
 Design Considerations
 for Knowledge Boundary Resources

 Onboarding App Developers in Platform Ecosystems

 A Design Science Research Study

 Gwendolyn Borchsenius & Alexander Fife

 Thesis submitted for the degree
 Master of Informatics

 60 credits

 Department of Informatics
 The faculty of Mathematics and Natural Sciences

 University of Oslo

 Spring 2022

 Design Considerations
 for Knowledge Boundary Resources

 Onboarding App Developers in Platform Ecosystems

 A Design Science Research Study

 Gwendolyn Borchsenius & Alexander Fife
 2022

 © Gwendolyn Borchsenius & Alexander Fife

 2022

 Design Considerations for Knowledge Boundary Resources

 http://www.duo.uio.no

 Printed: Reprosentralen, University of Oslo

http://www.duo.uio.no/

 Abstract
 Many of today's most successful software companies have grown to global prominence

 through a platform strategy. A platform strategy involves attracting a versatile community of

 third-party complementors to develop applications on their platform. However, when the

 development of software is moved to third-parties, the platform owner must transfer the

 necessary knowledge to the complementors, enabling them to develop applications on the

 platform. This is particularly challenging in software platforms because the necessary

 knowledge is often highly technical and complementors are heterogeneous, have varied aims

 and are often geographically dispersed. Therefore, creating an effective and scalable

 onboarding process is important to maximise the potential for third-party contribution in a

 platform ecosystem. Prior research conceptualises knowledge boundary resources (KBRs) as

 the means for platform owners to transfer knowledge to complementors. However, there is

 limited knowledge on how to design KBRs, particularly in the important context of

 onboarding.

 This thesis extends current research on software platforms and KBRs by addressing the

 following research question: How can KBRs be designed to onboard complementors in a

 software platform ecosystem? The question is examined through a 1,5 year-long engaged

 design science research study conducted in collaboration with the platform owner of the

 software platform DHIS2. The study involved the development of a comprehensive online

 course which was used by 137 students as part of their onboarding to the DHIS2 platform.

 Through the design, development and evaluation of the course and other DHIS2 KBRs, we

 identify five design considerations that can guide platform owners when designing KBRs for

 onboarding complementors: 1) Designing KBRs for comprehensiveness and specificity

 2) Broadcasting tutorials, guides, references and explanations, 3) Performing boundary

 spanning activities, 4) Provisioning interactive broadcasting KBRs and 5) Providing

 non-platform specific knowledge. These design considerations contribute to practise aiming

 to guide software platform owners in the design of KBRs to onboard complementors. We also

 contribute to research on software platforms by extending current knowledge on KBRs.

 Keywords: software platform ecosystems, software platforms, boundary resources,

 knowledge boundary resources, knowledge transfer, onboarding

 Acknowledgements
 First and foremost, we would like to express our deepest gratitude to our supervisor, Magnus

 Li, for helping us with this project from start to finish. Without you, the thesis would not be

 near its final results. Your encouragement, constructive feedback and our endless discussions

 helped us stay motivated while enjoying the research process.

 Second, we would like to thank all participants in our research project. The discussions with

 you provided us with valuable insights that were essential for the thesis. We would like to

 thank members of the DHIS2 core team for participating in our research project and taking

 time for us despite their busy schedule. In addition, we would like to thank the DHIS2 design

 lab and its members for engaging conversations and lunches with lots of laughter throughout

 the last two years.

 Finally, we would like to thank our family and friends for their love and support. Gwendolyn

 möchte gerne ihrer Familie, ihren Freunden und Aidan danken für die Aufmunterungen und

 die Unterstützung. Alexander vil takke familien sin, som har alltid vært der for han, og gutta.

 Table of Contents
 1. Introduction 1

 2. Literature Review 5
 2.1 Platform theory 5
 2.2 Kernel theory 11

 2.2.1 Diátaxis 11
 2.2.2 Comprehensive and specific KBRs 15

 2.3 Summary 17

 3. Research Approach 18
 3.1 Case description 18

 3.1.1 HISP and DHIS2 18
 3.1.2 DHIS2 application development 20
 3.1.3 DHIS2 Design Lab 21
 3.1.4. Development in Platform Ecosystem 22
 3.1.5 Using a university course as a laboratory 23

 3.2 Research paradigm 24
 3.3 Methodology: Engaged Design Science Research 25
 3.4 Research process 26
 3.5 Data collection 28

 3.5.1 Problem identification and motivation 29
 3.5.2 Demonstration 30
 3.5.3 Evaluation 31
 3.5.4 Summary of data collected 33

 3.6 Data analysis 34
 3.6.1 Preliminary study 35
 3.6.2 Evaluation of the artefact 36
 3.6.3 Developing design considerations 37

 3.7 Ethical considerations 39

 4. Existing Artefact and Challenges 40
 4.1 DHIS2 boundary resources 40

 4.1.1 DHIS2 API 41
 4.1.2 Data Queries 42
 4.1.3 UI component library 43
 4.1.4 Datastore and Datastore Manager 44

 4.2 DHIS2 knowledge boundary resources 45
 4.2.1 DHIS2 App Course 45
 4.2.2 DHIS2 references 47

 4.2.3 Storybook 48
 4.2.4 Data Query Playground 49

 4.3 Challenges identified in preliminary study 50
 4.3.1 Limited non-platform specific knowledge 51
 4.3.2 Complicated platform 51
 4.3.3 Insufficient DHIS2 KBRs 52
 4.3.4 Lack of assistance 52

 5. Artefact Description 54
 5.1 Curriculum design 54
 5.2 Non-platform specific KBRs 55

 5.2.1 React module 56
 5.2.2 React and API Assignment 57

 5.3 Platform-specific KBRs 58
 5.3.1 DHIS2 Tutorial 59
 5.3.2 DHIS2 How-to-guides 62

 5.4 Boundary spanning activities 63
 5.5 Chapter summary 64

 6. Artefact Evaluation 65
 6.1 Students behaviour 66
 6.2 Curriculum design 69
 6.3 Non-platform specific KBRs 70
 6.4 Platform specific KBRs 71

 6.4.1 DHIS2 Tutorial 72
 6.4.2 DHIS2 How-to-guides 74

 6.5 Boundary spanning activities 76
 6.6 Interactive broadcasted KBRs 77

 7. Design considerations 80
 7.1 Designing KBRs for comprehensiveness and specificity 82
 7.2 Broadcasting tutorials, guides, references and explanations 84
 7.3 Performing boundary spanning activities 86
 7.4 Provisioning interactive broadcasting KBRs 88
 7.5 Providing non-platform specific knowledge 90

 8. Contributions and discussion 92
 8.1 Contributions to practice 92
 8.2 Contributions to research 93

 8.2.1 Comprehensiveness and specificity 93
 8.2.2 Boundary spanning as mechanism for improving broadcasting KBRs 95
 8.2.3 Interactive broadcasting KBRs 96

 8.3 Limitations 97

 8.4 Future research 99

 9. Conclusion 100

 10. References 101

 List of Images

 3.1 DHIS2 Dashboard 19

 3.2 Countries that implemented DHIS2 19

 3.3 DHIS2 App Hub 20

 3.4 Example survey question 30

 3.5 Thematic analysis 37

 4.1 Comparison between an API query and a Data Query 42

 4.2 Examples of DHIS2 UI components 43

 4.3 Datastore Manager 44

 4.4 DHIS2 App Course modules 46

 4.5 Example of DHIS2 App course 46

 4.6 DHIS2 References 47

 4.7 A button component in Storybook 48

 4.8 Data Query and response from the DHIS2 API 49

 5.1 React section on DHIS2 App Course 56

 5.2 Example solution of React and API assignment 57

 5.3 Tutorial and How-to guides sections 58

 5.4 The DHIS2 tutorial on DHIS2 App Course 59

 5.5 DHIS2 Tutorial browse component 61

 5.6 DHIS2 Tutorial insert component 61

 5.7 Datastore how-to-guide 63

 List of Tables

 2.1 Summary the Diátaxis documentation quadrants 14

 2.2 Summary of concepts 17

 3.1 Evaluation criteria 31

 3.2 Summary of all data collected throughout the project 33

 3.3 Example of theme from preliminary study 35

 4.1 Summary of identified challenges 50

 5.1 Proposed solutions to challenges 64

 7.1 Design considerations 81

 List of Figures

 2.1 Complementors usage of KBRs on a platform 9

 2.2 The Diataxis framework. 12

 3.1 The onboarding of students 23

 3.2 Design science research process 26

 3.3 A timeline of our project 28

 3.4 Deductive and inductive elements of data analysis 35

 4.1 A subset of the DHIS2 data model 41

 6.1 The relationship between the KBRs and boundary resources 65

 Acronyms

 API Application Programming Interface

 BR Boundary Resources

 CSS Cascading Style Sheets

 DHIS2 District Health Information System

 DQP Data Query Playground

 DSR Design Science Research

 HISP Health Information Systems Programme

 HTML Hypertext Markup Language

 HTTP Hypertext Transfer Protocol

 KBR Knowledge Boundary Resource

 KBRs Knowledge Boundary Resources

 PDF Portable Document Format

 SDK Software Development Kit

 UI User Interface

 UiO University of Oslo

 UNIX Uniplexed Information and Computing System

 1. Introduction
 Platform ecosystems can be described as multi-sided networks where a platform owner

 “opens” the platform and encourages third–parties to develop complementary products and

 services on top of the platform (Tiwana, 2013; Ghazawneh & Henfridsson, 2013; Cozzolino,

 Corbo & Aversa, 2021). Such a platform strategy underpins the idea that a platform’s value

 can benefit from attracting a versatile community of third-party developers (Constantinides et

 al., 2018). Since platform ecosystems are subject to network effects, every additional

 complementor brings value to the existing network of complementors and end-users (Tiwana,

 2013) . Many of today's largest platforms such as Microsoft, Oracle, Google and Amazon

 have benefitted from this approach. This thesis focuses on software platform ecosystems

 specifically. A software platform is “an extensible software-based system that provides the

 core functionality shared by “apps” that interoperate with it, and the interfaces through which

 they interoperate” (Tiwana, 2013, p. 5). Third-party developers use these interfaces to

 develop applications and extend the platform’s functionality. Since third-party developers

 complement the existing core functionality with add-on functionality, we refer to them as

 complementors. The platform interfaces are often referred to as boundary resources in

 platform literature (Ghazawneh & Henfridsson, 2013). Examples of platform boundary

 resources include APIs, SDKs and end-user licence agreements.

 Because a platform strategy moves the application development from a single firm to

 multiple external complementors, the platform owners need to provide complementors with

 the required knowledge about the platform to develop applications (Kauschinger et al., 2021).

 Specifically, platform owners need to furnish complementors with knowledge about how to

 “access, combine and extend platform functionality in order to develop add-on products”

 (Foerderer et al., 2019, p. 120). Existing research has conceptualised knowledge boundary

 resources (KBRs) as the “objects and activities employed by platform owners to overcome

 knowledge boundaries and enable effective product development outcomes” (Foerderer et al.,

 2019, p. 125). Through provisioning KBRs, platform owners can transfer the required

 knowledge to complementors. If the complementors are not provided with sufficient

 knowledge on how to use the boundary resources, the successful complementor contribution

 is likely to be endangered (Foerderer et al., 2019). KBRs are particularly important when new

 complementors join a platform ecosystem as they have no prior experience or knowledge

 1

 about the platform. We refer to the process complementors encounter when they acquire

 platform-specific knowledge to build a custom application on a platform as onboarding. Once

 they successfully completed their application by utilising different BRs and KBRs, they have

 been onboarded to a platform. Because a platform relies on acquiring an ecosystem of

 complementors who develop complements, the onboarding of new complementors is

 essential (Engert, 2022), especially in the early stages of the platform lifecycle.

 Therefore, creating an effective onboarding process is important for software platforms in

 order to maximise the potential for third-party contribution in a platform ecosystem.

 However, onboarding new complementors in a platform ecosystem can be challenging for

 platform owners for several reasons. First, platform ecosystems commonly include a large

 network of participating complementors (Foerderer et al., 2019) and the onboarding must

 scale to many, often geographically dispersed, complementors. It is hence not feasible for the

 platform owner to interact with every individual complementor through personal

 relationships (Huber et al., 2017). Second, these complementors are heterogeneous with

 different interests, actions, competencies and goals (Eaton et al., 2015, Yoo et al., 2010).

 Finally, the technical knowledge required for developing applications is often specialised and

 complex, increasing the difficulty of transferring knowledge to complementors. (Foerderer et

 al., 2019; Foerderer et al., 2014).

 While existing research has pointed out the importance of facilitating complementors in their

 development work (Sarker et al., 2012) by transferring required knowledge (Foerderer et al.,

 2014.), the question of how platform owners can furnish the complementors with the required

 application development-related knowledge remains largely unaddressed. Although Foerderer

 et al. (2019) conceptualised KBRs as a way to reduce knowledge boundaries between the

 platform owner and complementors, existing research has not yet examined how such KBRs

 should be designed. In this thesis, we extend existing research on KBRs by examining how

 KBRs can be designed to onboard complementors and answer the following research

 question: How can KBRs be designed to onboard complementors in a software platform

 ecosystem?

 2

 To answer this research question we conducted an engaged design science research study in

 collaboration with the platform owners of the health management information system

 platform DHIS2 (District Health Information Software). Informed by the practitioner's

 framework “Diátaxis” (Procida, 2017) for structuring technical documentation, we design

 and develop the comprehensive online course “DHIS2 App Course” that aims to bring a

 complementor with no experience in web development to being able to build an application

 on DHIS2. We introduce the artefact to the university course “Development in Platform

 ecosystem” and evaluate how it and the other DHIS2 KBRs onboarded 137 students to

 application development on DHIS2. Through the design, development and evaluation of the

 course and other DHIS2 KBRs, we identify five design considerations; 1) Designing KBRs

 for comprehensiveness and specificity 2) Broadcasting tutorials, guides, references and

 explanations, 3) Performing boundary spanning activities, 4) Provisioning interactive

 broadcasted KBRs and 5) Providing non-platform specific knowledge. These design

 considerations contribute to practise by guiding software platform owners in the design of

 KBRs to onboard complementors. We also contribute to academic research by extending

 current knowledge on KBRs. Concretely, we identify boundary spanning as a mechanism for

 improving KBRs and develop the concepts of comprehensiveness, specificity and interactive

 broadcasting KBRs. We also outline a set of avenues for further research.

 3

 The rest of this thesis is structured as follows; In the Literature Review we describe relevant

 existing academic literature and theoretical constructs that our thesis builds off. We also

 introduce the kernel theory Diátaxis which informed the design of our innovative artefact.

 Then, in the Research Approach chapter, we provide a detailed case description of the

 enterprise software ecosystem DHIS2 that was the focus of this thesis. We present the

 selected methodology, including the used methods for data collection and data analysis.

 In the chapter Existing artefact and challenges we give a detailed description of the existing

 artefact before our intervention, including the boundary resources and KBRs which are

 necessary for understanding the artefact. We then present some challenges that previously

 hindered the successful onboarding of complementors to the DHIS2 platform.

 This is followed by the chapter Artefact description where we explain the changes made to

 the artefact. We discuss how these changes address the challenges identified in our

 preliminary study and how our kernel theory has informed the design of the artefact.

 In the Artefact Evaluation chapter, we present our findings from evaluating our artefact

 based on a set of predefined evaluation criterias. The presented findings emerge both from

 observing the artefact in the field and evaluating if and how well the artefact solved the

 earlier identified challenges.

 Thereafter, in the chapter Design considerations we present five design considerations that

 can guide platform owners in designing KBRs for onboarding complementors in a software

 platform ecosystem.

 We conclude with a discussion of limitations, directions for future research and a summary of

 the study’s key contribution in the Discussion chapter

 4

 2. Literature Review

 In this chapter, we draw upon existing research to position our work in relation to other

 research and introduce the theoretical foundation we expand upon in this thesis. Following

 this, we introduce the practitioner's framework Diátaxis which guided the design and

 development of the “DHIS2 App Course” online course. We also introduce the concepts of

 comprehensiveness and specificity as two important attributes of KBRs.

 2.1 Platform theory

 In recent years, there has been a significant expansion of digital platforms. Many of today's

 largest and most successful companies, such as Apple, Facebook, Amazon and Google, have

 benefitted from a platform strategy. A digital platform describes a technological system that

 acts as a foundation upon which other firms can develop complementary products,

 technologies or services (Yoo et al., 2012). Digital platforms can be seen as multi-sided

 markets because they enable different platform participants to interact with each other.

 Further, digital platforms are exposed to network effects that describe how the value of the

 market increases as the number of actors increases (Tiwana, 2013). For example, the 1 billion

 iOS users benefit strongly from the 2.22 million apps available on the iOS App Store. A great

 variety of complementary apps can satisfy a large user base and attract more users, attracting

 even more complementors to develop apps for the ecosystem. These self-reinforcing

 processes, once triggered, can help platform owners to grow their platform ecosystem.

 Therefore, motivating complementors to join the platform ecosystem, should therefore be a

 high priority for platform owners to benefit from these network effects. There are different

 types of digital platforms, we focus, however, on innovation platforms, also called software

 platforms. Software platforms are emerging as a dominant model for software development

 (Tiwana, 2013). A software platform is “an extensible software-based system that provides

 the core functionality shared by “apps” that interoperate with it, and the interfaces through

 which they interoperate” (Tiwana, 2013, p. 5). Thus, the software platform serves as the

 foundation upon which outside parties (complementors) can build complementary products or

 services.

 5

 In software platforms, value and innovation are derived by co-creating products and services

 with complementors (Evans & Gawer, 2016, Hein et al., 2019, Pershina et al., 2019). Such a

 platform strategy underlies the idea that a platform’s value can benefit from a versatile

 community of complementors that develop software on top of the core functionality (Tiwana,

 2013, Tiwana et al., 2010).

 Software platforms do not stand alone but are instead embedded into their surrounding

 ecosystem which includes platform participants and their interactions with each other

 (Constantinides et. al, 2018). Typically, an ecosystem has a relatively stable platform core and

 a set of complementary subsystems such as third-party applications (Baldwin and Woodard,

 2008). The platform core provides the core functionality and the interfaces through which the

 subsystems operate with the platform (Tiwana, 2013). Interfaces give access to the platform

 by allowing the apps to interact, operate and communicate with the platform (Tiwana, 2013).

 Apps are add-on software that extends the platform's functionality (Tiwana, 2013). A broad

 variety of different apps make a platform ecosystem functionally more desirable to its

 end-users. By separating these different subsystems, complementors can develop and

 integrate modules without extensive knowledge of the other subsystems in the ecosystem

 allowing for versatility and scalability of new modules (Tiwana et al., 2010). In addition to

 the different components, there are several platform participants that serve their roles in the

 platform ecosystem. The platform owners are primarily responsible for the platform

 governance and maintenance of the core functionality. Complementors build complementary

 software on top of the platform core. Finally, end-users interact with the platform by using

 the apps. Summed up, platform ecosystems can be seen as a complex socio-technical

 information system that facilitates interaction between various subsystems and platform

 participants. It also allows the exchange and distribution of information, functional resources

 and/or services between the platform owner, complementors and end-users. Compared to

 traditional companies, there is no single controlling authority and no clear hierarchical

 structures in platform ecosystems. Consequently, the platform owner only has partial control

 over the app-development processes. This has implications for the governance of the platform

 ecosystem. The goal of governance should therefore be to orchestrate complementors rather

 than controlling them in a hierarchical command-and-control structure found in traditional

 organisations (Evans & Gawer, 2016; Tiwana et al., 2010).

 6

 In order for platform owners to cultivate a software platform ecosystem, their focus must

 shift from developing applications directly to providing resources that third-party developers

 use to build applications (Ghazawneh & Henfridsson , 2013; Tiwana, 2013). These platform

 resources are shared with complementors through interfaces known as boundary resources

 i.e. “software tools and regulations that serve as the interface for the arm’s-length relationship

 between the platform owner and the application developer” (Ghazawneh & Henfridsson,

 2013, p. 174). Bianco et. al. (2014) describe technical boundary resources as boundary

 resources that are used by the applications directly or assist in the development of them. In

 software platforms, technical boundary resources typically consist of a software development

 kit (SDK) and a multitude of related APIs (Bianco et. al., 2014; Ghazawneh & Henfridsson,

 2013). Technical boundary resources create design affordances that enable complementors to

 develop complements in order to serve their target market (von Hippel & Katz, 2002; Hein,

 2019). For instance, when Apple added GPS to the iPhone, complementors could build new

 applications by embedding the GPS into their market context. This enabled a wide variety of

 innovative applications like Google Maps, Pokemon Go, Uber and other applications.

 Boundary resources can also take the form of guidelines and regulations that affect the

 resulting applications, e.g. licensing agreements, design systems and the terms of service

 (Ghazawneh & Henfridsson, 2013; Engert et. al. 2022). However, these types of boundary

 resources which are more related to governance are not the focus of this thesis and when we

 refer to boundary resources we refer to technical boundary resources.

 As the locus of application development is moved towards complementors, platform

 strategies inherently impose knowledge boundaries between the platform owner and platform

 complementors (Foerderer et al., 2019). Foerderer et al. (2019) identified that there are three

 technological characteristics of platforms that influence the knowledge boundary between

 platform owners and complementors; functional extent, interface design, and evolutionary

 dynamics. Functional extent refers to the “degree and depth of core functionality that a

 platform offers for reuse and recombination” (Foerderer et al. 2019, p. 129). If there is more

 functionality, and it is more complex, more knowledge must be transferred to the

 complementor and the knowledge boundary is broadened. Interface design refers to the

 specific implementation details of the boundary resources. For instance, if a platform's

 interfaces are based on widely used standards, complementors may have prior experience or

 can rely on other sources of knowledge and the resulting knowledge boundaries are lessened.

 7

 Alternatively, interfaces can be designed sub-optimally, which increases the amount of

 knowledge complementors require thus broadening the knowledge boundary. Finally,

 evolutionary dynamics refers to how much the platform and its boundary resources change

 over time. When platform boundary resources change, complementors require up-to-date

 knowledge and knowledge boundaries emerge. Regardless of which cause, if the knowledge

 boundaries are left unaddressed, they can pose obstacles to successful platform contribution.

 Overcoming these knowledge boundaries is therefore essential for the success of a platform

 strategy (Foerderer et al., 2019). Transferring knowledge about how to access and use the

 boundary resources becomes crucial to ensure a symbiotic relationship between

 complementor and platform owner.

 Existing research has conceptualised knowledge boundary resources (KBRs) as the “objects

 and activities employed by platform owners in order to overcome knowledge boundaries and

 enable effective product development outcomes” (Foerderer et al., 2019 p. 125). Importantly,

 this conceptualisation contains a distinction between boundary objects and boundary

 spanners. Boundary objects are “artefacts that are plastic enough to adapt to local needs and

 constraints of the several parties employing them, yet robust enough to maintain a common

 identity across sites” (Star & Griesemer, 1989, p. 393). In simpler terms, they are

 technology-based objects which allow communication and coordination between actors

 across knowledge boundaries, for example textbooks, websites, training videos and

 whitepapers. Boundary spanners are human resources employed “to gather information from

 and transmit information to several external domains” (Tushman, 1977, p. 587). Examples of

 boundary spanners are account managers, customer success managers and help desk

 employees. Boundary spanners facilitate boundary spanning activities by e.g. holding

 workshops, answering support tickets, participating in informal conversations, and teaching

 about the platform. A simplified relationship between complementors and KBRs is illustrated

 in the figure below (see Figure 2.1). As a complementor seeks to develop applications on top

 of the platform, they utilise knowledge boundary resources which transfer knowledge about

 the platforms’ boundary resources. The KBRs can consist of both boundary spanners and

 boundary objects.

 8

 Figure 2.1: Complementors usage of KBRs on a platform

 One of the key challenges that platform owners face when provisioning KBRs is that they

 need to balance the creation of resources that scale, i.e. how many complementors they can

 address, while simultaneously delivering the necessary scope, i.e. how much of the gap in

 knowledge they overcome (Foerderer et al., 2019). For instance, an online API reference

 scales to every complementor in the ecosystem at a low marginal cost. However, its scope is

 limited because it is not necessarily effective at overcoming knowledge boundaries in all

 cases. On the other hand, one-on-one assistance can be highly effective at transferring

 knowledge across boundaries but it scales less and can thus be expensive to provide to many

 complementors (Huber et al., 2017; Engert et. al, 2022). Foerderer et al. (2019) broadly

 categorise knowledge boundary resources into three distinct categories; broadcasting,

 brokering and bridging;

 First, broadcasting KBRs are highly standardised boundary objects that complementors can

 access without interacting directly with platform boundary spanners. Examples of

 broadcasting KBRs are technical documentation, information portals, video tutorials, sample

 code, online courses and developer sandboxes. These KBRs scale well, but may have less

 scope as they may be too standardised to help all complementors in all situations.

 9

 Second, brokering KBRs is a semi-formalised type of KBR where boundary spanners refer

 complementors to other KBRs. Examples of brokering KBRs are help desks and account

 managers. Brokering KBRs do not scale as well as broadcasting KBRs because they require

 boundary spanners to mediate the knowledge transfer. They are effective at assisting

 complementors in finding relevant KBRs, however, they can have a more limited scope if

 there are no existing KBRs that can be referred to.

 Finally, bridging KBRs are the most high-touch type of KBRs where boundary spanners

 interact with complementors directly to transfer knowledge and problem-solving capabilities.

 Examples of bridging KBRs are one-on-one assistance, training workshops, and alignment

 workshops. These types of KBRs scale the least, however, they have a high scope as they can

 provide highly individualised knowledge and assistance.

 To sum up, platform owners face a critical challenge in furnishing complementors with the

 knowledge required to develop applications on the platform. The underlying technological

 characteristics of the platform boundary resources influence the resulting knowledge

 boundaries. When the functional extent of the platform is high, the interface design is unique

 or the boundary resources change knowledge boundaries to broaden. A platform owner can

 address these knowledge boundaries by provisioning knowledge boundary resources in the

 form of boundary objects or boundary spanners. Because platforms can have a high number

 of complementors, platform owners are faced with the challenge of provisioning KBRs that

 can scale to the ecosystem while still delivering the necessary scope of knowledge. They do

 this through strategically provisioning broadcasting, brokering and bridging knowledge

 boundary resources. These concepts lay the theoretical foundation of our thesis and is the

 academic literature we expand upon. However, these concepts have not been applied to

 onboarding complementors to software platforms which we address in the next chapter.

 10

 2.2 Kernel theory

 Following a design science research methodology, we aimed to find a prescriptive design

 theory that could guide the development of our artefact. We did not find any prescriptive

 knowledge in the academic literature which could assist with this. However, because our

 project revolves around creating KBRs that transfer development-related knowledge to

 complementors, we identified parallels between the development of the course “DHIS2 App

 Course” and the field of documentation writing. First, we introduce Diátaxis, which is a

 prescriptive framework for writing technical documentation which heavily influenced the

 development of the “DHIS2 App Course”. Following this, we introduce two concepts that

 combine Diátaxis with our theoretical foundation of KBRs.

 2.2.1 Diátaxis

 Diátaxis is a technical documentation framework created by Dianele Procida (2017). It is

 widely used in industry across software such as Django, NumPy, Ubuntu, Cloudflare, Gatsby

 and PostgREST (Procida, 2017). Experienced technical writers from among others Google,

 Redux and WriteTheDocs have highly endorsed its usefulness on an online forum (Basques,

 2021; Erikson, 2021; Holscher, 2021). The framework is well-established in the field of

 technical writing and is encountered by many developers, leading to its use as a kernel theory.

 The aim of this section is not to reiterate Diátaxis in detail; however, we will cover the

 essentials for understanding this thesis. The Diátaxis framework is a quick read and

 practitioners who wish to learn more about it should read the source material on the official

 website (see Diataxis.fr).

 Diátaxis argues that there are four different types of software documentation: tutorials,

 how-to guides, references and explanations (see Figure 2.2). The framework provides

 prescriptive design principles for each of these types of documentation. It also states that by

 structuring documentation according to these distinct categories, technical documentation

 will become more organised and effective in providing developers with the knowledge

 required to use the software. By keeping these types separated from each other, technical

 documentation will improve for both the reader and the writer.

 11

https://diataxis.fr/

 Figure 2.2: The Diátaxis framework

 Note. From “Diátaxis. A systematic framework for technical documentation authoring.”, by

 Procida (2017)

 Tutorials are the first and arguably the most important type of documentation developers

 encounter when learning a new system. They aim to introduce the developer to the system

 and provide an overview of its functionality and other necessary knowledge for using the

 system. A tutorial commonly leads the reader through a series of steps resulting in a

 completed project. By following the steps, the developer gains practical experience. After

 completing the tutorial, the developer is prepared for using the software for their own

 purposes. Tutorials are learning-oriented and aim to give the developer a foundation of

 knowledge that prepares them to use the rest of the documentation and the system itself.

 How-to guides are a type of documentation that instructs developers on how to solve a

 specific problem. They guide the developer through a series of steps to achieve a specific

 goal. Examples of guides are: “How to deactivate your Facebook account” or “How to install

 Microsoft Windows”. In contrast, “How to develop software” is not a guide because it does

 not assist with a specific task or problem; it is a skill with no stopping point.

 12

 How-to guides also provide an overview of what a developer can achieve with a system. By

 browsing through a set of how-to guides, the developer can better understand the possibilities

 of a system. How-to guides are task-oriented and aim to provide step-by-step instructions on

 how to solve a specific problem.

 References are a type of documentation that comprehensively describes the system in a

 technical, succinct and to-the-point manner. The most common example of references in

 software systems is the API reference, which describes the interface design of every endpoint

 and its respective parameters . In contrast to tutorials and how-to guides, references are led by

 the product it describes, not by the needs of the user. References are supposed to describe the

 system from a technical point of view without explaining or instructing because this distracts

 the developer. Rather, it should link to relevant tutorials or how-to guides . References should,

 however, include examples to illustrate usage. References are information-oriented and aim

 to provide up-to-date, accurate, comprehensive information about a system.

 Explanations are a form of documentation that clarify and illuminate a particular topic.

 Unlike tutorials or how-to guides, they are not focused on tasks the developer is trying to

 achieve. Instead, they discuss a topic from higher perspectives and from different angles to

 increase a developer's understanding of the system. Explanations tie the system together and

 explain details that are required to understand the system. A minimal explanation is often

 necessary in tutorials or how-to guides. However because these documentation types should

 be concise and not share more information than necessary, extensive explanations should

 reside in a separate section. Explanations are understanding-oriented and aim to give

 developers a greater understanding of the system and its trade-offs, details, alternatives and

 other topics of relevance. A summary of the different documentation types and their role can

 be found in Table 2.1.

 13

 Table 2.1: Summary of the Diátaxis documentation quadrants

 Note. From “Diátaxis. A systematic framework for technical documentation authoring.”, by

 Procida (2017)

 We found Diátaxis promising as a kernel theory for instructing the design of our

 comprehensive course. The different types of documentation prescribed by Diátaxis captured

 most of the KBRs the DHIS2 platform provides for application development and provided us

 with a conceptual lens for describing and evaluating them. Because Diátaxis concerns itself

 with structuring technical documentation on a website there are parallels to broadcasting

 KBRs. Additionally, each of the quadrants aims to provide developers with

 development-related knowledge similar to the processes of knowledge transfer through a

 KBR. Furthermore, several software platforms like Ubuntu and Django, have stated that they

 use Diátaxis, validating its applicability to platforms. Diátaxis is promising with regards to

 the onboarding of complementors as well. The tutorial quadrant is specifically designed

 around introducing new developers to a software project and the rest of the quadrants are

 actively used during the development process. This, in combination with wide adoption and

 endorsements from experienced practitioners, made it a suitable kernel theory for our artefact.

 14

 2.2.2 Comprehensive and specific KBRs

 We theorised how the descriptive concepts put forth by Foerderer et. al. (2019) and the

 prescriptive design principles from Diátaxis could be combined, with the goal to build a

 greater understanding of the concept of the scope, i.e. the effectiveness of a KBR at

 overcoming knowledge boundaries. Because Diátaxis concerns itself with structuring

 technical documentation on a website, it is not directly applicable to all KBRs. Therefore, we

 introduce two new concepts; comprehensiveness and specificity. These concepts do not fully

 encompass the notion of scope, nor do they connect to the entirety of Diátaxis. They are a

 reconceptualisation of aspects from both Diátaxis and Foerderer (2019) which we found

 intuitive and prescriptively useful during the project and for theorising afterwards. We posit

 that the effectiveness of a KBR depends on how comprehensively it covers the platform and

 its boundary resources. Furthermore, we posit that the effectiveness of a KBR also depends

 on how specific the knowledge is for a complementor’s task and context.

 Comprehensive KBRs are oriented towards the platform's boundary resources.

 Comprehensiveness refers to the degree to which a KBR covers the functional extent and

 interface design of a boundary resource. For instance, API references have high

 comprehensiveness because they describe the breadth of the API. A tutorial can be more or

 less comprehensive depending on how much of the functional extent of the platform to which

 it introduces the developer. It is important to note that not every KBR should aim to be

 comprehensive. However, we propose the sum of knowledge provided by all of the KBRs

 should be comprehensive and cover the entirety of the functional extent and interface design

 of the platform.

 Specific KBRs are oriented towards the tasks complementors perform on the platform. The

 specificity of a KBRs refers to the degree of how relevant it is to a complementor’s task and

 context. Specific KBRs aim to reduce the amount of extraneous knowledge and give relevant

 information required for completing a task, for example through step-by-step instruction. For

 instance, the how-to guide “How to unpack a .zip file on Windows 10” is highly specific to

 users on Windows 10 who want to unpack .zip files. For a user aiming to unpack .zip files on

 Windows 7, it will require a certain degree of translation into the Windows 7 context, making

 it less specific but still relevant. However, for users on UNIX, the guide will not be specific

 to their context and most likely be unusable. Naturally, for users who want to open a PDF the

 15

 guide is unspecific . How-to guides are highly specific KBRs as they aim to assist in

 completing a specific task. However, tutorials can also be specific. For instance, a good

 tutorial may aim to cover tasks a complementor is likely to encounter after they have

 completed the tutorial, making it more specific.

 Most KBRs that are used during onboarding have a measure of comprehensiveness towards

 the platform or specificity towards the tasks complementors are trying to achieve. If we apply

 these concepts to the Diátaxis framework, references are highly comprehensive, but not very

 specific. How-to guides are highly specific, but not very comprehensive. Tutorials can vary

 depending on the platform, and what the tutorial aims to achieve. For instance, a platform

 with less functional extent could have a single highly comprehensive tutorial that could cover

 all of the platform's functionality. However, a platform with a high functional extent would

 likely aim to have multiple tutorials tailored to different use cases each with varying degrees

 of comprehensiveness. Finally, the comprehensiveness of explanations varies greatly but they

 do not tend to be oriented towards tasks and are often not specific.

 Because Diátaxis was only directly applicable to broadcasting KBRs, we have attempted to

 extract some of the prescriptive knowledge and generalised it to other KBRs such as

 boundary spanning activities in an onboarding context. For instance, boundary spanning

 activities can become highly specific because the boundary spanner can identify precisely

 what knowledge the complementor requires by communicating with them, and then transfer it

 to them tailored to their context. However, this depends on how comprehensively the

 boundary spanner knows the platform. Although, if the boundary spanner knows where to

 find the knowledge requested, they are positioned to broker comprehensive knowledge. Most

 types of KBRs related to application development can be assigned these two attributes which

 we found provided both descriptive and prescriptive potential. These two concepts have

 guided our conceptualisation of KBRs throughout the project and are used to describe the

 artefact, for reasoning during the evaluation, and are finally embedded into the design

 considerations.

 16

 2.3 Summary

 Throughout this chapter, we introduced the academic literature that positions our research and

 provides the theoretical foundation of this thesis. We introduced our kernel theory, Diátaxis,

 which provided us with the four concepts; tutorials, references, how-to guides and

 explanations. These four types of documentation guided the design of the artefact and helped

 us to describe the broadcasting KBRs we encountered throughout this thesis. Finally, we

 introduced the concepts of comprehensiveness and specificity, which is a reconceptualisation

 of Diátaxis and Foerderer et al. (2019) and can be applied to more KBRs used during

 onboarding. A summary of the concepts we use throughout this thesis brief explanation of

 them is in the table below:

 Concept Description

 Broadcasting KBR Boundary objects with high scale, typically websites, online courses,
 documentation and textbooks.

 Brokering KBR Activity where boundary spanners refer a complementor to another KBR that
 contains the specific knowledge they require.

 Bridging KBR Activity where boundary spanners assist complementors with specific
 knowledge and problem-solving skills.

 Functional extent The degree and depth of functionality that a platform offers for reuse and
 recombination. A greater functional extent can increase the knowledge
 boundaries between complementor and platform owner.

 Interface design Specific implementation details about the functionality. Suboptimal or
 proprietary interface design can increase knowledge boundaries

 Tutorial Introduction to a system which aims to provide a foundation of knowledge
 that enables complementors to use the rest of the documentation and platform.

 How-to guide Step-by-step instruction which aims to assist a complementor with knowledge
 on how to solve a specific task.

 References Comprehensive technical description of the platform boundary resources’
 functional extent and interface design. Typically used when documenting API
 endpoints and their respective parameters.

 Explanation Explanations about topics of relevance which aim to aid the complementor
 with a greater understanding of the platform.

 Comprehensiveness Refers to the degree of which a KBR covers the functional extent and
 interface design of a boundary resource.

 Specificity Refers to the degree a KBR is relevant to a complementor’s task and context.

 Table 2.2: Summary of concepts

 17

 3. Research Approach
 This chapter outlines our research approach. We first provide the important background

 knowledge about DHIS2 and our empirical study conducted in collaboration with the DHIS2

 platform owner. Then, we present the research paradigm that guided our research, followed

 by a presentation of the chosen methodology and how we deployed it in our project. We

 explain how our design considerations were developed by presenting the deductive and

 inductive elements that fed into the development of the design considerations. We present the

 selected methods for gathering and analysing data. This is followed by a presentation the

 evaluation means for the artefact. Finally, we reflect upon some ethical considerations.

 3.1 Case description

 3.1.1 HISP and DHIS2

 This study was conducted as part of the global Health Information Systems Programme

 (HISP), centred at the University of Oslo (UiO). The program was founded in 1994 and has

 since promoted health information systems in low- and middle-income countries. HISP’s goal

 is to, “enable and support countries to strengthen their health systems together with regional

 HISP groups through increased capacity to govern their Health Information Systems in a

 sustainable way to improve the management and delivery of health services” (UiO, n.d.) . To

 attain their goal, HISP promotes DHIS2 as a global public good. DHIS2 is the world’s largest

 information management system and supports the collection, analysation and management of

 health data (see Image 3.1). Today, more than 73 countries worldwide have implemented

 DHIS2 (see Image 3.2). It is fully open-source and was developed through global

 collaboration, led by the University of Oslo. HISP works in close collaboration with trusted

 regional partners all around the world to support local implementation of DHIS2 by

 cooperating with local health authorities, NGOs, donors and consultants.

 18

 Image 3.1: DHIS2 Dashboard

 Note. From “Managing dashboards”, by DHIS2 (n.d)

 Image 3.2: Countries that implemented DHIS2

 Note. From “Worldwide Map: DHIS2 in Action”, by DHIS2 (n.d)

 19

 3.1.2 DHIS2 application development
 To support local innovation through application development, the DHIS2 platform owner,

 also called the DHIS2 core team, has opened their platform for complementors. The DHIS2

 platform consists of a generic, stable core that is applicable across countries and relevant for

 different use cases. The platform core is developed and maintained by the DHIS2 core team,

 located at the University of Oslo. In addition, the core team provides a set of boundary

 resources through which DHIS2 complementors can interact with the core. The DHIS2

 complementors can then develop customised applications that fit their specific use contexts

 by extending on the core functionality. This gives the complementors the opportunity and

 flexibility to adapt application development to local needs. The DHIS2 applications can then

 be published through the DHIS2 App Hub (see Image 3.3) for worldwide use.

 Image 3.3: DHIS2 App Hub

 Note . From DHIS2 App Hub (n.d)

 20

 3.1.3 DHIS2 Design Lab

 Our research project is part of the DHIS2 design lab which aims to promote design and

 innovation within the DHIS2 platform ecosystem. The design lab involves researchers and

 post-graduates at the University of Oslo who collaborate with DHIS2 practitioners such as

 DHIS2 platform owners and HISP groups on various projects (see DHIS2 Design Lab). The

 members of the DHIS2 design lab share a common goal of “strengthening usability,

 communicating using digital tools, and meeting on a frequent basis for discussions around

 experiences, challenges, ideas, and (possible) interventions” (Li, 2019, p. 6).

 The DHIS2 core team collaborates closely with the DHIS2 design lab to further their strategic

 objectives in promoting design and innovation within the DHIS2 ecosystem. An important

 research area has been the exploration of “resources that support and promote DHIS2

 application development” (UiO, n.d). As such, the DHIS2 core team and design lab have

 collaborated on how they can build capacity for application development by building online

 resources, which is the research context of our thesis. Through the design lab, we have been

 granted access to the university course “Development in Platform Ecosystems”. The course

 has on multiple occasions been used by the design lab to test DHIS2 platform resources.

 Through this course, we could research how we can develop capacity building resources with

 the aim of applying our findings to improve application development in DHIS2 as a whole.

 We will further elaborate on the course in the next section.

 21

https://www.mn.uio.no/hisp/english/dhis2-design-lab/

 3.1.4. Development in Platform Ecosystem

 “Development in Platform Ecosystem” is a master’s level course at the Department of

 Informatics at the University of Oslo and is held every autumn semester. Essentially, the

 course aims to bring a student with no experience in front-end development to being able to

 build an application on DHIS2.

 We took the course ourselves in autumn 2020, the first time it introduced the website “DHIS2

 App Course” (see DHIS2 App Course). The website is a self-paced online course that

 contains all learning resources for the Development in Platform Ecosystems course.

 However, at the time we took the course, it was incomplete and some sections were

 unfinished. The continued development of the App Course website is the foundation of our

 project and is described in Chapter 4 and 5.

 When the course period started in the autumn of 2021, we were employed by the University

 of Oslo as seminar teachers for the course. We held weekly seminars, assisted students at

 request, graded mandatory assignments and evaluated the final project. This gave us a close

 relationship with the 137 students who took the course and insight into their usage of KBRs,

 the DHIS2 platform and their code output. The Development in Platform Ecosystems course

 is structured in two parts. During the first six weeks of the course, the students individually

 learn the prerequisite knowledge for developing an application through the DHIS2 App

 Course website. They have to learn HTML, CSS, Javascript, React and DHIS2 application

 development. Following this, they are assigned into project groups of three to five students

 and spend the next five weeks developing a DHIS2 application. Throughout the project, the

 students utilise DHIS2 KBRs in addition to the DHIS2 App Course website to develop their

 application. This application is then evaluated by the seminar teachers and the course

 supervisor, who determine their final grade in the course

 22

https://dhis2-app-course.ifi.uio.no/

 3.1.5 Using a university course as a laboratory

 As mentioned previously, the DHIS2 core team has a long history of using the Development

 in Platform Ecosystems university course as an arena for testing DHIS2 in order to improve

 the DHIS2 platform. For instance, during the COVID-19 pandemic, DHIS2 was used

 globally for contact tracing. During the autumn semester of 2020, the final project was to

 develop a contact tracing application. After the course, experiences from the applications and

 the design of them were shared with the DHIS2 core team in order to identify areas of

 improvement of the core platform.

 In a similar manner, we have used the course as a laboratory to examine how DHIS2 as a

 whole can be improved. To reiterate, we define onboarding as “the process complementors

 encounter when they acquire platform-specific knowledge to build a custom application on a

 platform”. In the context of the course, the students are comparable to complementors in the

 DHIS2 ecosystem. The onboarding process the students go through is to a large degree

 comparable to onboarding in DHIS2 and other software platforms. The students enter the

 course with no prior knowledge and complete the course when they have completed a custom

 application, as shown in Figure 3.1. Additionally, they use the same platform boundary

 resources and KBRs as DHIS2 complementors do and are highly similar in that regard. This

 context provides us with a unique research opportunity for exploring how new

 complementors use a platform's boundary resources and KBRs during their onboarding

 process.

 Figure 3.1: The onboarding of students

 23

 We have purposefully chosen a research question that we believe is positioned between the

 DHIS2 core team's research goal and the available empirical context with the aim of finding

 insights applicable to other software platforms as well. We have avoided generalising from

 aspects where the research context is too dissimilar to the DHIS2 ecosystem and other

 software platforms. For instance, we have not focused on KBRs related to the acquisition of

 complementors or maintenance of applications. However, the case context has some details

 we would like to address. There are some key differences between complementors in other

 software platform ecosystems and students in the university course. In contrast to

 complementors in other ecosystems, the students have no inherent reason, incentive or goal

 for developing an application outside of passing the course. The course context is reliant on

 guiding students through assignments and projects. This has implications for KBR design as

 we can create highly specific resources. Additionally, complementors commonly work in a

 different organisational structure and the dynamics of a group of students in a project are not

 comparable. We have addressed this by not emphasising interpersonal aspects and focusing

 more on the onboarding of individuals themselves. Finally, the context of the university

 course is more learning-oriented and the students entered into the onboarding process without

 much prerequisite knowledge. This has influenced this thesis to a degree, however, this more

 pedagogical approach to developing KBRs is likely valuable for other software platforms as

 well. Additionally, this has granted us more empirical data about how the students learned

 other technologies like React and APIs which did not differ much from how they learned

 DHIS2.

 3.2 Research paradigm

 Existing literature has presented various research paradigms. Often, researchers distinguish

 between the interpretive, critical and positivist research paradigms. Goldkuhl (2012) presents

 the pragmatic research paradigm as another option and highlights its suitability for qualitative

 research in information systems, in particular for DSR. The pragmatic paradigm is based on

 the idea that researchers should follow the methodological approach that best suits the

 specific research problem (Kaushik & Walsh, 2019). Unlike other research paradigms,

 pragmatism does not focus on establishing one single truth. Instead, it accepts that there can

 be a single or multiple realities (Kaushik & Walsh, 2019). Fundamental to the pragmatic

 paradigm is the idea of building constructive knowledge, i.e. knowledge that is useful to the

 24

 world. The field of design is an example where constructive knowledge is applied to build

 effective and user-friendly solutions by combining prescriptive, normative and prospective

 aspects (Goldkuhl, 2012, p. 141). In our case, we aim to build prescriptive design

 considerations that can guide platform owners in creating knowledge boundary resources.

 With its focus on utility and practice at the same time, the pragmatic approach is suitable for

 our research goal. One research methodology that is based on pragmatism is Design Science

 Research (DSR) which will be further examined in the next section.

 3.3 Methodology: Engaged Design Science Research

 The empirical research of this thesis followed an engaged Design Science Research (DSR)

 approach. DSR supports researchers in developing constructive knowledge through the

 design and evaluation of artefacts. The idea of DSR as a methodology has gained popularity

 in IS since the inception of the field (Gregor & Hevner, 2013). Ivari (2014) proposed two

 common strategies for conducting DSR. With the first strategy, a researcher builds a

 meta-artefact addressing a broader class of problems. With the second strategy, “a researcher

 attempts to solve a client’s specific problem by building a concrete IT artefact in that specific

 context and distils from that experience prescriptive knowledge to be packaged into a general

 solution concept to address a class of problem.” (Ivari, 2014, p. 107) In other words, this

 strategy seeks to solve existing organisational problems by creating innovative artefacts and

 inserting them into a real-world context. Such an approach is also referred to as engaged

 research because researchers and practitioners collaborate to solve real-world problems while

 contributing to academic literature (Li, 2021). We adopted the second strategy. In

 collaboration with the DHIS2 core team, we built an innovative artefact employed in the

 university course to explore how DHIS2 can improve their platform KBRs. From this

 experience, we distilled prescriptive design considerations that can guide platform owners in

 the design of onboarding-related KBRs.

 25

 3.4 Research process

 For carrying out DSR, we followed the model provided by Peffers et al. (2007). It is

 commonly referenced in academic literature and aids researchers in conducting DSR. The

 model describes the DSR process as consisting of six activities (see Figure 3.2): 1) Problem

 identification and motivation, 2) Definition of the objectives for a solution, 3) Design and

 Development, 4) Demonstration, 5) Evaluation, and 6) Communication. Figure 3.3 shows a

 timeline of how we followed these six activities throughout our research process.

 Figure 3.2: Design science research process

 Note. From “A Design Science Research Methodology for Information Systems Research”,

 by Peffers et al. (2007, p. 58). Journal of Management Information Systems.

 During the “Problem identification and motivation” activity, the research problem is

 identified and conceptualised to reason about its complexity and potential solutions. This

 activity started in December 2020. When the university course was previously conducted, the

 DHIS2 platform KBRs did not always seem to onboard students effectively. To gain an

 understanding of this problem, we conducted a preliminary study involving several

 semi-structured interviews. The main goal was to outline frequent challenges that students

 faced when learning to develop a DHIS2 application. During this phase, we also reviewed the

 academic literature to leverage existing concepts and insights to frame our research problem

 accordingly. Specifically, the concepts of boundary resource and knowledge boundary

 26

 resource helped us in formulating our research question. For example, we decided that our

 research question should revolve around the concept of KBRs.

 In the “Define objectives of a solution” activity, researchers infer the objectives of a solution

 from the problem definition and other knowledge sources based on what is possible and

 feasible. We began this activity in the spring of 2021 by analysing the data from the

 preliminary study and identifying key challenges. Two of the important aspects that informed

 the design of our solution were the challenges identified in the preliminary study (see section

 4.3) and the kernel theory (see section 2.2). Informed by this, we outlined a proposed solution

 that addressed the identified challenges.

 During the “Design and development” activity, the artefact is designed and developed. We

 began designing and developing the artefact in April of 2021. The artefact consists of a

 collection of existing DHIS2 KBRs and a set of complementing KBRs. We describe the

 artefact in detail in Chapter 5. Much of the development was done during the summer and

 was finalised in August 2021.

 Throughout the “Demonstration” activity, the artefact is used to solve an instance of the

 problem. The artefact was actively used by 137 students during the course period to develop a

 DHIS2 application and learn about the DHIS2 boundary resources and KBRs. The

 demonstration activity ended when the students were onboarded to the DHIS2 platform and

 completed their custom applications.

 In the “Evaluation,” the artefact's effectiveness at solving the research problem is analysed

 and compared to the solution objectives. In our case, we evaluated the artefact simultaneously

 as we demonstrated the artefact. By gathering the students' feedback and observing the

 artefact in use, we could make adjustments to our artefact along the way. The main

 evaluation, however, took place after the demonstration phase. From a broader perspective,

 we evaluated the artefact’s performance in solving the identified challenges from the

 preliminary study. This phase was completed in January 2022.

 27

 Finally, in the “Communication” activity, the researchers communicate all aspects of their

 work such as the problem it sought to solve, the artefact’s utility and the artefact’s relevance

 with regard to the researcher's audience. We will contribute with prescriptive design

 considerations (see Chapter 7) and discuss our findings in the light of academic literature.

 Figure 3.3: A timeline of our project

 3.5 Data collection

 Our empirical data collection mostly follows a qualitative approach. The data is derived from

 different data collection methods such as interviews, surveys and observations. In the

 academic literature, combining different data collection methods is referred to as

 triangulation (Flick, 2004). As different methods have different strengths, researchers can

 gain a greater understanding by combining different data collection methods. Therefore, we

 decided to triangulate different data collection methods to gain a greater understanding of the

 students' onboarding process. In this section, we describe the different methods that have

 been used to collect data with regard to the following DSR activities (see Figure 3.2): 1)

 Problem identification and motivation, 2) Demonstration and 3) Evaluation.

 28

 3.5.1 Problem identification and motivation

 During the problem identification and motivation activity, we conducted nine semi-structured

 interviews as part of a preliminary study. Semi-structured interviews allow a certain degree of

 flexibility to deviate from interview questions (Edwards & Holland, 2013). The flexibility of

 this approach allowed us to explore topics that the interviewees found important but we had

 not previously thought of.

 The interview objects involved seven previous students of the course, one prior seminar

 teacher and the professor of the course. When selecting the interview objects, we tried to

 recruit students with different backgrounds and skills to capture the diversity of the students

 in the course. The main goal of this preliminary study was to examine challenges with the

 existing DHIS2 KBRs during the onboarding process and outline possible solutions for

 creating new KBRs. Whereas the interviews with the students focused on the experienced

 challenges with KBRs, the interviews with the course administrators related more to the

 technical aspects of the course with the goal to explore what would be feasible and useful to

 implement from their perspective. The leading question during our interviews with the

 students related to how they experienced their onboarding process to the DHIS2 platform,

 including the challenges they faced. We also asked questions related to their prior skills and

 preferred approaches to learning new technology. Some example questions were:

 ● How did you learn the DHIS2 API?

 ● Did you find the DHIS2 App Course helpful as a learning resource?

 The full interview guide can be found in Appendix 5. Finally, we had several interviews with

 the DHIS2 core team where we presented and discussed our ideas. We also used this as an

 opportunity to learn about frequent problems they experienced when onboarding new

 complementors to the DHIS2 platform. The data collected from these more unstructured

 interviews also fed into the design of our artefact.

 29

 3.5.2 Demonstration

 During the demonstration activity, a large portion of the data was gathered by observing

 students in the course. The strength of observation as a data collection method comes from

 capturing people's actual behaviour (Moen & Middelthon, 2015). The actions people take and

 the actions they say they take often differ. For instance, social desirability bias could cause

 students to reply dishonestly in surveys to please the researcher. By observing how students

 interacted with our artefact through the weekly seminars, we wanted to see how students

 utilised our artefact as part of their onboarding process, including the challenges they

 experienced. By holding weekly seminars during the course, we could observe the students'

 interaction with the artefact throughout the entire semester. Additionally, we gained a lot of

 insight into the challenges complementors commonly faced through answering their inquiries

 in the group seminars and via email. Furthermore, as seminar teachers, we corrected

 individual assignments and the final DHIS2 application. By inspecting the code that students

 delivered, we acquired detailed insight into what areas the students commonly struggled with.

 In addition to observations, we conducted three surveys during the semester to receive the

 students’ feedback on our artefact (see Appendix 1, 2 & 3). The questions in the surveys were

 similar to the questions asked in the interviews and revolved around how students perceived

 the DHIS2 App course and other learning resources and KBRs used during their onboarding.

 Compared to the interviews, the surveys provided us with more quantitative insights as we

 could include a higher sample through the survey than we could by one-and-one interviews.

 Image 3.4 shows an example question from our survey.

 Image 3.4: Example survey question

 30

 3.5.3 Evaluation

 In DSR, the artefact evaluation is an important activity because it demonstrates the artefact’s

 worth by providing evidence of its utility in addressing the defined problem (Gregor &

 Hevner, 2013). The artefact evaluation helps to establish the artefacts utility in solving the

 investigated research problem. It can also help to discover potential areas for future research.

 To evaluate the artefact, we had to develop specific criteria upon which to measure utility.

 These criteria are described in Table 3.1:

 Evaluation criteria Description

 Utility Artefact has value outside of the development context in a real world

 context

 Validity Artefact works and does what is originally was designed for

 Quality How well did the artefact perform in achieving what it was originally

 designed for

 Table 3.1: Evaluation criteria

 We determined the artefact’s utility by studying the students' perceptions and experiences

 with the artefact throughout the course. Testing the artefacts performance in a real world

 context was a large focus throughout this study. By testing the artefact in action throughout

 the course, we observed how students would use the artefact as part of their onboarding

 process and to develop a DHIS2 application. Another important evaluation criteria is related

 to whether the artefact met the initial design criteria (validity) as well as how well it achieved

 these (quality). Through our preliminary study, we found a set of key challenges with the

 existing DHIS2 KBRs. The artefact seeked to eliminate or reduce these challenges. The

 validity criteria is therefore assessed by evaluating if the artefact solved the identified

 challenges from the preliminary study, whereas the quality criteria evaluates how well the

 artefact performed in solving those challenges. We present the findings from the artefact

 evaluation in detail in Chapter 6.

 31

 The data collection methods we chose for evaluating the artefact were focus groups, a final

 survey and an expert evaluation. Focus groups share many of the same characteristics as

 semi-structured interviews with the difference that the researchers can collect data from many

 participants at once (Gill, Stewart & Chadwick, 2008) which allows the generation of

 collective perspectives on a phenomenon. The researcher takes the role of a facilitator and

 guides the discussions among the group members. It is also the researcher’s responsibility to

 ensure that all group members get to share their thoughts and that not one of the group

 members dominates the entire discussion. A focus group was a natural choice because the

 university course divided the students into project groups where tasks were delegated

 between team members. By gathering the project groups, we could collect data about all of

 the aspects of the application development. In total, we facilitated four focus groups with four

 different groups of students who completed the final project as part of the university course.

 The questions in the focus groups revolved around collecting feedback on our artefact, how

 the students experienced the application development process, and what challenges they

 encountered. In essence, we focused on three aspects of the students onboarding process:

 ● What worked well?

 ● What did not work well?

 ● What could be improved?

 Our surveys revolved around many of the same aspects with a slightly more quantitative

 approach. The final survey and detailed focus group tasks can be found in Appendix 4 and

 Appendix 6.

 Finally, we conducted an expert evaluation with a DHIS2 core team member. The expert has

 previous experience developing KBRs to onboard developers from other software platforms.

 Due to his previous experience with creating KBRs on a platform, we considered his

 feedback useful to reflect on the artefact in a summative manner. The expert comprehensively

 reviewed our artefact and created a list of changes and ideas he had about improving it

 further. Afterwards, we held an unstructured interview consisting of a cognitive walkthrough

 of our artefact and his thoughts on them using the “think aloud method”. If we came across

 topics of interest we would explore those further by asking further clarifying questions and

 discussing.

 32

 3.5.4 Summary of data collected

 Table 3.2 provides a summary of all of the data collected throughout the project. We want to

 note that the observations are estimated. Further, it does not contain data collected through

 instant messaging, email, one-on-one assistance and weekly meetings between seminar

 teachers and the course professor.

 Activity Method Who #

 Problem
 Identification

 Interview Platform owner 3

 Interview Previous seminar
 teacher

 1

 Interview Students 7

 Demonstration Observation: Weekly
 seminars

 Students 24 seminars
 2 hours each
 2 researchers
 ~ 96 hours

 Observation: Assignment
 grading

 Students 3 assignments
 30 deliveries
 2 researchers
 ~ 180 assignments

 Observation: Application
 evaluation

 Student groups 8 applications
 2 researchers
 ~ 16 applications

 Survey: HTML, CSS, JS Students 29 respondents

 Survey: React Students 17 respondents

 Survey: DHIS2 Students 13 respondents

 Evaluation Survey: Final Students 15 respondents

 Focus groups Student groups 4

 Expert evaluation Expert 1

 Table 3.2: Summary of all data collected throughout the project

 33

 3.6 Data analysis

 We analysed our collected data with three major data analysis processes. The first one after

 the preliminary study had the goal to inform the design of the artefact whereas the second had

 the goal to evaluate the artefact. Finally, as part of the third analysis, we combined our

 empirical findings with academic literature to formulate our design considerations for

 onboarding complementors in a software platform ecosystem.

 The analysis of our preliminary study and the analysis of our artefact evaluation were based

 on thematic analysis. Thematic analysis is a widely used analytic method for qualitative

 research that includes searching for repeated patterns and identifying themes across a data set

 (Braun & Clarke, 2006). A theme captures an important aspect about the data with regards to

 the research question. The data set consisted of interviews, observations, surveys, focus

 groups and an expert evaluation. Braun and Clarke (2006) describe thematic analysis as

 comprising six phases: 1) Familiarising yourself with your data, 2) Generating initial codes,

 3) Searching for themes, 4) Reviewing themes, 5) Defining and naming themes and 6)

 Producing the report. Thematic analysis can be conducted in an inductive manner, meaning

 that the researchers do not have any preexisting coding categories and the themes develop

 from the data itself. The findings can also evolve deductively, driven by the researcher’s

 theoretical concepts. We included both deductive and inductive elements in our thematic

 analysis (see Figure 3.4) and will elaborate further on this topic through the different phases

 of data analysis. Empirical research and academic literature had a rather complementary

 relationship. For example, the themes that evolved from the data set caused us to specify our

 research question, arguing for an inductive approach. However, the kernel theory, the

 academic literature and our own experience with the university course gave us a predefined

 research interest with the data set, arguing for a deductive approach. Another important

 aspect of our analysis has been continuous internal discussion. We have benefited greatly

 from being two researchers throughout the entire research process by discussing findings and

 complementing each other with different perspectives.

 34

 Figure 3.4: Deductive and inductive elements of data analysis

 3.6.1 Preliminary study

 The analysis of our preliminary data was essential for the design of the artefact. From the

 beginning, we sought to identify any challenges that the students experienced throughout the

 university course that hindered their onboarding process. We first familiarised ourselves with

 the situation by reading through our notes from the interviews and discussing them with each

 other. Following this discussion, we proposed initial codes and began to code the data

 systematically, looking for interesting or notable features. We used our prior experiences of

 being enrolled in the course to reason through some of these identified challenges. In the next

 phase, we discussed the findings and codified these findings on post-it notes. By organising

 the post-it notes and grouping them together as themes, we identified different categories of

 challenges. These challenges, together with our kernel theory, motivated the design of our

 artefact. Table 3.3 shows one of the four main challenges identified throughout our analysis.

 Theme Code Quote

 Lack of assistance Improvements “I wish there were practical seminars in the course where

 you can get a little help from the seminar teachers or fellow

 students.”

 Challenges “There was nowhere to go to ask for help other than fellow

 students.”

 Table 3.3: Example of theme from preliminary study

 35

 3.6.2 Evaluation of the artefact

 Many of the questions that drove the analysis concerned the impact of the DHIS2 App

 Course on students’ onboarding throughout the university course. After our preliminary

 study, we identified a set of challenges that previously hindered students onboarding.

 Therefore, the goal of the evaluation was to see if and how well the artefact addressed these

 challenges. Additionally, we wanted to examine how useful the students perceived it in

 relation to their application development. We also sought to identify characteristics of KBRs

 that enabled effective ways of teaching students the necessary knowledge required to develop

 DHIS2 applications.

 We began the evaluation of the artefact by transcribing our records from the focus groups into

 text. Further, we repeatedly read the transcripts and notes from previous observations,

 interviews, surveys and focus groups to familiarise ourselves with the breadth and depth of

 the data. This was a challenging yet important step in our analysis due to the large amount of

 data that we had gathered. We had to decide which aspects of the data we wanted to focus on

 and which would be out of scope based on the research question. Once again, the challenges

 that students experienced while onboarding and any feedback related to the DHIS2 App

 course were the main focus areas. We also focused on the students themselves. For example,

 by looking for differences in their preferred learning approaches, we could glean insight into

 the variety of learning methods which informs our research.

 After agreeing on some initial codes, we coded the data systematically to find interesting

 aspects (see Image 3.5). To prevent groupthink and gain further insight, we coded the

 transcripts and notes independently from each other. Some examples of the initial coding

 categories include “Challenges with DHIS2’s boundary resources”, “Challenges with

 DHIS2’s KBRs” and “Feedback on the DHIS2 App Course”. Whereas the first two categories

 focused on platform resources provided by the core team, the last category focused on our

 App Course website. This allowed us to evaluate the entirety of KBRs used throughout the

 course rather than isolating the DHIS2 App Course from other platform resources.

 36

 During the next phase, we compared and discussed our findings. As the artefact was designed

 to solve some of the challenges identified in the preliminary study, we iterated back to

 evaluate if these challenges were actually resolved after the introduction of our artefact. New

 findings from the data analysis caused us to rename the themes. For example, we found that

 we could collapse several of the themes to a common larger theme. We present our findings

 from our artefact evaluation in detail in Chapter 6. These empirical findings served as the

 foundation for the development of our design considerations. We describe how we developed

 the design considerations further in the next section.

 Image 3.5: Thematic analysis

 3.6.3 Developing design considerations

 The final analysis process of our study involved the development of design considerations for

 guiding platform owners in designing KBRs for onboarding complementors. Empirically, the

 design considerations are based on the broader themes identified throughout the data analysis

 but we discuss them from a theoretic stance by including relevant academic literature. To

 formulate design considerations, we reflected upon the many interesting insights, data points

 and existing research we had encountered, much of which was driven by trying to understand

 how we could use KBRs to onboard students to DHIS2. After numerous interviews, focus

 groups and observations with students and the core team, we had to process large amounts of

 data.

 37

 Therefore, we had to select which data should go into the last “round of analysis” - the

 development of design considerations. The selection criteria for the development of design

 considerations focused on three questions:

 ● How relevant are the design considerations for other software platform owners?

 ● How useful are the design considerations for the onboarding of complementors?

 ● Do the design considerations present novel knowledge?

 First, we had to decide on whether our findings could be generalised to other software

 platforms. In the beginning, we had many ideas on possible design considerations. Because

 we took the role of seminar teachers and assisted the students throughout the university

 course, we gained detailed insight into their onboarding process. However, not all of this

 insight could be generalised to the broader context of onboarding of complementors in

 software platforms. As mentioned earlier, there were some differences between the students

 in the university course and complementors in other software platform ecosystems. For

 example, there may be differences in the interpersonal dynamics of the project groups within

 a school environment and complementor teams in other software platforms. Findings related

 to how students collaborated in teams to develop an application may not be entirely

 applicable to other software platform ecosystems. Further, our design considerations do not

 focus on the details of equipping complementors with basic software development

 competencies. Our role as seminar teachers focused strongly on furnishing students with

 basic software development skills due to the students’ lack of prior experience with platform

 application development. Complementors in other software platform ecosystems are likely to

 have basic software development competencies and experiences with application

 development. Second, we selected only design considerations that we found to be useful in

 onboarding complementors and believed other software platform owners would benefit from.

 We strived to create design considerations based on what we had observed to be most

 impactful in the course and also provided the most effective onboarding experience. Our

 large data collection and close relationship with the students throughout their application

 development process enabled us to gain a detailed understanding of what aspects of a KBR

 are important during an onboarding process. Finally, we selected only design considerations

 that presented novel prescriptive knowledge that was not yet covered in existing research or

 extended existing research.

 38

 3.7 Ethical considerations

 Throughout the project we had to make some ethical considerations. First, researchers are

 responsible that no harm is done to the research participants. This includes ensuring the

 integrity and confidentiality of the participants. Therefore, all participants were provided with

 an informed consent form before conducting interviews and focus groups. In addition, to

 protect the people included in our study, all data collected has been anonymised. Therefore,

 we do not use any names when we quote participants of our study.

 Additionally, because we were employed as seminar teachers in the university course, we

 knew many participants personally and gained a closer relationship with them throughout the

 semester. Throughout the university course, we performed as both researchers and seminar

 teachers. This raised ethical considerations with regard to the power dynamics between us

 and the students. For instance, students may get the impression that they have to consent to

 the data collection, fearing that otherwise they would experience direct or indirect

 consequences in the classroom. We paid close attention to this during the entire project and

 repeatedly informed students that all data collection was optional.

 39

 4. Existing Artefact and Challenges
 Our artefact is a collection of different knowledge boundary resources. Because the students

 were exposed to many different KBRs, looking at one KBR in isolation does not capture the

 full picture of onboarding. By regarding the artefact as a collection of KBRs, we can gain

 greater insight into onboarding as a whole. In this chapter, we first provide an overview of the

 most essential boundary resources on the DHIS2 platform. Then we present the most

 significant KBRs used throughout the course. Finally, we highlight the most consequential

 challenges that students faced when using the KBRs and hindered their onboarding to the

 DHIS2 platform. These challenges were identified as part of the preliminary study and fed

 directly into the artefact design.

 4.1 DHIS2 boundary resources

 It is essential to have a basic understanding of the DHIS2 boundary resources to understand

 their respective knowledge boundary resources. We briefly cover the most important

 boundary resources and the necessary details about them to understand this thesis. The

 boundary resources covered include the DHIS2 API, Data Queries, UI component library,

 and the DataStore. Further, because DHIS2 contains sensitive health data, the DHIS2

 platform is designed to be “self-hosted” on the servers of the implementing organisation, in

 contrast to DHIS2 centrally managing all DHIS2 servers. We refer to these specific servers

 hosted by the implementing organisations as a “DHIS2 instance”.

 40

 4.1.1 DHIS2 API

 The primary manner applications interact with a DHIS2 instance is through the DHIS2 API

 (Application Programming Interface). The API allows applications to access DHIS2

 functionality and read, update or delete data on a DHIS2 instance. The DHIS2 API has a

 large functional extent with over 80 different endpoints. An API endpoint is essentially a

 specific resource that can be accessed through an API. Similar to how a website returns a

 different web page when you request dhis2.org/overview/ than dhis2.org/about/ , the DHIS2

 API returns different data when you query a different endpoint. Because DHIS2 is designed

 to collect large amounts of varied data, it has a complicated data model (see Figure 4.1). The

 DHIS2 data model is a representation of the relationships between the data returned by

 different endpoints. To access the data on a DHIS2 instance, developers must have an

 understanding of where certain data is located within the data model and query it through the

 API. Learning the data model and how one can query it is one of the key tasks

 complementors encounter when developing DHIS2 applications.

 Figure 4.1: A subset of the DHIS2 data model

 Note. From DHIS2 Documentation (n.d.)

 41

https://dhis2.org/overview/
https://dhis2.org/about/

 4.1.2 Data Queries

 Data Queries provide an alternative method of querying the DHIS2 API in a React

 application. It is possible to query the DHIS2 API directly in a React application; however,

 using Data Queries enables a more efficient developer workflow. One of the advantages of

 using Data Queries is that developers do not need to program logic to create HTTP requests

 or manage network errors. The details around Data Queries are not incredibly important for

 this thesis. For this thesis, it is sufficient to know that it is an alternative method of querying

 the DHIS2 API with a slightly different interface design (see Image 4.1). The image below

 shows implementation differences between a conventional API query and a query performed

 using Data Query.

 Image 4.1: Comparison between an API query and a Data Query

 42

 4.1.3 UI component library

 User interface (UI) components are the visual building blocks of a React application. They

 are small, single-purpose UI elements. Examples include simple components such as buttons,

 text fields and icons and also more advanced components such as tables. A UI component

 library is a set of ready-made UI components that are commonly used in applications. These

 UI components can be arranged together in different ways to create novel and custom

 application interfaces. The DHIS2 platform provides a UI component library that features

 over 70 visually consistent UI components. These UI components are specifically designed to

 fit DHIS2 applications by covering specific functionality that many applications will

 encounter. Image 4.2 offers some examples of DHIS2 UI components commonly used in

 applications.

 Image 4.2. Examples of DHIS2 UI components.

 43

 4.1.4 Datastore and Datastore Manager

 The Datastore is a key-value database that allows applications to store arbitrary data on a

 DHIS2 instance. For example, it can be used to save user preferences across computers and

 sessions. The Datastore can be accessed by applications through the DHIS2 API.

 The Datastore Manager (see Image 4.3) is a DHIS2 application developed by the core team

 and is built on the Datastore API. It provides a graphical user interface where users can

 access the Datastore API functionality and save, modify and delete data. It is designed to

 assist with modifying the Datastore without having to interact with the API.

 Image 4.3: Datastore Manager

 44

 4.2 DHIS2 knowledge boundary resources

 During the university course (Development in Platform Ecosystems), the students use many

 different KBRs during their onboarding to DHIS2. The most important KBR for the first

 phase of the university course is the comprehensive online course “DHIS2 App Course”.

 However, during their group project, they use many different KBRs provided by DHIS2 to

 develop an application. This section provides a brief explanation of the most important KBRs

 for this thesis.

 4.2.1 DHIS2 App Course

 The most important KBR for the students enrolled in the university course is the “DHIS2

 App Course”, a website we were responsible for developing and maintaining. The website is

 actively used by students throughout the university course to learn about the DHIS2 platform.

 The DHIS2 App Course is designed to support students in developing a DHIS2 application as

 part of their onboarding to the platform. The website is divided into six modules (see Image

 4.4). The first module contains general information about the course and instructions on how

 to set up a development environment. The second and third modules cover essential web

 development technologies including HTML, CSS and Javascript (see Image 4.5). The fourth

 module covers the Javascript library React and the fifth covers DHIS2. The sixth module

 contains mandatory assignments students are required to pass to progress in the course.

 When we began our study, the skeleton of the website already existed. However, it lacked

 important content. The first three modules of the website were complete, containing

 comprehensive resources about HTML, CSS and Javascript. However, the React and DHIS2

 sections were incomplete, lacking important content. As these modules play an important role

 in onboarding students to the DHIS2 platform, completing these resources became one of the

 most important parts of our study. We will explain the details of these modules on the App

 course website later (see Chapter 5).

 45

 Image 4.4: DHIS2 App Course modules

 Image 4.5: Example of DHIS2 App course

 46

 4.2.2 DHIS2 references

 The DHIS2 references are the most comprehensive DHIS2 KBR and cover the entire

 functional extent of the platform. It contains detailed descriptions of the interface design of

 all API endpoints and includes high-level explanations of different parts of the DHIS2 system

 (see Image 4.6). Except for the DHIS2 App Course, this is the most frequently used KBR and

 a large part of our project has been based on the challenges students face while working with

 it.

 Image 4.6: DHIS2 References

 Note . From DHIS2 References (n.d)

 47

 4.2.3 Storybook

 Storybook is a website implemented by the core team to display the DHIS2 UI components in

 a visual and interactive format (see Image 4.7). The website was designed to present UI

 components from the UI component library. It contains descriptions of all UI components and

 the functionality they provide. A strength of Storybook is that it lets complementors

 interactively test and browse UI components in a web interface. After a complementor has

 found a component and modified it to fit their specific use case, they can simply copy the

 source code from the web interface and paste it right into their application.

 Image 4.7: A button component in Storybook

 Note . From DHIS2 Storybook (n.d)

 48

 4.2.4 Data Query Playground

 The Data Query Playground (DQP) is a DHIS2 application developed and maintained by the

 DHIS2 core team. DQP allows users to create and execute Data Queries directly in a web

 interface instead of querying it from an application (see Image 4.8). It then presents the

 response or error message from the Data Query that was performed. It is used by

 complementors to rapidly create and test Data Queries before they are integrated into their

 application. The image below shows the Data Query on the left side and the retrieved

 response from the API on the right side.

 Image 4.8: Data Query and response from the DHIS2 API.

 Note. Screenshot from Data Query Playground

 49

 4.3 Challenges identified in preliminary study

 As mentioned in section 3.4, we held interviews with seven students, one seminar teacher and

 the course professor before designing the DHIS2 App Course. Additionally, we had taken the

 course ourselves and had personal insight into what challenges students commonly faced.

 From this, we identified a set of key challenges that students faced during the course,

 hindering their onboarding process (see Table 4.1). Together with the kernel theory, these

 challenges informed the design of the artefact.

 Identified Challenge Description of Challenge

 Limited non-platform

 specific knowledge

 Limited experience with web development and APIs

 Complicated platform High functional extent

 Challenging interface design

 Complicated data model

 Insufficient DHIS2 KBRs References are difficult to learn from

 Need for a smoother learning experience
 Lack of explanations and examples

 Large amount of information

 Fragmentation

 Confusing documentation

 Lack of assistance No or little opportunity to ask questions when problems arised

 Table 4.1: Summary of identified challenges

 50

 4.3.1 Limited non-platform specific knowledge

 Developers require a set of non-platform specific knowledge, skills and competencies to

 develop applications on a platform. By non-platform specific knowledge, we specifically

 refer to skills and knowledge that are prerequisites or beneficial in building an application on

 a platform. In the case of DHIS2, experience with HTML, CSS, Javascript and React are

 required non-platform specific skills to build a DHIS2 application. It is also necessary to have

 some experience querying APIs and working with datasets. Multiple students reported that

 they had not learned these prerequisite skills well enough. Some reported that they did not

 understand or learn React well enough and others noted challenges working with APIs. This

 lack of a foundation of non-platform specific knowledge led to downstream challenges when

 developing DHIS2 applications.

 4.3.2 Complicated platform

 DHIS2 is inherently a complicated software platform. It has a large functional extent and at

 times an inconsistent interface design. New complementors to DHIS2 are essentially required

 to learn a lot about the platform and its intricacies before being onboarded to the platform.

 Most students reported difficulties with using the API and learning the data model. As

 illustrated in Figure 4.1, there is a lot of interconnected data with obscure nomenclature and it

 is vital that students learn this platform-specific knowledge. By platform specific-knowledge,

 we mean knowledge that is specific to the platform and not directly applicable elsewhere. In

 addition, the DHIS2 platform is designed to address an extremely broad range of different use

 contexts. Several students noted that DHIS2 is their first experience working with an

 enterprise software system. The size of DHIS2, and how complicated it is, was one of the

 biggest challenges when onboarding new developers to the platform.

 51

 4.3.3 Insufficient DHIS2 KBRs

 Every student we interviewed noted challenges when working with the broadcasting DHIS2

 KBRs, particularly the DHIS2 references. The DHIS2 references describe the platform

 boundary resources from a technical point of view. Therefore, it contains many technical

 terms that new complementors to the platform do not understand fully. In addition, the

 DHIS2 references are extremely comprehensive in that they comprise all information on all

 possible use cases of the DHIS2 platform. The specific challenges varied but many reported

 that some endpoints were poorly documented or lacked critical information required to

 complete their tasks. Others reported that the references contained a large amount of

 information, making it difficult to find the specific information they needed. Complementors

 new to the platform do not necessarily know what specific information they are looking for or

 what specific questions to ask to find a solution. For example, asking what filters one can

 apply to the API endpoint requires a student to understand API endpoints to begin with.

 Another frequently documented issue was that the DHIS2 references lacked explanations,

 particularly around the data model and the API. Further, the documentation lacked code

 examples, causing students to struggle in integrating the descriptive knowledge into their

 code. Finally, students found the DHIS2 KBRs fragmented. There were many different

 websites, each describing a small part of DHIS2, making it difficult to get an understanding

 of where one should look for certain information. This posed a challenge for students in

 finding the correct information with regard to completing specific tasks. The challenges

 identified in this theme vary; however, they are all related to challenges during the

 onboarding process caused by KBRs.

 4.3.4 Lack of assistance

 Finally, students highlighted that they perceived a lack of assistance when they had issues

 with the implementation of a DHIS2 application relying solely on broadcasting KBRs

 provided by DHIS2. When they faced friction in development, they had to solve their

 problems on their own or with the help of other students. Such issues could, for example,

 include technical difficulties as well as problems with making sense of the DHIS2

 documentation. When the university course was held in the autumn semester of 2020, the

 COVID-19 pandemic caused the weekly seminars to be digital. In addition, there was only

 one single seminar teacher responsible for holding the weekly seminars. This lack of

 52

 assistance when students encountered challenges would halt the onboarding process

 completely and lead to a lot of frustration.

 53

 5. Artefact Description
 To reiterate, our artefact is a collection of the DHIS2 App Course (see

 dhis2-app-course.ifi.uio.no) and other DHIS2 KBRs. In this chapter, we present our

 interventions to address the identified challenges from the preliminary study. Based on these

 challenges, we created several KBRs that had the goal to eliminate or reduce these

 challenges. We also describe the reasoning behind important decisions made during the

 design and development of the artefact.

 5.1 Curriculum design
 To get an overview of the topics that we needed to cover during the onboarding process, we

 created a curriculum. We did this by mapping out all technologies and functionality that a

 student was likely to encounter when developing an application on DHIS2 and their

 respective prerequisite skills. We reasoned that students required proficiency in a couple of

 key skills to develop a DHIS2 application. The curriculum consisted of the following topics:

 1. Front-end development with HTML, CSS and Javascript.

 2. Developing applications with React.

 3. Querying REST APIs.

 4. A basic understanding of the DHIS2 Data Model.

 5. Querying DHIS2 in a React application.

 6. Using DHIS2 UI components in a React application.

 HTML, CSS, Javascript, React and working with APIs are necessary non-platform specific

 skills for developing an application on DHIS2. The final three proficiencies are DHIS2

 platform-specific skills. The curriculum includes a considerable amount of topics to cover.

 Covering HTML, CSS, Javascript and React alone could be a full university course.

 Therefore, we had to heavily prioritise what aspects the curriculum should cover. In other

 words, we had to increase the specificity of the curriculum to be as relevant to DHIS2

 application development as possible. For instance, we did not cover a couple of key concepts

 in React such as routing because it is not necessary to develop an application on DHIS2.

 Furthermore, it is possible to reduce the amount students need to learn by providing specific

 instructions and solutions for tasks they may encounter. For example, we did not expect

 54

https://dhis2-app-course.ifi.uio.no/

 students to learn the DHIS2 data model in-depth, leading us to reduce the comprehensiveness

 of those sections to the bare essentials. We also gave the students code that would fetch the

 required data for them. Code examples are a highly specific KBR. By choosing between

 creating more specific resources for certain areas of the curriculum, and more comprehensive

 resources for others, we could reduce the amount that students needed to learn about less

 important topics while focusing on the core knowledge required for developing DHIS2

 applications. Many less important topics were either mentioned briefly or completely

 skipped. We did, however, sometimes provide links to where the students could retrieve more

 information if interested.

 This prioritisation and balancing act attempted to address most challenges that students had

 previously. By providing a step-by-step curriculum, we aimed to introduce students to DHIS2

 application development more gradually. Additionally, by prioritising the curriculum towards

 skills that were specific for application development we could reduce the amount of

 unnecessary knowledge the students had to learn.

 5.2 Non-platform specific KBRs
 From the preliminary study, we identified the lack of non-platform specific knowledge as an

 obstacle to onboarding. Multiple students reported challenges when working with React and

 APIs specifically. The problems arose partly due to the students varying background

 knowledge and partly because the existing artefact did not include any non-platform specific

 KBRs that helped students acquire the relevant skills. By creating non-platform specific

 KBRs, we aimed to improve the students' capabilities with these technologies. This way, we

 could also ensure that everyone was on the same skill level before introducing DHIS2

 application development.

 55

 5.2.1 React module

 As the React module on the App course website was incomplete, it was a natural KBR to

 create. React is a required non-platform specific skill that students must acquire to develop a

 DHIS2 application. This module has three sections. The first section contains an introduction

 and a set of explanations for fundamental React concepts. By creating this section, we

 communicated which React concepts students were required to know and provided a brief

 explanation of them (see Image 5.1). The second section is a guide on how to set up a React

 project. We wanted all students to follow a standardised way of setting up an application to

 reduce potential problems. The third section contains links to several high-quality and free

 tutorials that covered React at a sufficient level for the course. This let the students choose

 which or how many tutorials they wanted to do to get more practical experience with React.

 An important choice that emerged during the development of this section was deciding

 whether we should create React content ourselves or link to existing external React resources.

 Because there is a lot of quality React content online, we decided to focus more on curating

 and linking to the most relevant external resources. By linking we saved resources on content

 production and could find higher quality resources than we could have made ourselves. This

 also has the benefit of reducing future maintenance costs because web development is a field

 that changes rapidly and practices may become outdated.

 Image 5.1. React section on DHIS2 App Course

 56

 5.2.2 React and API Assignment

 The React and API assignment was designed to give students more practice with the

 prerequisite skills required to build an application on DHIS2. For this assignment, we

 designed and implemented a custom API containing population data about countries. Because

 we wanted to prepare the students for working with DHIS2, we modelled our API to

 resemble the DHIS2 API. The students were required to query our API in a React application

 and present it in a table. They would then progressively add more functionality that utilised

 the APIs functionality such as a search bar, pagination component and sorting by column (see

 Image 5.2). By designing the assignment to start simple and then progressing to more

 advanced topics, the students could learn essential React topics more gradually. By providing

 an assignment that encompassed the specific parts of React required for building a DHIS2

 application we could provide them with hands-on experience that aimed to better prepare

 them for building a DHIS2 application.

 Image 5.2: Example solution of React and API assignment

 57

 5.3 Platform-specific KBRs
 Throughout our preliminary study, we found that many students had challenges when

 working with the DHIS2 KBRs. New complementors had to rely on the DHIS2 references to

 learn about the platform specifics which caused challenges for many students. The identified

 challenges varied but we concluded that the KBRs provided by DHIS2 were insufficient to

 onboard students. Guided by our kernel theory, we created a tutorial and a set of

 how-to-guides. The tutorial introduced the students to DHIS2 application development,

 including the most important BRs and KBRs. The how-to-guides assisted them with specific

 tasks they were likely to encounter that were out of the scope of the tutorial. We also included

 explanatory materials in the tutorial to aid the students in gaining a better understanding of

 the DHIS2 API and Data Model. Image 5.3 shows the structure of the tutorial “Getting

 started with DHIS2 development” on the left side and the how-to guides “App development

 guides” on the right side.

 Image 5.3: Tutorial and How-to guides sections

 58

 5.3.1 DHIS2 Tutorial

 We theorised that one of the reasons for why the DHIS2 KBRs were insufficient to onboard

 students was because they had not been given a thorough enough introduction to DHIS2. The

 DHIS2 references are highly comprehensive due to the platform’s high functional extent and

 are not structured in a way conducive to learning. Therefore, we designed the DHIS2 tutorial

 (see Image 5.4) to gradually introduce the students to DHIS2 and prepare them for working

 with the other KBRs during the project. Our kernel theory suggested that if the students were

 made aware of what DHIS2 boundary resources existed, had some practice using them, and

 were supplied with working code examples, they would be more prepared to develop their

 own applications.

 Image 5.4: The DHIS2 tutorial on DHIS2 App Course

 59

 Throughout the development of the DHIS2 tutorial, several design decisions emerged. First,

 we had to consider whether to link to existing DHIS2 KBRs or create content specifically for

 the university course. We had the option of either utilising existing DHIS2 resources by

 linking to them or creating new resources that were more course-specific. While we did use

 both of these strategies, we created many resources from scratch as we felt that the existing

 KBRs were difficult to use, inadequate or unspecific for the students. Further, we had to

 decide on the comprehensiveness of the DHIS2 tutorial. Considering that students would be

 expected to complete this part of the course within two weeks, the comprehensiveness of the

 tutorial had to be limited. We introduced students to the most important parts of the DHIS2

 platform such as the DHIS2 data model, the API, Data Queries and UI components.

 However, we had to limit how comprehensively we covered the API and the data model in

 particular. Because the data model is complicated and the platform’s functional extent is high,

 we decided to only cover the essential functionality that all students would be required to use

 which limited the comprehensiveness and increased the specificity of the tutorial. By

 identifying what functionality and endpoints the students were likely to encounter, we could

 supplement the DHIS2 KBRs with highly specific instructions and guidance. By designing

 the tutorial to exclusively cover functionality that the students most likely had to implement

 during their group project, we could provide them with specific implementation knowledge,

 working code examples and experience that would assist them with their project.

 Through this tutorial, students would gain hands-on practice and build relevant knowledge

 about specific parts of the platform, all of which aimed to be relevant to what students were

 expected to achieve in their final project. The tutorial started off by providing a skeleton of a

 DHIS2 application that students would progressively add functionality to through the

 proceeding sections. The tutorial was completed once the student had a finished DHIS2

 application that read data from a DHIS2 instance, presented it in a table, and let users modify

 data (see Image 5.5 and 5.6).

 60

 Image 5.5: DHIS2 Tutorial browse component

 Image 5.6: DHIS2 Tutorial insert component

 We also created a mandatory assignment which tasked the students with extending this

 application to visualise an additional DHIS2 dataset to encourage more practice. However,

 this assignment is not relevant for this thesis.

 61

 5.3.2 DHIS2 How-to-guides
 As described in the preliminary study, many students reported that a frequent issue was that

 the DHIS2 resources document the entire platform and as a result, are very comprehensive.

 Whenever students had a specific task to complete, they had to read comprehensive DHIS2

 references and filter out information relevant to their specific task. Due to the large amount of

 information available, it was difficult for them to distinguish between relevant and irrelevant

 information. We reasoned that this challenge could be solved by creating more specific

 KBRs, related to tasks and challenges they may encounter. Guided by our kernel theory, we

 decided to create how-to-guides to assist the students in common tasks they would likely

 encounter throughout their onboarding experience. This way, students could simply follow a

 guide and did not have to learn DHIS2 in-depth or search through comprehensive KBRs for

 specific information. For this section, we want to highlight one specific guide that we found

 enlightening with regard to our design considerations. The Datastore how-to-guide aimed to

 assist students in implementing the DHIS2 Datastore in their React application by providing

 step-by-step instruction. The DHIS2 references cover how to use the Datastore API. Despite

 this, several students had difficulties implementing Datastore in their application. While there

 were several reasons why these reference materials were not as usable as they could be, we

 want to highlight two issues with them. First, the references showed how to query the

 Datastore using the API. In contrast, students were expected to use the Datastore through

 Data Queries which has a different interface design (see Image 4.1). As a result, the examples

 provided could not be directly copied and would have to be modified to fit the students'

 context making them less specific. In addition, the reference materials did not introduce, nor

 mention the DHIS2 application “Datastore Manager” (see section 4.1.4)

 We created a how-to-guide instructing how to use the DHIS2 Datastore (see Image 5.7). This

 guide gave students an introduction to the Datastore and the Datastore Manager. It also

 supplied them with code examples of how to read and write data using the Data Queries that

 were specific to the course.

 62

 Image 5.7: Datastore how-to-guide

 5.4 Boundary spanning activities
 Another challenge that we identified in our preliminary study was that students lacked

 assistance when they encountered challenges where the broadcasting KBRs fell short.

 Students felt that they could not retrieve any help once they experienced difficulties in

 understanding the KBRs or when they had technical problems with their application.

 Therefore, we decided to introduce boundary spanning activities in the form of weekly

 seminars, one-on-one assistance and instant messaging. During the weekly seminars, we

 would live code, hold lectures about specific topics and assist students through one-and-one

 help. The course also had a public Mattermost channel, an instant messaging service.

 Through this channel, the students could discuss with each other and the seminar teachers.

 The students could also request assistance from us and retrieve individual guidance. Through

 these boundary spanning activities, we could assist the students when problems arose. The

 goal was to provide critical knowledge where the broadcasted KBRs turned out to be

 insufficient and to aid complementors with specific assistance where needed.

 63

 5.5 Chapter summary

 Several aspects informed the design of the artefact. From the preliminary study, we identified

 the complicatedness of the platform, a lack of non-platform specific knowledge, insufficient

 DHIS2 KBRs and lack of assistance as the main challenges when onboarding students in the

 course. In order to address these challenges, we created a curriculum, non-platform specific

 KBRs, platform specific KBRs and provided boundary spanning activities. Thus, each

 previously discovered challenge could be addressed accordingly through the design of the

 artefact. Table 5.1 shows an overview of all challenges and their respective solutions.

 Identified challenge Proposed Solution Description of proposed
 solution

 Complicated platform Curriculum design Limit learning scope
 Gradual learning experience

 Limited non-platform
 specific knowledge

 Non-platform specific KBRs Create explanations
 Give practice

 Insufficient DHIS2 KBRs DHIS2 Tutorial Enable hands-on experience
 Provide explanations
 Link to other KBRs
 Limit learning scope

 DHIS2 Guides Specific instructions
 Provide code examples
 Limit learning scope

 Lack of assistance Boundary spanning activities One-and-one help
 Weekly seminars
 Mattermost channel

 Table 5.1: Proposed solutions to challenges

 64

 6. Artefact Evaluation
 During the onboarding process, the students utilised DHIS2 KBRs and KBRs provided by us

 such as the DHIS2 App course and the boundary spanning activities. The artefact evaluation

 is therefore not limited to just the KBRs that we created but focuses on the entire collection

 of KBRs used during the onboarding of students. Figure 6.1 shows the relationship between

 the KBRs and boundary resources which are a part of this evaluation. The green KBRs at the

 bottom of the figure are provided through the DHIS2 App Course.

 Figure 6.1: The relationship between the KBRs and boundary resources

 65

 In Chapter 4, we presented four key challenges with the existing artefact that hindered

 complementors’ onboarding to the DHIS2 platform. Revising from the previous chapter,

 these challenges were:

 ● Limited non-platform specific knowledge

 ● Complicated platform

 ● Insufficient DHIS2 KBRs

 ● Lack of assistance

 We addressed these by creating a curriculum for the course, non-platform specific KBRs,

 platform-specific KBRs and boundary spanning activities. To reiterate, we evaluate the

 artefact on its utility, validity and quality in solving the initial challenges. The empirical

 findings derive from different focus groups, observations, surveys and the expert evaluation

 throughout the course. This chapter is structured as follows; We first present our findings on

 how the artefact was used in practice throughout the course. Thereafter, we discuss how the

 artefact performed with respect to the initial challenges it sought to solve. Finally, we

 introduce interactive KBRs, an important concept for onboarding complementors that

 emerged throughout the artefact evaluation.

 6.1 Students behaviour

 Because 137 students went through our onboarding, we were able to learn a lot about how

 they used the provided KBRs as part of their onboarding. The findings were derived from our

 surveys, focus groups and close relationships with the students. We found that students used

 many different KBRs throughout their onboarding process and that the KBRs used depended

 on what the students were trying to achieve at that moment. While there was a lot of variation

 in how students used our KBRs, we found some commonalities. Most students would

 primarily rely on using broadcasting KBRs, either provided by us, DHIS2, or by third parties.

 Image 6.1 comes from our first survey, asking students what resources they used during the

 first two weeks of the university course when they learned HTML, CSS, and Javascript:

 66

 Image 6.1: Different KBRs used during the online course

 Earlier in the same survey 89.7% of the students stated they used DHIS2 App Course to learn

 HTML, CSS and Javascript. We find that Google is unsurprisingly a very influential KBR for

 most developers which leads students to a variety of other external resources. This

 underscores how developers use a lot of different KBRs when learning a technology. We

 observed that in general, most students started their learning process by using introductory

 KBRs such as tutorials that provide an overview of important functionality and attributes of

 the software or platform. We found that there were differences in how students preferred to

 approach learning new technology. Some students preferred watching introductory videos

 while others preferred reading text as it was “more efficient to read”. However, most students

 stated that they learned the best when “learning by doing” or in other words, learning through

 practice, usually assisted by KBRs. The extracts below are from three focus groups with

 students which show some of the variations between students' approaches to learning:

 O1: “I’m a big fan of finding a YouTube video that covers everything and

 then I’ll just lean back and pay attention.”

 O2: “I’m more of a trying out things kind of person. I’m a “knock my head

 against the wall” type of student and programmer.”

 O3: “You start with the basics and some tutorials afterward, learning by

 doing is good.“

 67

 Following these introductory KBRs, students would have an idea of what they are trying to

 achieve with the platform, and how they may implement it into their application. They then

 usually entered a task-focused implementation process where they tried to implement the

 boundary resources into their application through trial and error with assistance from KBRs.

 Here, they would commonly use a multitude of KBRs such as the DHIS2 references, how-to

 guides, or external resources found through Google. We also observed that some students,

 especially the more experienced ones, would skip the more introductory KBRs and go

 straight to attempting to implement the functionality.

 “I just tried things. I like learning in that way, and I guess most people are

 like that. And when I encountered something that I didn’t understand, I just

 Googled it. And then there would be something on Stackoverflow about it or

 something.”

 If a student was skilled enough in application development to use the broadcasting KBRs, the

 learning approach described above was usually sufficient and they could move on to new

 tasks. However, if this approach did not solve their task, they would resort to one of the

 following approaches. First, they intensified their trial and error efforts and would attempt to

 learn through practice and experimenting directly with the boundary resource. Second, they

 intensified their information foraging. For instance, they would intensify their Googling

 efforts or delve deeper into comprehensive KBRs and other sources of knowledge like code

 repositories. Third, depending on the students' tendencies to ask for assistance, and the

 environment around them, they would at some point resort to asking others for assistance. For

 example, by asking a fellow student or boundary spanner. From here they would receive more

 specific knowledge and guidance and would, in most cases, be able to solve their task. We

 note that the students' preferred approaches varied; however, most students would address an

 implementation challenge through a combination of these three approaches. Some students

 spent days solving a problem themselves rather than asking for help, while others asked for

 assistance frequently without exerting much effort first.

 68

 6.2 Curriculum design

 The complicated DHIS2 system and the documentation posed another major challenge during

 the onboarding of new complementors to the DHIS2 ecosystem. We addressed this challenge

 by designing a curriculum for the course, increasing the specificity of the KBRs towards the

 project, and enabling a more gradual learning experience for the students. By following the

 curriculum, the students would first acquire important non-platform specific skills, before

 learning about the DHIS2 platform essentials. Later during the project, students were required

 to use the DHIS2 references and find specific information related to their use case on their

 own. Because the students enrolled in the university course vary every year, the effect of the

 curriculum design on the course is difficult to compare to the prior course. Various students

 noted, however, that they enjoyed the step-by-step introduction to DHIS2 application

 development and how the course was set up in general. We received particularly positive

 feedback on the React module and the React and API assignment.

 However, there were also some enduring challenges with the curriculum design. A student

 described that there was a big gap between the API calls in the DHIS2 tutorial and the actual

 DHIS2 API, claiming that it “sort of only gave me a refresher when it came to the API but it

 didn't really make me understand all of it and how it relates to the data model.” As described

 by the student, our curriculum did not teach about the entire DHIS2 system, nor did it go

 through all possible use cases. The way the course curriculum was designed, it only

 addressed a small portion of the API and DHIS2 data model. Due to the time frame of the

 course and the complicated DHIS2 API, it was infeasible to teach the students everything

 about the DHIS2 platform. This led to many students feeling that they had not gained a full

 understanding of DHIS2 when they started developing their applications. After the project

 was completed we asked the students: “On a scale from one to ten, how well did you feel

 prepared for developing a DHIS2 application when the [group] project started”. On average

 the students reported 5.9 out of 10. It appears that the curriculum only partly prepared the

 students for DHIS2 application development. This may be explained by the specificity of the

 tutorial being limited to one use case of the platform. The way the tutorial was designed, the

 students were not supposed to learn about the entire platform’s functional extent. When

 asking the students why they did not feel prepared enough for developing an application, 9

 out of the 15 respondents answered it was due to the complicated DHIS2 API compounded

 by a general lack of understanding for how to use the API.

 69

 To conclude, the students enjoyed a more gradual curriculum and were able to use the DHIS2

 App Course without any large problems. However, there were challenges once they started

 their application development and had to use comprehensive DHIS2 KBRs. This may be

 explained by how the curriculum was not comprehensive enough and they did not learn

 enough about DHIS2 to generalise to their own project. However because DHIS2 is highly

 complicated this challenge is hard to address in the limited time frame of the course.

 6.3 Non-platform specific KBRs

 During the preliminary study, we found out that students often lacked the required

 prerequisite knowledge about web development and APIs which posed an obstacle to their

 successful onboarding. In order to create a better onboarding process for the students, the

 artefact included several non platform specific KBRs.

 The non-platform specific KBRs include the CSS, HTML, Javascript and React sections on

 the App course website. Within the context of the non-platform specific KBRs,

 approximately 72% of respondents answered that the app-course website was either “very” or

 “extremely” helpful in aiding the refreshment or acquisition of programming language

 knowledge. In comparison, across the platform specific KBRs, 85% of respondents answered

 that the course website was either “very” or “extremely” helpful. Comparing these two

 numbers, it appears that the respondents found the platform specific resources more helpful

 than the non-specific resources. This could be explained by the fact that there were no

 alternatives available for acquiring platform specific knowledge other than the official DHIS2

 KBRs and our course website. One of the respondents argued that for the non-platform

 specific tasks such as Javascript and React, the course website helped somehow but was not

 as critical due to a large number of external resources available. On the contrary, when

 acquiring DHIS2 knowledge, the course website was “more useful than anything”. It appears

 that the platform-specific KBRs were perceived as more useful on average. There are also no

 third-party resources available on platform-specific knowledge. The only way students could

 gain platform-specific knowledge is through the KBRs provided by platform owners. Not

 surprisingly, our findings indicate that including platform specific knowledge is more critical

 than including non-platform specific knowledge when onboarding newcomers to a platform.

 70

 “I think this website needs to be really good because there aren’t really any

 alternatives. If you are going to learn HTML and Javascript, you can look in

 other places but not in the case of DHIS2.”

 However, only approximately 21% of the respondents had previous experience with CSS,

 HTML, Javascript and React. These students relied particularly on the provided non-platform

 specific KBRs or on external resources. Considering that non-platform specific knowledge

 was required to build a DHIS2 application, we found it important to include non-platform

 specific content in our KBRs to ensure that everyone was on the same skill level before

 introducing DHIS2 app development. We also observed that students who used third-party

 resources rather than our KBRs sometimes found outdated information without being aware.

 For example, students who googled to gain knowledge about React sometimes ended up

 using outdated React versions. Including non-platform specific KBRs can therefore help to

 foster a better programming practice and decrease the risk of complementors using outdated

 information by Googling.

 6.4 Platform specific KBRs

 Another major challenge found throughout the preliminary study was that the DHIS2 KBRs

 were insufficient when onboarding new complementors to the DHIS2 platform. There were

 many reasons why students perceived the DHIS2 KBRs as insufficient. Guided by our kernel

 theory, we identified a missing DHIS2 introduction and missing specific resources as two

 main problems. To address these challenges, we complemented the DHIS2 KBRs with a

 tutorial, explanatory material and how-to-guides.

 71

 6.4.1 DHIS2 Tutorial

 Before introducing our artefact, there was no introduction to learning about the DHIS2 UI

 library or the DHIS2 API and the students had to rely on the DHIS2 references to learn about

 the platform. As this caused several problems for the students, our artefact introduced a

 DHIS2 tutorial.

 In a survey, 85% of the respondents answered that the tutorial has been “very helpful” or

 “extremely helpful”. Various students pointed out that the App course website has been a

 great guide that helped them get started with web development and DHIS2 essentials. For

 example, one of the respondents explained:

 “The resources provided to us in this course [website] were great for me as a

 ‘novice’ developer in the DHIS2 ecosystem. I felt like the resources were

 basic enough at the start for me to have a slow and steady progression with

 React/CSS/JS, as well as the DHIS2 API, before building on what I had

 learned later on.”

 Another respondent stated that “the step by step introduction was nicely paced to ease the

 students into DHIS2 development”. It has also been claimed that the tutorial on the course

 website was easier to understand than most of the DHIS2 KBRs. For example, according to

 one student, the provided code examples were one of the reasons why the tutorial was easier

 to grasp than the DHIS2 references. The DHIS2 references contain detailed information

 about the DHIS2 platform and is a purely technical description of the system. Before we

 introduced our tutorial, students struggled using the DHIS2 references because it contains

 very few examples and explanations. Consequently, it is a difficult place for learning about

 the platform. It appears that the students found the tutorial very useful as it provided a more

 gradual introduction to DHIS2. Because the tutorial provided code examples and

 explanations, many students found it to be easier to understand than the DHIS2 references.

 Another essential idea with the tutorial was to limit the learning scope to be more specific to

 what the students were going to need for the project. As DHIS2 is a large platform with a

 high functional extent, we decided to limit the scope of the tutorial to only comprise a small

 part of the DHIS2 data model. The tutorial introduced only a few specific endpoints as well

 as a few common use cases of the DHIS2 UI library. For example, since tables were very

 72

 commonly used to display data, the tutorial illustrated the implementation of the DHIS2 UI

 table component. We found that students had no or few issues when following the tutorial.

 There were also a few issues when they reused functionality that was covered in the tutorial

 later on in the project. However, despite the introduction that they have been given through

 the tutorial, the students struggled to use the DHIS2 references later. A student described this

 problem:

 “Your tutorial was really good but a little bit kindergarten. It was a safe

 space and then when the project started you had to find out about things

 on your own using the DHIS2 references.”

 Although various students pointed out the importance of the tutorial to be able to use the

 DHIS2 references, it appears that the tutorial was too specific and did not prepare them for

 working with the rest of DHIS2. The tutorial was designed to provide students with basic

 DHIS2 knowledge rather than teaching them everything about the DHIS2 platform. The

 DHIS2 references are extremely comprehensive in the way that they comprise all information

 on all possible use cases of the DHIS2 platform. In contrast, the tutorial that we provided was

 more specific. As a result, students found it difficult to transfer their experiences from the

 tutorial over to using the DHIS2 references.

 We conclude that the tutorial was very useful for getting the students started with DHIS2. By

 providing a gradual learning curve that introduced the terminology of DHIS2 and encouraged

 practice, students were better prepared for developing an application afterward. Nonetheless,

 there were some areas of DHIS2 that were not covered well enough and could be addressed

 better by the tutorial. However, many of the challenges students faced through their

 onboarding were more related to the DHIS2 references being difficult to use, and the

 platform being complicated. We reason that this challenge could not have been addressed by

 one single tutorial.

 73

 6.4.2 DHIS2 How-to-guides

 In addition to a tutorial, we implemented how-to-guides that instructed students in how to

 complete common and potentially complicated tasks. This way, students could simply follow

 a guide instead of studying the DHIS2 references in detail.

 During the course, several students noted difficulties implementing the Datastore in their

 applications and requested assistance from us as boundary spanners. We created a how-to

 guide to address this challenge in a way that scaled to all of the students. After publishing the

 how-to-guide on the App course website, we observed that the number of inquiries from

 students went down dramatically. Thus, the how-to-guides were useful in aiding

 complementors with completing specific tasks on their own. Further, we could benefit from

 simply referring to the Datastore guide. In other words, by creating a how-to-guide we could

 broker knowledge instead of bridging knowledge. As bridging is a resource-intensive activity,

 the how-to-guides were useful to save time and resources by brokering to existing KBRs. We

 want to note that creating these task-specific resources required a time and resource

 investment. First, we had to understand what complementors were having challenges with,

 then we had to identify an effective solution, and finally, we could create a KBR that

 broadcasted the solution in a way that worked reliably. Therefore, we only created a how-to

 guide when many students would face this challenge to make it worth the time investment.

 We also noted instances where our task-specific resources were less effective. During the

 course, many students reported major challenges when working with the advanced

 functionality of the Data Query (see section 4.1.2). Most groups would have to implement

 this functionality in their application at some point. The DHIS2 KBRs lacked specific

 examples and information documenting how to send dynamic parameters to the DHIS2 API,

 which led to multiple groups spending a large amount of time completing the task. During a

 focus group, a student pointed out that a how-to-guide would be useful for his project group:

 “We got into a situation where it would have been nice to parameterise the

 Data Query to get and mutate data. [...] I think [the DHIS2 references] aren’t

 sufficient in telling how to use these functions and how to parameterise all

 the options that exist in these functions. [...] So I wish it was more explicit

 about what you can do. If you want to do this, do that.”

 74

 As clearly stated in this quote, the student wanted KBRs that were more explicit about how

 you could use certain functionality in a specific context. It seemed like creating a

 how-to-guide would have been helpful in this specific situation. However, this was

 challenging because there was a lot of variation in how to use the Data Queries. Essentially,

 the implementation depended on several factors depending on the application structure and

 the specific endpoint they were querying. All this variation made it difficult to create one

 single how-to-guide because there were no one-size-fits all solution in all circumstances. As a

 result, we decided not to create a specific guide on how to parameterise a data query for all

 situations. In this circumstance, we resorted to boundary spanning activities and provided

 code examples that students could copy into their application and modify to their context.

 To conclude, we found task-specific resources effective in assisting students with completing

 specific tasks without having to understand the system comprehensively. For how-to guides

 to be resource-efficient, they had to address tasks that many students encountered frequently.

 Following the creation of the guide, we could then broker knowledge rather than bridging it.

 We also found that creating effective guides was challenging when the underlying boundary

 resource had a lot of variability, resulting in the guide becoming increasingly comprehensive

 and less specific.

 75

 6.5 Boundary spanning activities

 The boundary spanning activities were designed to bridge knowledge through one-and-one

 help, including the group seminars and the Mattermost channel. In a survey, 33% of the

 respondents answered that they asked boundary spanners for guidance about programming

 issues and understanding the DHIS2 KBRs. The importance of the boundary spanners was

 explained by one of the students:

 “It helped that the seminar teachers had the expertise and knew how the

 system worked. There are a lot of things that we may not be aware of [...]. It’s

 not certain that the website has all the information needed or that it is as

 detailed as needed. You have worked as a person between us students and

 those responsible [for the documentation]. We could ask you questions. That

 was very helpful. I feel like it was necessary, too. The website doesn’t cover it

 all.”

 As described by the student, the seminar teacher functioned as mediators between the

 platform and the students by bridging knowledge where needed. The student also highlighted

 the utility of boundary spanners due to their platform expertise, specifically when the

 broadcasted KBRs lacked information.

 We found that there were two reasons why a student would experience a broadcasting KBR to

 be insufficient. The first reason was that the broadcasting KBR was well designed, but the

 specific student was not sufficiently skilled to comprehend and use it. When this occurred,

 boundary spanning activities played an important role as we could bridge knowledge to the

 students and assist them through their onboarding process. Because broadcasting KBRs are

 designed to scale to many complementors simultaneously, they do not always work for every

 complementor. The second reason was when the broadcasting KBR was itself poorly

 designed and difficult to comprehend. Boundary spanning was then helpful because we could

 bridge knowledge to the student, and afterward improve the broadcasting KBR itself. For

 instance, in the tutorial, we had a guide on how to set up the DHIS2 development

 environment. When the course period started, several students mentioned that the guide did

 not work on their computers. By communicating with the students, we identified the problem,

 found a solution, and revised the guide to communicate the solution.

 76

 Additionally, boundary spanning activities were helpful when students encountered problems

 during the course and needed specific assistance to solve a task they found challenging. As

 discussed earlier, we created a Datastore guide because students were frequently asking

 questions about how to implement it in their application. Without these boundary spanning

 activities, we would not have identified that students found that specific boundary resource

 challenging. Thus, boundary spanning activities were an effective method for learning about

 the students' needs and identifying potential KBRs.

 To conclude we found boundary spanning activities for three reasons. First, we could assist

 students who were less skilled than their peers and needed more support than the broadcasted

 KBRs provided during the onboarding. Second, we could identify flaws with the broadcasted

 KBRs and improve them. Third, we could find new ideas for new specific KBRs which

 assisted the students with challenging problems.

 6.6 Interactive broadcasted KBRs

 As we observed the artefact in use, we noted a set of KBRs which seemed to transfer

 knowledge more effectively than other KBRs. We refer to this type of KBR as interactive

 broadcasted KBRs. We conceptualise them as a type of broadcasted KBR which represents or

 interacts directly with the platform's boundary resources. By providing an interface built on

 top of the boundary resource they provide an environment where a complementor can learn

 or use a boundary resource more effectively than compared to a traditional KBR like a

 reference or training video. Throughout the project, we identified four interactive broadcasted

 KBRs; Interactive code exercises, Data Query Playground, Datastore Manager and

 Storybook. We found that they were useful for two reasons. First, they were effective at

 aiding the students with attaining hands-on experience and skills. Second, they were effective

 in assisting students with achieving specific tasks.

 77

 The App course website contained many embedded interactive code exercises in the HTML,

 CSS and Javascript sections. Several students noted that they found them useful for learning

 these technologies and noted their absence in the later modules in the course. For example,

 they stated that the instant feedback provided through the interactive code exercises was

 useful. It informed them if they had understood the concepts or if they had to spend more

 time learning the materials before advancing to the next topic.

 Similarly, the Data Query Playground (see section 4.2.4) was noted as helpful by many

 students. One student explained during a focus group:

 “It was the opportunity to test things without having to do a lot of work or

 risk a project. That you could just jump right into it. You could check if this

 worked, or if that worked. The freedom of how easy it was. It made it so that I

 didn’t need to be afraid, right? I didn’t have to read a lot to make sure that it

 works. You just plot it in and if it doesn’t work, who cares, it took 10 seconds.

 [...] It reduced the barrier to entry, there’s less of a mental block around just

 trying something”

 This quote captures the benefits of interactive KBRs compared to other broadcasting KBRs

 such as a reference. Because they are browser-based, students could test their code quickly

 without having to set up a new project. In other words, it reduced the barrier to entry.

 Furthermore, they provided an environment where the students could experiment and iterate

 to a working solution with instant feedback. Additionally, there was no risk to the

 experimentation. They did not have to modify an existing project, further encouraging them

 to experiment. All of these attributes are highly conducive to encouraging learning and

 practical experience.

 While the Datastore Manager (see section 4.1.4) is more of a boundary resource, it

 functioned like an interactive KBR because it was used to gain knowledge, not just use it as a

 boundary resource. We observed that students found it challenging to use the Datastore

 through the API, however, the students did not find the Datastore Manager application

 challenging to use. We reasoned that this was because the Datastore Manager application

 provided the students with an interface design that they were familiar with from other web

 78

 and mobile applications. By using the graphical user interface, the students could learn how

 the underlying Datastore API worked. After they had experimented with the Datastore

 Manager, implementing the Datastore API in their application was easier because they had

 already learned its functionality. In essence, this interactive KBR had the same

 aforementioned benefits as the other interactive KBRs. However, in addition, it provided a

 more intuitive interface design and user experience than the underlying boundary resource

 itself, leading to a better learning experience.

 The final interactive KBR in the course was Storybook (see section 4.2.3). We observed that

 Storybook similarly provided an intuitive, low friction, low-risk, and short feedback loop

 environment. However, Storybook additionally assisted students with completing common

 tasks they would encounter when developing an application. Storybook provided a better

 interface for browsing and discovering UI components compared to a static webpage

 displaying UI components. After discovering a relevant UI component, students could change

 its parameters and instantly see how the component changed. After the component had been

 modified, the student could simply copy the code directly into their application. We observed

 that Storybook was highly effective and we rarely had to assist students with UI-related

 matters. In our final survey, 83% of students noted that Storybook was “very helpful” or

 “extremely helpful” which underscores the effectiveness of this KBR. We note that DHIS2

 provided a textual reference of UI components, however, few students used it because

 Storybook provided a superior experience.

 The expert evaluation also highlighted the usefulness of interactive KBRs. When we asked

 the expert why he thinks that interactivity is such a useful tool, he explained:

 “Because it changes the learning experience from having a lecture towards

 having a hands-on experience [...] One thing is when you are being thrown

 something in the face and it's unidirectional. When you have these learning

 experiences be bidirectional, basically you're learning and you're applying at

 the same time [...] In general, the more interactive the better because people

 feel they are in control. When they can try things and they know that they

 nailed it right?”

 79

 Although creating interactive KBRs may be resource-intensive, interactive experiences give a

 “great return on investment” , the expert added.

 To conclude, interactive broadcasted KBRs provided an effective learning and onboarding

 experience because it let the students learn the boundary resources by using them directly in

 an interactive environment. Their functions vary, but in general, they provided an intuitive,

 low friction, low-risk and short feedback loop environment which assisted them with learning

 or completing tasks on the platform.

 7. Design considerations
 This chapter presents five design considerations that software platform owners can use as

 guidance when designing KBRs for onboarding new complementors to their platform

 ecosystem. These design considerations emerged gradually throughout the entire design and

 evaluation process of our artefact. Empirically, they are based on the findings from evaluating

 the artefact in use when over 137 students used it as part of their onboarding process. In total,

 we define and discuss five design considerations in Table 7.1.

 For each design consideration, we first give an overview of what the design consideration

 entails, followed by providing empirical support from our artefact evaluation. Thereafter, we

 discuss how platform owners may realise the design consideration and in which situations

 they can apply the design consideration. Finally, we also discuss trade-offs if any and

 potential challenges that platform owners may encounter while following these design

 considerations. While platform owners do not have to follow these design considerations

 strictly, we suggest that they can use them as guidance for designing their KBRs for

 onboarding complementors to their platform.

 80

 Design Consideration Description

 Designing KBRs for

 comprehensiveness and

 specificity

 Platform owners face a tradeoff between providing KBRs for

 comprehensiveness and specificity. While specific KBRs can be easier

 to follow than comprehensive KBRs for new complementors,

 comprehensive KBRs are essential because they describe more of the

 platform’s functional extent. Effective onboarding should therefore

 both include specific and comprehensive KBRs.

 Broadcasting tutorials,

 guides, references and

 explanations

 Platform owners should consider broadcasting references, tutorials,

 how-to guides and explanations to improve their KBRs.

 Complementors rely on all four types of KBRs and use them at

 different times throughout their onboarding process. Due to their

 scalability, platform owners can effectively onboard many

 complementors simultaneously.

 Performing boundary

 spanning activities

 Platform owners should consider performing boundary spanning

 activities to assist complementors through their onboarding process

 where broadcasting KBRs fail to anticipate the complementors needs.

 Platform owners should also use the learnings from the boundary

 spanning to improve the broadcasting KBRs for future onboarding of

 complementors.

 Provisioning interactive

 broadcasting KBRs

 Platform owners should consider the provisioning of interactive

 broadcasting KBRs to aid complementors with a more intuitive, low

 friction, low risk and instant feedback environment. Such KBRs can

 also improve the onboarding process by simplifying tasks that

 complementors encounter, reducing the knowledge required to

 complete those tasks.

 Providing non-platform

 specific knowledge

 Platform owners can consider providing non-platform specific

 knowledge by linking to external resources or creating custom content.

 This can improve the onboarding process for less experienced

 complementors and the platform owners do not have to rely on the

 quality and suitability of external resources.

 Table 7.1: Design considerations

 81

 7.1 Designing KBRs for comprehensiveness and specificity

 By designing KBRs for onboarding complementors to a platform, we found that platform

 owners face a tradeoff between providing KBRs for comprehensiveness and specificity.

 While the students in our study found specific KBRs easier to follow than comprehensive

 KBRs, comprehensive KBRs are essential because they describe more of the platform’s

 functional extent. Effective onboarding should therefore both include specific and

 comprehensive KBRs.

 Comprehensive KBRs are oriented towards the platform's boundary resources. They cover a

 platform’s interface design and functional extent to a high degree. For example, references

 are highly comprehensive KBRs. Throughout our artefact evaluation, we found that if KBRs

 did not cover a platform's entire functional extent, the onboarding process was disrupted. To

 retrieve information about the underlying boundary resource, the students then had to either

 rely on boundary spanners or trial and error in order to proceed with their onboarding.

 Additionally, we observed that students found comprehensive KBRs more challenging to use

 because it requires more effort to learn from. Due to the large amount of information

 provided, students were often overwhelmed, spent more time learning unnecessary details, or

 found it hard to identify relevant information required for accomplishing their task.

 Therefore, a platform owner should also provide specific KBRs which are more oriented

 toward the tasks a complementor is trying to achieve with the platform. Specific KBRs aim to

 reduce the amount of extraneous information through for example step-by-step instructions.

 We observed that students found specific KBRs easier to use than comprehensive KBRs.

 They could rapidly accomplish specific tasks, without the need to understand the underlying

 logic of the task they were attempting to achieve. However, specific resources had drawbacks

 as well. First, students who were provided highly specific solutions to their tasks did not learn

 the materials as well, which harmed their ability to generalise to other tasks. Secondly,

 creating many specific KBRs that covered all the tasks the students may face would require a

 substantial amount of resources.

 Creating an effective onboarding experience requires therefore the provisioning of both

 specific and comprehensive KBRs. A platform owner should design the sum of KBRs to

 describe the entire functional extent of the platform. This can be achieved through, for

 82

 instance, provisioning a reference, which provides a baseline of comprehensive knowledge.

 The platform owner should additionally research the most common tasks complementors face

 and provision specific KBRs to assist in those tasks. Examples of tasks where a highly

 specific KBR, such as a how-to guide, might be applicable, are tasks that complementors will

 only need to accomplish once, rarely vary or that the complementors will not need to

 generalise from at a later point. However, certain tasks that complementors face require more

 comprehensive resources than just a specific how-to guide. For instance, we found that when

 the underlying boundary resource had a lot of variability in usage creating a very specific

 guide was difficult. In these cases, creating a more comprehensive, but still specific, tutorial

 or explanation can be beneficial. For example, the DHIS2 app course tutorial tries to be

 comprehensive enough to introduce complementors to application development and allow for

 generalisation, while still being specific enough towards just application development.

 Essentially, a platform owner must provision comprehensive and specific KBRs, while

 striking the right balance between the two.

 83

 7.2 Broadcasting tutorials, guides, references and explanations

 We find that platform owners should consider broadcasting references, tutorials, how-to

 guides and explanations. Broadcasting KBRs are highly standardised KBRs with high scale,

 i.e. they address many complementors simultaneously at a low marginal cost. Because

 platforms often contain many geographically dispersed complementors, broadcasted KBRs

 are effective for onboarding complementors without the presence of boundary spanners.

 Diátaxis, which we relied on as part of our kernel theory, argues that technical documentation

 should not consist of merely referential material but also include tutorials, how-to-guides and

 explanatory material.

 We observed that the DHIS2 references were an essential KBR for application development.

 They provided detailed information of the entire platform’s functional extent and were highly

 used when implementing the platform boundary resources. Originally, the DHIS2 KBRs

 consisted primarily of reference materials. However, most students reported difficulties

 learning about platform-specifics with the DHIS2 references alone. Due to the large amounts

 of information contained by references, students found it difficult to find specific information

 relevant for their task. Further, students experienced that references were difficult to use

 during their onboarding due to unfamiliar technical terminology. Therefore, we found only

 provisioning references to be insufficient for the onboarding of complementors. For this

 reason, we implemented a tutorial to introduce them to the DHIS2 platform. The tutorial gave

 the students hands-on experience with the platform’s boundary resources while it explained

 essential platform-specific knowledge and terminology. In contrast to the DHIS2 references,

 the tutorial provided the students with a gradual and more specific introduction to application

 development. Our findings from observing the students while learning new technologies

 substantiate the need for a tutorial as most students would first use more introductory

 materials before attempting to implement an application. Furthermore, most students stated

 that they learn best through practice and learning by doing, underscoring the necessity for a

 practical introduction. Several students noted that the tutorial helped them to learn about the

 DHIS2 platform and was easier to understand than other DHIS2 KBRs. Thus, the tutorial

 turned out to be highly useful for onboarding complementors.

 We also observed that a lack of explanations posed an obstacle for onboarding

 complementors to the platform. By integrating explanations into our artefact, we could

 84

 provide the students with a better overview and greater understanding of the DHIS2 platform.

 Students required, for instance, explanations about the DHIS2 data model and API to make

 sense of the DHIS2 boundary resources. As new complementors to the platform may not

 have any previous experience with the platform, explanatory material is important to aid their

 understanding of the platform, especially with regard to more complicated or complex

 knowledge. Finally, we found that the DHIS2 KBRs could be improved by adding how-to

 guides. These step-by-step guides instructed the students in their tasks and were highly

 effective at assisting students. By providing how-to-guides specific to a task, more students

 were able to complete more complicated tasks on their own with less effort. Thus, how-to

 guides are useful for the onboarding process because they reduce how much knowledge

 complementors need to learn, effectivising how quickly they can get started with developing

 applications.

 We saw that complementors who are being onboarded to a platform relied heavily on these

 four types of KBRs. Tutorials, references, guides and explanations are used at different times

 throughout the onboarding process. A good tutorial furnishes complementors with

 introductory knowledge of the platforms boundary resources and KBRs. References and

 how-to guides are used extensively when a complementor is developing an application.

 Explanations are necessary to provide the complementors with understanding about more

 complicated parts of the platform. Platform owners should consider broadcasting tutorials,

 references, how-to-guides and explanations due to the important role they play in onboarding

 new complementors to a platform. Due to their scalability, platform owners can effectively

 onboard many complementors simultaneously.

 85

 7.3 Performing boundary spanning activities

 Platform owners should consider performing boundary spanning activities to assist

 complementors throughout their onboarding process where broadcasting KBRs fail to

 anticipate the complementors needs. However, they have a high human resource cost.

 Therefore, these boundary spanners should additionally aim to improve the onboarding

 process by improving the broadcasting KBRs to better address complementors at scale.

 Throughout the onboarding process, we discovered that providing boundary spanning

 activities was highly useful for three reasons. First, the students sometimes lack the required

 skills to make use of the platform’s KBRs. Since broadcasting KBRs are standardised, they

 tend to not adapt as well to the individual complementors needs and context. The boundary

 spanning activities, in contrast, allowed more personalised assistance when the broadcasting

 KBRs failed to anticipate the complementors' needs. By bridging or brokering knowledge

 when complementors encounter challenges during their onboarding, platform owners can

 assist complementors in progressing through the onboarding with less frustration. Second, we

 found that boundary spanning activities were useful to learn more about common tasks that

 complementors found challenging. By having a personal relationship with the students

 throughout the weekly seminars, we could identify common challenges and tasks that many

 complementors requested assistance with. We could then create broadcasting KBRs such as

 how-to guides that assisted the students with those specific tasks. Thereafter, we could broker

 the students to those broadcasted resources instead of bridging, sparing platform resources.

 Finally, broadcasted KBRs are rarely flawless. We experienced that creating KBRs was

 challenging, especially without feedback from the complementors. For example, the

 how-to-guide for setting up a DHIS2 application did not work reliably for all students in all

 contexts. After being informed of this problem through our boundary spanning activities we

 could improve the how-to-guide. Thus, boundary spanning activities serve as an important

 feedback mechanism for improving broadcasting KBRs.

 Platform owners should consider providing boundary spanning activities through e.g.

 one-on-one assistance, instant messaging, workshops or seminars. Boundary spanning

 activities are highly effective in assisting complementors when broadcasting KBRs fail to

 onboard complementors. However, because boundary spanning activities do not scale well to

 all platform complementors they are hard to rely on as the only KBR to onboard new

 86

 complementors. Boundary spanners should therefore also simultaneously improve the

 broadcasting KBRs to better adapt to the complementors needs in the future by identifying

 common tasks and challenges.

 87

 7.4 Provisioning interactive broadcasting KBRs

 Platform owners may consider provisioning interactive broadcasted KBRs to assist the

 complementor in their onboarding process. Interactive broadcasted KBRs are a type of

 broadcasted KBRs which represents or interacts directly with the platform's boundary

 resources. By providing an interface built on top of the boundary resource they provide an

 environment where a complementor can use or learn a boundary resource more effectively

 than compared to a traditional KBR like a reference, training video or.

 Our findings show that interactive KBRs were useful for helping students acquire knowledge

 and skills for several reasons. First, by reducing the barrier to entry with a browser-based

 environment, students could put their knowledge to practice with less setup and friction

 compared to using the boundary resource directly. Second, by delivering instant feedback, the

 students could experiment quickly and validate their solutions more rapidly. Finally, by

 providing a low-risk environment, students did not have to be concerned about breaking their

 application and could experiment without risk. All of these attributes combined made

 interactive KBRs conducive to learning about the platform during the onboarding process.

 Additionally, we note that an interactive KBR can provide a more intuitive and usable

 interface than the boundary resource itself which can simplify the usage and learning of it.

 For instance, the Datastore Manager provided a more intuitive interface through which the

 student could learn the underlying boundary resource. This reduced the knowledge required

 to use the boundary resource and let the students experiment with the boundary resource to

 build understanding which was transferrable to using the boundary resource later on. We also

 found interactive broadcasting KBRs useful for streamlining specific tasks complementors

 encounter. For instance, Storybook assisted the complementor with the discovery and

 implementation of UI components. By effectivising a common task through an interactive

 interface, students could develop their application more effectively and with less prerequisite

 knowledge than with conventional KBRs.

 We find interactive broadcasted KBRs to be useful with regards to the onboarding process by

 letting complementors gain knowledge in a more intuitive, low friction, low risk and instant

 feedback environment. Additionally, our findings show that they can improve the onboarding

 process by simplifying tasks that complementors encounter, reducing the knowledge required

 to complete those tasks. Because these interactive broadcasted KBRs scale well, they can

 88

 have a large impact on the entire platform ecosystem. Platform owners may therefore

 consider provisioning interactive broadcasted KBRs to assist complementors with their

 onboarding to the platform. For instance, platform owners can provide interactive code

 exercises, hosted developer sandboxes, or developer tools that assist with challenging tasks

 on the platform.

 89

 7.5 Providing non-platform specific knowledge

 Application development in a platform context often requires competencies in addition to

 platform specific knowledge. We refer to such prerequisite knowledge that does not relate to

 the platform directly as non-platform specific knowledge. For example, complementors

 require web development skills and experience with APIs to develop an application on

 DHIS2. Because non-platform specifics often do not relate directly to the platform itself, the

 platform owners are not necessarily responsible for providing respective KBRs. More

 commonly, complementors rely on third-party resources to acquire these competencies.

 However, we found that providing non-platform specific knowledge can be beneficial for

 both the complementors and the platform owner of a platform ecosystem.

 We observed that if non-platform specific knowledge is a prerequisite for using the platform

 boundary resources, a lack of non-platform specific KBRs can pose obstacles to the

 complementors’ onboarding to the platform. In the case of DHIS2, the consequences of

 students not having enough knowledge about React caused problems for DHIS2 application

 development. If a platform owner decides not to provide non-platform specific knowledge,

 complementors will have to rely on third-party resources. However, this will only be effective

 if the existing resources are of high quality and the complementors are able to find them.

 Furthermore, third-party resources may not be particularly specific towards the tasks that the

 complementors are trying to achieve with the platform and they may need to filter through

 more unnecessary information than required for the task at hand. We also found that the

 absence of non-platform specific knowledge sometimes leads to bad practices. For instance,

 when students googled rather than using the provided KBRs, they occasionally found wrong

 or outdated information . In other cases, third-party resources would at times propose

 ineffective solutions to their problems.

 To address this challenge, platform owners can link to existing third-party resources or

 integrate non-platform specific knowledge in the platform’s KBRs. Linking to high-quality

 third-party resources is a cheap and effective way for platform owners to provide

 non-platform specific knowledge which can assist complementors during their onboarding.

 For example, as there were existing high-quality learning materials available on React, we

 decided that linking to those would be a better time and resource investment. However,

 sometimes there are no third-party resources that are specific enough with regards to required

 90

 non-platform specific knowledge. In those situations, it can be a better idea to integrate

 non-platform specific knowledge into the platform’s KBRs. This has the advantage of being

 highly specific to what non-platform knowledge the complementor is required to have.

 Further, platform owners do not have to rely on the correctness and suitability of third-party

 resources.

 We conclude that platform owners should consider providing non-platform specific

 knowledge by either linking to relevant resources or integrating it into their KBRs. Platform

 owners can thus provide complementors with essential non-platform knowledge and do not

 have to assume that complementors have certain competencies. Platform owners can then

 provide more tailored non-platform specific knowledge, improving the onboarding process

 for less experienced complementors.

 91

 8. Contributions and discussion
 This thesis aimed to address the research question: How can KBRs be designed to onboard

 complementors in a software platform ecosystem? We have explored this research question

 through the design, development and evaluation of the DHIS2 App Course and other DHIS2

 KBRs. In this chapter, we discuss our contributions to practice and research in the light of

 existing research. Following this, we present some limitations and future research avenues.

 8.1 Contributions to practice

 The contribution to practice is twofold. First, we contribute to practice by providing five

 design considerations that aim to guide software platform owners when designing their

 KBRs. The study involved the development of a comprehensive online course for onboarding

 complementors to the DHIS2 platform ecosystem. From the design, development and

 evaluation of the DHIS2 App course and DHIS2 KBRs, we identified five design

 considerations; 1) Designing KBRs for comprehensiveness and specificity 2) Broadcasting

 tutorials, guides, references and explanations, 3) Performing boundary spanning activities, 4)

 Provisioning interactive broadcasted KBRs and 5) Providing non-platform specific

 knowledge. While we argue that our design considerations go beyond the context of DHIS2

 and can be used by other software platform owners to design their platform’s KBRs to

 onboard complementors, the design considerations are not meant to be followed blindly.

 Instead, they provide prescriptive knowledge about factors that platform owners should

 consider when designing these KBRs and should be considered in relation to the respective

 platform and its complementors. For instance, providing non-platform specific knowledge is

 more impactful for platforms with less experienced developers.

 Second, we contribute to the DHIS2 platform by improving the DHIS2 platform’s KBRs,

 benefitting the platform ecosystem as a whole. The DHIS2 core team has expressed their

 interest in using the DHIS2 App course further to onboard new complementors to their

 platform.

 92

 8.2 Contributions to research

 The thesis contributes to research on platform ecosystems (Tiwana, 2013; Schreieck et al.,

 2016) and particularly how platform owners interact with complementors (Ghazawneh &

 Henfridsson, 2013; Bianco et al., 2014; Engert et al., 2022). We extend research on KBRs

 (Foerderer et al., 2019) by introducing the concepts of specificity, comprehensiveness and

 interactive broadcasting KBRs. We also present boundary spanning activities as a mechanism

 for improving broadcasting KBRs.

 8.2.1 Comprehensiveness and specificity

 We extend existing research on knowledge boundary resources by contributing with the

 concepts of comprehensiveness and specificity. By applying the theoretical concept of scope

 (Foerderer et al., 2019) in an onboarding context, we identified a weakness of it not being

 prescriptively useful. By distilling parts of the prescriptive knowledge provided by our kernel

 theory Diátaxis in the related field of technical documentation authoring, we contribute with

 the concepts of comprehensiveness and specificity which have greater descriptive and

 prescriptive potential than the concept of scope alone. Comprehensive KBRs are oriented

 towards the platform's boundary resources, while specific KBRs are oriented towards the

 tasks complementors perform on the platform. While Foerderer et al. (2019) allude to the

 importance of these concepts, we extend the literature on knowledge boundary resources by

 defining these two attributes of KBRs for onboarding concretely. This is congruent with other

 research arguing that development-related platform resources should be designed towards the

 developers and not just exclusively mirror the underlying platform architecture (Bianco et al.,

 2014). Furthermore, we identify a tension between specificity and comprehensiveness that

 platform owners must address when creating KBRs for onboarding. This tension lies between

 providing a KBR which covers more of the platform's functional extent, thus requiring more

 effort from the complementor to learn from or utilise, compared to providing less extraneous

 knowledge to the detriment of the generalisability of the knowledge to other tasks.

 While the concepts of comprehensiveness and specificity evolved from the context of

 application development, we believe that they could be applicable to other KBRs as well.

 Engert et al. (2022) propose a framework for complementor engagement with platform

 boundary resources (PBIs). Because the “troubleshooting” and “technical integration”

 complementor engagement types are similar to our research, we argue that the concepts of

 93

 specificity and comprehensiveness are applicable. However, we believe these concepts could

 be applicable to other types of complementor engagement as well. For instance, the “legal

 compliance” complementor engagement type revolves around ensuring that the platform is

 compliant with the relevant laws and regulations a complementor must comply with. The

 platform could provide a comprehensive KBR providing all regulatory details, however for

 some complementors providing a specific KBR informing them that they are, for instance,

 GDPR or CCPA compliant is sufficient. By applying specificity and comprehensiveness to

 the “Differentiation” complementor engagement type other insights can be deduced. The

 differentiation engagement type refers to how the complementor engages with the platform

 owner to competitively position themselves in the ecosystem. A platform owner could, for

 instance, provide specific knowledge to an individual complementor to encourage the

 complementor to position their application in a way that is mutually beneficial. Alternatively,

 they could provide the complementor with a more comprehensive KBR containing

 competitive data, usage statistics and other meaningful data through, for example, a

 dashboard. This more comprehensive KBR could inspire a more varied set of value-creation

 actions, however, it relies on the complementors ability to interpret and analyse the data

 itself. To conclude, we contribute to theory by introducing the concepts of

 comprehensiveness and specificity and the tension that lies between them in

 development-related onboarding KBRs.

 94

 8.2.2 Boundary spanning as mechanism for improving broadcasting KBRs

 Our findings showed that broadcasting KBRs are highly effective in onboarding

 complementors to a platform due to the high scale that these KBRs provide. Because

 platform ecosystems often include large networks of geographically dispersed

 complementors (Foerderer et al., 2019), the standardisation of platform resources is important

 for the scalability of the ecosystem (Hein et al, 2019). We found that KBRs with high scale

 are important during an onboarding process of a complementors because they equip the

 complementors with information related to the platform’s functional extent. However, we

 have also seen that new complementors often struggle using highly standardised KBRs such

 as references. Broadcasting KBRs have not always worked for all complementors during an

 onboarding process due to differences in knowledge of terminology and technical skills

 between the complementors. In addition, we found that the heterogeneity of the

 complementors with respect to their varying skills and competencies made the provisioning

 of broadcasting KBRs alone insufficient for onboarding complementors. We suggested

 therefore that platform owners also should provision boundary spanning activities for

 onboarding complementors. While we found broadcasting KBRs important for the effective

 onboarding of many complementors simultaneously, boundary spanning activities were

 crucial for assisting complementors where the broadcasting KBRs failed to anticipate the

 complementors' needs. Similarly, Engert et al. (2022) and Hein et al. (2019) differentiated

 between highly standardised one-to-many platform resources and platform resources

 dedicated to supporting the individual complementors. For instance, Engert et al. (2022)

 distinguished between uniform boundary resources and individual boundary resources that

 are both frequently utilised by complementors and affect their engagement in application

 development. Platform owners can thus effectively scale their platform resources while at the

 same time answering the needs of individuals and fostering innovation (Engert et al., 2022).

 Throughout our study, we found, however, that provisioning platform resources to address the

 individual complementors also can help platform owners improve their standardised platform

 resources. Besides assisting complementors, the boundary spanning activities were crucial for

 discovering insufficiencies with existing broadcasting KBRs and allowed us to continuously

 improve the platform’s KBRs. Essentially, boundary spanning activities serve as a

 mechanism for improving a platform’s broadcasting KBRs in order to better address

 complementors at scale.

 95

 8.2.3 Interactive broadcasting KBRs

 Finally, we extend existing research on knowledge boundary resources with the concept of

 interactive broadcasting KBRs. Foerderer et al. (2019) conceptualised a platform as

 consisting of a set of boundary resources and a set of knowledge boundary resources. The

 conceptualisation further divides a platform’s KBRs into three different types; broadcasting,

 bridgering and brokering with the goal to overcome knowledge boundaries between

 complementors and platform owners. Due to their high scalability, broadcasting KBRs can

 address many complementors in a platform ecosystem (Foerderer et al., 2019) Throughout

 our study, we identified a subset of broadcasting KBRs which challenge the distinction

 between a KBR and a boundary resource by Foerderer et al. (2019). Interactive KBRs

 represent or interact directly with the platform's boundary resources. By providing an

 interface built on top of the boundary resource they provide an environment where a

 complementor can use or learn a boundary resource more effectively compared to a

 traditional KBR such as a reference or a training video. Because an interactive KBR can

 function as a boundary resource and knowledge boundary resource simultaneously, it blurs

 the line between a BR and a KBR. In Bianco et al. (2014) conceptual framework interactive

 KBRs would be classified as a “development boundary resource”. They emphasise how the

 boundary resources themselves can transfer knowledge to complementors through, for

 example, function names, error messages and the source code. This is congruent with our

 view on their effectiveness as they provide a complementor with an arena where they can

 learn the boundary resource through use. We extend on this research by identifying traits that

 make interactive KBRs highly effective mediums for learning. These are a more intuitive,

 low friction, low-risk, and short feedback loop environment. To conclude, we contribute with

 the conceptualisation of interactive broadcasting KBRs and their effectiveness in onboarding

 complementors to software platform ecosystems.

 96

 8.3 Limitations

 The first limitation we want to discuss is the applicability of our design considerations to

 other software platforms. In our thesis, we studied the enterprise software platform DHIS2.

 Further, many of the concepts used to discuss and reflect upon our findings, are based on the

 research provided by Foerderer et al. (2019) which also focuses on enterprise software

 platforms. However, in our thesis we have intentionally decided to address software platform

 owners more broadly. We argue that our findings are applicable to both consumer and

 enterprise software platforms. However, we do believe that our considerations are dependent

 on the functional extent of a platform. Less complicated platforms with limited functional

 extent would likely require less knowledge transfer to complementors. Providing extensive

 non-platform specific knowledge or boundary spanning activities may then be excessive.

 However, they may still be worthwhile considerations. Additionally, many of our design

 considerations revolve around broadcasting KBRs, fostering loose coupling between

 complementors and platform owners. Our design considerations may therefore be less useful

 for platform owners who maintain close relationships with a select few complementors

 through high-touch partner relationships.

 Because we were employed as seminar teachers in the university course, we knew many

 participants personally and gained a closer relationship with them throughout the semester.

 While this allowed us to capture the students’ behaviour, our personal relationship with the

 students may also have influenced the data collected. Early on, we told students about the

 goal of our thesis and data collection. The students were also aware that we were the ones

 responsible for the KBRs in the course. Therefore, we had to consider the possibility for

 social desirability bias in our study. We tried to eliminate any bias by highlighting at all times

 that feedback of any kind is appreciated and would only help to improve the artefact in the

 future. For example, we started all interviews by stating that there is no need to withhold any

 negative feedback towards the artefact or the university course as a whole

 While we do argue that our findings are generalisable to the rest of the DHIS2 ecosystem and

 software platforms in general, there are some key differences between the students in the

 course and complementors in other software platforms. First, the students who went through

 the university course were more homogenous than complementors in other platform contexts.

 They had similar backgrounds and skills due to most of them having a bachelor's degree in

 97

 informatics. This simplified KBR design as it was easier to tailor it to their skill level.

 Second, due to the university context, most students who entered the course had little or no

 relevant non-platform specific knowledge. This led us to put more effort into providing more

 prerequisite and explanatory knowledge which is less common on other platforms. Finally,

 our students had different incentives than traditional complementors. Whereas most

 complementors in other ecosystems are incentivised out of, for example, economic or

 intrinsic reasons, students in our course were incentivised to pass the course. Because the

 students did not have any inherent purpose in using the platform, we had to direct them by

 creating artificial tasks through assignments and projects. The resulting homogeneity in tasks

 simplified the creation of specific resources as we knew ahead of time what tasks the students

 were likely to encounter. However, despite these differences, we believe the findings are

 generalisable to other software platform ecosystems. Importantly, we argue none of these

 limitations invalidate our findings and we have taken measures to avoid generalising from

 aspects of the course context which do not reflect other software platform ecosystems.

 98

 8.4 Future research

 To conclude the research, we will give some recommendations for future research. First, we

 would suggest more research into KBRs in platform ecosystems in general. Knowledge

 transfer is a useful lens for conceptualising a platform ecosystem and it plays an important

 role in the governance of them. We purposefully chose onboarding as the focus of our

 research because it fit our research context well. However, onboarding is just a single step in

 the application development process. Before a complementor enters the onboarding process

 they have to evaluate the platform and make the decision that they want to join the

 ecosystem. Furthermore, after they have developed an application they need updated

 knowledge about changes to the platform that is relevant to them. We suggest further research

 on how KBRs should be designed in platform ecosystems, for instance by researching how

 they play a role in the acquisition and retention of complementors.

 We introduce the concepts of comprehensiveness and specificity as two attributes which

 influence the effectiveness of a KBR at transferring knowledge. We suggest that further

 avenues of research can explore their applicability to KBRs outside of an onboarding and

 application development context. For example, a relevant avenue for further research could

 be how specific and comprehensive KBRs are used for governance-related KBRs.

 Finally, we suggest more research be done in interactive broadcasting KBRs. Because we did

 not enter into this research project with the intention of researching them and they emerged

 through the evaluation, we have limited knowledge about their mechanisms and functions.

 Due to their efficiency in transferring knowledge while at the same time reducing knowledge

 required to complete a task, they appear like a promising avenue for research with regards to

 improving the ability of complementors to contribute on a platform.

 99

 9. Conclusion
 Through a 1,5 year-long engaged design science research study conducted in collaboration

 with the platform owner of the DHIS2 platform, we explored how KBRs can be designed for

 onboarding complementors to a software platform. Informed by the practitioner's framework

 Diátaxis for structuring technical documentation, we designed and developed the

 comprehensive online course “DHIS2 App Course” which aimed to bring a complementor

 with no experience in web development to being able to build an application on DHIS2. We

 introduced the artefact to the university course “Development in Platform ecosystem” and

 evaluated how it and other DHIS2 KBRs onboarded 137 students to application development

 on DHIS2. Through the design, development and evaluation of the course and other DHIS2

 KBRs, we identify five design considerations; 1) Designing KBRs for comprehensiveness

 and specificity 2) Broadcasting tutorials, guides, references and explanations, 3) Performing

 boundary spanning activities, 4) Provisioning interactive broadcasted KBRs and 5) Providing

 non-platform specific knowledge. These design considerations contribute to practise by

 guiding software platform owners in the design of KBRs to onboard complementors.

 Additionally, we contribute to the DHIS2 platform by improving the platform’s KBRs,

 benefitting the platform ecosystem as a whole. We contribute to academic research by

 extending current knowledge on KBRs. Concretely, we identify boundary spanning as a

 mechanism for improving KBRs and present the concepts of comprehensiveness, specificity

 and interactive broadcasting KBRs. We also outline a set of avenues for further research.

 100

 10. References
 Baldwin, C.Y. & Woodard, C.J. (2008). The Architecture of Platforms: A Unified View. SSRN

 ElectronicJournal.  https://www.researchgate.net/publication/228207063_The_Architect

 ure_of_Platforms_A_Unified_View

 Basques, K. (2021, February 2). A Framework for Writing Better Documentation.

 YCombinator . https://news.ycombinator.com/item?id=26004300

 Bianco, V., Myllärniemi, V., Komssi, M., & Raatikainen, M. (2014, April). The role of

 platform boundary resources in software ecosystems: a case study. In 2014 IEEE/IFIP

 Conference on Software Architecture (pp. 11-20).

 IEEE.  https://ieeexplore.ieee.org/abstract/document/6827094

 Braun, V., & Clarke, V. (2006). Using thematic analysis in psychology. Qualitative research

 in psychology, 3(2), 77-101.

 https://www.researchgate.net/publication/235356393_Using_thematic_analysis_in_psy

 chology

 Brocke, J., & Hevner, A. & Maedche, A. (2020). Introduction to Design Science Research.

 10.1007/978-3-030-46781-4_1.  https://www.researchgate.net/publication/345430098_I

 ntroduction_to_Design_Science_Research

 Constantinides, P., Henfridsson, O., & Parker, G. (2018). Platforms and Infrastructures in the

 Digital Age . Information Systems Research. https://doi.org/10.1287/isre.2018.0794

 Cozzolino, A., Corbo, L. & Aversa, P. (2021). Digital platform-based ecosystems: The

 evolution of collaboration and competition between incumbent producers and entrant

 platforms . Journal of Business Research. Pages 385-400.

 https://www.sciencedirect.com/science/article/pii/S0148296320308894

 DHIS2 (n.d.). Worldwide Map: DHIS2 in Action [Online Image]. Retrieved 21 May 2022,

 from https://dhis2.org/in-action/#map

 DHIS2 (n.d). Managing dashboards [Online Image]. Retrieved 21 May 2022, from

 https://docs.dhis2.org/en/use/user-guides/dhis-core-version-237/analysing-data/dashboa

 rds.html

 101

https://www.researchgate.net/publication/228207063_The_Architecture_of_Platforms_A_Unified_View
https://www.researchgate.net/publication/228207063_The_Architecture_of_Platforms_A_Unified_View
https://news.ycombinator.com/item?id=26004300
https://ieeexplore.ieee.org/abstract/document/6827094
https://www.researchgate.net/publication/235356393_Using_thematic_analysis_in_psychology
https://www.researchgate.net/publication/235356393_Using_thematic_analysis_in_psychology
https://www.researchgate.net/publication/345430098_Introduction_to_Design_Science_Research
https://www.researchgate.net/publication/345430098_Introduction_to_Design_Science_Research
https://doi.org/10.1287/isre.2018.0794
https://www.sciencedirect.com/science/article/pii/S0148296320308894
https://dhis2.org/in-action/#map
https://docs.dhis2.org/en/use/user-guides/dhis-core-version-237/analysing-data/dashboards.html
https://docs.dhis2.org/en/use/user-guides/dhis-core-version-237/analysing-data/dashboards.html

 DHIS2 (n.d). The Data Model [Online Image]. Retrieved 14 April 2022, from

 https://docs.dhis2.org/archive/en/2.30/developer/html/techarch_data_model.html

 DHIS2 (n.d.). DHIS2 App Hub . Retrieved 14 May 2022, from https://apps.dhis2.org

 DHIS2 (n.d). DHIS2 Documentation . Retrieved 10 May 2022, from

 https://docs.dhis2.org/en/home.html

 DHIS2 (n.d). DHIS2 Storybook. Retrieved 21 May 2022, from https://ui.dhis2.nu/demo/

 Eaton, B., Elaluf-Calderwood, S., Sørensen, C., & Yoo, Y. (2015). Distributed Tuning of

 Boundary Resources: The Case of Apple’s iOS Service System . MIS Quarterly, 39(1),

 217–244. https://www.jstor.org/stable/26628348

 Edwards, R., & Holland, J. (2013). What is qualitative interviewing? . A&C Black.

 https://www.researchgate.net/publication/313397132_What_is_Qualitative_Interviewin

 g

 Engert, M., Evers, J., Hein, A., & Krcmar, H. (2022). The Engagement of Complementors

 and the Role of Platform Boundary Resources in e-Commerce Platform Ecosystems.

 Information Systems Frontiers, 1-19.

 https://link.springer.com/article/10.1007/s10796-021-10236-3

 Erikson, M. (2021, February 2). A Framework for Writing Better Documentation .

 YCombinator. https://news.ycombinator.com/item?id=26004534

 Evans, P.C. & Gawer, A. (2016). The Rise of the Platform Enterprise.

 https://www.thecge.net/app/uploads/2016/01/PDF-WEB-Platform-Survey_01_12.pdf

 [pdf].

 Flick, U. (2004). Triangulation in qualitative research . A companion to qualitative research,

 3, 178-183.

 Foerderer, J., Kude, T., & Schuetz, S. (2014). Add-on solution success: A configurational

 view on knowledge sharing in digital platforms. ICIS.

 https://aisel.aisnet.org/icis2014/proceedings/GeneralIS/20/

 102

https://docs.dhis2.org/archive/en/2.30/developer/html/techarch_data_model.html
https://apps.dhis2.org/
https://docs.dhis2.org/en/home.html
https://ui.dhis2.nu/demo/
https://www.jstor.org/stable/26628348
https://www.researchgate.net/publication/313397132_What_is_Qualitative_Interviewing
https://www.researchgate.net/publication/313397132_What_is_Qualitative_Interviewing
https://link.springer.com/article/10.1007/s10796-021-10236-3
https://news.ycombinator.com/item?id=26004534
https://www.thecge.net/app/uploads/2016/01/PDF-WEB-Platform-Survey_01_12.pdf
https://aisel.aisnet.org/icis2014/proceedings/GeneralIS/20/

 Foerderer, J., Kude, T., Schuetz, S.W., Heinzl, A. (2019) Knowledge boundaries in enterprise

 software platform development: Antecedents and consequences for platform

 governance . Wiley. https://doi.org/10.1111/isj.12186

 Gawer, A. (2021). Digital platforms’ boundaries: The interplay of firm scope, platform sides,

 and digital interfaces . Long Range Planning, 54(5), 102045.

 https://www.sciencedirect.com/science/article/pii/S0024630120302442

 Ghazawneh, A. & Henfridsson, O. (2013). Balancing platform control and external

 contribution in third-party development: The boundary resources model . Information

 Systems Journal. 23. Doi: 10.1111/j.1365-2575.2012.00406.x

 http://www.olahenfridsson.com/Ola/Publications_files/Ghazawneh%20and%20Henfrid

 sson_late%20version.pdf [pdf]

 Gill, P., Stewart, K., Treasure, E., & Chadwick, B. (2008). Methods of data collection in

 qualitative research: interviews and focus groups. British dental journal, 204(6),

 291-295. https://www.nature.com/articles/bdj.2008.192

 Gregor, S. & Hevner, A. (2013). Positioning and Presenting Design Science Research for

 Maximum Impact. MIS Quarterly

 https://www.researchgate.net/publication/262350911_Positioning_and_Presenting_Desi

 gn_Science_Research_for_Maximum_Impact

 Goldkuhl, G. (2012). Pragmatism vs interpretivism in qualitative information systems

 research . European Journal of Information Systems.

 https://link.springer.com/article/10.1057/ejis.2011.54

 Hein, A., Schreieck, M., Riasanow, T., Soto Setzke, D., Wiesche, M., Böhm, M., & Krcmar,

 H. (2019). Digital platform ecosystems. Electronic Markets. In press. 1-12.

 10.1007/s12525-019-00377-4.

 https://www.researchgate.net/publication/337186627_Digital_platform_ecosystems

 Hevner, A. & Park, J. (2004) . Design Science in Information Systems Research. MIS

 Quarterly  https://www.researchgate.net/publication/201168946_Design_Science_in_Inf

 ormation_Systems_Research

 103

https://doi.org/10.1111/isj.12186
https://www.sciencedirect.com/science/article/pii/S0024630120302442
http://www.olahenfridsson.com/Ola/Publications_files/Ghazawneh%20and%20Henfridsson_late%20version.pdf
http://www.olahenfridsson.com/Ola/Publications_files/Ghazawneh%20and%20Henfridsson_late%20version.pdf
https://www.nature.com/articles/bdj.2008.192
https://www.researchgate.net/publication/262350911_Positioning_and_Presenting_Design_Science_Research_for_Maximum_Impact
https://www.researchgate.net/publication/262350911_Positioning_and_Presenting_Design_Science_Research_for_Maximum_Impact
https://link.springer.com/article/10.1057/ejis.2011.54
https://www.researchgate.net/publication/337186627_Digital_platform_ecosystems
https://www.researchgate.net/publication/201168946_Design_Science_in_Information_Systems_Research
https://www.researchgate.net/publication/201168946_Design_Science_in_Information_Systems_Research

 Holscher, E. (2021, February 2). A Framework for Writing Better Documentation.

 YCombinator . https://news.ycombinator.com/item?id=26005918

 Huber, T. L., Kude, T., & Dibbern, J. (2017). Governance practices in platform ecosystems:

 Navigating tensions between cocreated value and governance costs. Information

 Systems Research, 28(3).

 https://www.researchgate.net/publication/312976468_Governance_Practices_in_Platfor

 m_Ecosystems_Navigating_Tensions_Between_Cocreated_Value_and_Governance_C

 osts

 Ivari, J. (2014). Distinguishing and contrasting two strategies for design science research.

 European Journal of Information Systems. 107–115.

 https://doi.org/10.1057/ejis.2013.35

 Kauschinger, M., Schreieck, M., Boehm, M., & Krcmar, H. (2021, March). Knowledge

 Sharing in Digital Platform Ecosystems–A Textual Analysis of SAP’s Developer

 Community. In International Conference on Wirtschaftsinformatik (pp. 21-39).

 Springer, Cham. https://link.springer.com/chapter/10.1007/978-3-030-86797-3_2

 Kaushik, V. & Walsh, C.A. (2019). Pragmatism as a Research Paradigm and Its Implications

 for Social Work Research. https://doi.org/10.3390/socsci8090255

 Li, M. (2019). An Approach to Addressing the Usability and Local Relevance of Generic

 Enterprise Software . IRIS.

 https://www.researchgate.net/publication/337946615_An_Approach_to_Addressing_th

 e_Usability_and_Local_Relevance_of_Generic_Enterprise_Software

 Li, M. (2021). Generic Enterprise Software Implementation as Context for User- Oriented

 Design: Three Conditions and their Implications for Vendors. Association for

 Information Systems. https://aisel.aisnet.org/scis2021/4/

 Moen, K., & Middelthon, A. L. (2015). Qualitative research methods . In Research in medical

 and biological sciences (pp. 321-378). Academic Press.

 Myers, M.D., Section Editor (living version): Qualitative Research in Information Systems.

 The University of Auckland, New Zealand. Originally published in MISQ Discovery,

 June 1997. https://www.qual.auckland.ac.nz

 104

https://news.ycombinator.com/item?id=26005918
https://www.researchgate.net/publication/312976468_Governance_Practices_in_Platform_Ecosystems_Navigating_Tensions_Between_Cocreated_Value_and_Governance_Costs
https://www.researchgate.net/publication/312976468_Governance_Practices_in_Platform_Ecosystems_Navigating_Tensions_Between_Cocreated_Value_and_Governance_Costs
https://www.researchgate.net/publication/312976468_Governance_Practices_in_Platform_Ecosystems_Navigating_Tensions_Between_Cocreated_Value_and_Governance_Costs
https://doi.org/10.1057/ejis.2013.35
https://link.springer.com/chapter/10.1007/978-3-030-86797-3_2
https://doi.org/10.3390/socsci8090255
https://www.researchgate.net/publication/337946615_An_Approach_to_Addressing_the_Usability_and_Local_Relevance_of_Generic_Enterprise_Software
https://www.researchgate.net/publication/337946615_An_Approach_to_Addressing_the_Usability_and_Local_Relevance_of_Generic_Enterprise_Software
https://aisel.aisnet.org/scis2021/4/
https://www.qual.auckland.ac.nz/

 Peffers, K., Tuunanen, T., Rothenberger, M. & Chatterjee, S. (2007). A design science

 research methodology for information systems research . Journal of Management

 Information Systems. 24. 45-77. https://doi.org/10.2753/MIS0742-1222240302

 Pershina, R., Soppe, B. & Thune, T. M. (2019). Bridging analog and digital expertise:

 Cross-domain collaboration and T boundary-spanning tools in the creation of digital

 innovation .  https://www.researchgate.net/publication/334762095_Bridging_analog_and

 _digital_expertise_Cross-domain_collaboration_and_boundary-spanning_tools_in_the_

 creation_of_digital_innovation

 Procida, D. (2017). Diátaxis documentation framework. https://diataxis.fr/

 Sarker, S., Sahaym, A., & Bjørn-Andersen, N. (2012). Exploring Value Cocreation in

 Relationships Between an ERP Vendor and its Partners: A Revelatory Case Study . MIS

 Quarterly, 36(1), 317–338. https://doi.org/10.2307/41410419

 Schreieck, M., Wiesche, M., & Krcmar, H. (2016). Design and governance of platform

 ecosystems-key concepts and issues for future research .

 https://aisel.aisnet.org/ecis2016_rp/76

 Star, S. L., & Griesemer, J. R. (1989). Institutional ecology,translations' and boundary

 objects: Amateurs and professionals in Berkeley's Museum of Vertebrate Zoology ,

 1907-39. Social studies of science, 19(3), 387-420.

 https://www.jstor.org/stable/285080?seq=1

 Tiwana, A., Konsynski, B. & Bush, A.A. (2010). Research Commentary - Platform

 Evolution: Coevolution of Platform Architecture, Governance, and Environmental

 Dynamics. https://pubsonline.informs.org/doi/abs/10.1287/isre.1100.0323

 Tiwana, A. (2013). Platform Ecosystems : Aligning Architecture, Governance, and Strategy.

 Newnes.

 Tushman, M. L. (1977). Special boundary roles in the innovation process. Administrative

 science quarterly, 587-605. https://www.jstor.org/stable/pdf/2392402.pdf [pdf]

 UiO (n.d). HISP UiO Strategy Update 2019-2022 . Retrieved 21 May 2022, from

 https://www.mn.uio.no/hisp/english/about/strategy/hisp-uio-strategy-2019-2021.pdf

 [pdf]

 105

https://doi.org/10.2753/MIS0742-1222240302
https://www.researchgate.net/publication/334762095_Bridging_analog_and_digital_expertise_Cross-domain_collaboration_and_boundary-spanning_tools_in_the_creation_of_digital_innovation
https://www.researchgate.net/publication/334762095_Bridging_analog_and_digital_expertise_Cross-domain_collaboration_and_boundary-spanning_tools_in_the_creation_of_digital_innovation
https://www.researchgate.net/publication/334762095_Bridging_analog_and_digital_expertise_Cross-domain_collaboration_and_boundary-spanning_tools_in_the_creation_of_digital_innovation
https://diataxis.fr/
https://doi.org/10.2307/41410419
https://aisel.aisnet.org/ecis2016_rp/76
https://www.jstor.org/stable/285080?seq=1
https://pubsonline.informs.org/doi/abs/10.1287/isre.1100.0323
https://www.uio.no/studier/emner/matnat/ifi/IN5320/h20/pensumliste/articles/tiwana-chapter-2.pdf
https://www.jstor.org/stable/pdf/2392402.pdf
https://www.mn.uio.no/hisp/english/about/strategy/hisp-uio-strategy-2019-2021.pdf

 Von Hippel, E., & Katz, R. (2002). Shifting innovation to users via toolkits. Management

 science, 48(7), 821-833.

 https://www.researchgate.net/publication/5176470_Shifting_Innovation_to_Users_Via_

 Toolkits

 Yoo, Y., Henfriddson, O. & Lyytinen, K. (2010). The New Organizing Logic of Digital

 Innovation: An Agenda for Information Systems Research. Information Systems

 Research. 21. 724-735. 10.1287/isre.1100.0322. Information Systems Research. 21.

 724-735. 10.1287/isre.1100.0322. https://www.jstor.org/stable/23015640?seq=1

 Yoo, Y., Boland, R. J., Lyytinen, K., & Majchrzak, A. (2012). Organizing for Innovation in

 the Digitized World . Organization Science, 23(5), 1398–1408.

 http://www.jstor.org/stable/23252314

 106

https://www.researchgate.net/publication/5176470_Shifting_Innovation_to_Users_Via_Toolkits
https://www.researchgate.net/publication/5176470_Shifting_Innovation_to_Users_Via_Toolkits
https://www.jstor.org/stable/23015640?seq=1
http://www.jstor.org/stable/23252314

 Appendix 1: HTML, CSS and Javascript

 survey

 Appendix 2: React Survey

 Appendix 3: DHIS2 Survey

 Appendix 4: Final Survey

 Appendix 5: Preliminary study interview
 guide
 1. What program are you currently enrolled in?
 2. Before you took the IN5320 course, did you have any previous programming experience?
 3. Do you program in your freetime, through work or mostly school-related?
 4. How many programming courses did you take throughout your bachelors?
 5. Are you planning on working with software development (specifically programming) after
 graduating your masters?
 6. What was your motivation for taking this course? Interested in global development?
 Learning front-end development? Working with practical projects? Working with a real-life
 project?
 7. Did the course fulfil your motivations?
 8. This is a bit of a recap, what do you remember from the programming part of course?

 ● Tasks, HTML, CSS, React, DHIS2 API, Assignment 1 (website), Assignment 2
 (DHIS2), Project, Home exam.

 9. What did you think about the mandatory exercises?
 ● Assignment 1, 2. Should we have more assignments?

 10. What didn’t you like about the course?
 11. What did you think about the group project?
 12. What role did you take in the group project?
 13. Did you find the DHIS2 App Course website helpful as a learning resource?

 ● Which elements of the website were especially helpful? Why? Were there any
 elements that you found confusing about the website

 14. How did you experience the interactive coding exercises?
 15. How did you learn HTML?
 16. How did you learn CSS?
 17. How did you learn Javascript?
 18. How did you learn React?
 19. How did you learn the DHIS2 API?
 20. Did you find any topics covered by DHIS2 App Course insufficient?
 21. Did you feel the course website prepared you enough for the mandatory exercises and the
 group project?
 22. Name three things that you liked about the course website.
 23. Name three things that could be improved on the course website.
 24. What formats do you prefer for learning, for example learning by doing, lectures, youtube
 videos etc?

 Appendix 6: Focus groups
 1) Walkthrough React content individually and write down (10 min):

 ● What did you like about how the content was presented to you?
 ● What didn’t you like about the content and how it was presented?
 ● What could be improved to give a better presentation of React?

 2) Discuss your opinions with the others in the group. Everyone should have the opportunity
 to share their opinion and have a say in the discussion. The goal is to exchange your opinions
 and find a consensus. Finally, present your findings to us (5 min)

 3) Assignment 2 . Discuss (5 min):

 ● What did you like or dislike about the assignment?
 ● Were there any challenges related to solving the assignment?
 ● What did you learn?

 4) Walkthrough DHIS2 getting started guide individually and write down (10 min):

 ● What did you like about how the content was presented to you?
 ● What didn’t you like about the content and how it was presented?
 ● What could be improved to give a better introduction of DHIS2?

 5) Discuss what you wrote down with the others (10 min):

 ● Present your findings to us.

 6) Assignment 3 . Discuss (5 min):

 ● What did you like or dislike about the assignment?
 ● Were there any challenges related to solving the assignment?
 ● What did you learn?

 7) Discuss (10 min). Give the students a list of all of the boundary resources:

 ● Which ones have you used?
 ● Were the resources helpful when learning about DHIS2?
 ● What did you like/dislike about the resources?

 8) Group lectures. Discuss (5 min):

 ● What did you like about the group lecture?
 ● What could be improved?
 ● Were the group lectures necessary in addition to the provided online resources?

