GitHub, including a brief README taken from the
development chapter.

A.1 MedRem

https://github.com/Jaanesen/Medicine-Reminder

A.2 Resting Heart Rate App

https://github.com/Jaanesen/Resting-Heart-Rate-App

A.3 Notification App

https://github.com/Jaanesen/Notification-App

A.4 Background App

https://github.com/Jaanesen/Background-App

83

84

Appendix B

Interview Guide

Interview Guide - MedRem app

Leading questions

1. How old are you?

2. What is your profession/work?

3. Which iPhone version are you using?

4. For how many years have you used iPhone?

5. Have you before this user-test used an Apple Watch?

Main questions

1. For how long did you test the application?

2. At what time of day do you start and stop wearing the Apple Watch?

From you wake up till you go to bed?

3. How did you test the application? How did you make the application give
different results?

Changing boundary value?, dynamic value, answering warnings dif-
ferently?

4. What do you think of the application as a whole?

5. Is the application working as you would have expected?

Is it something not working as you expected?

Is there any functionality you think is missing?

6. Do you think the application was easy to use? Why/why not?

7. What do you think about the applications appearance?

How important is an apps appearance for you? Why?

85

8. Have you had a tendency to stop wearing the Apple Watch for a larger
amount of time during the day?

Why? Annoying or uncomfortable?

If so: Do you think it has had an impact on the results?

9. Have you received warnings when you are supposed to?

Do you notice the warnings immediately, or after some time?

10. Have you experienced receiving warnings when you shouldn’t have?

11. Have you asked to receive later reminders?

Have this worked as expected?

Finishing questions

1. How usable do you think the application is? Does it cover a need?

2. If you were in the applications user-group and had forgotten to take your
medicine, do you think the application would have helped reminding you?
(Not in a test situation, but real life)

3. What do you think is best about the application?

4. Do you think there is something not working as good as it should have in
the application? What do you think can be done to improve it?

5. Do you have any improvements you want to bring to the application?

6. How likely would you be to recommend the application to someone who
is in the user-group, if this was not a prototype?

86

Appendix C

SPARK Application

To potentially receive funding for further development of the application in this
thesis, an application was submitted to SPARK Norway, a two-year innovation
programme. Unfortunately, the project was not selected. However, we received
valuable feedback considering that the application was submitted during the
app development and not after evaluation. Following is the written feedback
received.

87

UiO:Life Science
Postal addr.: PO Box 1078 Blindern, 0316
OSLO
Visiting addr.: Sogn Arena, Klaus Torgårds
vei 3, first floor, 0372 Oslo

postmottak@lifescience.uio.no
www.uio.no/life-science
Org. no.: 971 035 854

Your application for SPARK Norway

We refer to your application for SPARK Norway program Round 4, 2021.
As previously informed your project, WatchBeta-Blockers: Smart watch app for increasing beta-blocker
adherence, was not selected in this round, but we want to give you a feedback from the evaluation that we hope
will be valuable for you to develop your project further.

Feedback from the evaluation:

 The project is addressing an unmet need within health-related life sciences

 It is a strong team and an interesting project with a novel approach that may have potential

However, it is at a very early stage and the following comments/concerns/questions were raised in the
evaluation process:

- Medication adherence is a major problem. Simple solutions like this could improve treatment benefit
at low cost. Other smart phone-based adherence systems use sensors to detect pill taking motion/box
opening or proximity to dispenser unit - not seen HR based approach elsewhere.

- Good idea, but unsure about ability of technology to detect actual medication use (beta blocker
response is individual and dose-dependent

- Most medicines are slow release and have relatively long half-life - when is detection possible (time
frame)?

- HF patients are slowly titrated - what is the baseline?
- Norwegian registry data shows that patients with high HR often use higher doses of betablockers - ie.

not a direct HR/BB relationship)
- IP not really discussed. The idea is relatively simple to replicate unless dose detection algorithm is

unique and with high accuracy
- Team is good but small - seems to need more medical analytics, signal analysis, and software

development resources. Detection of med use needs more proof
- The project has a useful and ambitious goal, at the same time a lot of aspects are not considered in the

project: HR measurements are usually quite noisy and, thus, a clear and robust strategy on how to
avoid false positives is required. Moreover, the project aims to perform several clinical trials over a
two-year period, there is a very limited proof of concept of the technology

- The feasibility of the project is questionable as it requires first and foremost a robust study on methods
and hypothesis

- There might be problems in collecting data from Apple devices and thus the aspects of privacy and
GDPR should be also studied in detail

Jens Kaasbøll

Date: March 18th 2021

 2

We want to thank you again for your interest in SPARK Norway. There will be a new call from SPARK Norway

announced in the fall. We welcome you to participate in our monthly educational meetings and hope that they

will be useful for you in your future work. We announce all our activities on our web page www.uio.no/life-

science/spark.

We wish you good luck in your continuous innovation endeavor!

Sincerely yours,

Morten Egeberg

Administrative leader UiO:Life Science
& leader of SPARK Norway

