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Contextualized definitions as word representations

What word representations we use in NLP?
1. Dense embeddings: ‘apple’ is [0.44, 0.32, 0.76 ... 0.01]

▶ Can be learned automatically, convenient in modeling, but not
human-readable

2. Word definitions: ‘apple’ is ‘EDIBLE POME FRUIT OF A USUALLY
CULTIVATED TREE OF THE ROSE FAMILY’
▶ Human readable and interpretable, but expensive to create and

difficult to use in modelling

What if we could have the best of both worlds?

Definition generated by a fine-tuned language model

‘I frequently saw Mehevi and several other
chefs and warriors of note take part’

chef ‘A COMMANDER’(can be encoded as a
sentence embedding)

2
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Definition modeling with Flan-T5

▶ We generate definitions by prompting a (fine-tuned) Flan-T5 language model
[Chung et al., 2022].

▶ Fine-tuning is done in a straightforward seq2seq setup:
▶ ‘Up until the middle of last century farmers were limited to cutting the hedges back with

a hand slasher. What is slasher?’
▶ ‘A TOOL FOR CUTTING VEGETATION WITH A LONG, SHARP BLADE’

Definition datasets for English (target word, definition, usage example)

Dataset Entries Lemmas Ratio Usage length Defin. length

WordNet [Ishiwatari et al., 2019] 15,657 8,938 1.75 4.80±3.43 6.64±3.77

Oxford [Gadetsky et al., 2018] 122,318 36,767 3.33 16.73±9.53 11.01±6.96

CoDWoE [Mickus et al., 2022] 63,596 36,068 2.44 24.04±21.05 11.78±8.03
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Evaluation setup

▶ Target lemmas and usage examples from the definitions datasets

▶ conditionally generate definitions with Flan-T5
▶ (no tweaking done, dumb greedy search with target word filtering to avoid circular

definitions)
▶ compare generated definitions to the gold ones in the datasets, using reference-based

NLG metrics.

Generalization tests
Following the GenBench generalisation taxonomy [Hupkes et al., 2022]:
1. Zero-shot: no fine-tuning, LLM as is
2. In-distribution: LLM fine-tuned and tested on the same dataset
3. Hard domain shift: LLM fine-tuned on dataset A, tested on dataset B
4. Soft domain shift: LLM fine-tuned on all datasets, tested on one.
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Simple and efficient approach

▶ The resulting definition generator performs on par with prior work
▶ ... but much simpler and more efficient.

WordNet test set Oxford test set

Model Generalization test BLEU ROUGE-L BERT-F1 BLEU ROUGE-L BERT-F1

[Huang et al., 2021] In-distribution 32.72 - - 26.52 - -

Flan-T5 XL Zero-shot (task shift) 2.70 12.72 86.72 2.88 16.20 86.52
Flan-T5 XL In-distribution 11.49 28.96 88.90 16.61 36.27 89.40
Flan-T5 XL Hard domain shift 29.55 48.17 91.39 8.37 25.06 87.56
Flan-T5 XL Soft domain shift 32.81 52.21 92.16 18.69 38.72 89.75

Try it yourself:
https:
//huggingface.co/ltg/flan-t5-definition-en-large
(the Large model is 780M parameters, XL model is 3B)
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Definitions in word-in-context similarity task

▶ Generated definitions allow quantitative comparisons between words in context:
▶ ‘He went to the ball and polked himself into he good graces of Miss Juliet Trevor’
▶ ‘The big man threw the first two balls very hard anf fast’
▶ Semantic proximity: 1 out of 4.

▶ One can compare definitions directly as strings:
▶ Exact match
▶ Levenstein distance
▶ BLEU
▶ METEOR
▶ etc

▶ ...or compute cosine between definitions vectorized with SBERT [Reimers and Gurevych, 2019]

▶ We tested it on diachronic word usage graphs (DWUGs) for English [Schlechtweg et al., 2021]
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Definitions in word-in-context similarity task

▶ Pairwise similarities between definitions correlate with human semantic similarity
judgements better than token and sentence embeddings:

Method Cosine SacreBLEU METEOR

RoBERTa-large token embeddings 0.141 - -
SBERT sentence embeddings 0.114 - -

Generated definitions

FLAN-T5 XL zero-shot 0.188 0.041 0.083
FLAN-T5 XXL zero-shot 0.206 0.045 0.092
FLAN-T5 Base fine-tuned 0.221 0.078 0.077
FLAN-T5 XL fine-tuned 0.264 0.108 0.117

Spearman correlations with human judgements

7



Contents

1 Outline

2 Definition generation

3 Sense labeling

4 Sense dynamics maps

5 To sum up

7



Labeling word sense clusters with definitions

Defining a collection of usages
▶ Given: Several usage examples for a target word with

data-driven usage clusters (senses)
▶ ... e.g., from the same DWUGs [Schlechtweg et al., 2021].
▶ We generate definitions for each usage, and find the most

prototypical definitions.
▶ Human-readable sense labels instead of anonymous cluster ids!

▶ One can also use the definition of the most prototypical usage
▶ ... based on token embeddings

▶ But human evaluation shows most prototypical definitions are
consistently better.
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Labeling word sense clusters with definitions

PCA projections of definition embeddings for target words from English DWUG
(colors are data-driven sense clusters, large stars are prototypical definitions).
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Explainable semantic change detection

How related are our senses?
▶ Given a DWUG, we measure cosine similarities between labels of clusters/senses in all

time periods.
▶ Most labels are very dissimilar, but some are unusually close to each other:
▶ for each target word, we simply find outlier pairs with z > 1.

This gives us an interpretable sense dynamics map:
▶ senses transitioning one into another
▶ splitting from another sense
▶ two senses merging into one
▶ etc.
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Explainable semantic change detection

▶ Diachronic map: ‘a novel sense 2 of ‘record’ in time period 2 (‘A PHONOGRAPH OR

GRAMOPHONE CYLINDER...’) is probably an offshoot of a stable sense 0 present in
both time periods (‘A DOCUMENT OR OTHER MEANS OF PROVIDING INFORMATION...’)’
(narrowing)

Left: time period 1 (1810-1860); right: time period 2 (1960-2010).

▶ Sense labels help to generate explanations of semantic change;
▶ ... actually useful for historical linguists, lexicographers, or social scientists
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Explainable semantic change detection

Fixing DWUGs
▶ trace incorrect or inconsistent DWUG clustering
▶ Two sense clusters have the same label? Likely, they are one cluster/sense.

‘Ball’ example
▶ Sense similarities are non-transitive:

▶ Ball 0: ‘A SPHERE OR OTHER OBJECT USED AS THE OBJECT OF A HIT’
▶ Ball 2: ‘A ROUND SOLID PROJECTILE, SUCH AS IS USED IN SHOOTING’
▶ Ball 3: ‘A BULLET’

▶ c0 to c2: 0.70
▶ c2 to c3: 0.53
▶ c0 to c3: 0.50 (below the outlier threshold)
Inconsistent clustering, but also interesting insights about meaning trajectory of ‘ball ’.
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Definitions as representations

▶ Semantic change modelling is only one use case.

▶ Our ‘definitions as lexical representations’ paradigm is promising for many NLP tasks.
▶ ...actually, [Bevilacqua et al., 2020] already employed definitions for WSD.
▶ Benefits:

▶ human-readable representations
▶ more abstract and robust to noise
▶ outperforms ‘standard’ embeddings in word-in-context similarity judgements
▶ for humanities, it’s easier to operate in the space of the definitions.

More in the paper:
https://arxiv.org/abs/2305.11993

13

https://arxiv.org/abs/2305.11993


Definitions as representations

▶ Semantic change modelling is only one use case.
▶ Our ‘definitions as lexical representations’ paradigm is promising for many NLP tasks.
▶ ...actually, [Bevilacqua et al., 2020] already employed definitions for WSD.

▶ Benefits:
▶ human-readable representations
▶ more abstract and robust to noise
▶ outperforms ‘standard’ embeddings in word-in-context similarity judgements
▶ for humanities, it’s easier to operate in the space of the definitions.

More in the paper:
https://arxiv.org/abs/2305.11993

13

https://arxiv.org/abs/2305.11993


Definitions as representations

▶ Semantic change modelling is only one use case.
▶ Our ‘definitions as lexical representations’ paradigm is promising for many NLP tasks.
▶ ...actually, [Bevilacqua et al., 2020] already employed definitions for WSD.
▶ Benefits:

▶ human-readable representations
▶ more abstract and robust to noise
▶ outperforms ‘standard’ embeddings in word-in-context similarity judgements
▶ for humanities, it’s easier to operate in the space of the definitions.

More in the paper:
https://arxiv.org/abs/2305.11993

13

https://arxiv.org/abs/2305.11993


Full results

WordNet test set Oxford test set

Model Generalization test BLEU ROUGE-L BERT-F1 BLEU ROUGE-L BERT-F1

[Huang et al., 2021] Unknown 32.72 - - 26.52 - -
T5 base Zero-shot (task shift) 2.01 8.24 82.98 1.72 7.48 78.79
T5 base Soft domain shift 9.21 25.71 86.44 7.28 24.13 86.03
Flan-T5 base Zero-shot (task shift) 4.08 15.32 87.00 3.71 17.25 86.44
Flan-T5 base In-distribution 8.80 23.19 87.49 6.15 20.84 86.48
Flan-T5 base Hard domain shift 6.89 20.53 87.16 4.32 17.00 85.88
Flan-T5 base Soft domain shift 10.38 27.17 88.22 7.18 23.04 86.90
Flan-T5 large Soft domain shift 14.37 33.74 88.21 10.90 30.05 87.44
T5 XL Zero-shot (task shift) 2.05 8.28 81.90 2.28 9.73 80.37
T5 XL Soft domain shift 34.14 53.55 91.40 18.82 38.26 88.81
Flan-T5 XL Zero-shot (task shift) 2.70 12.72 86.72 2.88 16.20 86.52
Flan-T5 XL In-distribution 11.49 28.96 88.90 16.61 36.27 89.40
Flan-T5 XL Hard domain shift 29.55 48.17 91.39 8.37 25.06 87.56
Flan-T5 XL Soft domain shift 32.81 52.21 92.16 18.69 38.72 89.75
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