Ui0O ¢ Department of Informatics
University of Oslo

Software Requirement
Management in Generic Open

Source Projects
A Case Study of the Generic DHIS2 Software

Stian Sandvold
Master’s Thesis Spring 2019

Software Requirement Management in Generic
Open Source Projects

Stian Sandvold

1st February 2019

Abstract

Managing requirements are an integral part in any type of software
development. In generic open source software projects, this process is
increasingly difficult. Designing generic requirements and balancing the
needs of different stakeholders are key to ensure the success of the software.

In this thesis, we look closer at the requirement management process in
global generic open source software projects and the challenges they deal
with. We present a rich case study of the DHIS2 software project and a
conceptual framework to analyze and understand software requirement
management in generic open source software projects based on the
dimensions of methods of generification, models of innovation and
methods of governance. Further, we discuss the case study using the
conceptual framework, guided by the following two research questions:
"How are requirements managed in global generic open source software
projects?" and "What challenges exist in managing requirements in global
open source software projects and how can they be dealt with?".

We finish the thesis by comparing the changes and challenges presented
in the case study. Furthermore, we point out how the requirement
management process adapt to the growth of the project and how it is
impacted by the challenges.

ii

Contents

List of Figures

List of Tables

1

Introduction

1.1 Motivation
1.2 Research Question, Objective and Scope
1.3 OverviewofThesis

Research Context and Background

2.1 Monitoring and Evaluation in Global Health
2.2 TheGlobal HISP Network
2.3 The DHIS2 Software
24 HISPUIO.
2.5 DHIS2 Software Development
26 Summary

Methodology

31 MyRole
3.2 Research Methodology
33 DataAnalysis

Related Literature

41 Generic and Open Source Software
42 Platform Architecture
43 Generification Lo L Lo
44 Requirement Management in Open Source Software
45 Summary

Results

5.1 History of DHIS1 Requirement Management
5.2 History of DHIS2 Requirement Management
5.3 Requirement Managementin DHIS2

53.1

The DHIS2 Innovation Eco-System
Core Developers
The DHIS2 Community
DHIS2 Academies
HISPNodes

iii

vii

W N = =

O O G0 O\ U1 U1 U1

11

12
13

17
17
18
19
21
22

ExpertUsers. 34

Donors 35
Non-DonorUsers 35

5.3.2 The Core Software Developer Team 36
Developers 37

Team Leaders 38

Lead Developer 38

Product Managers 38

Release Manager 39

Project Coordinators 40
Researchersand Students 40
Implementation Support. 41

5.3.3 The Requirement Management Process 41
Requirements 43
Generification o 43
Prioritization 44
Implementation 46

54 Summary 49
6 Discussion 51
6.1 DHIS1:1994-2006 51
6.1.1 Challenges. 52

6.2 DHIS2: 2004 -2017 e 53
621 Challenges. 56

6.3 DHIS2 today: 2018 57
631 Challenges. 57

6.4 Summary 60
7 Conclusion 61

iv

List of Figures

2.1

51

52

5.3

A screenshot of a dashboard in the DHIS2 software demo . .

Figure taken from "Integrated Health Information Architec-
ture" by Jorn Braa & Sundeep Sahay;, illustrating the DHIS2
innovation eco-system. [9] oL L
A table representing the organisation of the developers in the
coreteam.
A table describing the methods and stakeholders for each
stage of the requirement management process

vi

List of Tables

2.1
3.1
4.1

51
52

6.1
6.2
6.3

Summary of the Research Context and Background Topics .
Overview of sources from the core DHIS2 team

Methods, models and processes included in the suggested
framework used to describe the requirement management
process in software development.

List of official HISPnodes [5]
A summary of the different periods of DHIS development .

Summary of DHIS1 between 1994 -2006
Summary of DHIS2 between 2004 -2017
Summary of DHIS2in2018

vii

viii

Chapter 1

Introduction

In this chapter, I will give a brief introduction to the motivation behind the
thesis, my research questions and an overview of the structure of the thesis
itself.

1.1 Motivation

Managing requirements is a critical process of software development
which decides the shape and future of the software directly. Having a
good process for managing requirements is essential for making the right
decisions both for the software and for its users. Projects, where software is
design based on a specific and clearly defined use-case, defining, handling
and implementing requirements, might not be so challenging. However,
when use-cases increase in number and complexity, the process involved
in managing requirements becomes significantly more complicated. Open
source software and generic software are examples of how a software’s
design can make working with requirements more complicated, and
introduce new challenges in the process. Generic software, meaning it
can be applied to different contexts, requires, for example, more effort
when attempting to understand and define requirements depending on the
number of existing use-cases. Presented in this thesis is a case study of the
DHIS?2 software, including its requirement management process and how
that process has changed over time. The DHIS2 software is a global generic
open source platform, which deals with a set of challenges not usually
found in other software projects.

The thesis will provide insight into how one of the largest open
source health information systems deals with challenges related to the
requirement management process. By looking at the organization and
the requirement management process both historically and contemporary,
we gain an overview of how these have changed over the years. These
changes, combined with our understanding of the continuously changing
context of the implementation and development of the software, allows
us to identify and understand the challenges that triggered the changes.
The challenges and thoughts discussed in this thesis could potentially be
applied to other similar projects to gain a better understanding of the

process of requirement management and how its context influences it.

Looking at how an established project like DHIS2 deals with require-
ments could be both insightful and valuable for those working in other pro-
jects. It deals both with challenges found in proprietary software projects,
like generification, as well as open source projects, like balancing require-
ments from stakeholders provide funding and those who do not. Projects
used for several different use-cases and across multiple domains also raises
some interesting challenges related to the generification of requirements.

Through my role as a developer in the DHIS2 project, I have exper-
ienced first hand a lot of the challenges in requirement management. I
believe this process plays a significant part in the success of the software.
Without a good process, it would be hard to maintain a balance between re-
quirements from different stakeholders and do long-term planning for the
software.

My contributions from this thesis consist of two parts: A rich case
study of the DHIS2 project and its requirement management process, and
a framework to understand and discuss the requirement management
process of software projects. The case study includes the history of both
the DHIS1 and the DHIS2 software projects and a detailed description of
the organization and processes related to the requirement management
as it looks today. The framework I propose and use to discuss the
requirement management process is a compilation of concepts presented
in related literature. These concepts apply to different aspects of software
development and can be used to describe both open source and proprietary
software projects.

1.2 Research Question, Objective and Scope

My objective with the thesis is to try to gain a better understanding of
the challenges related to managing requirements in global generic open
source platforms. I attempt to describe how the process of managing
requirements look in these projects and how to adapt to respond to the
challenges mentioned above. In the thesis I will focus on the following two
research questions:

1. How are requirements managed in global generic open source
software projects?

2. What challenges exist in managing requirements in global open
source software projects and how can they be dealt with?

To address these research questions, I will look at the DHIS2 software
both historically and contemporary, describing the context of the devel-
opment, the organization of the core team, the processes used to manage
requirements and the challenges found here.

2

1.3 Overview of Thesis

Chapter 2 introduces some background information related to the DHIS2
software, which is the subject of this case study. It describes both the type of
software, the organization overseeing the development and the properties
of the software itself.

In chapter 3 I describe my role concerning the thesis, more specifically
my role in the DHIS2 project. Next, I describe my research methodology
and the process of choosing that and the topic of the thesis. Finally, I discuss
how I gathered and analyzed data using in the thesis.

Chapter 4 presents the related literature I use in my thesis, how I intend
to use it and what topics are relevant when describing the requirement
management process later on. I summarize the chapter with a table listing
the most interesting ideas I will apply later.

In chapter 5 I provide a brief history of the development of DHIS1
until 2006, and DHIS2 between 2004 and 2017, primarily focused on the
requirement management process. After presenting the history, I provide
a thorough description of the current state of DHIS2, including the eco-
system around it, the organization and the requirement management
process itself. I summarize the chapter with a table outlining some key
information about each of these periods.

Chapter 6 is where I combine the information about DHIS2 with the
framework of ideas from related literature. For each period described in
chapter 5, I describe the process of requirement management using the
framework to provide a further understanding of the context, followed
by the challenges found in those periods. I speculate as to the reason for
the challenges, how they affected the development and how they were, or
could, be solved.

In chapter 7 I conclude my discussions in chapter 6, and relate them to
my research questions, followed by some thoughts about further research.

Chapter 2

Research Context and
Background

This section gives a short description and introduction to DHIS2’s software
development process, including its use-case in global health, the HISP
network and the software itself.

2.1 Monitoring and Evaluation in Global Health

Health management information systems (HMIS) are essential building
blocks in health systems. Their primary purpose is to the collection and
analysis of health data, and other relevant data, that can later be used to
support health-related decisions in different processes. Without sufficient
information, activities like planning, monitoring, and evaluation of efforts
become difficult or even impossible. These systems can be used for a range
of different purposes, for example, disease surveillance, stock management
of medical supplies, as well as coverage and effectiveness of health-related
efforts like vaccination or malaria-related spraying. HMIS, like DHIS2,
is used for both these purposes and more, by the ministries of health
in developing countries, organizations working with global health, to
mention a few.

2.2 The Global HISP Network

The Health Information Systems Program (HISP) started as a pilot program
in South Africa in 1994. The program included key-actors like the
University of Western Cape, the University of Cape Town and the
University of Oslo. In 2003, the original HISP team re-organized itself
as a not-for-profit company, HISP South Africa. Since then, HISP has
become a global network with a wide variety of actors, directly or indirectly
supporting HMIS implementations and related projects around the world.
The HISP group at the University of Oslo, HISP UiQO, has since then played
a central role in this network and hosts a team of software developers
developing and maintaining the DHIS2 software. The HISP network

5

consists of various official and unofficial members, like NGOs, universities
and HISP nodes like HISP Vietnam, Uganda, West Africa and more. HISP
UiO describes the goal of HISP as:

The overall goal of HISP is to enable and support countries
to strengthen their health systems and their capacity to govern
their Health Information Systems in a sustainable way to
improve the management and delivery of health services. [3]

DHIS2 is a product of HISP efforts, but not all HISP activities
are focused on the software itself. HISP organizations supports the
strengthening of health information systems in countries in general,
including capacity building and implementation support.

2.3 The DHIS2 Software

DHIS2 is an open source HMIS developed and maintained by HISP UiO.
It is designed primarily for use-cases within the health domain, but due to
the generic design of the platform, it has been adopted in new, different,
domains like agriculture, education, and more.

DHIS was initially designed to replace paper-based systems, which
has many challenges like the lack of flexibility, accessibility, and data-
quality. The DHIS2 software is primarily used for gathering, analyzing
and visualizing data, with support for both aggregate level data as well as
individual level event and patient data. Common use-cases in the health
domain include vaccination programs, maternal health programs, disease
surveillance and more.

The DHIS2 software requires the users to configure so-called metadata.
Information that describes data is what we consider metadata, for example,
the data type, like text or integer, and what the data represent, like name
or age. In the DHIS2 software, we use metadata to both understand,
categorize and organize data. The process of designing and creating this
metadata is referred to as customization and is an essential part of adapting
the software to the local context.

We can simplify the types of content we have in DHIS2 to either being
metadata that describes how we interpret data or data, meaning the raw
data described by the metadata as mentioned earlier. Raw data is primarily
organized using three basic types of metadata which answers the three
following questions: What, where and when? The what and where is
configured by the user in the form of the "Data Element" and "Organisation
Unit" metadata respectively, while the when is automatically generated by
the software as "Period."

Through the customization of the metadata, users can design forms for
data entry using the metadata and design reports based on the dimensions
of different metadata. The DHIS2 software comes with additional features
that utilize the data and metadata to solve other use-cases than information
gathering and reporting. Tools for improving data quality, assisting data

6

entry and data prediction is some of the other use-cases natively supported
in the software.

In the DHIS2 software, there are two ways to work with data:
Aggregate and Tracker. Aggregate data is, as the name implies, data
reported aggregated — for example, a clinic reporting the number of deaths
occurring in their facility for a given period. Tracker data, on the other
hand, handles data on a more individual level. This data can either be
one-time anonymous events, for example, when distributing bed nets, or
tracked events, where data follows an entity over time, for example, a
woman during her pregnancy. The Aggregate and Tracker data have some
deviations regarding the metadata used to describe them, but overall work
in a similar way as to how the software support the gathering, analysis of
reporting of the data.

In addition to being a generic software, allowing multiple domains to
utilize the same core features, the DHIS2 software is also considered a
platform. As a platform it allows users to not only customize the metadata
but also install custom applications to extend the core functionality. The
DHIS2 software acts as a platform by offering an API and a core set of
applications, allowing users to get started using the system quickly, or
creating custom applications that can support particular use-cases.

With the generic and flexible design of DHIS2, customization of the
software is required to adapt it to the local context. Customizing DHIS2
requires knowledge about both the local context, but also the software
itself. HISP provides both training through academies and in-country
implementation support to assist with the process of customizing the
software. Through this capacity building around the software, the users
also learn about how to use the data they collect, and how to change
their organizational processes to utilize the data and make more informed
decisions backed by real data.

ANC: 1PT 2 Coverage i your B ED®

ANG: LLITN covrage distritand ety

on ard
AN, ANG 3 coverageby isicts at 12 morihs B =m
AN AN 1 oversge yearover year 1 @

ANC: 1 visits by Facity Typ last your 2 = @ © ANG: Fredvs uireschlastyour o =@ 12monihs o =m 6

|
i |
1|
-
a—i
|
-
-
¢
I
e
[-
:E-Hs

ANG: ANG Tt it 4512 mnths cumulaivevalus 1 =@ ANG: ANC 1 coverage weste ciefdoms s year = m e

Figure 2.1: A screenshot of a dashboard in the DHIS2 software demo

Figure 2.1 is a screenshot taken from one of the instances of the

7

DHIS2 software, used for demonstration purposes by HISP UiO. The
screenshot shows a Dashboard with different visual representations of
data. The customization of the dashboard, the visualization and the
metadata describing the data, are all part of the customization users go
through to adapting the software to their local context.

DHIS2 was initially developed by HISP UiO in 2004, with the goal
of modernizing the DHIS1 software. The DHIS] software was an
offline application, based on proprietary software like Microsoft Access.
DHIS2 moved away from the proprietary software dependencies and was
designed to work in an online environment, making it both completely free
to use and much more accessible. Today, DHIS2 has become a global public
good with over 60 countries and 23 organizations running implementations
of the software, potentially covering over 1.3 billion people with their
services.

The DHIS2 software requires third-party software to run, like the
relational database system PostgreSQL and web-server supporting WAR
applications, like Apache Tomcat. Both the third-party software and the
DHIS2 software are available online and free to use. The DHIS2 software is
available for download at https://www.dhis2.org/downloads or available
for testing by anyone using the demo-instances hosted by HISP UiO found
at https:/ /play.dhis2.org/.

Because the DHIS2 software is available for anyone, free and globally
relevant, it has been recognized as a Global Digital Public Good. A global
public good, as described by Petter Nielsen & Sundeep Sahay [6], is a good
that has "... a high degree of publicness, and are characterized by non-
rivalry and non- exclusivity". Additionally, these are goods where "... the
benefits are quasi universal across groups of people, social groups, places,
and also generations".

2.4 HISP UiO

HISP UiO is the HISP organization located at the University of Oslo, Nor-
way. The organization is responsible for the development and manage-
ment of the DHIS2 software and consists of developers, coordinators, re-
searchers, and students whom all contribute to the development of the
DHIS2 software in some way. They oversee a range of different activit-
ies, including software development, capacity building, community man-
agement and collaboration projects with donors, all centered around the
DHIS2 software.

In addition to the development of the core software, introduced in
the next section, HISP UiO facilitates different capacity building activities.
These activities includes both an online academy, a web-portal for learning
about the software, as well as more advanced in-person academies, where
the DHIS2 experts train and collaborate with users. HISP UiO also manages
the DHIS2 community, which consists of mailing-lists, online forums, an
issue-tracker and more. Donors are often interested in supporting the
development of the software or funding specific projects to add support

8

for specific use-cases. HISP UiO manages both the funding of the DHIS2
core and the externally funded projects related to DHIS2 development.

2.5 DHIS2 Software Development

HISP UiO manages the development processes around the DHIS2 software.
Requirements are both actively gathered by HISP UiO and submitted
to HISP UiO by users from the community, who most often are people
working in ministries of health, HISP nodes or NGOs. HISP UiO, or more
specifically the team working with the DHIS2 software, review, accept and
decide when to implement requirements in the software core.

Various donors support the development of the DHIS2 software
through externally funded projects. Externally funded projects are
temporary projects bound through a contract, describing the scope of
work and deliverables. The projects are usually related to specific work,
like supporting new use-cases, but can also include general development
activities. Considering both the needs of donors and other users is essential
to be able to make prioritization decisions that benefit both groups of users,
so both donors and existing users are satisfied.

New versions of the DHIS2 software is currently released every six
months. Cutting-edge versions of the software can also be downloaded
directly from the source code repositories by users who want to try out the
latest features right away. The period between each new version consists
of minor segments referred to as milestones, usually lasting three or four
weeks. Each milestone has a prioritized set of requirements planned for
implementation.

After the release of a new software version, the core team shares a
summary containing the latest changes with the community. Additionally,
an updated version of the documentation of the software is released and
included in the announcement. The last three versions of the software are
supported by the core team, implying that the core team will only provide
fixes for bugs found in these versions.

2.6 Summary

DHIS2 is an HMIS software developed and maintained by HISP UiO. The
software is a global generic open source platform, which primarily is built
around the health domain, but has traversed into several other domains.
New versions of the software are available every six months, where the
changes include a variety of requirements both from donors and free users
of the software. Although the DHIS2 software is a significant part of HISP
and the HISP network, the activities of the members of the HISP network
is not solely related to DHIS2, but to strengthening the HIS in countries
in general. Table 2.1 on the next page gives an overview of the topics
discussed in this chapter.

HMIS/HIS

Health Management Information Systems are es-
sential tools used to strengthen health systems.
They gather, combine and analyze data from differ-
ent sources to provide valuable information used in
making health-related decisions.

HISP Network

The HISP network is a global network of universit-
ies, NGOs, HISP organizations and more. They fo-
cus on supporting countries to strengthening their
health systems and building capacity in countries to
govern their HIS sustainably.

DHIS2

DHIS2 is a generic open source HIS which works
with both aggregate level data, like traditional HIS,
but also individual level data. The software was
primarily developed for the health domain but has
several use-cases in other domains as well.

HISP UiO

The HISP UiO organization is based at the Univer-
sity of Oslo, Norway, and oversees the development
of the DHIS2 software. HISP UiO has a range of dif-
ferent people like developers, implementation ad-
visors, students, and researchers, whom all contrib-
ute to the development of DHIS2.

DHIS2 Develop-
ment

All requirements for the DHIS2 software is re-
viewed, accepted, prioritized and implemented
through the core team at HISP UiO. Organizations
using or supporting the DHIS2 platform sometimes
provide funding to the core development of the soft-
ware or through externally funded projects.

Properties of the
DHIS2 software

Open Source

¢ Generic

Platform

API & Core Apps

Global Digital Public Good

Funded through external projects

Table 2.1: Summary of the Research Context and Background Topics

10

Chapter 3

Methodology

In this chapter, I will describe my role as a DHIS2 developer and researcher,
and how they relate, Additionally I will explain the research methodology
I used and how I gathered and analyzed the data I present in my thesis.

3.1 My Role

During my master studies at the University of Oslo, I was offered a job
as a developer, working part-time with the DHIS2 project. Soon after, I
transitioned into a full-time position as a developer, and later as a team
leader for the back-end developers. I have worked with the DHIS2 software
since September 2015 and have seen a lot of the organizational changes,
growth, and challenges along the way.

After a break in my master studies, I decided to write my master thesis
about the development of DHIS2. My primary motivation for choosing to
write about this subject was from my work. I saw the challenges the team
is faced with when working with requirements for a project like DHIS2,
which I found very interesting, and especially because I had been part
of finding new ways to work with requirements when existing processes
became insufficient.

The advantages of writing about this topic, concerning my role as a
DHIS2 software developer, is the insight and perspective I can present.
Additionally, I have both close access to the core team and knowledge
about the organization and requirement management process. Through
my role as a DHIS2 software developer, I get the opportunity to present
and describe the process and challenges from a developers perspective,
providing insight that might not be apparent looking at the project from
the outside.

The disadvantages of my position, on the other hand, is my lack
of experience with other projects than DHIS2. Except for working in a
start-up for about two years before my master studies, I have no other
involvement with professional software projects. This lack of experience
could potentially narrow my perspective and make it more difficult to
generalize my ideas to other projects.

Another concern I have about writing about a process I am a part of is

11

that my own opinion might influence my descriptions. During the writing
of this thesis, I have worked with several members in the core DHIS2 team.
Through the input they provided, I compare the different perspectives
to find the most general description of the information. Some of these
members of the core DHIS2 team also reviewed my final presentation of
the information to confirm it was correct.

When I initially started working on this thesis, I only knew I wanted to
take a look at how DHIS2 handle requirements. Without a more specific
sense of what to focus on, my scope became too broad, so I tried to look
at the various challenging and interesting aspect to address. Early in this
process, I was considering the idea of writing about specific challenges
of the requirement engineering process in DHIS2, like the specification of
requirements, or how requirements are validated. I felt these topics quickly
became too narrow in my own opinion and not quite right.

After I started finding some existing literature, and several meetings
with my thesis advisor, I decided to move my focus away from the details
of the requirements. Instead, I decided to look at the overall process
requirements goes through and how they have changed over time and how
different people influence them regarding prioritization and acceptance.
With this scope, I can both describe the elements that initially motivated
me to choose this topic, but also provide insight into the process that is the
engine of DHIS2 development.

3.2 Research Methodology

The research method I used for this thesis is the case study methodology.
More specifically, a soft case study as described by Kristin Braa &
Richard Vidgen [1]. The overall goal by using this method is to give an
understanding of the processes and challenges involved in requirement
management in global generic open source platforms, such as DHIS2. I
attempt to achieve this by interpreting both the history of the software
and presenting a more detailed description of the current situation of the
requirement management process.

A noticeable deviation from the characteristics of the soft case study
method as described by Braa & Vidgen [1] is my participation, which is
significant due to my role in the development of the software.

The circumstances motivated the reason for choosing the case study
method for the thesis. After working with the project since 2015, the idea of
taking a closer look at how both the organization and processes work and
has adapted to new challenges was interesting.

I decided to base the thesis around my own experiences and observa-
tions, which initially lead me to consider an "action case" method for my
thesis. Using the "action case" method, I would attempt to introduce a
change in the process to deal with some of the challenges. This idea, how-
ever, was shortly abandoned because of the rapid ongoing changes made
to the process and organization already. It would be difficult to both intro-
duce a change, as well as to evaluate its impact, with several other changes

12

happening simultaneously in the organization and process.

Similarly, the idea to write the action case based on a change I had
already been part of implementing, but trying to evaluate the impact would
still be difficult due to all the other simultaneous changes. After shifting the
perspective from introducing a change to understanding the motivation
and reason for introducing changes, approaching the topic as a case study
seemed more appropriate.

Through a case study, I would look at the development of DHIS1 and
DHIS2 both historically and contemporary. By looking at the requirement
management and the context surrounding the development, I could
present an interpretation of the processes and challenges, and how the
process and organization adapted to deal with these challenges.

By combining how both the context surrounding the development and
the organization and process itself has changed over time using the case
study method, I believe the discussions, conclusions and conceptual ideas I
present can to some degree be generalized to apply in other similar projects.

3.3 Data Analysis

When I started working on the thesis, I searched for relevant literature
to use. I used Google Scholar to initially look for literature specific to
requirement management, using terms like "Requirement Management",
"Requirement Engineering", "Requirements in Software Development".
The literature 1 found focused very much on the details regarding
requirements, including specific stages like the elicitation and validation
requirements. Because I wanted to present the process of managing
requirements, and the challenges it comes with, at a higher level, I felt this
literature would not be very useful to me.

Through discussions with my thesis supervisor, we found several topics
that work well with what I wanted to achieve with the thesis. "Open
Source", "Platform", "Global software" are some of these topics. Based
on these topics my supervisor also suggested relevant literature. When
looking for literature on Google Scholar related to these topics, most of
the results were related to the actual development of the source code, and
less about the process and challenges related to managing requirements.
Because the literature I already had covered several different aspects of the
process I wanted to describe, I decided what I had was sufficient.

All of the literature is either describing a way of working with
requirements directly, like generification or about processes that influence
the requirement management process, like participatory design. Another
important reason for the relevance of this literature is that they were
touching on one or more topics that related to the DHIS2 software, such
as "open source," "platform" and "global software" - Some even using the
DHIS2 software as an example to describe their research.

After reading the literature, I chose relevant terms, methods, and
processes and combined them into a framework. The objective of
this framework was to describe the requirement management process

13

or aspects that influence it, using ideas already established in existing
literature. Although the primary application for this framework is in the
context of the DHIS2 software, it should be possible to apply it in other
projects as well.

When describing the history of DHIS1 and DHIS2, the majority of
information was collected from a paper by Jorn Braa & Sundeep Sahay,
"Integrated Health Information Architecture” written in 2004. This paper
describes both the history of DHIS1 and DHIS2. My description of the
DHIS1 and DHIS2 history focused on the development and requirement
management process, unlike the original paper which has a much broader
approach. In addition to the information found in this paper, I filled in
some gaps through informal interviews with members of the DHIS2 core
team.

In section 5.2, there is an account of the requirement management
process in DHIS2. This account is primarily based on my knowledge and
experience from working as a developer, and later a team leader since
2015. All the information in that section comes from my understanding and
observations, then supplied with additional information from, and later
reviewed by, other members of the core DHIS2 team.

The requirement management process is continually evolving in
DHIS2, and the members of the core team are adapting to the changes in
the process. That means there are slight variations between the different
teams as to how they approach the process in detail. To avoid describ-
ing multiple detailed processes, I disregard the minor deviations between
the approaches and focus on the overall process to which all teams con-
form. Examples of details I have disregarded include how one team re-
quires more detailed planning because other teams depend on them, or
how product managers organize their requirements differently in the issue
tracker. Regardless of these details, the overall process looks the same, and
they provide no additional value to the description.

In table 3.1 on the facing page I provide an overview of my interactions
with different members of the core DHIS2 team. These interactions relate to
gathering information, either through informal discussions or interviews,
or to validate my description of the organization, roles or the requirement
management process. I did not track how long each interaction lasted but
give an approximate estimate based on the number of times I interacted
with them and the nature of the interaction.

Interactions marked as "Informal Interview" in table 3.1 on the next
page refers to interactions with people where I had prepared a list of
questions. These questions could be very open-ended on topics I had
limited knowledge, like funding or the responsibilities of different roles, or
they could be more specific when I already knew most of the information
but was missing details. One informal interview was done in-person,
and the answers were noted down, while the other informal interviews
happened through online channels like instant messaging or email.

The informal discussions were sometimes planned, like when I needed
more information about a particular subject, but was unsure exactly what.
However, for the most part, they were unplanned, and usually the result of

14

Who Lead Developer Implementation Product Manager Assistant Product | Project Coordinator
Coordinator Manager

Type of interaction | Informal Discus- | Informal Discus- | Informal Interview | Validation Informal Discus-

sion sion, Informal sion, Informal

Interview Interview, Valida-

tion

Contributions Information about | History of DHIS1 | The product man- | Confirming my de- | Information about
the requirement | and DHIS2, the | ager role, respons- | scription of the re- | projects and roles.
management pro- | DHIS2 eco-system, | ibilities and how | quirement manage- | Validation of the
cess, history of | organization roles, | they work. Val- | ment process and | requirement man-
DHIS2. projects, and fund- | idation of the | the product man- | agement process,

ing. requirement man- | ager role. DHIS2 eco-system,
agement process and roles.
and product man-
ager role

Where Uio UiO, Online Uio Online UiO, Online

Estimated time | 2-3 Hoursoversev- | 3-4 Hours over sev- | 1 Hour - 3-4 Hours over sev-

spent eral interactions eral interactions eral interactions

Table 3.1: Overview of sources from the core DHIS2 team

15

other discussions, where the discussions were related to topics relevant to
the thesis. The informal discussions were usually about specific stories, like
developers traveling to work closely with the users or how we work with
projects, where I asked follow-up questions about specific details. I did
not take notes during the informal discussions, because they were mostly
unplanned, but I confirmed the details of the information later when I
included the information in the thesis.

All the information gathered through informal interviews and discus-
sions was either confirming any assumptions I had made or was used to
fill in gaps I had in my descriptions.

One way I tried to assure my descriptions where less influenced
my own opinions, was by interacting with members of the core team
that would have a different perspective. For example, by combining
the information from me, a project coordinator and an implementation
coordinator, I got a more general understanding of the information than
I would if I only had one source. Another example is how my perspective
of the product manager meetings bases itself on the "tracker" product, the
meeting [usually attend, but work with a product manager from a different
team to review and validate my description. In table 3.1 on the preceding
page I summarize my various discussions and other interactions.

16

Chapter 4

Related Literature

Using the methods and mechanisms presented in this chapter, I would like
to propose a framework that can be used to further describe the process
of managing requirements, from after gathering them and until their
implementation. It appears that the perception in the existing literature
is that the requirements acquired through the different processes, for
example, participatory design, usually results in requirements that can be
generified and implemented without much work. In the case of the generic
and open source platform of DHIS2, which has a highly diverse community
of users with different needs, use-cases and resources, this is not always the
case. Based on the existing literature introduced in this chapter, I want to
suggest a framework for describing the process of managing requirements.
Applying this proposed framework in the context of a software project
should help outline various aspects of the development that influence the
requirement management process.

4.1 Generic and Open Source Software

Pollock, Williams, and D"Adderio describe generic systems as "... [systems
that] are used in diverse places and appear oblivious to the form, function,
culture or even geography of organizations" [7]. These systems, or
solutions "... [have the] ability to transcend their place of production that
they are now described as "generic’ or even ‘global’ solutions." [7]. In other
words, generic software is software that is not tied to a specific setting
but can apply to a range of different settings. Particular solutions are the
opposite of generic solutions and are tied to a specific setting, making it
hard, or even impossible, to move it to other settings.

Open source software is software that is made freely available to
everyone. That includes both access to the source code and the use of
the software. Open source software projects are developed on a voluntary
basis by developers who collaborate in internet-based communities. Unlike
traditional proprietary software, the software is available for free, and there
is no direct path to profit. That means the motivation for developing open
source software is unlike that of proprietary software [4].

Today there are many examples of generic open source projects, like

17

DHIS2 which is the basis of this thesis, but also projects like Apache web
server, Linux operating system or Wordpress content management system.

4.2 Platform Architecture

Roland, Sanner, and Seebe points out that the platform software architec-
ture is a prominent technical architecture that can be employed to tackle
complexity. They describe platform architecture as "... [platform] where
reusable and generic functions are bundled as a platform core while spe-
cific services are developed as compliments, called apps." [8]. Architecture
usually refers to the layers and modules a software is comprised by and
the interfaces between them. The authors also use the term architecture
in their study to refer to the "structure of a socio-technical ecosystem that
potentially both enables and constrains participation in design." [8].

In their study, Roland et al. introduces the terms design and use
flexibility to describe the flexibility of the software for the different layers
of the platform architecture. The design flexibility represents the flexibility
of further development, while use flexibility represents the flexibility of the
software to be used out-of-the-box for a range of different or unexpected
purposes. They describe DHIS2, which is the subject of their study, as
having three layers: The generic core, the bundled apps, and the custom
apps. These layers are connected to the generic core layer using application
programming interfaces (APIs) and software development kits (SDKs).
The generic core, primarily developed and maintained by a core team of
developers, has low design flexibility and high use flexibility. Bundled
apps, also developed by the core team of developers, are designed similarly
to the generic core with low design flexibility and high use flexibility. The
custom apps are not developed by the core team, but by local developers,
allowing them to tailor the platform to the local setting. This layer has high
design flexibility, but low use flexibility.

The problem of scale in participatory design (PD), defined as "the
number of distributions of heterogeneous settings, developers, users and
uses of a (software) product over time." [8], is another issue they bring up
in their study. They categorize different types of PD and how they relate
to the scale, including singular, serial, parallel and community PD. Using
the layer representation of the platform architecture employed in DHIS2,
they show how each layer utilizes different types of PD and that they can
coexist in the same project.

The singular PD is the most familiar type of PD, where developers and
users work face-to-face to make design decisions, based on concrete work
tasks.

In serial PD, developers and implementers work closely with end users
and make on-site visits. The developers and implementers configure
and customize the software to fit distributed, but relatively similar work
practices in collaboration with end users. Implementers are often filling the
role as mediators between users and developers to translate requirements
to a more technical description.

18

Parallel PD is where developers, implementers, and customizers make
short field visits and arrange workshops with user representatives to
interact with users. Power users and local experts play a central role
in gathering requirements, and multiple projects undergo parallel design
processes.

The final classification, community PD, use power users and domain
experts to represent end users in meetings and workshops. The focus is on
the appropriation of the software access, diverse uses, and settings, and the
core developers make all final generic product decisions.

4.3 Generification

The term ’“generification” is described by Pollock et al. as "The practice
of making software generic (generification work), including its various
explicit and revealed generification strategies" [7]. They bring up a range
of challenges related to the process of generification like particularization,
‘design from nowhere’, and complying to the diverse needs of the
community. In addition to these challenges, the software has to remain
attractive for both existing and new users. Through their study, they
follow two software packages and identify three methods for generification
utilized by the suppliers of these software packages: Management by
community, management by content and management by social authority.

Pollock et al. [7] explain the management of community as methods
for utilizing a community of users to discover, discuss and get feedback on
needs. The idea is to bring the design process from the private locations
of the users to a public forum, where users can compare their needs and
decide on a set of similarities that can be generified. Another positive
effect of this shift in context is that users’ attitude towards the overall
generification process improves and they gain an understanding of the
challenges regarding generification.

Management of content is the second category Pollock et al. [7]
describe. While the suppliers want to add features that support as many
users as possible, complying to users’ every single need will cause the
software package to become particularized, making the software package
unusable in other settings. Therefore there is a need to shape and smooth
the diverse needs of the users and sift out requirements that are too
specific, to maintain a generic software package. The suppliers apply
different methods for managing the users’ needs, like process alignment,
where users can align their processes to fit specific templates, recognizing
generic features or organizationally particular needs, allowing the supplier
to enforce boundaries of the software package. These methods shift the
burden of generification to the users, requiring them to work together to
discover generic solutions to their needs without relying on the supplier.

The final method Pollock et al. [7] describes, is the management of
social authority. When the community grows too big for the supplier
to interact with publicly, and interaction with individual users too
demanding, the supplier makes a change in how they interact with users.

19

In the study, the supplier categorized users into one of three categories:
Transactional, consultative and strategic customers.

Transactional customers are those who want everything for free, and
therefore the resources invested by the supplier into their needs would not
yield any additional value. The supplier actively distanced these users
from contributing to discussions about new features or the future of the
software package.

The other categories of users, on the other hand, was frequently
included in these discussions and quizzed about their opinions. These
users would bring additional value to the supplier, like the consultative
customers who want to work and spend with the supplier or the strategic
customers who share the future vision of the software package and where
it is going in the coming years.

In addition to classifying their customers according to the value they
contribute, the supplier also placed customers closer or further away
relative to themselves according to their willingness to do organizationally
changes to align with the software package and who they considered “good
generifiers”. Their evaluation of “good generifiers” was based on when
they adopted the software package - early-adopters being placed closer,
while late adopters further away. The closer they positioned users to the
supplier, the more they were included in the design and feedback process
of the development and the overall future of the software package.

Building on the work of Pollock et al. [7], Gizaw, Bygstad and
Nielsen [2] acknowledge the need and feasibility of generic software, but
propose an alternative approach to generification they refer to as ‘Open
generification’. Their concern is that the methods described by Pollock et al.
characterize the generification process as "a closed process, controlled by
the vendor with little, if any, room for innovation as a distributed activity"
[7]. Walsham referred to in Gizaw et al. [2] points out potential issues
with different approaches to generification where "The dominant vendor
controls the policies of generification, the software architecture and the
process of final product development" [2] like which users can influence
the generification process and design, making the system more suitable for
some than others, and whether the consequences of this are positive or
negative.

Gizaw et al. [7] address the concerns raised by Walsham by referring
to the governance mechanisms top-down-centralized cathedral model and
bottom-up-distributed bazaar model previously described by Raymond
and Capiluppi & Michlmayr. The Cathedral method is a top-down-
centralized approach, usually employed when working with proprietary
software, where participation is restricted to an exclusive group. On the
opposite side, the Bazaar method is a bottom-up-distributed approach
in which "The public is allowed to participate and gain authority and
leadership through their contributions and knowledge of the software
under meritocratic norms." [2], and where the development is conducted
online as a transparent public process.

Open generification as described by Gizaw et al. [2] takes a different
stance when it comes to managing requirement than what Pollock et al.

20

[7] present through their three core mechanisms. Unlike management
by community, where the general idea is to shield the generic software
by moving the design away from the local users, the open generification
method leverages the local developers to modify the software package
to fit their local needs. This approach allows for local innovations that
global developers can include into the core software through a process
of embedding and disembedding. The authors describe the process of
disembedding as "incoming user requirements are translated into common
requirements through abstraction and negotiation" [2]. Embedding, on the
other hand, refers to the process of taking a global software package and
adapting it to the local setting. This happens in one of two ways: By
filling or configuring missing parts, intentionally left open by the global
developers, or by local innovation to make the software work for the
local needs not anticipated by the global developers. By leveraging local
innovations and allowing global developers to include these innovations
in the core software through a process of embedding and disembedding,
more users can benefit from the innovation of other users.

Another interesting idea about generification Pollock et al. points out,
is what they refer to as the "generic examples of the particular’. The authors
use this term to describe "particular features that aid the circulation of the
package" [7]. This implies that even generic software packages can benefit
from introducing particular features that could help both existing settings
and potentially new settings.

4.4 Requirement Management in Open Source Soft-
ware

In their study, von Hippel & von Krogh presents two prevalent models
for innovation organizational science: The “private investment” and the
“collective action” models. They also introduce the phenomenon of open
source software project development to point out the lack of a third model
that could more fittingly be used to describe these projects. They propose a
new model, a compound between the “private investment” and “collective
action” models, called “private-collective”. [4]

The “private investment” model for innovation, as described by von
Hippel & von Krogh, assumes the innovator is motivated by private goods
and regimes of intellectual property protection and that innovators will
avoid ’spillover’, regarded as a loss of profit, to ensure the returns are
appropriated from the investment. This model is common for proprietary
software where development is limited by a budget, and the innovation is
owned by the innovator and not freely revealed to society. [4]

On the other hand, the “collective action” model for innovation as-
sumes innovators collaborate to produce public good during market fail-
ure. It requires that contributors give up control of knowledge they have
developed for a project and make it a public good by unconditionally sup-
plying it to a common pool. Unlike the “private investment” model where
the motivation for innovation comes from the investment, this model en-

21

counters challenges regarding the motivation of potential contributors. An-
other issue with public goods is “free riders”, who waits for others to con-
tribute and reap the benefits without contributing themselves.

The new compound model proposed by von Hippel & von Krogh is
the “private-collective” model for innovation. The model is a combination
of the two former models and aims to cover some of the gaps left by the
former models concerning open source software development. Participants
in this model use their resources to privately invest in the projects and
choose to reveal innovations freely as opposed to claiming proprietary
rights. [4]

Another point von Hippel & von Krogh brings up is that open source
software development stands out from the more traditional propriety
software development. The most significant differences being that the
contributors and innovators are more often users than just manufacturers
and there is no direct path to profit as the product is free. The motivation
for participation, on the other hand, can be indirect profit by increasing
the sales of a related product, gaining experience or acknowledgment and
social status. [4]

4.5 Summary

The process of generification will in some cases be performed by, if given
the opportunity, the community as described by Pollock et. al., or through
different types of interactions between a supplier or a core team and the
users, for example using methods like a variety of participatory design
types as proposed by Roland et. al.. However, as the scale of the software
core grows, and the diversity in use-cases increase, generic requirements
might not be generic enough to be accepted into the software core. For
several reasons, the existing features and code of the software core should
be reused, for example, to avoid growing the source code too big to
maintain or to avoid adding features that are too particularized to be used
by most users. For that reason, requirements which would generally be
considered generic could be rejected for not being generic enough, or be
subject to further generification to align it more with the existing software
core or other existing requirements. This process can be described using the
methods of generification as presented by Pollock et. al. and the extension
of this, open generification, described by Gizaw et. al., and both influence
the process of prioritization.

Prioritization of requirements is the process of deciding when, or if, a
requirement will be implemented into the software core. There are several
variables to consider in open source software for this process, including
community, social authority and content as Pollock et. al. presents and
Gizaw et al. further extends on, as well as the model of innovation
described by von Hippel & von Krogh. An essential challenge when
managing requirements in large scale generic open source software, is to
make sure that the software is relevant for both existing and new users,
while at the same time be able to acquire means to maintain and further

22

develop the software core.

The final process of implementing a requirements goes beyond the
practical process of writing code and committing it to the software core,
but also includes making sure that the users can understand and use it.
A common challenge when implementing generic requirements that can
support a range of diverse use-cases is that it requires customization by
the users to fit their local needs. This need for customization means that in
addition to just adding the feature to the software core, the core team needs
to communicate with and educate the community about the new feature
before it can be used. This activity is often accomplished through the use
of documentation, newsletters, mailing lists, workshops, and training as
well as on-site implementation and configuration support.

Table 4.1 on the next page summarize the framework I will use to
describe the requirement management process of the DHIS2 software. Each
method, model and process can be used to describe something that directly,
or indirectly, influence the requirement management process, which in turn
can be used to describe how the process works or how it deviates from the
descriptions in existing literature.

23

Methods of Generification

Management by community

How the supplier utilizes the community in the generification process.

Management by content

Leverage the content of the software to discard or generify requirements.

Management by social authority

Segmenting the users to identify and leverage strategically valuable users.

Open generification

Focus on local innovation and global implementation through the processes of embedding and
disembedding.

Models of Innovation

Private investment

The intellectual property and returns from the innovation is the goal of the investment.

Collective-action

Contributors unconditionally give away their knowledge to a common pool to create a public
good.

Private-collective

A mix of private investment and collective-action. Participants invest their resources in the project
and freely reveal innovations.

Methods of Governance

Cathedral

A top-down, centralized approach to governance with participation restricted to a small group.

Bazaar

A bottom-up distributed method of governance where the public participation is allowed and
authority is gained through participation under meritocratic norms.

Table 4.1: Methods, models and processes included in the suggested framework used to describe the requirement management process

in software development.

24

Chapter 5

Results

In this section, I will start by describing how requirement management
looks throughout the history of DHIS1 and DHIS2. In these descriptions, I
will both to point out how the process has adapted to a changing context
and new challenges, but also to show the fundamental ideas that have
been a part of the process since the start. This history of DHIS1 and
DHIS2 is primarily a summary, heavily based on the work of Jern Braa
& Sundeep Sahay [9], then further expanded through informal interviews
with members of the DHIS2 core team. Finally, I will go more into detail
about the flow of requirement management and the different people and
roles that make up the requirement management process as it looks today.

5.1 History of DHIS1 Requirement Management

DHIS1 was a digitalization of a paper-based system and development
started in South Africa in 1994. The team developing the software consisted
of 6-10 people, in which only two were programmers. The software
was open source and free, and written with C#, but used Visual Basic
and Access, requiring the users to have the MS Windows and MS Office
stack to be able to run it. HISP, at the time known as HISPP (Health
Information Pilot Program), was overseeing the development and was
piloting DHISI in 3 districts in South Africa. Working closely with the
district health management team (DHMT) with users like health workers,
health information officers and managers, the developers developed the
software with a combination of rapid prototyping and participatory design.
This combination resulted in rapid releases of new versions of the software
package, sometimes as frequently as every day, and played a significant
role in the success of the software.

The process of reporting feedback and new requirements to the team
would either happen directly with developers or through other staff
involved with the development. Any user could provide feedback or
requests to the development team, and access to the team was given in
a meritocracy-like fashion. That means a user’s access to the team and
their influence in design decisions was based on being innovative or on
their interest and involvement. Although the requirement management

25

seemed to work well in this period, a lot of the processes was based on
improvisation, and there was no specific structure.

The developers and users would sit together and discuss new require-
ments, and developers would often have to guide users to help them un-
derstand what their needs were. Taking into consideration the number of
users requesting a new feature, the capacity of the developers and the over-
all benefit of the feature, the developers prioritized which requirement they
would implement. Although they didn’t choose to implement all require-
ments, all of them were recorded, regardless if they were implemented or
not. By the end of the period of initial DHIS1 development, the frequency
of the rapid releases of new versions would slow down to focus more on
stability and less on new features.

The success of the software could be said to be the result of the close
collaboration the team had with the users. With the combination of
rapid prototyping, participatory design and quickly responding to users
feedback, users became encouraged and more involved in giving feedback
to the team. Also contributing to the success, was the decentralization and
local empowerment goals of the post-apartheid reform in South Africa at
the time. This reform influenced the design of the software, resulting in
a flexible and robust solution that worked well in the context of South
Africa where the health system and data requirements were extremely
fragmented and continually changing.

After three years of intensive development, the first three pilot districts
would eventually result in a national implementation in South Africa in
2000. Seeing the success of the software in South Africa, new countries
like Cuba, India, and Mozambique wanted to start pilot projects for
DHIS1. These new pilots introduced new challenges for the developers
and implementers, primarily related to political barriers in Cuba and India,
but also for more technical reasons like in Mozambique which changed the
development of DHIS1.

While DHIS1 was successful in South Africa, being generic enough
to travel across districts and scale up to a national level, this proved
problematic in Mozambique. The DHIS1 software was too heavily
tailored to the South African implementations, making it very difficult
to implement in Mozambique. A significant difference in this pilot from
the South African pilots was that the developers, still located in South
Africa, were now unable to interact with the local users in the same face to
face participatory design fashion as they had been able to in South Africa,
making it more challenging to provide the same level of support.

Although more challenging than before, by 2005 DHIS1.4 was released.
During this period, the developer team was still located in South Africa and
would travel to the local implementations to discuss requirements before
traveling back and working on the software.

26

5.2 History of DHIS2 Requirement Management

In 2004 the first lines of code were written for what would become DHIS2.
The University of Oslo would coordinate the development of DHIS2 and
focus on modernizing the DHIS1 software. The modernization of DHIS1
would include using bleeding edge technologies like Java and turning
it into a web-based platform. Unlike DHIS1 which required proprietary
software like MS Windows and MS Office, DHIS2 was not dependent on
any proprietary software to run.

The developers who worked on the existing DHIS1 software did not
work on the DHIS2 software, as they were busy working on the DHIS1.4
version. It was one of these original developers of DHIS1 who suggested
that HISP UiO would oversee the DHIS2 development. Between 2004 and
2011, contributions to the DHIS2 software were mostly made by master
students, as well as some research staff and teachers, at the University of
Oslo.

Several new tools were adopted during this period to support working
in a distributed environment, including Bazaar for source code manage-
ment, Launchpad for issue tracking and mailing-lists for communication
and support. Unlike DHIS1, DHIS2 would now be available through a
centralized code repository, enabling anyone to retrieve and submit code
changes online. This idea of supporting a distributed working environ-
ment was one of the ideas behind the development of DHIS2. The idea
was to have a core team at HISP UiO, and distributed teams located closer
to the implementations to work on the adaptation and customization of the
system to fit the local needs.

The significant change in technology and tools did cause some unex-
pected challenges. Developers who had been formerly working on DHIS1
and used to working with C# had issues with moving to a Java environ-
ment, and some were unable to make the transition. Another issue was
the introduction of an API-based design. Because DHIS1 experts worked
with a database-driven software, like DHIS1, they were confused by how
to find information using the API. In addition to HISP UiO, a team of de-
velopers from Vietnam who had experience working with and customiz-
ing the DHISI software was doing the majority of customization work for
DHIS2 implementations.

Until 2011 there were very few countries using the DHIS2 software.
The most notable implementations at this point include India and Sierra
Leone. Around 2011 HISP UiO received external funding to support the
development of the DHIS2 software, which allowed the hiring of 4 full-time
project staff. With four full-time developers working on the project, 2011
marks the beginning of the core team, a non-research externally funded
development team at UiO.

Between 2011 and 2013 one of the developers of the core team was
traveling back and forth between Kenya to support a national scale online
implementation of DHIS2. The developer worked with HMIS staff in
the ministry of health in Nairobi, designing and fine-tuning features they
needed, traveling to Kenya every 2-3 months over these two years. After

27

Kenya successfully scaled up in this period, several other countries like
Uganda, Ghana, and Rwanda followed, and DHIS2 began attracting the
attention of international donors.

The most significant growth of the DHIS2 software happened after
2013. PEPFAR (President’s Emergency Plan For AIDS Relief, ht-
tps://www.pepfar.gov/) choose DHIS2 as their internal reporting system
and provided funding to the core DHIS2 team, allowing the team to grow.
GF (Global Fund, https://www.theglobalfund.org/en/) received a lot of
requests from countries for DHIS2 support and also provided funding to
the core DHIS2 team to facilitate this, including both software develop-
ment, but also an implementation team. Subsequently, more and more
donors and countries adopted DHIS2 after this.

The strategy behind the development of DHIS2 was to have it open and
transparent. All issues were listed on the online issue-tracker, Launchpad,
where anyone had access to view, submit and discuss on issues. New
requirements would usually be submitted to the issue-tracker by advanced
users who have a good understanding of the system and domain, HISP
coordinators who are supporting the implementations, the developers
themselves, or as the result of discussions found in the mailing-lists.
When a new feature was recorded, the lead developer would review and
prioritize the issue.

In the following years, the small core team of DHIS2 developers grew
from a handful of people, primarily located at the University of Oslo, to
having over 30 developers both working locally and remotely. To keep up
with the growing number of users and interest for DHIS2, staff was hired
to coordinating projects and manage requirements. Additionally, new tools
like Jira for issue-tracking, GitHub for hosting the source code and Slack
for instant messaging were introduced to improve the collaboration of the
growing team.

During this period of rapid growth, the organization had to change
the current routines and processes to adapt to the new situation. The first
issue was the core team’s size. Initially, the lead developer was the person
primarily responsible for assigning work to developers, supporting them
and following up on the work. That implies the lead developer would
usually have the final say in prioritizing requirements. The delegation
and prioritization of work were done either by face to face interaction
with individual developers or as part of the weekly developer meeting.
These weekly developer meetings included all the developers, and any
current work, or issues developers had, would be discussed and resolved
during the meetings. Because the developers had different parts of the
software they worked on, and the number of participants in these meetings
kept growing, these meetings quickly became unproductive for most
developers. With more developers joining and more requirements raised
by the growing number of users, the core team of developers split into
different technical teams. These teams grouped developers by the nature
of their work on the software; each team supervised by a team leader.
Two of these teams, the Backend and Analytics teams remains the same
to this day, while the Android team moved out of the University of Oslo

28

and the Frontend team would later change into the Apps team. The teams
would arrange team meetings, similar to the previous developer meeting.
This new team structure also means some of the burdens of assigning
and following up on work was relieved from the lead developers and the
responsibility shared between the lead developer and the team leaders of
each team.

A second challenge, tied to the first, is the fact that it became increas-
ingly difficult to review requirements from all the different stakeholders
and to discuss and prioritize these requirements for the lead developer
alone. As a result, the most critical stakeholders would receive priority, be-
cause their requirements are often related to funding or critical for large im-
plementations. The implications of this were that it could become difficult
for stakeholders with limited opportunities to offer funding to have their
needs heard among all the different requests the core team received. People
with good knowledge of the software and health domain was given the role
of product managers. Product managers would manage the review of re-
quirements and prioritization of the different part of the software, trying to
organize and get an overview of the growing number of requests. Another
initiative was also launched to improve the communication with ministries
of health, named RCAT (Roadmap Country Advisory Team), which works
indirectly with ministries of health, through HISP nodes, in countries to
make it easier to understand their needs and prioritize them.

5.3 Requirement Management in DHIS2

By 2018 both the DHIS2 software and the surrounding ecosystem has
evolved and grown to a different scale than what DHISI or the initial
version of DHIS2 was. With a growing number of implementations of
all sizes, use-cases, and domains, trying to manage requirements becomes
a considerable challenge. The core team overseeing the development of
DHIS2 has grown from being a small team to having over 50-60 people,
including developers, researchers, coordinators, and others, working
both locally and remotely. In this section, I will give insight into the
organization and processes related to the development of DHIS2, as well
as the surrounding eco-system like the DHIS2 community and community
platform.

5.3.1 The DHIS2 Innovation Eco-System

In this section, I will introduce and describe what I consider to be the
eco-system surrounding the DHIS2 software. By eco-system I more
specifically refer to the stakeholders, tools and services, activities and
processes surrounding the software, both directly or indirectly contributing
to the overall development of the software. Jorn Braa & Sundeep Sahay
presents their interpretation of the DHIS2 innovation ecosystem with
figure 5.1 on the following page, which I will further expand on in the
section to also include tools and services which help facilitate the activities

29

of the ecosystem, but also how everything relates to the requirement
management process.

DHIS2 Innovation Ecosystem

DHIS implementers, o
DHIS Designers, \(\gi\“m U Core developers
Country DHIS team, Users WHO Ser Develop the p\a.tform in
HISP nodes, N interaction with DHIS
Super users: \A@?’z\@ﬁ(\ " A /0/6 \mp\ememers and
are all, at various) O\Nﬂ\l @ <f% Q@J/ 7, %o) designers
levels, building K (;(\e(\i\‘\g Q//,'éf\%@/ ‘%%f (;b,)
Systems using \(09\e % Institutional
tahned E)r‘]aet;?;%g o DeVG‘/oDe,S users, agencies
Req/u\'rements 3rd Health programmes
from users 0 The Party etc, are the
to core g DHIS2 Moduls = Consumers,
developers > Platform g }\JASHS and
2 arket for
Z \%{0 (\@\ Information and
YS@ Developers NS Defining the
. Q\Q Needs for
Training N &7 Information and
3rd party Universities HIse N3 functionality
Development: Learning Country-Region
Independent groups . Nodes A
making modules and Ung; A
plug-ins targeting particular AQ@WCC/TQ G\Oﬁqeﬂc\es Capacity building,
markets, needs and use case €s Universities and learning: bridging

use context, needs and practical solution

Figure 5.1: Figure taken from "Integrated Health Information Architecture"
by Jern Braa & Sundeep Sahay, illustrating the DHIS2 innovation eco-
system. [9]

Core Developers

As illustrated in figure 5.1, the core developers are the actors closest to the
DHIS?2 software. The different roles, responsibilities, and processes they
follow can be found in section 5.3.2 on page 36, but from the perspective of
the ecosystem, all interaction with the DHIS2 software happens through
the core-team. The core team, which also include DHIS2 coordinators
working at the University of Oslo, are also considered to be part of
the DHIS2 community, alongside with other stakeholders working with
DHIS2.

The DHIS2 Community

The community surrounding DHIS2 includes anyone working with DHIS2,
including core developers, ministries of health, third-party developers,
donor organizations and more. In addition to these different actors, some of
which will be described in more detail further down, the community would
not be the same without the community platform HISP UiO provides
to enable interaction between its members. This community platform,
facilitated by tools and activities primarily organized and managed by

30

HISP UiO, is used by the community to ask for support, present their needs,
share experiences and learn from each other.

The core tools and services managed by the DHIS2 core team, includes
mailing-lists, source code repositories, a forum, and an issue tracker.
The Discourse platform, now acting as both a forum platform and
mailing-list, is the primary tool used to communicate publicly with
the community. Several mailing-lists existed until they moved from
Launchpad to Discourse, including one aimed at the users and community
in general, one aimed more toward developers and more technical
discussions and one revolving around a specific use-case - Disease
surveillance. Now, the mailing-lists are part of the Discourse platform,
which categorizes posts or emails into different categories and sub-
categories.

Discourse, which replaced the mailing-lists, primarily works as a forum
with a set of features making it very similar to stack-overflow, a popular
website for developers to share experiences and ask for help. The structure
of the DHIS2 Discourse forum makes it easier to find existing discussions.
Discussions are grouped by categories and sub-categories with specific
topics and are maintained by a team of moderators under the supervision
of HISP UiO. Although Discourse is primarily a forum application, it also
supports interaction similar to traditional mailing-lists, so the transition
from mailing-lists to Discourse has little impact for users who decide to
keep using it as a mailing list. The mailing-lists, and now Discourse,
are primarily used to seek support from other users or the DHIS2 core
team, both technical question and implementation-related question, post
announcements from the DHIS2 core team, and discuss use-case specific
challenges in one of the sub-categories, for example, disease surveillance.
By participating in these discussions, the core DHIS2 team are able to
support the community, but also gather requirements and find gaps in
the software that they can report in the issue-tracker and implement later.
For example, one user asked how to achieve a specific configuration in
DHIS2, but it was not possible to achieve this configuration with the
current version of the software. This discussion can then be picked up and
discussed by the core DHIS2 team to evaluate the possibility to add this as
a new requirement and implement it in a new version of the software.

Jira is the issue-tracker used and managed by the DHIS2 core team. It
is where users can go to view, create and discuss features, requirements
and bug reports. Users can also follow the progress of issues, and see an
overview of planned changes to the software. For example, users can find
issues like "Deduplication service" with a description of the issue, related
issues and the current progress of the issue. Unlike Discourse and the
mailing-lists, Jira requires a more technical ability to use proficiently and
typically used by expert users, third-party developers or donors in addition
to the core team itself. For that reason, most of the simple questions around
features and bugs are first discussed in other channels like Discourse. Jira
is used on a daily basis by the core team, and the information there reflects
their work, like which issues are being worked on, which are planned, and
the status of each issue. In addition to developers updating the status of

31

the issues they work on, product managers and team leads make an effort
to review and update issues as well.

The final tool that helps facilitate the community is the source code
repositories, hosted using GitHub. Source code repositories are repositories
where the source code of projects is stored, providing version control of the
code. All of the DHIS2 source code, including both the core server software
and the core apps that make up the foundation of the platform, are hosted
on GitHub. Through GitHub, the community can at any time download
the source code and run it on their machines. Using the features of GitHub,
the source code is branched out to indicate a new version of the software
and tagged to mark minor version changes later on. Branching out means
making a copy of the code which will have to be maintained separately
from the master branch, the branch where all new code is committed to
be included in the software. For the most part, only the core developers
interact with these repositories, but it is also used to review and accept
contributions to the software core from external developers. As the core
team manages the repositories, external contributors are unable to change
the source code directly but submit requests to the core team using GitHub.
These requests will be reviewed by the core team, to make sure they align
with the guidelines and fits into the software in general.

DHIS2 Academies

HISP UiO, along with other HISP nodes, organizes events called DHIS2
academies. These academies, excluding the web-portal for learning the
DHIS2 basics called "Online Academy", are hosted in different countries,
primarily in Africa and Asia. They are an opportunity for users to learn
about specific DHIS2 topics, meet other members of the community, share
their experiences or interact with DHIS2 experts. For the core team, these
academies are the most valuable way to learn about the community, the
different use-cases, and understanding user needs. When participating in
academies, the core team can work face-to-face with the users and see their
problem:s first-hand. In addition to the online academy, which is sometimes
referred to as "level 0", and maintained by HISP UiO, there are three levels
academies.

Level 1 academies are primarily focused on essential topics related
to the use of the software, like "Design & Customization", "Information
Use" and "Tracker", and are hosted by HISP partners. There are several
level 1 academies hosted every year. These academies usually don’t have
members of the core team participating, but are hosted by expert users from
the HISP partners, who can answer any questions related to the material
presented at this level. The training material for level 1 academies is rarely
affected by new features implemented in the software, as they usually only
cover the core features which seldom changes.

The next level of academies, level 2, usually require certificates for
completing relevant level 1 academies. The University of Oslo always hosts
these academies and often focus on specific topics of DHIS2. These topics
include "Server administration”, "App development”, "Implementation

32

strategies" and "Disease Surveillance". Members of the core team are often
sent to these academies to either present features, learn about the use-
cases, understand and solve user difficulties, or networking with users.
During these academies, new features relevant to the topic are presented
to the participants. These are often presented in combination with a Q&A
session, to answer any questions the participants have about these new
features. Depending on the relevancy of the feature to the topic of the
academy, learning how to use the new feature could be added to the
training material. For example, the level 2 academies covering the topic
of the disease surveillance use-case introduced material for new features
that directly solved requirements for this use-case after including it in the
software. During these academies, there is usually plenary sessions where
participants present their experiences with the software, which helps the
core team improve their understanding of the use-case and come up with
new requirements to extend the software and further support the use-cases.

The expert academy is the largest academy, having over 170 parti-
cipants attending in 2018, and is hosted annually by the University of Oslo,
at the University of Oslo. During the expert academy, most of the core team
participates, both by hosting different sessions, attending sessions and net-
working with the participants. In addition to the core team, expert users,
representatives from ministries of health, donor organizations and other
significant stakeholders also participate in the expert academy. Unlike the
other academies, the sessions hosted during this academy are hosted by
both the core team and participants themselves. The structure of these ses-
sions usually allows for an initial introduction to a topic, then opens up
for a plenary discussion on the topic. The topics discussed at this event is
usually at such an advanced level, that primarily people with an in-depth
knowledge of both DHIS2 and the topic benefit from participating in the
discussions. The work done in each session helps shape the future of the
software, from solving existing problems to expanding into new use-cases
and domains, which means the participants can influence the requirement
management process to a certain degree.

HISP Nodes

HISP UiO is overseeing the development of DHIS2 and related activit-
ies, but it is not the only HISP organization working with DHIS2. Other
HISP organizations, usually referred to as HISP nodes or HISP partners,
are organizations located in different countries working to strengthen the
health information systems in countries. A Memorandum of Understand-
ing containing 19 principles represents the guidelines HISP nodes follow
as officially recognized HISP nodes by HISP UiO. These principles relate
to strengthening health information systems, developing free and open
source software, acknowledging all outputs emerging from project and re-
search, and more. Table 5.1 on the next page list all the official HISP nodes.
These HISP nodes is an excellent resource for the core team, as they help
organize local DHIS2 level 1 academies, support ministries of health with
the DHIS2 implementations, work with NGOs and mediate requirements

33

HISP Nodes

HISP-VN (Vietnam)

HISP Bangladesh Foundation

Health Information Systems Program - Uganda

HISP India - Society for Health Information Systems Programmes
HISP Tanzania

HISP Nigeria

HISP West and Central Africa

HISP (Sri Lanka)

HISP Rwanda

Table 5.1: List of official HISP nodes [5]

between the core team and the users.

The members in these HISP nodes usually include a variety of differ-
ent expertise, both in the DHIS2 software, health domain, software de-
velopment, and server administration. Among other health information
strengthening activities, they use their expertise to assist local implementa-
tions of DHIS2. The support they provide includes activities like server ad-
ministration, customization of DHIS2, and development of custom DHIS2
apps.

Due to their role working with both ministries of health, NGOs and the
DHIS2 core team, the HISP nodes usually gain a unique understanding of
both the use-cases and the technical aspects of the DHIS2 software. That
makes them invaluable as a source of information about requirements for
the core team. Members from these organizations frequently submit new
requirements to the core team and are often included in the process of
designing said requirements. For example, members of both HISP South
Africa and HISP Uganda is actively working together with the core DHIS2
team to gather, define and improve requirements related to the disease
surveillance use-case of the DHIS2 software.

Expert Users

There are no official titles, roles or lists that distinguishes an expert user
from other users. Expert users refers to members of the community who
has asserted their knowledge of the DHIS2 software by supporting the
community and contributing to the software. These users, sometimes
referred to as power users in other literature, are supporting both
other users and the core DHIS2 team through their contributions. The
contributions mentioned includes supporting DHIS2 implementations,
answering questions and supporting other members of the community,
specifying requirements for the core DHIS2 team and more.

Most users the core DHIS2 team consider expert users today, are
users working in the HISP nodes. These users are naturally in a unique
position to gain knowledge about both use-cases and the software, and
through their work with academies become highly qualified to answer

34

most questions from the community. However, the core DHIS2 team
recognize other users as experts as well, regardless of their association
with HISP nodes. Any user who provides significant contributions to the
software or the community can be considered expert users.

The authority expert users gain through their contributions are not
measured in any formal way. However, the new DHIS2 community forum,
Discourse, enables users to vote on posts, allowing active contributors
to gain recognition for the efforts from other community members. In
the eyes of the core DHIS2 team, expert users have varying degrees of
authority depending on the context. This authority usually refers to their
influence in the prioritization of requirements, or how important their
opinions are when designing requirements. Depending on their level
of participation, and their role and involvement in relevant use-cases,
their influence with requirements can vary from giving their opinion, to
collaborating in making design or prioritization decisions.

When working on projects with unclear requirements, the core DHIS2
team sometimes include expert users, familiar with the particular use-
case. These projects are usually from a stakeholder who wants support
a particular use-case but doesn’t know the steps required to achieve it. The
core DHIS2 team then work together with these expert users to design the
initial requirements to support the use-case, leveraging their knowledge
about the use-case.

Donors

Donor organizations fund the development of the DHIS2 software. The
funding is either directed at the general development of the software, or
through externally funded projects.

Externally funded projects usually have specific use-cases they want to
support, or requirements they need to be implemented. In some cases, the
requirements from these projects align with existing requirements for the
DHIS2 software, but in other cases, these projects introduce entirely new
requirements. As a result, these externally funded projects can profoundly
influence the process of prioritizing requirements.

Different externally funded projects have different timelines for when
the core DHIS2 team needs to fulfill them. An important part when
prioritizing requirements is, therefore, to balance which requirements to
implement, and when to implement them. A vital aspect of how the core
DHIS2 team is working with these projects is that the core team manages
the requirements themselves, without direct involvement from the donors.
By shielding the process this way, the core team themselves can decide how
to work with each requirement and how they want to balance the needs of
donors with the needs of other users.

Non-Donor Users

Since DHIS2 is a free open source software, anyone can use it free of charge.
Especially advantageous is it for countries or organizations who do not

35

have the means to pay for similar proprietary software or develop their
own. Although any one person, in theory, can be a free user, we will mainly
discuss the most significant free users of DHIS2, the ministries of health in
developing countries.

The ministries of health can use and host the DHIS2 software at differ-
ent scales, from district-scale pilots to a national scale implementation. To
be able to maintain and improve these implementations, they need their re-
quirements to be supported by the software. Often, their requirements are
resolved through the implementation of other generic requirements, but
some of their requirements are more specific. These requirements can be as
specific as support for particular types of calendars, or the ability to create
reports that support their routines. Because they lack the monetary means
to influence the process of requirement management the same way donors
are, their influence bases itself on other values.

Free users in general, but also ministries of health, is a fundamental
part of the success of the DHIS2 software. Without these users adopting,
promoting and requesting the software, both new adopters of the software,
and donors, and funding would be much harder to come by. The core
DHIS2 team knows this, and because of this, they have a high motivation
for supporting and improving the software for free users as well. In
addition to the motivation of supporting and improving the software for
free users, the requirements raised by these users often involves changes
that benefit a significant portion of the users.

Motivated by requirements that benefit the majority of users, and to
support and improve the software for both new and existing implement-
ations, prioritizing requirements from free users is important for the core
DHIS2 team. As a result of this, the core DHIS2 team makes a signific-
ant effort to balance the prioritization of requirements from free users and
donors.

As mentioned previously, ministries of health are arguably one of the
most significant free users in the DHIS2 community. With the growing
number of use-cases and applications for the DHIS2 software, the number
of requests for different requirements quickly becomes challenging to
manage. It especially makes understanding the impact, importance, and
demand of each request difficult.

An initiative started by the core DHIS2 team, RCAT, attempts to
mitigate these challenges. The goal is to create a list of the most in-demand
or useful requirements in the eyes of the ministries of health, highlighting
these for the core DHIS2 team. The ministries of health do not usually
interact directly with the core DHIS2 team but work with their local HISP
nodes who mediate their needs to the core DHIS2 team. That means that
the core DHIS2 team, together with the local HISP nodes compile this list
of requirements.

5.3.2 The Core Software Developer Team

In this section, I describe the different roles of people working in the core
DHIS2 team. In general, everyone influences the requirement management

36

| Lead developer
g | Product Manager

Product Managers \;I
[]
—

Backend

Supporting
services

Figure 5.2: A table representing the organisation of the developers in the
core team.

process in some way, either through gathering, defining or prioritizing
requirements. Figure 5.2 represents the developers of the DHIS2 core team,
who is most involved in the requirement management process. Roles not
included in the figure generally work more with gathering requirements,
than generification, prioritization, and implementation. All of the roles
described in this section includes their primary responsibility and impact
in the requirement management process.

Developers

There are over thirty software developers in the core team of DHIS2. They
are located at the University of Oslo, or remotely around the world in
countries like The United States, Vietnam, Spain, Netherlands and more.
The developers are all part of a different technical team, indicating what
part of the software they work.

The technical teams are the Backend, Analytics, Tracker, Apps, UX,
and QA team. As illustrated in figure 5.2, each team consists of 1-10
members including a team leader, except for the QA team, where the
Release manager act as the team leader, and the UX team with only one
member. In addition to these teams, other teams are working on the official
DHIS2 android apps. Although these teams are also an important part of
DHIS2 project, they are skipped in this thesis because they do not work on
the core DHIS2 software itself.

Some of the developers also have extra responsibilities in addition to
software development, like the lead developer, the team leaders, the release
manager, and some product managers. These roles are described later in
this chapter.

Developers without added responsibility, mostly influence the require-

37

ment management process with technical input and by estimating their
work capacity. Developers are also in direct contact and discussions with
expert users or attending academies to improve their understanding of use-
cases and requirements.

Team Leaders

The team leader of each team assigns work, supports the team, interacts
with other teams and follows up the team’s members. The only exception
being the Backend team, which have the lead developer as well as two team
leaders. One of these team leaders is located in Vietnam and is managing
team members located in Vietnam and remote developers with particular
work tasks. The other team leader is located at the University of Oslo
and is managing the rest of both the local and remote team members, in
collaboration with the lead developer. Additionally, the team leader of the
Apps team is also filling the role as a product manager together with the
lead developer.

The team leaders attend weekly product meetings where they discuss
both their teams capacity as well as technical details of requirements. Un-
like other developers who also participate in these meetings, the team leads
are usually involved in discussing all the requirements, while other de-
velopers discuss more specific requirements. These discussions focus on
evaluating if the requirements are in the scope of the software, generific-
ation of the requirements, and finding and understanding technical solu-
tions for them.

Lead Developer

The lead developer is a member of the Backend team when it comes to the
software development, but is in general, interacting with all developers.
They act as a decision-maker for the most significant changes. In addition
to overseeing the development as a whole, they also manage the team
leaders and support individual developers to some degree. The primary
responsibilities of the lead developer include having an overview of the
current development across teams, the recruitment of new developers, and
working with stakeholders to define requirements and solve issues.

In addition to this role, the lead developer in the core DHIS2 team
also inhabits the role of assistant product manager for the Apps product
team. The lead developer has significant impact on the requirement
management process, like deciding technical solutions, rejecting out-of-
scope requirements, and more. Additionally, the lead developer also
supervises the significant changes and efforts made to the software.

Product Managers

Product managers, also known as product owners, are unique roles that
manage a specific part of the DHIS2 software. Each product manager
leads a product team, whose members can be implementation advisors

38

or a combination of developers from different technical teams. While
each of the technical teams relates to a specific technical area, the product
teams focus on one of the core features of the software. Conveniently
the product teams are split into the same grouping of people as most
of the technical teams: Analytics, Tracker, Apps, and Android. The
product managers are responsible for arranging weekly product meetings,
reviewing requirements, understanding their respective product and the
needs of the stakeholders. Together with their product teams they also plan
roadmaps and prioritize requirements for implementation. The product
managers play a central part of the requirement management process,
acting both as a gatekeeper for new incoming requirements, but also as a
source of knowledge about what users need and the future of the product.

In theory, all requirements go through the product managers before
they present them to the product team. In reality, minor changes and
requirements often skip this process, usually approved by a team leader
or the lead developer. In cases where requirements are involved or a
need a significant amount of work, the product manager evaluates the
requirements and prioritize them, then brings them to the product team.
This process is both done by the product managers themselves, or in
collaboration with other product managers because the more complex and
elaborate requirements can affect multiple products.

On a weekly basis, the product manager arranges a product meeting, at-
tended by the product manager, implementation advisors, and developers.
During these meetings, the team reviews a list of requirements presented
by the product manager, identifying possible overlapping requirements
or existing features, discussing technical solutions and any cross-team de-
pendencies. After reviewing and accepting a requirement, the team prior-
itizes it relative to the rest of the requirements on the list, and a developer
is assigned to work on the requirement.

Release Manager

The release manager was a role recently introduced, taking over the
responsibilities related to releasing new versions of the software, which
was previously managed by the lead developer. The responsibilities of
the release manager include a variety of activities, like updating demo
instances of the software available online, compiling new versions of the
documentation and writing release notes.

In regards to the requirement management process, the release manager
works with the different product teams and evaluates the progress of
different tasks leading up to a release. Any tasks that are incomplete and
risk delaying the release will be identified and brought to the product teams
to discuss. This discussion will decide whether to move the task to the
next release, if resources need to be reallocated to finish the task, or if the
delaying the release is necessary.

In addition to alleviating some of the release-related responsibilities
from the lead developer, the purpose of the release manager is to stabilize
the software releases. There are primarily two challenges the core team

39

struggled with that caused the need for this focus on stabilization.

The first challenge is related to the stability of the software itself. Previ-
ously, although the core team invested significant time in testing the soft-
ware before a new release, new releases suffered many problems with bugs.
Not only did the bugs affect new features, but sometimes also existing fea-
tures. The release manager organizes and plans more efficient testing of the
software before releases, including both testing by the core team testers, de-
velopers, but also members of the community. Additionally, the integration
of routines related to testing in the development process itself has reduced
the need for extensive testing before a release, allowing for the team to fo-
cus their efforts where it is most effective.

The second challenge was related to the repeatedly postponing of
releases. Due to the increase in the number of requirements done each
release, and having most of the testing efforts right before a release, releases
would often have to be delayed. The release manager, together with
other members of the core team, worked to design a new development
process. This new process is much more structured than previously,
dividing the time between releases into several periods. Each period is
in theory separate from other periods, very similar to how traditional agile
sprints work. By planning and reviewing tasks for each period, the release
manager can work with the different product teams to identify any risks
and resolve them long before the release.

The influence of the release manager on the requirement management
process is limited, but by identifying risks, he provides feedback to the
product managers. This feedback can then be used to re-evaluate their
prioritization if needed or delay the release if the delayed requirements
are critical.

Project Coordinators

DHIS2 is funded by externally financed projects and contracted work. The
three project coordinators in the core team are the ones who work with
the donors to define and follow up requirements, as well as write and sign
contract with them. The project coordinator role is often that of a mediator
between the core team and the donors.

In the case of requirement management, the project coordinators
represent the donors. As such, project coordinators have significant
influence in the process. Both in prioritization, to making sure that
requirements are implemented as promised concerning timeliness and
functionality, as well as notifying donors about any issues or delays that
might occur.

Researchers and Students

Master students initially developed DHIS2, and still today some contri-
butions to the software core are the results of the work of students and
researchers. Today, the researchers and students themselves have little dir-
ect influence in the requirement management process, but in 2019 a new

40

role for research evaluation and coordination will be created and filled.
This person will work on linking research and development, providing
more practical results from research and evaluation of implementations for
product managers and developers to use.

Implementation Support

Implementation support refers to a group of different roles that in some
way support implementations or the community. The responsibilities and
areas of work of these roles both overlap with each other in some ways and
are very different in other ways. There are three types of implementation
supports staff: global, regional and HISP UiO implementation support
staff. Global implementation support staff and HISP UiO implementation
support staff are working for and employed by HISP UiO. Regional
implementation support staff are usually partly funded by HISP UiO and
partly funded through sub-contracts with donors.

These staff, to some degree, all work with implementation support,
capacity building and defining requirements. That includes activities like
managing the Discourse platform, organizing academies, creating training
material, training in academies, and more. Some of these people also have
multiple roles, like product managers or project managers.

Some of the implementation support roles are also more specific to the
type of support they provide, like the health implementation advisor and
the technical implementation advisor. The health implementation advisor
has a health/clinic background and helps design requirements around
the tracker-module of DHIS2 and specific use-cases for it. The technical
implementation advisor provides similar value to the core team, but with a
focus on the technical aspects of requirements and use-cases.

Finally, there is an implementation coordinator. In addition to the
responsibilities of supporting implementations, also oversees the other
implementation support staff.

Implementation support staff generally don’t participate directly in
the requirement management process, unless they do so in the capacity
of project managers. Instead, they work with developers and product
managers directly, depending on the complexity and severity of their
requirements. In other words, they influence the process by working
directly with the developers or product managers, by providing insight
into the needs of implementations.

5.3.3 The Requirement Management Process

In this section, I describe the requirement management process of the
DHIS2 core team as outlined in figure 5.3 on the following page. The table
consists of the three stages generification, prioritization and implement-
ation, each listing methods and stakeholders involved in the respective
stage.

41

()
@
=
@
=
=
Q
8
=]
=

uonesnLoLd

uonejuawwa|duw|

Combine similar requirements

Identify existing overlapping
features

Community members*

Product managers

Requirements are discussed over
one or more mestings, where
similar or overlapping requests are
identified and merged. A lot of

Developers** requirements are domain-specific

Remove domain specific and is stripped of any domain
information specific information. Any

requirements that is too big, or falls
Discuss reguirements with outside of what is considered the
stakeholders scope of the software is discarded.

Community members are included
Discard out-of-scope requirements in discussions for more elaborate

requirements.
Identify contracted requirements Project participants*** Pricritising requirements are done

Overall demand from community
Overall benefit for users
Future vision of the software

Core team capacity

Implement features
Testing features
Documenting features
Presenting features

Including feature in training material

Product managers
Team leaders

Lead developer

Developers
In-house testers
Expert users

Product managers

Academy facilitators and training

material creators

within the core team, taking
multiple variables into
consideration. Requirements
specified through funding contracts
are the most critical. Requirements
are also prioritised on how well they
conform to the future vision of the
software, the overall demand from
and benefit for users, as well as the
available capacity of the core team.

After a feature has been
implemented, the feature is
documented by the developer and
tested by both in-house testers and
voluntary expert users, New
features are presented initially
in-house far the core team, as well
as later in academies. Training
material is also created and
included in academies relevant to
the feature.

* Community members here refers to members identified as owners of the features, usually expert users or representatives from donor
organisations

in a project. This can include project coordinators,
s and developers, depending on the project.

implementation coordinator:

Figure 5.3: A table describing the methods and stakeholders for each stage
of the requirement management process

42

Requirements

Gathering requirements for DHIS2 happens in a variety of different ways.
In addition to users in the community submitting new requirements to
support new or existing use-cases, the core team also has people actively
gathering requirements. Implementation support roles actively work on
understanding the existing and new use-cases of DHIS2, usually working
closely with the users through implementation support or through DHIS2
academies. These people gather and define requirements by identifying
new needs and gaps to bridge to improve or add support for use-cases.
Also, organisations funding DHIS2 development, collaborating closely
with the project coordinators, work with the core team through externally
funded projects to add support for specific use-cases. Another process
for gathering and understanding the demand of requirements is RCAT
(Roadmap Country Advisory Team). RCAT is an effort by HISP UiO to
understand the needs of the ministries of health more efficiently. HISP
UiO together with HISP partners representing the local ministries of health,
collaborate to make a list of requirements that would be most useful for
their implementations.

When the core team receives requirements, they are added to the online
issue-tracker either described in broad strokes for smaller issues, or with a
more abstract description where the core team needs to work out the details
themselves. The latter is usually the case when the requirements are either
unknown or more complicated to solve. For example, externally funded
projects might know what the final result should look like, but don’t know
the steps to get there. In these cases, descriptions are purposely abstract for
the main requirements, then later expanded on by the core team when the
specifics are more apparent.

Generification

Due to the difference in technical knowledge, understanding of their prob-
lem or experience with the software, users submit requirements in all
shapes and sizes. Some users, usually expert users with both proper do-
main and technical knowledge, and experience working with DHIS2 sub-
mit well described generic requirements. These are requirements that with
a small amount of work fits right into the software. Other users might sub-
mit domain-specific requirements, partially generic requirements, require-
ments with insufficient information or requirements that are well thought
out but wouldn't fit into the software in its current form.

The product managers, working as gate-keepers for incoming require-
ments, weed out those requirements that are outside the scope of the soft-
ware. Furthermore, they group similar requirements and follow up on re-
quirements that require additional information. When the majority of the
invalid requirements have been filtered out, the product managers pick a
list of requirements they regard as relevant for the next version of the soft-
ware. This list is the brought and presented to the rest of the product team.
Together with the product team, they go through the list and discuss each

43

requirement, looking at them from different angles.

From a technical point of view, requirements can be invalid because
there is already support for a different, overlapping requirement, or it
might not be possible to implement them because of technical limitations.
Additionally, the consequences of implementing the requirement are also
taken into consideration to decide whether to accept it or not. These
consequences include things like performance, privacy, security and best
practices. The team also looks at the requirements the product manager
have grouped due to their similarities, and discuss whether it is possible to
find a common generic solution to all requirements, or if they need to be
discarded or changed. More often than discarding these requirements, the
requirements are changed to more easily fit the software or a more generic
solution.

Aa a result of the variety of use-cases, as well as local needs, even
generic requirements from the users are sometimes not generic enough to
fit into the software. In these cases, the product team discusses different
technical solutions for further generifying these requirements, so they fit
not only a specific use-case or local need, but so they can be applied to
other use-cases and contexts as well.

In rare cases, the core team will accept requirements that are only partly
generic. That usually happens if a requirement is critical for a particular
use-case and the requirement fits into the software, but will primarily
only be beneficial for some users. Because DHIS2 was primarily a health
information system, several design decisions have been made to support
a health-specific requirement, both to make sure large implementations of
the software can still use the software, but also from donor organizations
with particular and critical needs.

Depending on the complexity of the requirements, a requirement can
be generified, accepted and have a technical description of the implement-
ation after one or more product meetings. When this happens, the product
manager, together with the team leader and relevant developers, assigns
the work to a developer and have a brief discussion to make sure all parties
agree and understand the requirement. Because developers most often are
part of the product meetings as well, this discussion usually happens as
part of the meeting.

Prioritization

The initial stage of prioritization happens when the product managers pick
out requirements they want to present to the team. During this stage, the
product managers pick out requirements based on the following criteria:

¢ Is the requirement a deliverable? (A requirement related to an
externally funded project)

¢ Is this requirement marked by RCAT, or needed by most users?

* Does the requirement align with the future vision of the product?

44

For practical reasons, the product manager also picks a variety of small
and big requirements to avoid blocking all the developers with big tasks, as
they often end up working on requirements from multiple product teams.

After a significant portion of the requirements have been well defined
and assigned to developers in the product meeting, the meeting parti-
cipants work together and discuss the prioritization of the requirements.
At this point, the participants in the meeting potentially include anyone
who is relevant in prioritizing the requirements, like the product manager,
team leads, lead developer, project managers or expert users. The meet-
ing participants give their opinion on the importance and significance of
the requirement. Depending on each person’s role or knowledge about the
requirements, their opinion influences the priority of the requirement to
different degrees.

From the product managers point of view, what determines the
significance of a requirement is his or her knowledge about the product
and its users. Requirements that would solve a common, significant or
outstanding problem for most of the product’s users, would be prioritized
higher than a requirement that solves technical issues that might not affect
the products users directly. Furthermore, requirements that the product
manager recognizes as a stepping stone, or a part of the future vision of
the product, might be considered more important than a requirement that
solves a short-term problem.

Project managers advocate for requirements that benefit their projects.
Because projects and funding are most often connected, this implies that
the project manager can point out requirements that they assess as critical
for the project. Alternatively, they are also able to point out requirements
that are less critical for the project, and can, therefore, be prioritized lower
for the benefit of other requirements. Because the core team depends on
the funding from these projects, the project managers have much influence
when deciding the priority of requirements.

The team leaders and developers, sometimes together with the lead
developer, contribute to the discussion from a technical point of view. By
assessing the complexity of requirements, the impact of the requirement
on the rest of the software, and the capacity of the developers, they
can provide some insight into the work required. Requirements they
see as straight forward, or small might get a higher priority because
fresh developers or developers who are only working on a few elaborate
requirements can more easily work on them. On the other hand,
requirements that are complex, and need extensive knowledge about the
source code and the software, are considerably harder to prioritize. That
is usually because of the combination of the time required to implement
the requirement and the experience of the developer, so for complex
requirements with a short deadline more experienced developers are
required. Pointing out these requirements to the rest of the product team
allows them to decide what requirements are more important if there are
too many for the technical teams to handle efficiently. Finally, requirements
that will have a more significant impact on the rest of the software, meaning
a high risk of introducing bugs and a greater need for comprehensive

45

testing, will receive a higher prioritization so they can be implemented
early in the development process, leaving a reasonable margin of time to
test the changes extensively.

The final influence on the prioritization process is the RCAT initiative.
Each time product managers pick new requirements to present to the team;
they make sure to include a selection of requirements marked by RCAT
as well. In many cases, these requirements are already requirements that
are attractive to implement. That is because they often solve problems
many users are facing, or introduce functionality that aligns with the future
vision of the software. During the product meetings when the product
team discusses prioritization, RCAT issues will more easily be prioritized
higher than similar requirements, especially if multiple requirements are
considered equally important.

Implementation

After assigning a requirement to a developer, the developer starts working
on its implementation. While most requirements are straight forward to
implement, some of those who are more complex require a more work
and technical decisions before implementing them. Developers working
on these complex requirements often work with other developers to find
technical solutions as well as expert users to understand the problem
better. Working with other developers and expert users helps them choose
the most appropriate solution that both have an elegant technical and
generic implementation, while at the same time solving the fundamental
requirement.

When a developer completes the implementation of a requirement, they
perform an initial test of their work before committing their code to the
central source code repository. The next step is writing test-cases and
documentation of the requirement. Both the test-case and documentation is
later used by other developers, testers and expert users to extensively learn
about and test the newly implemented changes before including them in
the next version of the software.

When a new version of DHIS2 is released, the release manager sends
out an announcement to the community using the Discourse platform.
This announcement, labeled as release notes, contains an overview of the
most exciting or significant changes included in the new version. The
release notes include a short description of the changes, some screenshots
if applicable, and a link to the documentation describing how to use the
feature. This process provides users with an awareness of the new changes,
so users can try them out themselves, allowing them to evaluate if they
should upgrade their software to benefit from the change.

Shortly after the release of a new version, The core team presents
the new and improved features in the new release to the other members
of the core team. These presentations usually happen in the form of
an internal training session or a seminar. Similar to the release notes
announcement, these presentations are limited to the most significant
changes, like new features, significant changes to the software or that

46

significantly change how users interact with the software. Significant
changes include changes like increasing the required versions or adding
required third-party software, new apps or changes in the data models.

By first educating the core team, they can help identify which features
can be challenging for users to grasp, which requires more documentation
or even uncovering unexpected applications for a feature. Especially the
latter benefit is essential in managing the requirements in DHIS2 because
by recognizing different uses of a feature we can identify requirements
that would potentially overlap with this feature. Recognizing overlapping
features allows us to reuse existing functionality in the software, or add
support for functionality with less effort by extending the current feature,
as an alternative to implementing a brand new feature. Because the core
team often work closely with the expert users of DHIS2, there are several
instances where the expert users can join these presentations as well. These
expert users, working with the software in a production environment,
brings an entirely different perspective than that which the core team has.
Especially regarding understanding how users are interacting with the
feature and the software, and how it will perform in a practical context.

Developers primarily write all the documentation for DHIS2, and
it is one of the most accessible sources for users to increase their
knowledge about the software. The developers are usually contributing
to the documentation with features they have implemented. As a result,
language consistency, the level of technical detail and description of the
documentation can differ a lot from developer to developer. The varying
quality of the documentation is primarily due to most developers being
non-native English speakers and their understanding of how to describe
a feature could be very different from what the users who are reading it
needs. Each contribution to the documentation is reviewed by a member of
the core team, allowing for some threshold of consistency, but for new, non-
native English speaking DHIS2 users, with limited technical knowledge,
learning to use DHIS2 from documentation alone can be challenging.

In addition to the documentation and community platforms, new
features are both announced at the different DHIS2 academies and
included in the training material. Together, the academies, community
platforms, and documentation help the users increase their knowledge
about new features. Some academies also include a plenary session for
facilitators and users interact in a two-way fashion. During these sessions,
facilitators and users often discuss both specific features of the software as
well as topics more related to particular use-cases. Users can, during these
sessions, also directly provide feedback on their needs to the facilitators,
who sometimes include members from the core DHIS2 team or someone
who has direct access to the core DHIS2 team and can act as mediators for
the users.

47

Periods

The development of DHISI
from the beginning to the re-
lease of DHIS1.4 (1994 - 2006)

The development of DHIS2
from the beginning until 2017.
(2004 - 2017)

The most recent development
of DHIS2. (2018)

Interaction with users

Singular PD initially, Serial
PD after scaling out of South
Africa.

A mix of Singular, Serial and
Parallel PD.

A mix of Singular, Serial and
Parallel PD.

Core Developers

e 2 in South Africa

e Master students and
teachers at UiO, Norway,
until 2011.

¢ From 4 to 30 developers
between 2011 and 2017.

* 4to 26 developers work-
ing from UiO, Norway.

* 4 working remotely from
U.S and Vietnam.

* 39 developers.

* 20 developers working
from UiO, Norway.

* 19 developers work-
ing remotely from U.S,

France, Vietnam, Ger-
many, Spain, Sweden
and Netherlands

Known implementations of
DHIS2 in Ministries of Health

¢ National implementation
in South Africa.

* Multiple pilot projects in
other countries.

* 45+ national implement-
ations.

e 10+
states.

full-scale Indian

¢ 15+ pilot projects.

* 50+ national implement-
ations.

e 10+
states.

full-scale Indian

¢ 15+ pilot projects.

Table 5.2: A summary of the different periods of DHIS development

48

5.4 Summary

Both the development of the DHIS1 software and the DHIS2 software,
have a lot in common in the way they have been managing requirements.
The fundamental ideas behind software development are very similar, like
participatory design and having an open development process where users
can contribute.

The core DHIS2 team attempts to design the software closely with
its users, as the developers did during the development of the DHIS1
software. While the growth of DHIS2 regarding the number of users and
use-cases has introduced several challenges in that regard, the core DHIS2
team creates several opportunities to accomplish this kind of interaction
with the users. These opportunities include collaboration through the
community platform, like Discourse, and through academies. Figure 5.2
on the preceding page lists the different types of participatory design used
in the different periods.

Both the development of the DHIS1 software and the DHIS2 software
have experienced different challenges in their lifetime. The challenges
in the DHIS1 development are mostly related to the software itself, for
example, being unable to transfer the software to other countries easily. The
DHIS2 software, on the other hand, faces challenges related to its growth,
including dealing with a bigger core team, and several different use-cases
and contexts to support. Table 5.2 on the facing page gives an overview of
how the core teams, the number of implementations, and the interaction
between developers and users have changed through the different periods.

Although being based on the DHIS1 software, the DHIS2 software
has evolved into something much more than a simple HMIS system for
the health domain. It supports several new use-cases, both in the health
domain and other domains. One of the most significant differences from
the DHIS1 software is the "Tracker" module. This module allows users to
record data on an individual level, in addition to the traditional recording
of aggregated data.

With this evolution, the DHIS2 software has diverged significantly from
the DHISI software, and as a result, deals with a completely different set
of challenges. Designing generic features that transcend not only different
use-cases but also different domains, and balancing the needs of the free
users and the needs of those providing funding, are examples of challenges
seen in the development of the DHIS2 software today.

The DHIS2 software has an extensive eco-system built around it. This
eco-system including online tools for collaboration, academies for capacity
building and HISP nodes which help mediate the users needs to the core
DHIS2 team. Through this ecosystem, the core DHIS2 team can support
users, gather and design requirement, learn about the different use-cases
and more.

49

50

Chapter 6

Discussion

In this section, I apply the framework introduced in chapter 4, summarized
in table 4.1 on page 24, to the different periods described in chapter 5. These
periods, which is listed and described in table 5.2 on page 48, combined
with the framework, let us describe the requirement management process
for each period in a structured way. This structured description of the
process allows us to more easily compare and discuss the changes made
to the process and organization in the different periods.

I will also describe some of the known challenges the core teams faced
during each period in regards to the requirement management process. For
each challenge, I also discuss the reason for them, and potentially how to
deal with them.

6.1 DHIS1: 1994 - 2006

The development of the DHIS1 software included a relatively small
number of user in South Africa. The two developers working on the project
worked closely with the users in a singular participatory design fashion.
This approach was advantageous and allowed the developer to rapidly
release new versions of the software, and provide great support to the users
at the same time.

When scaling to other countries, it became difficult to provide the
same face-to-face singular participatory design interaction the core team
of developers had previously used. With frequent trips to the new
implementations, and with the help of implementation coordinators
mediating between the developers and users, the developers managed to
get the implementation up and running. This approach to user interaction
is arguably more similar to that of serial participatory design. That means
the development of the DHISI1 software utilized a combination of both the
singular and serial participatory design methods.

There is not much information related to the development concerning
generification in the early versions of the DHIS1 software. However,
because the developers were working with the DHMT in South Africa,
we can argue that they provided requirements designed to support all
potential implementations in South Africa. That means generification was

51

partly done by the user, or community, by utilizing their understanding
of the different requirements. Additionally, we know that users gained
access to the core team based on their merit, implying they could more
easily influence the design of requirements than those users with less merit.
Their process of generification can be said to include methods similar to
the "Management by Community" and "Management by Social Authority"
methods.

Based on the description of how the DHISI software was developed in
collaboration with the users, the project had a governing method similar
to the Bazaar method. It was open for all users to participate and users
were granted access in a meritocratic fashion. One significant difference,
however, is that there doesn’t appear to be possible for any user to gain
any form of leadership or special authority based on their merit, because
the developers made all final decisions.

The DHIS1 software development was externally funded, and the
software was free to use, although it required proprietary software to work.
This model of innovation is similar to both the collective-action and the
private-collective models. Because some participants invest their resources,
namely the organization funding the project, it is mostly similar to the
model of the private-collective.

Types of Participatory Design Singular, and later Serial

Methods of generification Management by Community,
Management by Content, Man-
agement by Social Authority
Method of Governance Bazaar

Model of Innovation Private-Collective

Table 6.1: Summary of DHIS1 between 1994 - 2006

Table 6.1 gives a summary of the DHIS1 software development in this
period, described using the framework found in table 4.1 on page 24.

6.1.1 Challenges

What seems to be one of the core challenges for DHISI is related to the
software itself. Although the software was a perfect fit for South Africa, it
was initially not flexible enough to be adopted in other countries.

First of all, the software was designed closely with the users in South
Africa, imprinting their ideas into the software itself. Unfortunately, this
could not always be transferred to other contexts. For example, due to
political reasons in Cuba, where they wanted to avoid empowering the
users and have all decisions coming from the top. Because the software
was designed with the idea of empowering users, to be able to move
the software to these contexts, the fundamentals of the software would
have to change. One can argue that this challenge of moving the DHIS1
software to new contexts is the result of an insufficient generification of the
requirements. Although the design and decisions made in South Africa

52

were appropriate at the time, the requirements were not generic enough
to easily be transferred into other contexts. Because the primary objective
of the project was to develop an HMIS for South Africa, trying to account
for requirements outside of this scope would probably not have been the
correct decisions at the time.

Secondly, the source code of the DHISI1 software had become "messy"
and difficult to maintain. As a result, some changes required significant
effort to implement. The "messy" source code is likely the result of the rapid
prototyping of DHIS1 and active collaboration with users in South Africa.
When developing software and making several changes and improvements
over time, source code can quickly end up in this state. The implication of
having the source code in this state is that supporting the requirements
of these new implementations became difficult. Making new changes to
the source code of the DHIS1 software required rewriting existing code to
allow to the changes to be made. The core developers had to do major
changes in the source code to be able to add the changes needed to support
new implementations, in what would become DHIS] 4.

Finally, because the core developers of DHIS1 was located in South
Africa, it proved troublesome to provide the same level of user interaction
with implementations outside South Africa, that they had before. Com-
pared to working with the South Africa implementations, working re-
motely like this seems to have slowed down the process because of the
need to travel and exchange information.

Some of these challenges would not be solved by the core team them-
selves, like the incompatibilities of the software due to political reason.
However, regarding the support of new implementations, they used im-
plementation coordinators to mediate between the remotely located imple-
mentations and the developers in South Africa.

6.2 DHIS2: 2004 - 2017

The core DHIS2 team interacts with the users in several different ways
when gathering and designing requirements. For example, requirements
are gathered implementation support staff, expert users and developers,
either directly with implementations, or through academies.

The interaction with users in regards to gathering and designing
requirements done through the work of implementation support staff, or
DHIS2 academy participation, is similar to Serial PD. It could arguably be
described as being similar to Singular PD as well, but from the perspective
of the core DHIS2 team, it is more accurate to describe it as Serial PD.

Through the customization of the DHIS2 application or development
of custom apps, a similar type of interaction occurs. These activities are
usually an interaction between HISP nodes or external developers, and
local implementations of DHIS2. The collaboration between these parties
could be described as Singular PD. However, in regard to the requirement
management process of the core DHIS2 team, it is that of a Parallel PD,
because the interaction is not by the core team themselves.

53

Although the core DHIS2 team sometimes travel to users and work
closely with them, it’s not a sustainable way to design requirements. At the
University of Oslo, the product managers, together with other members of
the core team, filter, review and generify requirements gathered from the
community. This approach is most similar to that of the Parallel PD. That
means that at different levels, and to varying degrees, the DHIS2 software
is developed using a mix of all three types of PD.

Requirements are gathered and designed in several ways, as described
above, and by different types of people. As a result, several methods are
applied when attempting to develop generic requirements. For instance,
during plenary sessions in DHIS2 academies, participants learn about each
other’s use-cases and needs, allowing them to work out requirements
that solve problems that are common for all of them. Additionally,
having expert users participating in these sessions can help the process by
understanding what requirements are outside of the scope of the DHIS2
software and what problems can be solved by aligning their processes to
those of similar use-cases. In other words, both generification methods
from the management of community and the management of content are
used during academies.

The core DHIS2 team at the University of Oslo also apply the
similar generification methods when working with requirements in their
product meetings. For example, management by community methods
by working with HISP nodes and implementation support staff. The
HISP nodes and implementation support staff work with several users
and implementations from the community and gather requirements that
are relevant to the community. When the core DHIS2 team reviews these
requirements, they have already partly been generified by the community
through the HISP nodes and implementation support staff. That means the
community has the responsibility of generification in many cases, at least
to some degree.

Additionally, through the requirement management process of the
core DHIS2 team, several of the management of content methods are
applied. For example, methods like process alignment, comparing different
use-cases, identifying organisationally particular requirements and which
requirements are outside the scope of the DHIS2 software.

There are also cases where the core DHIS2 team also uses the man-
agement by social authority methods. For example, some stakeholders,
like donors and HISP nodes have more influence when designing require-
ments, as they represent both the source of funding for the core DHIS2
team, but also some of the most significant implementations of the DHIS2
software.

The way the DHIS2 software has been designed, allowing for extensive
customization of the software and development of custom apps, enables
users to make local innovations. This form of open generification is already
happening in the DHIS2 software. For example, a custom dashboard app
was created by users in the community, solving some of the limitations of
the existing dashboard application included in the DHIS2 software. The
core DHIS2 team reviewed this custom app, and through a process of

54

disembedding, they designed a new generic dashboard app, implementing
some of the new useful functionality of the custom app into the design.

HISP UiO makes all final decisions about the design and future of the
DHIS2 software. However, these decisions are not only based on the wishes
of HISP UiO, but rather the needs of the community and the overall good
of the DHIS2 software. In other words, the governance style of the DHIS2
software is more similar to a bottom-up-distributed approach, than a top-
down-centralized approach.

Additionally, users can gain limited authority, in the form of the ability
to influence the design and prioritization of requirements, based on their
contributions. For example, expert users have a higher influence on design
and prioritization than a fresh user would have. That implies there exists a
meritocratic system for users to gain authority.

Finally, stakeholders outside of HISP UiO are not allowed to control the
requirement management process, which means they are unable to drive
their requirements into the software. For example, if a stakeholder provid-
ing funding could control what requirements would be implemented, the
process would be governed with a top-down-centralized approach where
participation was limited to those providing funding.

Based on all these descriptions of the decision-making process used
in the DHIS2 software, we can recognize it as the Bazaar method of
governance.

All contributions to the DHIS2 software, including the source code, doc-
umentation and training material, is provided freely. Even contributions
from externally funded projects benefit all users of the software without
any cost. As such, the Private-Collective model of innovation is a good fit
for the DHIS2 software. However, innovations created by people outside
of the core DHIS2 team are not necessarily provided freely to everyone.
These innovations can include services or development of custom apps,
which the creators might choose to keep for themselves or charge a fee to
provide them. Because this is a by-product of the DHIS2 software and not
a part of the software itself, it doesn’t affect the model of innovation of the
DHIS2 software.

Types of Participatory Design Serial and Parallel

Methods of generification Management by Community,
Management by Content, Man-
agement by Social Authority,
Open Generification

Method of Governance Bazaar

Model of Innovation Private-Collective

Table 6.2: Summary of DHIS2 between 2004 - 2017

Table 6.2 gives a summary of the DHIS2 software development in this
period, described using the framework found in table 4.1 on page 24.

55

6.2.1 Challenges

During this period, the core DHIS2 team faced several new challenges,
mostly as a result of their growth. For example, tracking and designing
requirements became more complicated, releases were more often delayed,
and the software would often have stability issues with new features.
During this period, the number of developers, use-cases and externally
funded projects increased, until the point where the current organization
and processes of the team could not keep up.

With the increase in use-cases and externally funded projects, the
number of requirements increased significantly. To keep up with the
demand, the development process became something the developers at the
time referred to as a "feature-factory." A "feature-factory" can be interpreted
as a state of development where most of the efforts are put into new
features at the cost of the maintenance and stability of the existing source
code. Although this was not the intention, or sometimes not the reality
for most developers, it still describes how the development was affected
at the time. Developers worked on implementing requirements, like new
features, to meet the expectations of the community, sometimes at the cost
of spending time maintaining the software. This development trend was
also most likely a result of the new developers joining the projects as well,
who had less experience and knowledge about the software and the use-
cases.

This challenge affected the development in several ways, like managing
requirements, delayed releases and software stability as mentioned earlier.
Each of these problems was dealt with in different ways. For example, by
dividing the developers into separate technical teams, each with a team
leader following up and reviewing work before releasing it, made it easier
to validate the quality of the work. Similarly, team leaders would primarily
manage requirements related to their teams themselves, making it slightly
easier to handle all the requirements.

Another one of these problems, related to the externally funded
projects, was to follow up, track and managing the deliverables in these
projects. To deal with this challenge, HISP UiO hired project coordinators
to work with the different donors and projects. This change made it
easier for the core DHIS2 team to have an overview and plan development
activities related to these projects.

The frequency of releases was also changed to deal with the problem
of delayed releases. However, this had little impact. With less frequent
releases even more changes were made to the software, and the delays and
stability weren’t significantly improved. Another change to deal with this
issue was changing the workflow of the developers, focusing more on the
maintenance stability of the software. Although this change appears to
have had some effect on the problem, it was not until later the workflow
had changed enough to make a significant impact.

56

6.3 DHIS2 today: 2018

From the previous period to this, little has changed in regards to the
framework. The same mix of PD types occurs at different levels and
in different contexts, and even though the organization and processes
changed a lot through 2018, the underlying activities are still the same.
If anything, these changes confirm the description made for the previous
period.

For example, the DHIS2 mailing-lists were public and arguably assisted
in the process of generifying requirements for the core DHIS2 team through
the management of community methods. In 2018, with the introduction of
the DHIS2 Discourse platform, this form of interaction was significantly
simplified for both the community members and the core DHIS2 team.
The forum inspired format itself is a much more effective way to organize
discussions about different topics and to moderate the content, making
it easier to find information. Additionally, the Discourse platform allows
users to vote, share and cross-reference posts, making it easier to identify
users who make significant and valuable contributions. These features
both indirectly and directly grant authority to active users regarding
recognition in the community, but also the form of additional privileges
on the discourse platform. In other words, we can argue that there is an
actual meritocratic system for users, which again confirm that the DHIS2
software has a Bazaar type approach to governance.

If we look past the framework, there were significant changes made to
the organization and to the requirement management process itself. These
changes were primarily to further deal with the challenges described in
the previous period, like delayed releases, the stability of the software and
the growth of the core DHIS2 team. For example, the introduction of the
release manager helped reduce some of the volatility of the development
workflow, by intermittently reviewing the process of each team to identify
any potential risks.

Types of Participatory Design Serial, Parallel

Methods of generification Management by Community,
Management by Content, Man-
agement by Social Authority,
Open Generification

Method of Governance Bazaar

Model of Innovation Private-Collective

Table 6.3: Summary of DHIS2 in 2018

Table 6.3 gives a summary of the DHIS2 software development in 2018,
described using the framework found in table 4.1 on page 24.

6.3.1 Challenges

Some of the problems presented in the previous period are still relevant
in 2018. These problems were either not solved or only partially solved

57

during that period, like delayed releases, software stability and a high
number of requirements to manage. Furthermore, other challenges
became more apparent during this period as well, related to cross-team
dependencies and a growing backlog of issues.

The challenge of having frequent delayed releases was rapidly improv-
ing during this period. The changes to the development workflow, where
the time between each release was divided into smaller segments, most
likely had the most significant impact. As the core DHIS2 team adapted to
this new workflow, followed up by the release manager, it became easier to
deal with any potentially risky issues.

Additionally, this change in the workflow also made it easier to plan
and prioritize requirements. Because each release was divided into smaller
periods, product managers could focus their efforts to plan one period
at the time. In addition to the detailed plans for each period, product
managers also have a rough plan across all periods. While overall plan
support planning between different product teams, the detailed plans
supported the developers. By following up both plans and reviewing
the progress of developers, it became significantly easier to avoid tasks
that could delay the release by reassigning or postponing them. As a
result, recent releases of the DHIS2 software has fewer delays, and, when
a delay is inevitable, it becomes apparent much earlier in the process. By
catching the delays early, its easier to plan around the delays, and inform
stakeholders.

Regarding the problems of managing an increasingly high number of
issues, they have partly been dealt with but is still relevant and present
today. Through the efforts of the product managers, it has become easier to
deal with, but it still causing some issues concerning the prioritization of
requirements and the pressure to include as many requirements as possible
into each release. This challenge might be difficult to deal with completely,
because the software keeps growing, adding support for more and more
use-cases and increasing the number of new requirements.

One potential way to deal with this high number of requests in an
impactful way would be to define and limit the scope of the software.
Today, the core DHIS2 team primarily define the scope of the software
in regards to the type of functionality it should or should not support.
For example, the software supports some core and supportive features
related to gathering, analyzing and visualizing data. Requests for features
like a full-fledged task management system is therefore out of the scope.
On the other hand, adding similar functionality to enhance the existing
features would be accepted. The main difference of these being the scale
and complexity of the feature, or if the feature could be supported through
integration with other software.

However, the DHIS2 software is generic and can be used in several
different new use-cases, and which uses-cases we should add support
for is not restricted. One example is the Tracker module of the DHIS2
software, which initially did not support use-cases involving confidential
data, like patient information. However, because the core DHIS2 team saw
a trend of users requesting support for it, or even using it for this purpose

58

already, they decided to add the required support for these use-cases.
Accepting use-cases like these, that significantly change how users can use
the software generates a significant number of new requirements. If the
scope was stricter, regarding the types of use-cases that can be supported,
it could potentially reduce the high number of new requirements coming
in.

Because the development of the DHIS2 software depends on externally
funded projects, limiting the number of use-cases could impact the
funding. Without sufficient funding, it is possible that the growth and
success of the DHIS2 software would suffer. In other words, being flexible
in what use-cases supported, and therefore dealing with a high number
of requests, might be how a project like the DHIS2 software can remain
successful over time.

The problem concerning the software stability is actively being dealt
with, both in 2018, but significant efforts are planned after this period as
well. These efforts made to improve software stability are primarily made
through a significant increase in software testing.

The first effort started already in the previous period but became more
significant in 2018. One of the testers in the core DHIS2 team was given
the responsibility to reproduce bugs reported by the community, as well
as testing changes made by the developers. Having someone validating
bugs reported by the community resulted in a significant improvement
to the productivity of developers. Because many bugs reported by users
were the result of user error and not an error in the software, the tester
could weed out a significant number of issues. With fewer issues to review,
developers could focus on fixing actual bugs, allowing them to overall be
more productive.

The second effort made to improve the software stability was to further
include the community in the testing of new releases before they are
released. Users working with large implementations of the DHIS2 software
were especially valuable, as they could test the application with realistic
data and on a more realistic scale. The release manager plans these pre-
release test efforts and announces them to the community, making them
more structured and impactful than previously.

The final effort made to improve software stability is through test
automation. Although there was already a range of automated tests for
the DHIS2 software previously, they only covered parts of the software.
Additionally, the tests themselves were slow and time-consuming to
implement, so they were mostly prioritized for the most important features.
Now, several changes have been made to improve the coverage, quality,
and performance of automated testing, including unit tests, integration
tests, and API tests. Also the continuous integration workflow, an
automated sequence of processes source code goes through when changes
are made, have been improved to analyze the changes. This analysis
evaluates the quality of the code and points out any potential errors,
allowing the developers to make any nessecary changes.

These three efforts combined helps increase the developers” confidence
in their contributions, but also help uncover a significant number of bugs

59

they can resolve before releasing new versions. The software stability is
still an issue today, but with the continuation of these efforts, it is gradually
improving.

6.4 Summary

While there are several similarities between the DHIS1 and DHIS2 require-
ment management process, there are also some differences that affected
the different processes. Both of the projects had the same method of gov-
ernance, Bazaar, and model of innovation, private-collective. Addition-
ally, they employed similar methods for generifying requirements, except
DHIS2 which also have examples of open generification being used.

The DHIS1 software initially used a Singular type of PD to gather and
design requirements. However, when working on moving DHIS1 outside
of South Africa, this changed into a Serial PD. The DHIS2 software however
used Serial PD and Parallel PD for the same purpose. The type of PD
each of these projects used reflects the number of different contexts and
use-cases the software was used. For example, how the DHIS1 project
started with a Singular PD when they had few, local, implementation,
then changing to a Serial PD approach later to support new and remote
implementations.

There are also multiple examples of open generification in DHIS2
software development, like the dashboard example in this thesis. The
reason for this happening in the DHIS2 software and not the DHIS1
software could be because of the design of the software, but also because
of how it has been facilitated. For example, there is a lot of effort put into
capacity building for the DHIS2 software, and due to the design, it can
easily travel to both new context and use-cases, which in turn provides
more opportunities for local innovation.

Despite the similarities of the approach in each project, the softwares
ability to move into other contexts and use-cases seems to have been the
most significant difference between them. While the DHISI software had
difficulties moving to contexts other than South Africa, the DHIS2 software
is quickly supporting new contexts and new use-cases. It also seems that
the more contexts and use-cases the software support, the more challenges
can be found in the requirement management process.

60

Chapter 7

Conclusion

To answer the first research question, "How are requirements managed
in global generic open source software projects?”, we examined how
the DHIS1 and DHIS2 software projects handled requirements, both
historically and contemporary. What we found is that both projects had
very similar approaches to the process of managing requirements. At
the same time, the projects had a very different number of use-cases
and contexts they supported. Where the DHIS1 software appears to
have supported a specific use-case in a few different contexts, the DHIS2
software supports both different context and several different use-cases.

Both projects applied different types of PD when gathering and
designing requirements from users. While the DHIS1 software was still
developed for South Africa, they used Singular PD. However, when
they started working with implementations outside South Africa, their
approach changed to Serial PD. The DHIS2 software, on the other hand,
uses a combination of Serial PD and Parallel PD as Singular PD is not
sustainable with the number of implementations they support. It is clear
that with the number and variations of contexts and use-cases the software
supports, PD like the Singular PD becomes unsustainable. Even solely rely
on Serial PD in the DHIS2 projects would not be sufficient to manage all
the requirements in that project efficiently.

Regarding generification, both projects employ similar types of meth-
ods, except for the open generification which is only present in the DHIS2
project. Supporting multiple use-cases and contexts, combined with the
software design, was most likely what allowed for the local innovations in
open generification. In other words, the difference in how these projects
generified requirements are probably tied to the software ability to move
into different context and use-cases.

Both projects had a similar method of governance and model of
innovation. The Bazaar method of governance and the Private-Collective
model of innovation are both described as common for open source
projects. These approaches have probably had a lot of impact on the success
of the projects. Both the projects relies a lot on the users, both regarding
gathering and designing requirements, but also in the case of DHIS2, their
continued interest from donors, which both of these approaches have a

61

significant focus on empowering.

The second research question presented was "What challenges exist in
managing requirements in global generic open source software projects
and how can they be dealt with?". We answer this question by looking
at the challenges from the DHIS1 and DHIS2 projects.

The challenge faced in the DHISI project was related to moving the
software into new contexts. The core DHIS1 team dealt with this challenge
by going from a Singular PD to a Serial PD approach to better support the
new, remote implementations. Additionally, they had to make a significant
refactoring of their code to be able to add the required support for these
implementations.

In the DHIS2 project, the challenges were primarily related to their
growth and how do deal with the increasing number of requirements
for the software. With this increase in requirements, several problems
followed, like delayed releases and reduced software stability. Each of
these problems was dealt with in different ways, primarily by organizing
developers into teams, changing their workflow and improving the focus
on test automation. However, this challenge is still present today although
the related problems are not as critical today. One suggestion regarding
how to deal with this challenge is to limit what use-cases to support. This
solution could, however, act as a double-edged sword, where the number
of requirements might be reduced, but so would potentially the interest
from donors, limiting the funding for the software.

The strength of the thesis is that it has a thorough description of the
requirement management process of the DHIS2 software as it looks today.
Furthermore, it also compares how the process has changed over time,
both for itself, but also how it compares to how the DHIS1 software
did requirement management. Finally, it also includes challenges related
to these processes, describing some of the problems caused by these
challenges as well, and how they were solved.

One of the apparent weaknesses of the thesis is the lack of comparison
with other, similar, projects. Both the DHIS1 and the DHIS2 projects
revolve around the same core software, and in very similar settings.
Looking at other generic open source projects than DHIS could have
provided a different insight into what makes the DHIS2 requirement
management process different from others, or if they are similar.

The main contribution of this thesis is the rich case study of the
requirement management process of both the DHIS1 and DHIS2 software.
This case study provides a unique insight from the perspective of one
of the DHIS2 developers. Additionally, a framework for describing and
discussing these processes have been proposed, using methods and models
found in existing literature.

The case study and framework can be used in other research as well.
For example, by comparing the requirement management process of the
DHIS projects to other projects either proprietary or open source. The
case study can also work as a foundation for additional research regarding
the DHIS projects. Additionally, the challenges presented could serve as
problems to further investigate in other research.

62

Bibliography

[1]

2]

3]

[4]

[5]

[6]

[7]

[8]

Kristin Braa and Richard Vidgen. ‘Interpretation, intervention, and
reduction in the organizational laboratory: a framework for in-context
information system research’. en. In: Accounting, Management and
Information Technologies 9.1 (Jan. 1999). ., pp. 25-47. 1SSN: 09598022.
DOI: 10.1016/5S0959-8022(98)00018-6. URL: http://linkinghub.elsevier.
com/retrieve/pii/S0959802298000186 (visited on 24/01/2019).

Abyot Asalefew Gizaw, Bendik Bygstad and Petter Nielsen. ‘Open
generification’. en. In: Information Systems Journal 27.5 (Sept. 2017). .,
pp. 619-642. 1SSN: 1365-2575. DOI: 10.1111 /isj. 12112. URL: https:
/ / onlinelibrary . wiley. com / doi / abs / 10. 1111 /isj . 12112 (visited on
10/12/2018).

Health Information Systems Programme (HISP) - Department of Informat-
ics. . URL: https://www.mn.uio.no/ifi /english / research / networks / hisp/
(visited on 21/01/2019).

Eric von Hippel and Georg von Krogh. ‘Open Source Software and
the “Private-Collective” Innovation Model: Issues for Organization
Science’. In: Organization Science 14.2 (Apr. 2003). ., pp. 209-223. ISSN:
1047-7039. DOI: 10.1287 /orsc.14.2.209.14992. URL: https://pubsonline.
informs.org/doi/10.1287 /orsc.14.2.209.14992 (visited on 10/12/2018).

HISP Groups - Department of Informatics. . URL: https: //www.mn.uio.
no / ifi / english / research / networks / hisp / hisp- groups . html (visited on
01/02/2019).

Petter Nielsen and Sundeep Sahay. ‘Editorial: Critically studying
openness: A way forward’. In: Information Systems Journal, accepted for
publication (2019). .

Neil Pollock, Robin Williams and Luciana D’Adderio. ‘Global Soft-
ware and its Provenance: Generification Work in the Production of
Organizational Software Packages’. en. In: Social Studies of Science 37.2
(Apr. 2007). ., pp- 254-280. 1SSN: 0306-3127, 1460-3659. DOI: 10.1177/
0306312706066022. URL: http:/ /journals.sagepub.com /doi/10.1177/
0306312706066022 (visited on 10/12/2018).

Lars Kristian Roland and Terje Aksel Sanner. ‘P for Platform. Architec-
tures of large-scale participatory design’. en. In: 29 (2017). ., p. 33.

63

[9] Sundeep Sahay and Jern Braa. (PDF) Integrated Health Information
Architecture: Power to the Users. en. . URL: https://www.researchgate.net/
publication /314263419 Integrated Health Information _Architecture
Power to the Users (visited on 01/02/2019).

64

